Near-inertial wave propagation in the deep Canadian Basin: Turning depths and the homogeneous deep layer

Joel Bracamontes-Ramírez¹, Maren Walter¹, Martin Losch²

 $^1 {\rm Institute}$ of Environmental Physics, University of Bremen $^2 {\rm Alfred}\text{-Wegener-Institut},$ Helmholtz-Zentrum für Polar- und Meeresforschung

Key Points:

3

4 5

6

7	•	In the deep Canadian Basin, there are near-inertial turning depths between 100
8		to 1200 m above the seafloor.
9	•	Below the turning depths, the deep layer is quasi-homogeneous and locally unsta-
10		ble.

Near-inertial turning depths inhibit internal gravity wave propagation and hence
 reduce near bottom mixing.

Corresponding author: Joel Bracamontes-Ramírez, joelbra.920gmail.com

13 Abstract

The internal wave climate in the deep Arctic Ocean, away from the shelves, is quiet 14 because the ice cover shields the ocean from wind energy input, and tidal amplitudes are 15 small. Hence, mixing due to internal wave breaking is small. The shrinking Arctic sea 16 ice cover, however, exposes more open ocean areas to energy transfer by wind. Conse-17 quently, more energetic near-inertial internal waves (NIWs) may carry energy to the bot-18 tom, potentially enhancing deep mixing. In the deep Canadian Basin, weakly stratified 19 layers with local buoyancy frequencies smaller than the wave frequency may prevent NIW 20 21 propagation to the seafloor. We estimate the distribution of these near-inertial turning depths from temperature and salinity data of the years 2005 to 2014. Near-inertial turn-22 ing depths are ubiquitous in the deep Canadian Basin at $\sim 2750 \,\mathrm{m}$ depth, between 100 23 and 1200 m above the bottom. A deep homogeneous layer below 3300 m is characterized 24 by small squared buoyancy frequencies $N^2 \sim 0$ with locally unstable layers ($N^2 < 0$). 25 The turning depths reflect NIWs and hence limit their contribution to deep mixing, but 26 the waves create an evanescent perturbation with exponentially decreasing amplitude 27 that can interact with the bathymetry, especially above slopes and ridges where the height 28 of the turning depths above the seafloor is small. After reflection, the main part of the 29 wave energy is trapped between turning depths and the surface, so that a potential in-30 crease of wave energy input mainly affects mixing of mid-depth water masses like the At-31 lantic Water. 32

³³ Plain Language Summary

Over the last couple of years, Arctic Ocean summer sea ice has decreased. The larger 34 ice-free regions imply more open areas for wind to act on the ocean surface. As a result, 35 energy from the atmosphere goes into the ocean, triggering more energetic waves in the 36 ocean interior. These internal waves carry energy over longer distances and mix the wa-37 ters where they break. To better understand this process, we studied temperature and 38 salinity data from 2005 to 2014. Our findings show widespread areas in the deep Cana-39 dian Basin, at around 2750 m depth, where the further propagation of the waves is con-40 strained by weak stratification. These depths are called near-inertial turning depths, and 41 they shorten the path of near-inertial waves and isolate the bottom from waves and mix-42 ing. In addition, we found weakly stratified and unstable layers below 3300 m. Our re-43 sults shed light on the link of surface-generate waves to the interior mixing rates in the 44 Arctic Ocean. 45

46 **1** Introduction

The energy associated with the internal wave climate in the Arctic Ocean is lower 47 than in other oceans (D'Asaro & Morehead, 1991; Morison et al., 1985), partly because 48 a thick sea ice layer covers the ocean surface, preventing the wind from acting on it. The 49 ice cover varies non-uniformly in both time and space. In the marginal zone and towards 50 the coast, the sea ice has a seasonal cycle, with thinner sea ice that usually does not sur-51 vive the summer (Walsh et al., 2017). In contrast, the sea ice is thicker at higher lati-52 tudes and can survive several years (Kwok, 2018). This sea ice pattern is changing. In 53 the last decades, the summer ice cover has decreased considerably, which implies more 54 open ocean areas where the wind can act on and transfer energy and momentum into 55 the ocean (Rainville et al., 2011; Rainville & Woodgate, 2009). In particular, an increase 56 in near-inertial wave amplitude (Dosser et al., 2014; Dosser & Rainville, 2016) and ki-57 netic energy (Fine & Cole, 2022) in the Canadian Basin and the enhancement of wind-58 driven vertical heat fluxes and dissipation rates in the Eurasian Basin (Meyer et al., 2017; 59 Peterson et al., 2017) have already been observed. 60

Furthermore, tidal energy is weak, partly because most of the Arctic Ocean lies north of the critical latitude for the M_2 tide at 74.5 °N. North of this latitude, semi-diurnal tides cannot propagate freely but they can transfer energy into lee waves by non-linear interaction with the topography (Vlasenko et al., 2003). This process is more likely to be triggered on steep slopes, and typically lee waves tend to be dissipated near their generation zone (Rippeth et al., 2017; Lenn et al., 2022), providing another explanation that the Arctic Ocean has a quiescent wave climate.

As the summer sea ice extent continues to decrease and the areas with seasonal sea 68 ice cover increase, wind-driven internal waves will be more energetic, mainly in the near-69 inertial range (Rainville & Woodgate, 2009; Rainville et al., 2011). This shift in ice cover 70 dynamics and the fact that most of the Arctic Ocean is located north of the M_2 criti-71 cal latitude make the near-inertial waves (NIW) an important contributor to altering the 72 wave climate. In a fully sea-ice-covered Arctic Ocean, near-inertial internal waves gen-73 erated at the surface are hypothesized to survive one round-trip to the bottom and then 74 dissipate partially under sea ice (Pinkel, 2005; Cole et al., 2018). In a feasible, less dis-75 sipative future scenario with more open ocean areas (Kim et al., 2023), we expect surface-76 generated NIWs to travel and carry energy over longer distances towards the slope or 77 the bottom. 78

As NIWs travel through the Ocean, they can reach depths at which their frequency 79 ω exceeds the local buoyancy frequency N(z) and where they cannot propagate any fur-80 ther as waves (Olbers, 2012). According to linear theory and experiments, waves are more 81 likely to be reflected at these so-called turning depths than to penetrate this depth or 82 break (Paoletti & Swinney, 2012). Hence, the NIW travel path to the surface is short-83 ened after reflection at turning depths. Below a turning depth, wave amplitudes decrease 84 exponentially in what is known as the evanescent region (Sutherland, 2010). Hence if 85 turning depths are far above the topography, waves are unlikely to interact with the bot-86 tom (Paoletti et al., 2014) and to account directly for deep mixing. 87

Turning depths for the semidiurnal tide, with $N(z) \leq \omega_{M_2} \approx 1.405 \times 10^{-4} \,\mathrm{s}^{-1}$ 88 $(N^2(z) \le 1.974 \times 10^{-8} \text{ s}^{-2})$, are ubiquitous in the entire Ocean (King et al., 2012). In 89 the South China Sea, turning depths were also found for the diurnal tide $\omega_{K_1} \approx 7.292 \times 10^{-5} \,\mathrm{s}^{-1} \,(\omega_{K_1}^2 \approx 0.5317 \times 10^{-8} \,\mathrm{s}^{-2})$ (Liu et al., 2022). For NIWs, the buoyancy frequency must be in the order of $N(z) \leq \omega \approx 1.4 \times 10^{-4} \,\mathrm{s}^{-1} \,(N^2(z) \leq 1.959 \times 10^{-8} \,\mathrm{s}^{-2})$, 90 91 92 which corresponds to the average Coriolis frequency in the Arctic Ocean (> 70 °N). Such 93 a weak stratification is found mainly at great depths, for example, in the abyssal plain 94 of the Canadian Basin below $\sim 2700 \,\mathrm{m}$ (Timmermans et al., 2007; Timmermans & Gar-95 rett, 2006). In addition, in the Canadian Basin interior, away from the continental slopes, 96 upward and downward NIW energy fluxes at the surface dominate (Halle, 2003; Pinkel, 97 2005) even though the weak tides do not generate strong upward internal waves. A pos-98 sible explanation without observational evidence for this upward wave flux paradox is 99 that surface-generated NIWs reflect after encountering a turning depth in the interior 100 (Gregg, 2021). 101

In the Canadian Basin, deep mixing is enhanced on slopes, particularly in areas with steep topography (Rainville & Winsor, 2008). If tides do not play a significant role in driving the mixing interior beyond the critical latitude, the pathways of NIWs are key to understanding the mechanisms that drive deep mixing in the Canadian Basin. Do nearinertial turning depths exist in the Deep Canadian Basin? Do surface-generated NIWs reach the bottom? What are the consequences of turning depths for deep mixing?

