
 
 

University of Birmingham

Capacity factors for electrical power generation
from renewable and nonrenewable sources
Bolson, Natanael; Prieto, Pedro; Patzek, Tadeusz

DOI:
10.1073/pnas.2205429119

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Bolson, N, Prieto, P & Patzek, T 2022, 'Capacity factors for electrical power generation from renewable and
nonrenewable sources', Proceedings of the National Academy of Sciences, vol. 119, no. 52, e2205429119.
https://doi.org/10.1073/pnas.2205429119

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 04. Aug. 2024

https://doi.org/10.1073/pnas.2205429119
https://doi.org/10.1073/pnas.2205429119
https://birmingham.elsevierpure.com/en/publications/48490a50-8e53-4d28-a9b2-f91e749fe23d


RESEARCH ARTICLE ENGINEERING OPEN ACCESS

Capacity factors for electrical power generation from renewable
and nonrenewable sources
Natanael Bolsona,1 ID , Pedro Prieto2 ID , and Tadeusz Patzeka,3 ID

Edited by Alexis Bell, University of California, Berkeley, CA; received March 28, 2022; accepted August 18, 2022

Given the dire consequences of climate change and the war in Ukraine, decarbonization
of electrical power systems around the world must be accomplished, while avoiding
recurring blackouts. A good understanding of performance and reliability of different
power sources underpins this endeavor. As an energy transition involves different
societal sectors, we must adopt a simple and efficient way of communicating the
transition’s key indicators. Capacity factor (CF) is a direct measure of the efficacy of a
power generation system and of the costs of power produced. Since the year 2000, the
explosive expansion of solar PV and wind power made their CFs more reliable. Knowing
the long-time average CFs of different electricity sources allows one to calculate directly
the nominal capacity required to replace the current fossil fuel mix for electricity
generation or expansion to meet future demand. CFs are straightforwardly calculated,
but they are rooted in real performance, not in modeling or wishful thinking. Based on
the current average CFs, replacing 1 W of fossil electricity generation capacity requires
installation of 4 W solar PV or 2 W of wind power. An expansion of the current energy
mix requires installing 8.8 W of solar PV or 4.3 W of wind power.

electricity sources | wind | solar | energy transition | renewable energy

Greenhouse gas emissions are the driving force behind climate change (1), which threatens
biodiversity (2), food security (3), and cultural diversity (4). The main source of carbon
emissions in electricity generation is the current mixture of inputs (5). The current state
of affairs demands an energy transition, but numerous challenges emerge (6–8). Such a
transition implicates different societies in different ways (9–11), but even the conservative
United States wants a decarbonized future (12). Actions toward a sustainable future have
been taken at different scales from city (13) to country level (14).

The current energy system in place has a rigid structure with a modus operandi
of “winner takes all” that hampers the establishment of alternatives (15). Policies can
be implemented to overcome the status quo. However, unintended consequences can
arise, e.g., carbon pricing policies tend to incentivize optimization of the current energy
system instead of the required transformations to achieve a decarbonized one (16). This
conclusion is not universally accepted (17–19). It seems, however, that renewables will
lead the energy transition and solar photovoltaics will play a key role (20–22).

Engaging different players in a society for the energy transition is essential. However,
the diversity of stakeholders creates communication barriers, particularly when technical
details are transmitted to a broad audience. The war in Ukraine and insufficient natural
gas supply in Europe have added painful urgency to clear and truthful communication of
the potential pitfalls of any energy transition that boil down to the clear understanding
of what the different components of electricity generation systems can and cannot do.
Regarding power-generation efficiencies of different sources, the use of CF is an excellent
tool to connect with a broad set of audiences.

CF is a measure of a power plant efficacy (23). In short, it is an indicator of how fully
the power plant is used, relative to its thermodynamic and technological constraints and
required spare capacity (24). For all technologies, CFs have typical values for a set time
interval and input (a fuel, light, water, or wind).

An electrical power plant’s CF gives this plant’s average output relative to its maximum
capacity. This could be quite misleading for renewables. If a plant works at 50% of
nominal capacity, its CF is 0.5. This does not mean that the plant worked 12 h at full
capacity and was off over the remaining 12 h. This plant could be down for different
reasons such as repairs, maintenance, refueling, or intermittency for renewables. Despite
its limitations, CF is a straightforward indicator that can be easily calculated and predict
the amount of electricity that will be obtained on average from a specific nominal capacity
installed.