In this paper, we use temperature and salinity profiles from the Canadian Basin to investigate the existence and distribution of near-inertial turning depths in the interior and to characterize the deep homogeneous layer. Section 2 describes data and methods. Section 3 gives evidence and distribution of near-inertial turning depths, and we explored the effect of the non-traditional approximation on the detection of near-inertial

Figure 1. Canadian Basin bathymetry, the blue sector marks the study area. The dotted black line represents the critical latitude for the M_2 tide and the dots are the location of the 196 profiles used for this study. In light and dark blue, yellow, and green the profiles used for the transects shown in Fig. 4.

turning depths. Section 4 discusses the results and gives some insights into the conse-113 quence of near-inertial turning depths with a focus on mixing. Finally, the main contri-114 butions of this study are summarized in Section 5. 115

2 Data and Methods 116

117

The Unified Database for Arctic and Subarctic Hydrography (UDASH) consists of 118 over 250 000 high-quality temperature and salinity profiles from the Arctic and Subarc-119 tic region for latitudes north of 65° N for the period 1980 to 2015. These data were mea-120 sured by conductivity-temperature-depth devices (CTDs), expendable CTDs, drifting 121 buoys, profiling floats, and expendable, digital, and mechanical bathythermographs (Behrendt 122 et al., 2017; Behrendt et al., 2018). The mean vertical resolution of the data is 1.5 m but 123 varies due to the range of instrumental sources between 1 cm and 693 m. In this study,

2.1 UDASH temperature and salinity profiles

124 we analyzed all available 21 748 profiles of temperature and salinity within the Canadian 125 Basin, which corresponds to 10 years of data from 2005 to 2014 for the region between 126 the 120° W and 160° W meridians and north of 70° N. Only 196 profiles (Fig. 1) were 127 deep enough to have a value at some depth where $N(z)^2 \leq f^2$ (see Section 3). These 128 profiles represent only 0.9% of the available data, and all are CTD casts, with precision 129 and accuracy ranges of 0.02-0.001 °C and 0.002-0.0003 S/m for temperature and conduc-130 tivity. 131

2.2 IBCAO bathymetry 132

The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0 has 133 a spatial grid resolution of 500 m. We computed the representative depth for each pro-134 file as an average of the nearest bathymetric data points (Jakobsson et al., 2012). 135

2.3 N_{bin}^2 computation and near-inertial turning depths

The deep Canadian Basin is weakly stratified with small N^2 between $\sim 10^{-8} - 10^{-7} \,\mathrm{s}^{-2}$. As a consequence, the noise in the estimated N^2 is in the same order as the relatively small Coriolis frequencies $f^2 (1.87 - 2.12 \times 10^{-8} \,\mathrm{s}^{-2}$ for $70 - 90^{\circ}\mathrm{N})$, and the semidiurnal M_2 tidal frequency of $\omega_{M_2} (\omega_{M_2}^2 = 1.974 \times 10^{-8} \,\mathrm{s}^{-2})$. For the determination of turning depths, it is therefore important to minimize the noise in the N^2 estimation. To do so, we followed the methodology of King et al. (2012).

This method reduces the noise by taking vertical averages of the data over depth 143 bins. King et al. (2012) found that a 100 m-bin is the optimal vertical width for aver-144 aging as the bin is wide enough to reduce the noise and narrow enough to preserve the 145 N^2 information. Observations in the upper layers of the Canadian Basin show upward-146 and downward-wave energy flux with a peak within the near-inertial frequencies at ver-147 tical wavelengths of 30–50 m (D'Asaro & Morehead, 1991; Halle, 2003; Fer, 2014). Hence, 148 the 100 m-bin width may be too large to identify turning depths for NIWs in the upper 149 layers, or in general to study wave motions with similar or smaller vertical scales $O(\leq 100 \text{ m})$ 150 since the background of N^2 associated with the vertical scales in which these waves prop-151 agate is smoothed (van Haren & Millot, 2006; Ghaemsaidi et al., 2016). However, we ex-152 pect NIWs will encounter a deep turning depth close to the bottom where N^2 is weak. 153 For traveling waves, the vertical wavelength increases as N^2 decreases. We can use the 154 following equation (Olbers, 2012), in which m and K_h are the vertical and the horizon-155 tal wavenumbers, to calculate changes in the vertical wavelength of surface-generated 156 NIWs as they approach the bottom and roughly estimate whether a 100 m-bin is appro-157 priate for finding turning depths for NIWs. 158

136

$$n(z) = \pm K_h \sqrt{\frac{N^2(z) - \omega^2}{\omega^2 - f^2}}$$
(1)

Using Eq. 1, we estimated K_h at the surface as a function of observed vertical wave-160 lengths, 30–50 m, and $N = 8.73 \times 10^{-3} \text{ s}^{-1}$ (5 c.p.h.). N was computed from our dataset 161 as an average buoyancy frequency below the pycnocline. The value is consistent with pre-162 vious estimates (Cole et al., 2018; Pinkel, 2005). Assuming a wave frequency $\omega = 1.05 f$, 163 we obtained a horizontal wavenumber $K_h = 0.105 - 6.706 \times 10^{-4} m^{-1}$, which is equiv-164 alent to wavelengths of $5-10 \,\mathrm{km}$. These wavelengths are within the values expected for 165 the Arctic Ocean and are also within the order of the Rossby radius of deformation (Nurser 166 & Bacon, 2014). Therefore, we used this K_h to compute m at 1000 m, a depth 1500 m 167 well above $N \to \omega$ (where Eq. 1 no longer applies). At this depth, $N \approx 1.03 \times 10^{-3} \,\mathrm{s}^{-1}$ 168 (e.g., see in Fig. 2) and the vertical wavelengths increase from 30-50 m to 230-400 m. 169 These vertical wavelengths are larger than 100 m, and they still increase as they approach 170 the bottom and N continues to decrease with depth. Therefore, we argue that the $100 \,\mathrm{m}$ -171 bin averaging scale is appropriate for detecting turning depths in the deep Canadian Basin 172 in case surface-generated NIWs with vertical wavelengths of $30-50 \,\mathrm{m}$ propagate to the 173 bottom. 174

r

Prior to binning, in-situ temperature and salinity data was converted to conser-175 vative temperature (Θ) and absolute salinity (S_A) (McDougall & Barker, 2014, 2011). 176 The profiles were vertically averaged in 100 m-depth bins (Θ_{bin}, S_{Abin}) and spline fit-177 ted $(\langle \Theta \rangle, \langle S_A \rangle)$ to their respective original depths. We utilized both $\langle \Theta \rangle$ and $\langle S_A \rangle$, and 178 the original profiles Θ and S_A , to calculate the experimental standard deviation of the 179 mean (σ_{Θ} and σ_{S_A}). Subsequently, we employed a Monte Carlo method to generate an 180 ensemble of 500 synthetic profiles by adding random Gaussian noise with a half-width 181 of σ_{Θ} and σ_{S_A} to Θ_{bin} and $S_{A\text{bin}}$. These ensembles were then used to compute the final averaged value of N_{bin}^2 in 100 m-bins, along with its experimental standard devia-182 183 tion σ_{N^2} of the mean (King et al., 2012). 184

Figure 2. N_{bin}^2 profiles from a small geographical region show low temporal variability between 2005 and 2011. Below 2950 m, N^2 is generally smaller than $f_{73^\circ N}^2$ and ω_{m2}^2 . (a) 100 m- N_{bin}^2 . (b) Zoom in to 100 m- N_{bin}^2 for depths below 2500 m. In (a), the green line is the N_{mvg}^2 profile, computed conventionally from smoothed hydrography from 2005 (100 m-moving-average) for comparison, see text for the details. The vertical lines indicate the frequencies for ω_{m2}^2 and $f_{73^\circ N}^2$. In (a), and (b) the horizontal bars are the uncertainties σ_{N^2} .

We identified depths where $N_{bin}^2(z) \leq f_{\phi}^2$, in which $f_{\phi} = 2\Omega \sin(\phi)$, and ϕ is the latitude of each profile. This criterion defines turning depths for waves with $f_{\phi} \leq \omega$, which is what we expect for surface-generated near-inertial waves. In particular, we are interested in regions where there are consecutive depths $N_{bin}^2(z) \leq f_{\phi}^2$. Note that we used N_{bin}^2 rather than N_{bin} to handle instabilities with $N_{bin}^2 < 0$.

190 3 Results

191

3.1 Testing the computation of N_{hin}^2 : a turning depth example

Especially at great depths, where the stratification is weak and N^2 is small, noisy θ and S_A profiles make identifying turning depths difficult. As an example of how the post-processed N_{bin}^2 profiles improve this situation, we chose four profiles close to the same location at ~ (73 °N, 150 °W), but from different years (2005, 2007, 2008, and 2011) to illustrate the temporal (interannual) variability. In addition, and only for illustration purposes, we compare the N_{bin}^2 profiles to N_{mvg}^2 computed from original Θ and S_A profiles of 2005 that have been smoothed by a 100 m-moving-average.

The temporal (interannual) variability of the N_{bin}^2 profiles is small (Fig. 2a) below 1000 m ($RMS_{N^2} = 6.83 \times 10^{-7} \,\mathrm{s}^{-2}$). Below 2500 m, N_{bin}^2 approaches the local Corio-199 200 lis frequency at 73 °N (the location of these profiles) and the tidal frequency $\omega_{M_2}^2$. These 201 frequencies nearly coincide, because the critical latitude for the M_2 tide is at ~74.5 °N 202 (Rippeth et al., 2017). $N_{bin}^{2'}$ decreases further until the deep homogeneous bottom layer is reached, at ~2700 m, where $N_{bin}^{2} \lesssim 4 \times 10^{-8} \,\mathrm{s}^{-2}$. The following consecutive depths satisfy the criterion $N_{bin}^{2}(z) \leq f_{o}^{2}$. In contrast, N_{mvg}^{2} fluctuates around f_{ϕ}^{2} (Fig. 2a) so 203 204 205 that a turning depth cannot be identified in a statistically robust way. Note that all pro-206 files have a very similar structure, implying that the post-processing method extracts 207 the persistent modes of the water mass structure and does not introduce artifacts. 208

Figure 3. Averaged values of all profiles per depth for N_{bin}^2 and uncertainties σ_{N^2} . Nearinertial turning depth (NiTD) for the Canadian Basin at ~2750 m (green dot). Evidence of locally statistically unstable layers at two depths (red dots), within 3300–3500 m and 3700–3900 m. Layers between 3700–3900 m are statistically unstable since $N_{bin}^2 + \sigma_{N^2} < 0$.

3.2 Mean N_{bin}^2 and uncertainties σ_{N^2}

209

Near a turning depth, $N_{bin}^2 \approx f_{\phi}^2$ so that, if σ_{N^2} is too large, there can be cases for which $N_{bin}^2 + \sigma_N^2 > f_{\phi}^2 > N_{bin}^2$. We exclude these cases and, as a condition that takes into account the estimated uncertainties, identify turning depths only if $N_{bin}^2 + \sigma_N^2 < f_{\phi}^2$. For instance, although below 2800 m nearly all $N_{bin}^2 \leq f_o^2$, there are few data for which $N_{bin}^2 + \sigma_N^2 > f_o^2$ (Fig. 2b). These will not be termed turning depths, but only the following depths for which $N_{bin}^2 + \sigma_N^2 < f_o^2$.

 $N_{bin}^2\pm\sigma_{N^2} < f_\phi^2 ~{\rm or} > f_\phi^2$ varies between profiles and depths. On average, how-216 ever, $N_{bin}^2 \leq f_{\phi}^2$ and σ_{N^2} is small (Fig. 3), so that we can apply a cumulative frequency analysis to assess the occurrence of depths where $N_{bin}^2 + \sigma_N^2 < f_o^2$. We normalized N_{bin}^2 and σ_{N^2} by f_{ϕ}^2 , because the ratio N_{bin}^2/f_{ϕ}^2 is useful to define transitions between regions (green and red dotted lines in Fig. 3 and 4). We found that below 2700 m the frequency 217 218 219 220 of occurrence for $(N_{bin}^2 + \sigma_N^2)/f_{\phi}^2 \leq 1$ is higher than 90%, which is a robust result. There 221 is not only one 100 m-thick sporadic turning depth, but below the first depth at which 222 $N^2 + \sigma^2 < f_{\phi}^2$, the stratification of the consecutive depths is also $< f_{\phi}^2$. Thus, the turn-223 ing depth is not only a single location but a layer, making wave propagation less prob-224 able than having a single 100 m-thick turning depth value. 225

²²⁶ On average, the deep Canadian Basin is characterized by values of the ratio $N_{bin}^2/f_{\phi}^2 <$ ²²⁷ 1 with small uncertainties $\sigma_{N^2} \leq 0.3 f_{\phi}^2$. Particularly at 2750 m, $\sigma_{N^2} \approx 0.29 f_{\phi}^2$ and ²²⁸ $N_{bin}^2/f_{\phi}^2 \approx 1$, so that at this depth the mean value of N_{bin}^2 is comparable to the local ²²⁹ Coriolis frequencies within uncertainties σ_{N^2} . Hence, we identified 2750 m as the statis-²³⁰ tical near-inertial turning depth (NiTD) for the Canadian Basin.

Below 3150 m, N_{bin}^2 alternates between positive and negative values every 200 m (values between red lines in Fig. 3) suggesting locally stable ($N_{bin}^2 > 0$) and unstable ($N_{bin}^2 < 0$) layers within the (quasi-)homogeneous layer that extends to the bottom.

Figure 4. Ratio N_{bin}^2/f_{ϕ}^2 for two zonal and two meridional transects in the Canadian Basin. Refer to Fig. 1 for the location of the sections: (a) Meridional section (dark blue dots in inset, cf. Fig. 1), (b) Meridional section (light blue dots), (c) Zonal section (green dots), (d) Zonal section (yellow dots). The color change from light lilac to light green defines the transition from $N^2 \geq f_{\phi}^2$ to $N^2 \leq f_{\phi}^2$. Near-inertial turning depth at ~2750 m (green dashed line) defined by mean N_{bin}^2 in Fig. 3. The color change from dark green to dark blue defines the transition from $N^2 \geq 0$ to $N^2 \leq 0$. The inset shows each transect. Evidence of locally statistically unstable layers below 3300 m. The red dotted lines refer to the unstable layers within 3300–3500 m and 3700–3900 m defined by average N_{bin}^2 in Fig. 3.

Note that, between depths of 3550-4450 m, $N_{bin}^2 + \sigma_N^2 > 0$, hence strictly speaking, these layers are not unstable. In contrast, the layers between 3750-3850 m are locally unstable since $N_{bin}^2 + \sigma_N^2 < 0$. Geothermal heat fluxes from the seafloor (Timmermans et al., 2003) may trigger instability. Alternatively, since the homogeneous layer has neutral buoyancy stability, meaning that N = 0, the change in sign may be related to fluctuations around 0. We discuss these possibilities in Section 4.2.

3.3 Spatial distribution and heights

240

The spatial distribution of near-inertial turning depths in the Canadian Basin is nearly uniform at ~2750 m (Fig. 4, color change from lilac to green at $N_{bin}^2 = f_{\phi}^2$), coinciding with the top of the homogeneous layer or below it (Fig. 5 d-f).

Most of the meridional variability appears to be related to the strength of the strat-244 ification and its proximity to topographic slopes. For example, in the region between 72 $^{\circ}N$ -245 76.5 °N and > 143 °W, the turning depths occur in a deeper range between 2750-2950 m 246 (Fig. 5a–c) and are located below the top of the homogeneous layer. In this region, N_{bin}^2 247 at 2750 m is relatively large $(N_{bin}^2 \sim 3-5 \times 10^{-8} \text{ s}^{-2})$ compared to the rest of the Canadian Basin at the same depth $(N_{bin}^2 \sim 0.5-2 \times 10^{-8} \text{ s}^{-2})$, and the top of the homogeneous 248 249 layer is also deeper than in the eastern Canadian Basin (Fig. 5a and d). Note that these 250 deeper near-inertial turning depths at $\sim 2850 \,\mathrm{m}$ are found over nearly flat bathymetry 251 (Fig. 4c), and the latitude varies $< 2^{\circ}$ (Fig. 1, green dots), illustrating that the merid-252

Figure 5. N_{bin}^2 and raw Θ and S_A profiles from two small geographic regions between 2005 and 2011. (a–c) Western Canadian Basin at ~73 °N and ~150 °W, (d–f) Eastern Canadian Basin at ~76.2 °N and ~132.5 °W. The vertical lines show the frequencies for $f_{73^{\circ}N}^2$ and $f_{76^{\circ}N}^2$. In (a) and (d) the horizontal bars are the uncertainties σ_{N^2} . The Θ and S_A profiles show the homogeneous layer and the deep thermohaline staircases. Note that the top and bottom panels have different y-axis limits.

ional variability away from the slope is in part related to the strength of the stratification for latitudes < 76.5 °N.

As N_{bin}^2 decreases and f_{ϕ} increases, the near-inertial turning depths for latitudes > 76. 5 °N remain nearly constant at ~ 2750 m, except in the Marakov Basin, where the near-inertial turning depths are deepest at ~ 3050 m, but have a relatively strong stratification of $N_{bin}^2 \sim 1.2-2.8 \times 10^{-8} \, {\rm s}^{-2}$, which is compensated by f_{ϕ}^2 .

A peak in N_{bin}^2/f_{ϕ}^2 (light green) below the NiTD at ~3150 m is a consistent feature throughout the Canadian Basin (Fig. 4), coinciding with a slight increase in S_A with depth while Θ remains constant (Fig. 5). Below 3300 m, the stratification is $N_{bin}^2 < 0$ within the homogeneous bottom layer (color change from green to blue in Fig. 4), except when S_A or Θ increases with depth. For example, in the deep western Canadian Basin or on the slope in the eastern part (see Fig. 5).

To quantify the proximity to the bathymetry, we defined the turning depth height as the distance from the sea floor to each near-inertial turning depth (Fig. 6). We computed the sea floor depth for each profile by averaging the four nearest depths of the IB-CAO bathymetry (Jakobsson et al., 2012) to the profile location.