Significance

Capacity factor (CF) of an electrical
generation plant is a direct
measurement of the efficacy of
this plant, or all power plants in a
country, region, or the world. CF
measures directly how much
electrical power is produced by a
plant relative to how much could
possibly be produced at peak
capacity. In view of a dire need to
decarbonize and transition to
clean energy, long-time average
CFs provide a key component of
reliable, unbiased insights into
what is required to replace the
current fossil fuel mix (coal,
natural gas, and oil). CFs also
are needed for an accurate
quantification of the nominal
generation capacity needed to
replace and expand the current
electricity infrastructure.
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Comparing CFs across different technologies can be tricky,
mainly when some are well established and mature, while others
are at pilot-scale or not fully deployed. In the last two decades,
solar PV and wind have been growing exponentially. This
explosive growth allows one to obtain reliably their CFs. When
a technology is more established, the effects of pilot plants,
learning curves (25–28), or optimal sites no longer dominate,
giving reliable estimates about that technology’s performance.
Field tests are the ultimate answer. Theoretical estimates can
differ significantly from the measured ones. Such discrepancies
have been presented for wind (29) and concentrated solar power
plants (30) (SI Appendix, section 10). Knowing the real value of
CFs is fundamental to estimating costs, power production, and
the future roles of specific technologies.

In this work, we analyze the average CFs of different
electricity sources (i.e., biomass, fossil fuels, geothermal heat,
water, uranium, solar light, and wind) over the period 2000–
2017. Global and regional values are estimated to highlight the
differences in the performance of different technologies. These
average CF values are then used to calculate the required nominal
capacity to be installed in the future for our unavoidable energy
transition.

Capacity Factor (CF)

CF is the ratio of the actual average electrical power a plant
delivers over time to the nominal power it is capable of delivering
at peak conditions. Through weighting the CF by the share of
electricity generated, we reduce the influence of countries that
do not have a significant capacity for a specific technology. It
could be because they are at the initial stages of adopting the
technology, or it is not feasible, i.e., no plans exist for expansion
after pilot plants. Also, initially, the best places for production
are targeted, but the early projects or pilot plants can skew CF
estimates. As the piloted technology matures and spreads, a more
reliable value of CF is obtained.

Fig. 1 shows the CFs of different technologies. When the
dashed line is above the solid line, it means that the big producers
have a higher CF than the average, see, e.g., hydropower.

It is important to mention that CF fluctuations can occur for
many reasons. For renewables that rely on weather conditions,
an atypical year can interfere (e.g., a severe drought in Brazil
in 2021). In the case of sources that depend only on demand

Fig. 1. World capacity factor. The solid line is for the capacity factor, and the
dashed line shows weighted capacity factor for the respective year.

Fig. 2. World’s mean and weighted mean capacity factors. The mean values
correspond to the 2000–2017 period. The error bar is the SD.

(e.g., fossil fuels), excess production from renewables could
induce reductions of the fossil power CFs. Another example
is nuclear power after the Fukushima incident in 2011, which
triggered a wave of shutdowns and maintenance of nuclear
reactors worldwide (31).

Fig. 2 shows the means and weighted means of CFs for
the world. These values are suitable for evaluating the overall
performance of a specific technology. With the maturation and
spread of solar PV and wind power plants, we may already know
their reliable mean CF values of 0.11 and 0.22, respectively. The
mean and weighted mean have similar values for all sources, which
implies that globally the impact of big producers is insignificant.
SI Appendix, Fig. S2 shows the boxplot for CFs of the world
regions, and SI Appendix, Fig. S3 gives a detailed perspective of
the composition of fossil fuels used to generate electricity.

Fig. 2, in other words, could be interpreted as the efficacy
of the nominal installed power, e.g., installing 5 W of wind
power, is equivalent to 1 W of an ideal generator. It is important
to emphasize that capacity factor (CF) does not capture variance
and intermittence of energy generation, which in the case of some
renewables means that operation can oscillate between maximum
and zero power in a few hours.

Table 1 shows the CFs for all the technologies and regions
analyzed. While globally we do not observe significant differences
between the mean and weighted mean; for some regions, these
differences are significant. Some regions have big energy players
who drive the weighted mean, as in Oceania dominated by
Australia. Another example is hydropower in Latin America, in
which Brazil is responsible for half of all electricity generated
from water.

Also, Table 1 allows us to compare how specific technologies
perform in different regions. For example, solar PV is more
productive in MENA than in Europe. Understanding these
differences is crucial to proposing any global energy transition
strategy as different regions have their strengths and weakness.
A comparison of all the regions is available in SI Appendix,
Fig. S7. Also, being aware of each region’s values can provide a
better perspective than the global values, avoiding overestimation
or underestimation. In addition, the values for individual
countries are shown in supplementary SI Appendix, Table S1.
Supplementary information for the share of electricity generated,
nominal capacity installed, historical values, and box-plot of CF
are available in SI Appendix, Figs. S8–S28.
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Table 1. Summary of capacity factor values
Biomass Fossil Geothermal Hydro Nuclear Solar Wind

Region Mean W. M. Mean W. M. Mean W. M. Mean W. M. Mean W. M. Mean W. M. Mean W. M.

Africa 0.32 0.43 0.31 0.57 0.56 0.74 0.44 0.55 0.80 0.80 0.17 0.17 0.26 0.27
Asia 0.37 0.60 0.41 0.51 0.65 0.70 0.37 0.39 0.72 0.76 0.14 0.12 0.23 0.19
CIS 0.34 0.31 0.32 0.43 0.60 0.60 0.37 0.40 0.72 0.76 0.10 0.07 0.12 0.12
Europe 0.53 0.59 0.37 0.44 0.63 0.86 0.38 0.44 0.83 0.79 0.10 0.10 0.21 0.21
L. Am. 0.37 0.45 0.36 0.45 0.67 0.76 0.47 0.53 0.77 0.79 0.20 0.12 0.27 0.31
MENA 0.47 0.52 0.49 0.49 – – 0.27 0.36 0.44 0.44 0.11 0.11 0.27 0.33
N. Am. 0.62 0.64 0.44 0.43 0.72 0.72 0.48 0.49 0.85 0.89 0.14 0.15 0.26 0.27
Oceania 0.32 0.45 0.40 0.52 0.87 0.87 0.45 0.43 – – 0.15 0.14 0.22 0.31
World 0.55 0.53 0.46 0.48 0.74 0.75 0.43 0.45 0.79 0.81 0.11 0.12 0.22 0.23

W. M. is the acronym for the Weighted Mean.

Energy Transition and Technology
Replacement

Knowing the mean CF of a particular technology provides critical
insights needed to design and expand the infrastructure required
to supply electricity. Fig. 3 illustrates the nominal capacity (Wp)
equivalent that must be deployed to supply a unit of power
demand (W). The Growth scenario represents an expansion
of the current power sector in place to satisfy an increase in
power consumption (i.e., power addition to the system). The
Decarbonization scenario is the replacement of fossil fuels in the
power sector by alternative sources; in this case, the total power
supply remains constant (this is a true power transition). An
energy transition is only achieved when a replacement occurs
(Decarbonization). Otherwise, we would just be adding to the
system-in-place (Growth) (7).

Fig. 3 shows that the Growth scenario requires practically
twice the nominal capacity required for Decarbonization. The
reason is that in the Decarbonization scenario, we are replacing
a technology that has the global CF of 0.46, i.e., we assume that
the global fossil fuel power generation operates continuously at
roughly half capacity (and presumably satisfies power peaks).

Fig. 3. Capacity requirements for an energy transition. Wp represents the
nominal capacity that must be installed to power a unit of power output
continuously (W)—limitations such as intermittence of losses due to storage
are neglected. The Growth scenario represents an expansion of the current
power sector in place to supply an increase in power consumption. The
Decarbonization scenario is the replacement of fossil fuels in the electrical
power sector by alternative sources; in this case, total power supply remains
constant. Error bars represent one SD.