Generally, the turning depth height distribution is related to the isobaths. Over the slope between the 2500–3500 m isobaths and latitudes < 76 °N, the turning depth heights are between 0–800 m. Below the 3500 m-isobath and over the Canadian abyssal plain, the turning depth heights are between 800–1200 m, increasing northward to a max-

Figure 6. Spatial distribution of turning depth heights in the Canadian Basin. The turning depth height is the distance from the sea floor to each near-inertial turning depth. The black dashed line indicates the critical latitude for the $\omega_{M_2}^2$.

imum of 1000–1200 m. Further northward, on the slope of the Alpha Ridge and the Makarov
Basin, the turning depth heights decrease to 0–800 m. Overall, surface-generated NIWs
traveling downward are unlikely to interact with the topography since the near-inertial
turning depths are far above the seafloor (up to 1000 m). We discuss the possible wavetopography interactions in Section 4.1.

3.4 Non-traditional effects: critical N^2 for NIWs

278

292

In stratified hydrostatic geophysical flows, only the vertical component of the Cori-279 olis force is taken into account $(f = 2\Omega \sin(\phi))$. Under these assumptions, the frequency 280 band for internal gravity wave is bounded by f^2 and N^2 . Relaxing the hydrostatic ap-281 proximation to the quasi-hydrostatic approximation, also called non-traditional approx-282 imation (NT), involves including the horizontal components of the Coriolis force that vary 283 with the cosine of latitude. With this approximation, the frequency band for internal grav-284 ity waves is expanded beyond f^2 and N^2 . Among all effects of NT in wave propagation, 285 we are interested in those that happen at depths where $N \approx 0$ and in weakly strati-286 fied layers comparable to the Coriolis force $N \approx 2\Omega$. Under NT, a reflection level no 287 longer exists at $\omega = N(z)$ but at a critical buoyancy frequency $\omega = N_{crt}(z)$ typically 288 smaller than the turning depth frequency calculated with the usual traditional approx-289 imation (TA) (Gerkema et al., 2008). Explicitly, the critical buoyancy frequency, $N_{crt}(z)$, 290 is defined as follows: 291

$$N_{crit}^{2} = \omega^{2} \frac{\left(f^{2} + f_{s}^{2} - \omega^{2}\right)}{f^{2} - \omega^{2}}$$
(2)

In which $f_s = 2\Omega \cos(\phi) \sin(\alpha)$ is the cosine component of the Coriolis force, and α is the angle to the North-South direction. If we set $\alpha = 0$, the TA definition for a

Figure 7. (a) Latitudinal variability of waves with frequency $\omega^2 = f^2 + f_s^2$ normalized by f. Waves with equal and lower frequencies can propagate through arbitrary stratification, and waves with higher frequencies cannot propagate through depths with certain small values of N_{crt} . The colors indicate the direction of propagation, being α the angle to the East-West direction. (b) Example of minimum values of N_{crt} , under NT, for a specific range of waves with near-inertial frequencies and meridional propagation ($\alpha = 90^{\circ}$), which could be generated at the surface by wind forcing. Waves with these frequencies cannot propagate through depths with these specific values of N_{crt} (normalized by ω).

turning depth is recovered, in which $N(z) = \omega$, and since $f_s = 0$, the wave propagation is purely zonal, implying NT effects act only upon waves propagating with a meridional component (King et al., 2012; Gerkema et al., 2008).

From Eq. 2, we obtain $N_{crit} = 0$ for a wave with frequency $\omega^2 = f^2 + f_s^2$. Waves 298 with this frequency are known as gyroscopic waves, and they can propagate in layers of 299 neutral stratification (van Haren & Millot, 2005), so that there are no turning depth for 300 these waves. In the deep Canadian Basin, near(sub)-inertial fluctuations have been de-301 tected (Timmermans et al., 2007), but the nature of the observations suggest these are 302 not gyroscopic waves but that they are related to bottom-trapped topographic Rossby 303 waves at the sub-inertial frequency range (Timmermans et al., 2010; Zhao & Timmer-304 mans, 2018). 305

Note that, since $N_{crit} = 0$ when $\omega^2 = f^2 + f_s^2$, any frequency higher than $f^2 + f_s^2$ result in $N_{crit} > 0$. Thus, the frequency $f^2 + f_s^2$ could be interpreted as the lower limit for a wave to find a turning depth under the NT. For instance, Fig. 7a shows the ω lower limit as a function of f and α . In the Canadian Basin, these frequency values are in the range of $\omega \approx 1 - 1.07 f_{\phi}$. Pure meridional propagation ($\alpha = 90^{\circ}$) is associated with the maximum frequencies (lilac line in Fig. 7a), and ω decreases as the wave approach zonal propagation ($\alpha = 0^{\circ}$).

From Eq. 2 we can estimate N_{crit} for specific near-inertial frequencies that account for hypothetical waves generated at the surface. $\omega = 1.06 - 1.08 f$ are typical nearinertial frequencies observed in the Arctic Ocean (D'Asaro & Morehead, 1991; Halle, 2003; Fer, 2014; Cole et al., 2018). In general, for latitudes $\geq 72^{\circ}$ N, near-inertial waves with frequencies $\omega \geq 1.06 f$ have a turning depth with N_{crit} in the range $0 < N_{crit} \leq f$ in the Canadian Basin (Fig. 7b). Such frequencies N_{bin}^2 exist below NiTD at 2750 m in the entire deep Canadian Basin (Section 3.2, Fig. 4). Thus, for both TA and NT, NIWs with $\omega \ge f$ and $\omega \ge 1.06 f$ have a turning depth up to 1000 m above the sea floor. Under NT, NIWs with frequencies $\omega < 1.06 f$ traveling meridionally can propagate through arbitrary stratification

323 4 Discussion

Our results of N_{bin}^2 and σ_{N^2} are comparable to previous observations of N^2 in weakly stratified waters. For example, using the method of King et al. (2012), squared buoyancy frequencies lower than the diurnal tidal frequency were found in the South China Sea (Liu et al., 2022) with $N_{bin}^2 \approx 5.317 \times 10^{-9} \,\mathrm{s}^{-2}$. This is comparable to the average N_{bin}^2 below 3000 m of $\sim 3.1 \times 10^{-9} \,\mathrm{s}^{-2} \pm 2.1 \times 10^{-9} \,\mathrm{s}^{-2}$. Furthermore, squared buoyancy frequencies of $N^2 \sim 4 \times 10^{-8} \,\mathrm{s}^{-2}$ in the deep water of the Canadian Basin (Timmermans et al., 2003; Timmermans & Garrett, 2006) are similar to our average N_{bin}^2 below 2500 m of $\sim 1.16 \times 10^{-8} \,\mathrm{s}^{-2} \pm 0.32 \times 10^{-8} \,\mathrm{s}^{-2}$.

In addition, from the WOCE Database typical values of the experimental standard deviation for the semi-diurnal tidal frequency of $0.3-0.1 \sigma_{\omega_{m2}}$ were computed (King et al., 2012) for the world ocean except for the Arctic Ocean. Along with this, observations of N in the deep Mediterranean Sea were calculated with a standard deviation of 0.8 fover 100 dbar bins; this value was reduced to 0.4 f over 600 dbar bins (van Haren & Millot, 2006). This is similar to the σ_{N^2} values, we found below the NiTD, of $\sigma_{N^2} \leq 0.3 f_{\phi}^2$ ($\sigma_N \leq 0.54 f_{\phi}$).

The turning depths are related to the location of the deep staircases, the top of the homogeneous layer and the N^2 peak below it (see Fig. 5). For example, taking the top of the homogeneous layer as the depth at which temperature and salinity begin to be constant with depth (e.g. in Fig. 5e–f), Timmermans et al. (2003) reports layer thicknesses of ~ 1000 m in the central Canadian Basin when the top of the homogeneous layer is at ~ 2700 m, which is consistent with our definition of NiTD at 2750 m and also with the turning depth height.