Based on the current CFs, an energy transition toward
renewables will require a massive infrastructure and nominal
capacity to be built and installed. To replace the current fossil
capacity that generates 4 TWe with solar PV and wind at a
1:1 ratio, we must install 12 TWe from these renewables. This
estimate applies to a replacement-only scenario with no growth,
also assuming that the 0.5 CF for fossil plants is all waste and not
needed to provide peak load. For an expansion scenario, each 1
TWe of fossil fuel electricity displaced by 1:1 solar PV and wind
would require 6.5 TWe from these renewables.

Fig. 4 shows that a gradual growth of the share of renewables
in the world’s electrical power mix has caused the CFs of the
fossil fuel plants and renewable plants to decline with time. This
means that we are increasing the overall capacity of electricity
generation, but at the same time, the emerging new system has
more idle capacity. We should be aware of this problem because
it is intrinsic to the modern technology mix.

The declining CF for fossil fuels is intriguing. The first
hypothesis is that it could be caused by the replacement of fossil
fuels with renewables. However, the installed fossil fuel capacity
is still growing, which contradicts this scenario (SI Appendix,
Fig. S4). The second hypothesis intimates a mismatch between
the foreseen and actual electricity demand. A fossil power plant
takes on average five years to build (19). Forecasting electricity
demand involves several factors, but usually, it is well-correlated

Fig. 4. The historical values of capacity factors. “World” includes all the
nominal capacity installed to generate electricity; “Fossil” includes coal,
natural gas, and oil; “Renewables” encompass all renewables sources.
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with the gross domestic product (GDP). It seems that a mismatch
between expected and real GDP growth could explain this
decline. The World Economic Outlook from the International
Monetary Fund (32) estimated that the world annual GDP
growth would be near to 4.5%. This growth rate happened
only in 2010 (5.4%) and 2011 (4.3%), but for the following
years until 2017, the average was 3.5% (33). Knowing that, on
average, it takes 5 y to build a fossil power plant (19), the capacity
added was envisioning a higher electricity demand (SI Appendix,
Fig. S5). Although undesired, this condition is not surprising. As
a precautionary measure in power supply, it is a safe strategy.

Fig. 5 shows the share of nominal capacity (solid line) and net
electricity generation (dashed line) for the global fossil, nuclear,
and renewable power plants. The electrical power mix has an
average CF that depends on the shares of each source. The
current world CF is 0.41, which is based on a consideration of the
total installed capacity independent of the source and the total
electricity generation. When comparing the share of electricity
generated and nominal capacity, three conditions are possible:

1. Share of nominal capacity and electricity generation overlap.
In this case, the share of capacity installed is the same as the
system’s CF (see fossil Fig. 5).

2. Share of nominal capacity is greater than the electricity
generation. This case implies that this technology’s CF is
lower than the system’s average CF (see renewables, Fig. 5).

3. Share of nominal capacity is smaller than the electricity
generation. This case means that the technology has a higher
CF than the system (see nuclear, Fig. 5).

When we consider the three possible conditions and the results
shown in Fig. 5, we notice a bifurcation in the share of renewables.
On the one hand, their installed capacity has increased more
rapidly than those of the other sources, but on the other hand,
the share of the global electricity generated by renewables has
lagged increasingly (see the arrows in Fig. 5). Thus, the addition
of renewables to the energy mix is lowering the system’s CF and
explains why, after the year 2005, the fossil fuel power plants
switched from the condition described in ref. 2 to that in ref. 3.

As previously mentioned, after the year 2000, our energy mix
started to change due to an aggressive expansion of renewables,
mainly solar and wind power. Fig. 6 shows the nominal capacity

Fig. 5. Nominal capacity and electricity generation. The solid lines show the
shares of nominal capacity installed, and the dashed lines show the shares
of electricity generated.

Fig. 6. Detailed nominal capacity installed and electricity generated by
renewables. The solid lines show the shares of nominal capacity installed,
and the dashed lines show the share of electricity generated.

and electricity generated by renewable sources. Before the year
2000, the energy mix was practically composed of biomass,
geothermal, and hydropower. Nowadays, solar and wind have a
significant presence. Consequently, the overall CF for renewables
dropped from 0.44 to 0.33 over the last two decades (Fig. 4).

The critical observation from Fig. 6 is that the share of installed
capacity does not correspond to the share of electricity generated.
One should be aware of this fact when applauding the increasing
presence of renewables in the energy mix. As more solar and wind
are added to the energy system, they will reduce the global CF.
This fact should not discourage the mandatory energy transition,
but it foreshadows the magnitude of the challenge that lies ahead.

An energy transition scenario that requires 12 TW of solar and
wind to replace the fossil fuel energy mix presents several chal-
lenges. It will triple peak demands on the energy infrastructure
from the power transmission lines and storage, to generation.
This transition scenario involves a giant new infrastructure at all
levels that usually is not accounted for ref. 34. Copper demand
could become a problem. Solar photovoltaic systems use 5 tons
of copper per MW installed (35), while wind turbines require
up to 5 tons of copper per MW installed onshore (36) and up
to 10 tons for offshore systems (37). Thus, our energy transition
scenario could easily require extra 75 million tonnes of copper.
This estimate ignores most of the new infrastructure required
to accommodate the growing world population and electrifying
industry. For reference, the current global extraction rate is 20
million tonnes of copper per year, with current reserves estimated
at 870 million tonnes (38).

Furthermore, the ubiquity of intermittent renewables in the
power system creates new challenges for grid management. First,
the peaks of production or dispatch limitations could result in
curtailment of electricity, reducing the system efficiency (39).
Second, energy storage is currently a great challenge; while there is
no dominant technology, many options are available, improving,
or are being developed (40–42).

Solar Power

Solar PV is expected to play a major role in any energy transition
scenario (43). Thus, to gain deeper insights, we analyzed four
uniquely different PV installations, see SI Appendix, sections 9
and 10 for details.
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When we consider the performance of a solar photovoltaic
device, we must think beyond the incident solar irradiance. First,
the temperature of the photovoltaic cells affects the power output.
As this temperature increases with global warming (44), the power
output decreases proportionally (45). Conversely, adoption of a
sun-tracking system can increase the power output from 15 %
to 45 %, when compared with the fixed panel systems (46, 47).
However, the performance of the sun-tracking systems depends
on ambient conditions. They are most effective in cold and cloudy
countries, rather than in a hot climate (48). Sun-tracking in a
hot environment increases the incident radiation over the panel,
increasing the power output. However, it also increases the panel’s
temperature, reducing the power output. The sun-tracking PV
arrays have higher operational and maintenance costs (49). In
some cases, the net power output gain does not compensate for
the energy cost of the tracking system. Also, in windy places, costs
increase further due to reinforced structures needed to withstand
the wind load and energy output reduction due to the array’s flag
position to avoid mechanical damage. Another issue associated
with photovoltaics is dust, 4 g/m2/month of dust can reduce the
power output of a solar panel by 40 % (50). Soiling losses over
a dry summer can reduce the power output of a solar panel by
20 % (51). Current models neglect the impact of dust on the
power output of solar panels, which can lead to quite misleading
CF estimates.

Fig. 7 shows the three locations investigated by us. The yellow
bars are the estimated CFs based on the Global Solar Atlas model
that accounts for the effects of location, solar radiation, and air
temperature (52). The blue bars are the actual data from three
solar PV arrays. The solar array in Càceres, Spain, has a double-
axis solar tracking system, and the blue star represents the panel’s
performance if we assume that the array was fixed and at the
optimum tilt angle. The black color encodes the data from EIA
(53), which also represent the actual reported data. The stars
represent the mean of the respective country where the array is
placed, and the dashed line refers to the current global mean.
Detailed performance of these arrays is discussed in SI Appendix,
section 9.

Fig. 7. Real performance of solar arrays. The black color is data from EIA
(53); the stars are the mean for the country, in which the array is placed,
and the dashed line is the world mean. The yellow bars are reference data
based on the Global Solar Atlas (52). The blue bars are the actual data from
solar PV arrays. The solar array in Càceres has a double-axis solar tracking
system, and the blue star represents its performance without tracking and at
the optimum tilt angle.

Thuwal, Saudi Arabia, is an illustration of expected and real
performance in a dusty environment. The real performance is
60 % of the estimate by the Global Solar Atlas. This difference
is due mainly to dust deposition; the recent measurements
indicate average deposition of 11 g/m2/month (54). The current
fortnightly cleaning with fresh water seems to be insufficient to
attain the expected performance.