The homogeneous layer is deeper in the western Canadian Basin with its upper limit 346 varying meridionally by about 100 m (Timmermans et al., 2007). To the east it is shal-347 lower with a thickness of 580 m on the slope at 73.5 °N, 137 °W (Timmermans et al., 2007). 348 In our estimates, the turning depth is deeper to the west (Fig. 4) and the turning depth 349 height to the east is between 400–600 m (Fig. 6). Our results are consistent with the spa-350 tial variability of the homogeneous layer thickness (Timmermans et al., 2003; Timmer-351 mans & Garrett, 2006). However, in general, the heights of the turning depths are thin-352 ner than the thickness of the homogeneous layer, and the near-inertial turning depths 353 are deeper than the top of the homogeneous layer. 354

355

4.1 Wave-topography interactions and mixing below a turning depth

For ice-covered oceans, surface-generated internal waves are hypothesized to be par-356 tially dissipated under sea ice after one round-trip from the surface to the bottom (Pinkel, 357 2005; Cole et al., 2018). The NiTD will reduce the distance and travel time of NIWs to 358 reach the surface after reflection, as NIWs cannot propagate through the NiTD. Gen-359 erally, mixing is low on the flat bottom and increases towards the slopes and ridges (Rainville 360 & Winsor, 2008; Lincoln et al., 2016). In the Canadian Basin, the NiTD overlaps deep 361 slopes and steep topography close to the Alpha Ridge (refer to Fig. 4 and 6), which 362 might prevent waves from playing a more important role in controlling mixing rates above 363 the sea floor. 364

Even though waves cannot freely propagate across turning depths, part of the wave, known as the evanescent tail, can penetrate. In this process, the wave's amplitude decreases exponentially below the turning depth (Paoletti & Swinney, 2012). In the Canadian Basin, shallow turning depth heights are located above steep and rugged topography (Fig. 6). If those layers are not thick, the evanescent tails of the NIWs can interact with the topography (Paoletti et al., 2014), and they might play a non-trivial role in mixing the Arctic Ocean interior.

From water tank experiments and numerical simulations, Paoletti and Swinney (2012) 372 deduced that the horizontally-integrated vertical energy flux Φ decays exponentially from 373 a turning depth in the following way $\Phi(z) = \Phi_{zc} e^{k_c - (z_c - z)}$, in which k_c is the horizon-374 tal wave number at the turning depth z_c . From this relation, we can estimate the hor-375 izontal wavelength, for which the energy flux $\Phi(z)$ is reduced by an order of magnitude. 376 For turning heights above the bottom in the range of 100-1200 m, such a flux reduction 377 occurs for horizontal wavelengths of 300-3700 m. Therefore, although the energy flux is 378 reduced by an order of magnitude, NIWs at these wavelengths can still interact with the 379 bottom. 380

The magnitude of k_c at turning depths is unknown. However, assuming the val-381 ues estimated in section 2.3 and ignoring changes in k as the wave propagates, the flux 382 $\Phi(z)$ of a wave with a horizontal wavelength of 10 km reflecting off a 1200 m thick evanes-383 cent layer decreases by a factor of about 2. The reduction of Φ varies with vertical wave-384 length and frequency range. For example, for $\omega = 1.05 f$, shorter or longer initial ver-385 tical wavelengths of $10-100 \,\mathrm{m}$ result in horizontal wavelengths of $\sim 1.8-18.8 \,\mathrm{km}$ and a re-386 duction in wave flux by a factor of ~ 65 -1.5. Similarly, for a fixed vertical wavelength of 387 50 m, a change in ω between 1.01 f and 1.1 f results in a horizontal wavelength of \sim 7– 388 2 km and a reduction in wave flux by a factor of ~ 1.4–3. In particular, significant re-389 ductions in wave flux occur only for internal waves with horizontal wavelengths $< 5000 \,\mathrm{m}$ 390 at turning depths. 391

Wave-topography interactions below a turning depth have been studied using numerical models and water tank experiments. For example, topography below a turning depth can generate internal tides under tidal forcing (Paoletti et al., 2014), and evanescent wave perturbations can generate propagating waves after reaching a depth where $\omega < N^2(z)$ (Lee et al., 2020). Thus, despite the presence of NiTDs, NIWs can still partially account for the deep mixing in the Canadian Basin.

At the top of the homogeneous layer there are thermohaline staircases with a step 398 size of $\sim 10-50$ m and a transition layer of $\sim 10-25$ m throughout the Canadian Basin 399 (Timmermans et al., 2003, 2010; Zhou & Lu, 2013; Zhou et al., 2014). These density struc-400 tures act as a filter for internal waves (Ghaemsaidi et al., 2016; Sutherland, 2016), lead-401 ing to wave reflection especially for waves with relatively short length scales. The ver-402 tical location of the staircases varies, but assuming that the staircases are between 2500-2700 m (see Fig. 5), then $N_{bin}^2 \sim 2-9 \times 10^{-8} \,\mathrm{s}^{-2} \pm 1-2 \times 10^{-8} \,\mathrm{s}^{-2}$. However, between each 403 404 step, the stratification is close to zero $(N \sim 0)$, which cannot be accurately represented 405 by averaging over 100–meter bins. As a result, the binned N_{bin}^2 fails to reproduce the 406 step-wise stratification with $N \sim 0$ between steps. 407

We expected that surface-generated near-inertial waves interact with the staircases 408 before reaching the NiTD, modifying their propagation depending on the time and length 409 scales of the wave (Ghaemsaidi et al., 2016). For typical values of mid-water stair-cases 410 and internal waves in the Arctic Ocean, NIWs with wavelength of approximately 50 km 411 transmit across the staircases with little reflection (Sutherland, 2016). These NIWs can 412 continue to propagate downwards, but for the staircases in the deep abyss, the internal 413 waves immediately encounter the homogeneous bottom layer and the bottom itself. For 414 this case, let us assume a stratification that allows internal waves to propagate across 415 the deep staircases. We can then calculate the lower wavelength limit of the transmit-416

ting waves $\lambda_{Tl} \simeq 0.5\pi D (0.1 (\omega^2 - f^2)/N^2)^{-1/2}$ (Sutherland, 2016), where *D* is the total length of the staircase. For $\omega = 1.05f$, D = 150 m and f = 0.5N (N_{bin} between 2500–2700 m), the lower bound for internal waves transmitting with little reflection is $\lambda_{Tl} \simeq 4.6$ km. Therefore, we would expect NIWs with longer wavelengths to be able to propagate. However, we cannot rule out other processes, in which NIWs attenuate or promote mixing, such as the onset of instability within the staircase.

423 4.2 Unstable layers and convective instability

If the main impact of the NiTD in the deep Canadian Basin is to isolate the bottom from surface-generated wind-driven waves, NIWs will not play a substantial role in
driving the bottom layer dynamics, and other processes, for example, convective instability, govern bottom mixing.

Geothermal heat flux estimates in the Canadian Basin are $F_H \sim 40-60 \text{ mW m}^{-2}$ (Langseth et al., 1990). A considerable fraction of this heat remains in the homogeneous bottom layer. Approximately $F_H \sim 0.1 - 45 \text{ mW m}^{-2}$ escape through density staircases above the bottom layer (Carmack et al., 2012; Zhou & Lu, 2013; Zhou et al., 2014; Timmermans et al., 2003).

There are two main hypotheses for driving this heat flux transport. The heat is transported either horizontally and escapes near the slope where mixing is strong (Timmermans et al., 2003), or it is driven vertically by thermobaric convection (Carmack et al., 2012). There is evidence that convective instability controls the bottom layer (Zhou et al., 2014) supporting the direct vertical flux of heat. Between 3300–3900 m, we identified consecutive locally unstable layers, which also supports the convective instability hypothesis.

The geothermal flux heats the layer from below, which increases the temperature 439 of the adjacent water parcels. This layer gains buoyancy and destabilizes the upper lay-440 ers, which may be reflected in the alternating positive and negative N_{bin}^2 values. We ex-441 pect that the homogeneous layer is close to neutral buoyancy $N \approx 0$, but finding ex-442 act values of N = 0 is unrealistic. The locally unstable values of N_{bin}^2 might be related 443 to fluctuations around $N_{bin}^2 = 0$, so that the layer does have neutral buoyancy but is 444 unstable, suggesting periods of convective mixing. In addition, the homogeneous layer 445 may have a theoretical thickness of 1051 m (Zhou et al., 2014) based on a comparison 446 of the deep Canadian homogeneous layer thickness to experiments conducted with salt-447 stratified fluids heated from below. If we consider only the unstable layers (Figs. 3 and 4), 448 the thickness of the homogeneous layer is $\sim 600-700$ m. However, assuming that the 449 top of the homogeneous layer is at $\sim 3000 \,\mathrm{m}$, just above the peak in N_{bin}^2 (Fig. 3), the 450 thickness increases up to 1000 m, which is consistent with Zhou et al. (2014) and there-451 fore with the convective instability hypothesis. 452

In the ocean, NIW-driven near-bottom dissipation is still largely unknown (Thomas 453 & Zhai, 2022). We cannot directly compare the results obtained by experiments and sim-454 ulations described in this section to the actual ocean. However, our results show that 455 in the Arctic Ocean, near-inertial turning depths exist and may play a bigger role in the 456 propagation and reflection of NIWs than elsewhere. Further study is needed to under-457 stand the wave dynamics in the changing Arctic Ocean. Finally, a homogeneous bottom 458 layer is also present in the Eurasian Basin, and the analysis of some profiles shows turn-459 ing depths for NIWs (not shown). Hence some of the impacts and effects discussed in 460 this section might also apply to the Eurasian Basin. 461

462 5 Summary & Conclusion

⁴⁶³ Our analyses of buoyancy frequency N^2 in the deep Canadian Basin and interpretations of near-inertial turning depths are summarized as follows:

465	1. From the analysis of N_{bin}^2 derived from temperature and salinity profiles of the
466	UDASH dataset from 2005 to 2014 and a statistical method of King et al. (2012),
467	near-inertial turning depths are found in the deep Canadian Basin at ${\sim}2750\mathrm{m}$ depth
468	and between $100 \mathrm{m}$ and $1200 \mathrm{m}$ above the sea floor.
469	2. For the traditional and the non-traditional approximation, NIWs have turning depths
470	for frequencies $\omega \geq f_{\phi}$ and $\omega \geq 1.06 f_{\phi}$, respectively. Furthermore, under the
471	non-traditional approximation, NIWs with frequencies $\omega < 1.06 f_{\phi}$ traveling merid-
472	ionally can propagate through arbitrary stratification.
473	3. There are layers below 3300 m that are locally slightly unstable, $N_{bin}^2 < 0$. These
474	values are consistent with a homogeneous layer that is quasi-neutral with N \approx
475	0, and with the hypothesis that geothermal flux heats the homogeneous bottom
476	layer from below, destabilizing the overlying layers.
477	4. After reflection at the NiTD the evanescent wave tails may interact with bathymetry.

4. After reflection at the NTD the evanescent wave tails may interact with bathymetry,
 mainly over slopes where the turning-depth heights above topography are small.

The evidence presented in this study cannot prove with certainty that NIWs re-479 flect at turning depths in the deep Canadian Basin. However, we provided different sce-480 narios involving near-inertial wave reflection from turning depths. Further measurements, 481 numerical simulations, and theory are necessary to understand the interaction of near-482 inertial waves upon reflection from turning depths and to link surface-generated waves 483 to mixing rates in the interior and above slopes in the Canadian Basin. This understand-484 ing may become very important for correctly representing the changing Arctic Ocean and 485 its future state in climate projections. 486

487 Acknowledgments

This research was carried out within the International Research Training Group ArcTrain: "Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic" (IRTG 1904 ArcTrain), and it was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

Further, this paper is a contribution to projects T3 and W5 of the Collaborative Research Centre TRR 181 "Energy Transfer in Atmosphere and Ocean" (project number 274762653) and to the project C04 of the Transregional Collaborative Research Center "ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)³ (Project number 268020496) funded by the DFG.

The majority of the CTD profiles of the UDASH database that were selected for this study were collected during the Joint Ocean Ice Study (JOIS) program (http://www.whoi.edu/beaufortgyre/)

The authors would like to thank the anonymous reviewer for his helpful comments, which have improved the quality of the manuscript.

⁵⁰¹ 6 Open Research

Data - The data set containing temperature and salinity used in this study (Behrendt et al., 2017) is stored in PANGAEA-Data Publisher for Earth & Environmental Science, and it can be found at DOI: https://doi.org/10.1594/PANGAEA.872931. The bathymetric data (Jakobsson et al., 2012) can be found at https://www.ngdc.noaa.gov/mgg/ bathymetry/arctic/ibcaoversion3.html.

507 **References**

Behrendt, A., Sumata, H., Rabe, B., & Schauer, U. (2017). A comprehensive,
 quality-controlled and up-to-date data set of temperature and salinity data

510	for the Arctic Mediterranean Sea (Version 1.0), links to data files [Data].
511	(Supplement to: Behrendt A et al. (2017): UDASH - Unified Database for
512	Arctic and Subarctic Hydrography, Earth System Science Data Discussions 37
513	np. https://doi.org/10.5194/essd-2017-92) doi: 10.1594/PANGAEA.872931
514	Behrendt A Sumata H Babe B & Schauer II (2018 June) IIDASH -
515	Unified Database for Arctic and Subarctic Hydrography [Data]
516	Sustem Science Data $10(2)$ 1110–1138 Retrieved 2022-00-01 from
517	bttps://essd copernicus org/articles/10/1119/2018/ doi: $10.5104/$
518	$essd_10.1110_2018$
519	Cormode F C Williams W I Zimmermann S I & MeLaughlin F A (2012)
520	April) The Arctic Ocean warms from below: THE ABCTIC OCEAN
521	WARMS FROM BELOW Coophysical Research Lattere $30(7)$ n/2-n/2
522	Retrieved 2022 11 15 from http://doi.wilev.com/10_1020/201201050890
523	doi: 10.1020/2012GL050800
524	Colo S. T. Toolo I. M. Poinville I. & Lee C. M. (2018 August) Internal Warren
525	in the Arctice Influence of Ice Concentration Ice Doughness and Surface Lawer
526	Stratification Lowmal of Coophysical Basearch, Oceana, 102(8), 5571, 5596
527	Batriavad 2022 00 16 from https://anlipolibrary.viloy.com/doi/aba/
528	10, 1020/2018 IC014006 doi: 10.1020/2018 IC014006
529	$D'A_{resc} = D = M_{resc} + M_{$
530	D Asaro, E. A., & Morenead, M. D. (1991). Internal waves and velocity line struc- ture in the Arctic Occorr Learnal of Coerdword Research $O_{\rm c}(C7)$ 19795. De
531	ture in the Arctic Ocean. Journal of Geophysical Research, 90 (C1), 12125. Re-
532	trieved 2022-09-10, from http://doi.wiley.com/10.1029/91JC010/1 doi: 10
533	1029/913001071
534	New Learning Wess Field in the Austic Occur. Learning the Dynamics of the Changing
535	Near-inertial internal wave Field in the Arctic Ocean. Journal of Physi- rel Ocean $L(2) = 207 415$ Detrived 2022 12 08 from https://
536	<i>cal Oceanography</i> , 40(2), 395–415. Retrieved 2022-12-08, from https://
537	Journals.ametsoc.org/view/Journals/pnoc/40/2/Jpo-d-15-0050.1.xml
538	(011, 10.1175/JFO-D-10-0000.1)
539	Dosser, H. V., Ramville, L., & Toole, J. M. (2014, February). Near-Inertial In-
540	ternal wave Field in the Canada Dasin from Ice-Tethered Fromers. Journal of Deviced Ocean computer $1/(2)$, 412, 426 — Detrieved 2022 12.06 from http://
541	F nysical Occurrent up ny, 44(2), 413-420. Retrieved 2022-12-00, from http://
542	12 0117 1
543	For I (2014 August) Near Inertial Mining in the Control Aretic Ocean Learned of
544	Physical Occampage (1/2) 2021 2040 Detriored 2022 00 01 from http://
545	F nysical Occurrent up ny, 44(6), 2051-2049. Retrieved 2022-09-01, from http://
546	Journals.ametsoc.org/doi/10.1175/JPU-D-15-0155.1 doi: 10.1175/JPO-D
547	-15-0155.1 Fine F. C. & Cole C. T. (2022 Max) Decodel Observations of Internal
548	Wave Energy Sheep and Missing in the Western Anotic Ocean
549	wave Energy, Shear, and Mixing in the western Arctic Ocean. $Journal$
550	bttma://anlinalibrary.vilay.com/dai/10_1020/20211C0180E6
551	10 1020 /2021 IC018056
552	(2000)
553	Mary) Coophysical and actrophysical fluid dynamics beyond the tradi
554	May). Geophysical and astrophysical find dynamics beyond the tradi- tional approximation $Reviews of Coordinates (6(2), RC2004)$ Batriaved
555	$2022 \ 00 \ 20$ from http://doi.org/10.1020/2006BC000220
556	10 1020 /2006 B C 000220 doi. wiley. Com/ 10.1029/ 2000 G 000220 doi.
557	Chaemasidi S. I. Dessen, H. V. Painville, I. & Descelt, T. (2016 February)
558	The impact of multiple lavoring on internal wave transmission
559	of Fluid Mechanics 780 617-690 Retrieved 2022 00 16 from https://
500	uuu cambridge org/core/product/idontifior/S0022112015006825/turo/
563	www.cambridge.org/core/product/rdentifier/souzzrizorsou0025/type/
502	Gran M C (2021) Ocean Mining (1st od) Combridge University Press
503	Retrieved 2022-12-06 from https://www.cambridge.org/core/product/
504	Tomovou 2022 12:00, nom novps.//www.cambridge.org/core/product/