Overall, the Global Solar Atlas overestimates array perfor-
mance (simpler models will yield even worse estimates) because
it neglects the impact of dust. Also, the surface air temperature
should be replaced by panel temperature, which requires a
more sophisticated model. For example, when comparing the
actual performance of the arrays with an expected performance
estimated from an average of the local incident radiation, Austin
delivers 64%, Càceres 82%, and Thuwal 48% of the expected
power output (SI Appendix, section 9). In summary, the simpler
the approach, the higher the deviation from reality is.

The real data measured and reported as the blue bars can be
used as a reference. Under similar conditions, the performance
of a similar array will not change drastically. The most important
observation is that ambient conditions interfere much more than
is commonly reported; the combo of high cell temperature and
dust could undermine the future PV projects that will take place
in the hot and arid regions of the world.

Conclusions

Faced with the urgency of decarbonization and to avoid the harsh
impacts of climate change, researchers have adopted the concept
of CF, which is a straightforward, consistent indicator of the
efficacy of diverse energy systems. CF is objective and informs
about the average performance of a specific electricity generation
technology. Real data must be used to estimate capacity factors
to avoid wishful thinking and overestimates.

The capacity requirements for the replacement of fossil fuels
or expanding the current energy system provide a clear insight
into the scope of the challenge. Practically doubling the current
energy system in place poses hidden infrastructural challenges
that are not obvious and commonly neglected.

Current models and projections for solar photovoltaic power
generation overestimate its average power output. We need more
refined models that account for ambient conditions, such as panel
temperature and dust deposition. Some approaches are close to
the back-of-the-envelope calculations, which provide misleading
information that may put the net-zero agenda off-track.

Materials and Methods

CF was calculated as

CF =
Power Produced

Maximum Possible Power Output
. [1]

The power output refers to the energy produced over the period analyzed. The
maximumpossiblepoweroutput isdeliveredwhenthedeviceorsystemanalyzed
functions uninterruptedly over a defined period. In our case, the reference period
is 1 y.

We are calculating the CF based on the information available in the EIA (53)
database, which can be expressed as

CF =
ElectricityGen.

ElectricityCap. × 8760
. [2]
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The ElectricityGen. is the equivalent of net electricity generation (in Wh)
that excludes the energy consumed by the power plant. The ElectricityCap.

corresponds to the nominal capacity installed (in W) in a given year, and 8,760
corresponds to the number of hours in a year.

The CF are calculated by source (i.e., biomass fuels, fossil fuels, geothermal
heat, water, uranium, solar PV, and wind) for each country and the world.
Subsequently, the mean CF is calculated over the 2000 to 2017 period. In order
to have a better perspective of how CFs are evolving, the regional calculations
were made. The regions are the following: Africa (excluding north), Asia,
Commonwealth of Independent States (CIS), Europe, Latin America, Middle-
East and North Africa (MENA), North America, and Oceania. A detailed list of the
countries belonging to each group is available in the Supplementary Information
(SI Appendix, Fig. S6).

In addition, a weighted CF (CFW) was calculated,

CFW =
∑
n

CFn × Wn. [3]

The summation is over countries to estimate the regional weighted CF. For the
world, the summation is over regions.

The weight consists of the electricity share generated by a specific country or
region, which is case-dependent and can be expressed as

W =


ElectricityGen. Region
ElectricityGen. World

, for World CFW,

ElectricityGen. Country
ElectricityGen. Region

, for Regional CFW.

CFs greater or equal to 1, equal to 0, or∞were removed from the calculations.
Also, when one of the previous conditions was identified, the compromised data
(i.e., electricity generation) related to that condition were removed.

For the solar section, the EIA data are based in the procedure reported above.
The Global Solar Atlas data were collected from their website for the city where
the array is located (52). The real data reported are the average over the total
period with access to the data, based on an annual mean and SD. The detailed
data are available in SI Appendix, section 9.

Data, Materials, and Software Availability. All algorithms developed by the
authors. Data were collected from previously specified sources and posted on
Zenodo (https://zenodo.org/record/6565027#.Yx9kHnbMI2w).
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