565	identifier/9781316795439/type/book $doi: 10.1017/9781316795439$
566	Halle, C. (2003). Internal wave variability in the Beaufort Sea during the winter of
567	1993/1994. Journal of Geophysical Research, 108(C7), 3210. Retrieved 2022-
568	09-16, from http://doi.wiley.com/10.1029/2000JC000703 doi: 10.1029/
569	2000JC000703
570	Jakobsson, M., Maver, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Frid-
571	man, B., Weatherall, P. (2012, June). The International Bathymet-
572	ric Chart of the Arctic Ocean (IBCAO) Version 3.0: IBCAO VERSION
573	3.0 [Data]. Geophysical Research Letters, 39(12), n/a–n/a. Retrieved
574	2022-09-01. from http://doi.wilev.com/10.1029/2012GL052219 doi:
575	10.1029/2012GL052219
576	Kim, YH., Min, SK., Gillett, N. P., Notz, D., & Malinina, E. (2023, June).
577	Observationally-constrained projections of an ice-free Arctic even under a low
578	emission scenario. Nature Communications, 14(1), 3139. Retrieved 2023-06-
579	11. from https://www.nature.com/articles/s41467-023-38511-8 doi:
580	10.1038/s41467-023-38511-8
581	King, B., Stone, M., Zhang, H. P., Gerkema, T., Marder, M., Scott, R. B., & Swin-
582	ney, H. L. (2012, April). Buoyancy frequency profiles and internal semidiurnal
583	tide turning depths in the oceans: INTERNAL TIDE TURNING DEPTH.
584	Journal of Geophysical Research: Oceans, 117(C4), n/a–n/a. Retrieved
585	2022-09-01, from http://doi.wiley.com/10.1029/2011JC007681 doi:
586	$10.1029/2011 \mathrm{JC007681}$
587	Kwok, R. (2018, October). Arctic sea ice thickness, volume, and multi-
588	year ice coverage: losses and coupled variability (1958–2018). Environ-
589	mental Research Letters, $13(10)$, 105005. Retrieved 2023-06-11, from
590	https://iopscience.iop.org/article/10.1088/1748-9326/aae3ec doi:
591	10.1088/1748-9326/aae3ec
592	Langseth, M. G., Lachenbruch, A. H., & Marshall, B. V. (1990). Geothermal obser-
593	vations in the Arctic region. In A. Grantz, L. Johnson, & J. F. Sweeney (Eds.),
594	The Arctic Ocean Region (pp. 133–151). United Sates: Geological Society of
595	America. Retrieved 2022-11-16, from https://pubs.geoscienceworld.org/
596	books/book/866/chapter/4862450/ doi: $10.1130/DNAG$ -GNA-L.133
597	Lee, A., Hakes, K., Liu, Y., Allshouse, M. R., & Crockett, J. (2020, December).
598	Evanescent to propagating internal waves in experiments, simulations, and
599	linear theory. Experiments in Fluids, 61(12), 252. Retrieved 2022-11-17,
600	from http://link.springer.com/10.1007/s00348-020-03077-4 doi:
601	10.1007/s00348-020-03077-4
602	Lenn, YD., Fer, I., Timmermans, ML., & MacKinnon, J. A. (2022). Mixing
603	in the Arctic Ocean. In <i>Ocean Mixing</i> (pp. 275–299). Elsevier. Retrieved
604	2022-11-09, from https://linkinghub.elsevier.com/retrieve/pii/
605	B9780128215128000189 doi: 10.1016/B978-0-12-821512-8.00018-9
606	Lincoln, B. J., Rippeth, T. P., Lenn, YD., Timmermans, M. L., Williams, W. J., &
607	Bacon, S. (2016, September). Wind-driven mixing at intermediate depths in an
608	ice-free Arctic Ocean. Geophysical Research Letters, 43(18), 9749–9756. doi:
609	10.1002/2016 GL070454
610	Liu, K., Da, L., Guo, W., Liu, C., & Sun, J. (2022, February). Turning
611	depths of internal tides in the South China Sea inferred from profile
612	data. Acta Oceanologica Sinica, $41(2)$, 139–146. Retrieved 2022-09-01,
613	from https://link.springer.com/10.1007/s13131-021-1837-8 doi:
614	10.1007/s13131-021-1837-8
615	McDougall, T. J., & Barker, P. M. (2011). Getting started with TEOS-10 and the
616	Gibbs Segurater (GSW) Oceanographic Toolbor Battery Point Tas Trevor I
617	Group Security i Office i Corola Battery i Office, i as. i i ever s
	McDougall. (OCLC: 724024071)
618	McDougall, (OCLC: 724024071) McDougall, T. J., & Barker, P. M. (2014, December). Comment on "Buoyancy fre-

620	B. King et al. Journal of Geophysical Research: Oceans, 119(12), 9026–9032.
621	Retrieved 2022-09-06, from http://doi.wiley.com/10.1002/2014JC010066
622	doi: 10.1002/2014JC010066
623	Meyer, A., Fer, I., Sundfjord, A., & Peterson, A. K. (2017, June). Mixing rates
624	and vertical heat fluxes north of Svalbard from Arctic winter to spring: N-
625	ICE2015 ARCTIC TURBULENCE OBSERVATIONS. Journal of Geophysical
626	Research: Oceans, 122(6), 4569–4586. Retrieved 2022-12-08, from http://
627	doi.wiley.com/10.1002/2016JC012441 doi: 10.1002/2016JC012441
628	Morison, J. H., Long, C. E., & Levine, M. D. (1985, November). Internal wave dissi-
629	pation under sea ice. Journal of Geophysical Research: Oceans, 90(C6), 11959–
630	11966. doi: 10.1029/JC090iC06p11959
631	Nurser, A. J. G., & Bacon, S. (2014, November). The Rossby radius in the Arctic
632	Ocean. Ocean Science, $10(6)$, $967-975$. Retrieved 2022-09-01, from https://
633	os.copernicus.org/articles/10/967/2014/ doi: 10.5194/os-10-967-2014
634	Olbers, D. J. (2012). Ocean dynamics (First edition ed.). Heidelberg; New York:
635	Springer.
636	Paoletti, M. S., Drake, M., & Swinney, H. L. (2014, March). Internal tide gen-
637	eration in nonuniformly stratified deep oceans. Journal of Geophysical Re-
638	search: Oceans, 119(3), 1943–1956. Retrieved 2022-11-17, from http://
639	do1.W11ey.com/10.1002/2013JC009469 $do1: 10.1002/2013JC009469$
640	Paoletti, M. S., & Swinney, H. L. (2012, September). Propagating and evanescent
641	10, 502 Detrieved 2022 11 12 from https://www.combridge.org/cons/product/
642	identifier/S0022112012002844/tupe/iournal article doi: 10.1017/ifm
643	2012 284
645	Peterson A K Fer I McPhee M C & Randelhoff A (2017 February) Tur-
645	hulent heat and momentum fluxes in the upper ocean under Arctic sea ice
647	TURBULENT FLUXES UNDER ARCTIC SEA ICE Journal of Geophysical
648	Research: Oceans 122(2) 1439–1456 Retrieved 2022-12-08 from http://
649	doi.wilev.com/10.1002/2016JC012283 doi: 10.1002/2016JC012283
650	Pinkel, R. (2005, May). Near-Inertial Wave Propagation in the Western Arc-
651	tic. Journal of Physical Oceanography, 35(5), 645–665. Retrieved 2022-09-
652	16, from http://journals.ametsoc.org/doi/10.1175/JP02715.1 doi:
653	10.1175/JPO2715.1
654	Rainville, L., Lee, C., & Woodgate, R. (2011, September). Impact of Wind-Driven
655	Mixing in the Arctic Ocean. Oceanography, 24(3), 136–145. Retrieved 2022-12-
656	08, from https://tos.org/oceanography/article/impact-of-wind-driven
657	-mixing-in-the-arctic-ocean doi: $10.5670/oceanog.2011.65$
658	Rainville, L., & Winsor, P. (2008, April). Mixing across the Arctic Ocean: Mi-
659	crostructure observations during the Beringia 2005 Expedition. Geophysi-
660	cal Research Letters, 35(8), L08606. Retrieved 2022-11-09, from http://
661	doi.wiley.com/10.1029/2008GL033532
662	Rainville, L., & Woodgate, R. A. (2009, December). Observations of internal wave
663	generation in the seasonally ice-free Arctic. Geophysical Research Letters,
664	36(23), L23604. Retrieved 2022-12-07, from http://doi.wiley.com/10.1029/
665	2009GL041291 doi: 10.1029/2009GL041291
666	Rippeth, T. P., Vlasenko, V., Stashchuk, N., Scannell, B. D., Green, J. A. M., Lin-
667	coln, B. J., & Bacon, S. (2017, December). Tidal Conversion and Mixing
668	Poleward of the Critical Latitude (an Arctic Case Study). Geophysical Re-
669	search Letters, 44 (24). Retrieved 2022-09-07, from https://onlinelibrary
670	.wiley.com/doi/10.1002/201/GL0/5310 doi: $10.1002/201/GL0/5310$
671	Sutherland, B. R. (2010). Internal gravity waves. Cambridge ; New York: Cambridge University Press. (OCLC: conf01112071)
672	Curtonland D D (2016 May) Internal more transmission through a three 1 1
673	staircaso <i>Physical Review Fluide</i> 1(1) 012701 doi: 10.1102/DhysDevEluide 1
674	stancase. $rnysical review rights, 1(1), 015701.$ doi: 10.1105/PhysRevFluids.1

675	.013701
676	Thomas, L. N., & Zhai, X. (2022). The lifecycle of surface-generated near-inertial
677	waves. In Ocean Mixing (pp. 95–115). Elsevier. Retrieved 2022-09-16, from
678	https://linkinghub.elsevier.com/retrieve/pii/B9780128215128000128
679	doi: 10.1016/B978-0-12-821512-8.00012-8
680	Timmermans, ML., & Garrett, C. (2006, May). Evolution of the Deep Water in the
681	Canadian Basin in the Arctic Ocean. Journal of Physical Oceanography, 36(5),
682	866-874. Retrieved 2022-09-06, from http://journals.ametsoc.org/doi/10
683	.1175/JP02906.1 doi: 10.1175/JPO2906.1
684	Timmermans, ML., Garrett, C., & Carmack, E. (2003, October). The thermoha-
685	line structure and evolution of the deep waters in the Canada Basin, Arctic
686	Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50(10-11),
687	1305-1321. Retrieved 2022-09-06. from https://linkinghub.elsevier.com/
688	retrieve/pii/S0967063703001250 doi: 10.1016/S0967-0637(03)00125-0
689	Timmermans, ML., Melling, H., & Rainville, L. (2007, April). Dynamics in the
690	Deep Canada Basin, Arctic Ocean, Inferred by Thermistor Chain Time Series.
691	Journal of Physical Oceanography, 37(4), 1066–1076. Betrieved 2022-09-
692	01. from http://iournals.ametsoc.org/doi/10.1175/JP03032.1 doi:
693	10.1175/JPO3032.1
694	Timmermans M-L Bainville L Thomas L & Proshutinsky A (2010 May)
605	Moored observations of bottom-intensified motions in the deep Canada Basin
606	Arctic Ocean Iournal of Marine Research 68(3) 625–641 Betrieved
697	2022-09-01 from http://www.ingentaconnect.com/content/10.1357/
608	002224010794657137 doi: 10.1357/002224010794657137
600	van Haren H & Millot C (2005) Gyroscopic wayes in the Mediterranean
700	Sea Geonhusical Research Letters 32(24) L24614 Retrieved 2022-09-
700	16 from http://doi_wiley_com/10_1029/2005GL023915doi: 10.1029/
701	2005CI 022015
702	
702	van Haren H & Millot C (2006) Determination of huovancy frequency in weakly
702 703 704	van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters <i>Journal of Geophysical Research</i> 111(C3) C03014 Retrieved
702 703 704 705	van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. <i>Journal of Geophysical Research</i> , 111(C3), C03014. Retrieved 2022-09-01 from http://doi.wiley.com/10.1029/2005JC003065
702 703 704 705 706	van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. <i>Journal of Geophysical Research</i> , 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065
702 703 704 705 706 707	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear in-
702 703 704 705 706 707 708	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part
702 703 704 705 706 707 708 709	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317–338. Retrieved 2023-06-08, from
702 703 704 705 706 707 708 709 710	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317–338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189
702 703 704 705 706 707 708 709 710 711	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317–338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9
702 703 704 705 706 707 708 709 710 711 712	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317–338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, Jan-
702 703 704 705 706 707 708 709 710 711 712 713	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317–338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Ge-
702 703 704 705 706 707 708 709 710 711 712 713 714	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317–338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89–107. Retrieved 2023-06-11, from https://
702 703 704 705 706 707 708 709 710 711 712 713 714 715	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x doi:
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x doi: 10.1111/j.1931-0846.2016.12195.x
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x doi: 10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Rossby Waves in
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Research: Oceans,
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Research: Oceans, 123(9), 6521-6530. Retrieved 2022-09-29, from https://onlinelibrary
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Rossby Waves in the Arctic Ocean's Beaufort Gyre. Journal of Geophysical Research: Oceans, 123(9), 6521-6530. Retrieved 2022-09-29, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC014233 doi: 10.1029/2018JC014233
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Rossby Waves in the Arctic Ocean's Beaufort Gyre. Journal of Geophysical Research: Oceans, 123(9), 6521-6530. Retrieved 2022-09-29, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC014233 doi: 10.1029/2018JC014233 Zhou, SQ., & Lu, YZ. (2013, December). Characterization of double diffusive
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Rossby Waves in the Arctic Ocean's Beaufort Gyre. Journal of Geophysical Research: Oceans, 123(9), 6521-6530. Retrieved 2022-09-29, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC014233 doi: 10.1029/2018JC014233 Zhou, SQ., & Lu, YZ. (2013, December). Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean: DDC and Heat
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Rossby Waves in the Arctic Ocean's Beaufort Gyre. Journal of Geophysical Research: Oceans, 123(9), 6521-6530. Retrieved 2022-09-29, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC014233 doi: 10.1029/2018JC014233 Zhou, SQ., & Lu, YZ. (2013, December). Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean: DDC and Heat Budget in the Deep Arctic. Journal of Geophysical Research: Oceans, 118(12),
 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111 (C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC03065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x doi: 10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Rossby Waves in the Arctic Ocean's Beaufort Gyre. Journal of Geophysical Research: Oceans, 123(9), 6521-6530. Retrieved 2022-09-29, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC014233 doi: 10.1029/2018JC014233 Zhou, SQ., & Lu, YZ. (2013, December). Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean: DDC and Heat Budget in the Deep Arctic. Journal of Geophysical Research: Oceans, 118(12), 6672-6686. Retrieved 2022-11-15, from http://doi.wiley.com/10.1002/
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 717 718 719 720 721 722 723 724 725	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x doi: 10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Rossby Waves in the Arctic Ocean's Beaufort Gyre. Journal of Geophysical Research: Oceans, 123(9), 6521-6530. Retrieved 2022-09-29, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC014233 doi: 10.1029/2018JC014233 Zhou, SQ., & Lu, YZ. (2013, December). Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean: DDC and Heat Budget in the Deep Arctic. Journal of Geophysical Research: Oceans, 118(12), 6672-6686. Retrieved 2022-11-15, from http://doi.wiley.com/10.1002/2013JC009141
 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x doi: 10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Rossby Waves in the Arctic Ocean's Beaufort Gyre. Journal of Geophysical Research: Oceans, 123(9), 6521-6530. Retrieved 2022-09-29, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC014233 doi: 10.1029/2018JC014233 Zhou, SQ., & Lu, YZ. (2013, December). Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean: DDC and Heat Budget in the Deep Arctic. Journal of Geophysical Research: Oceans, 118(12), 6672-6686. Retrieved 2022-11-15, from http://doi.wiley.com/10.1002/2013JC009141 Zhou, SQ., Qu, L., Lu, YZ., & Song, XL. (2014, February). The instability
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 717 718 719 720 721 722 723 724 725 726 727	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x doi: 10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Rossby Waves in the Arctic Ocean's Beaufort Gyre. Journal of Geophysical Research: Oceans, 123(9), 6521-6530. Retrieved 2022-09-29, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC014233 doi: 10.1029/2018JC014233 Zhou, SQ., & Lu, YZ. (2013, December). Characterization of double diffusive convection steps and heat budget in the deep Arctic Oceans, 118(12), 6672-6686. Retrieved 2022-11-15, from http://doi.wiley.com/10.1002/2013JC009141 Zhou, SQ., Qu, L., Lu, YZ., & Song, XL. (2014, February). The instability of diffusive convection and its implication for the thermohaline staircases in
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 717 718 719 720 721 722 723 724 725 726 727 728	 van Haren, H., & Millot, C. (2006). Determination of buoyancy frequency in weakly stable waters. Journal of Geophysical Research, 111(C3), C03014. Retrieved 2022-09-01, from http://doi.wiley.com/10.1029/2005JC003065 doi: 10.1029/2005JC003065 Vlasenko, V., Stashchuk, N., Hutter, K., & Sabinin, K. (2003, March). Nonlinear internal waves forced by tides near the critical latitude. Deep Sea Research Part I: Oceanographic Research Papers, 50(3), 317-338. Retrieved 2023-06-08, from https://linkinghub.elsevier.com/retrieve/pii/S0967063703000189 doi: 10.1016/S0967-0637(03)00018-9 Walsh, J. E., Fetterer, F., Scott Stewart, J., & Chapman, W. L. (2017, January). A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1), 89-107. Retrieved 2023-06-11, from https://www.tandfonline.com/doi/full/10.1111/j.1931-0846.2016.12195.x doi: 10.1111/j.1931-0846.2016.12195.x Zhao, B., & Timmermans, M. (2018, September). Topographic Rossby Waves in the Arctic Ocean's Beaufort Gyre. Journal of Geophysical Research: Oceans, 123(9), 6521-6530. Retrieved 2022-09-29, from https://onlinelibrary.wiley.com/doi/10.1029/2018JC014233 doi: 10.1029/2018JC014233 Zhou, SQ., & Lu, YZ. (2013, December). Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean: DDC and Heat Budget in the Deep Arctic. Journal of Geophysical Research: Oceans, 118(12), 6672-6686. Retrieved 2022-11-15, from http://doi.wiley.com/10.1002/2013JC009141 Zhou, SQ., Qu, L., Lu, YZ., & Song, XL. (2014, February). The instability of diffusive convection and its implication for the thermohaline staircases in the deep Arctic Ocean. Ocean Science, 10(1), 127-134. Retrieved 2022-

⁷³⁰ 10.5194/os-10-127-2014