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Abstract

Atlantic cod on the Southern Grand Bank (SGB) collapsed in the early 1990’s and
a fishing moratorium has been in place since 1994. I investigate how fish condition
influences the natural mortality rate (M) and the prospects for rebuilding the SGB
cod stock. I developed a body condition model and derived a starvation mortality rate
(MK) index. I modelled weight as a function of length, with deviations (i.e., change in
condition) for survey strata, year, month, length, and their interactions. The MK index
was higher in the spring than in the fall, higher for cod between 55–80 cm in length and
for cod larger than 120 cm, and higher during 1991–1993 when the stock experienced a
substantial decline. TheMK index was incorporated into an age-based state-space stock
assessment model (SSAM) as a component ofM . This led to a significant decrease (62%)
in the size of the cohort process errors (i.e., their standard deviation). This reduction
suggests that MK significantly improved the model of stock productivity. Therefore,
I conclude that MK explains a substantial portion of the variation in M , and that
starvation mortality is an important component of the productivity of SGB cod.
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General summary

This thesis’s primary focus is to estimate an index of starvation-induced mortality rate

for cod on the Southern Grand Bank (SGB) by examining changes in body condition. I

used length and gutted-weight (total body weight minus stomach contents and internal

organs) data and developed a body condition model to derive a starvation mortality

index. The index was higher in the spring than in the fall, higher for cod between

55–80 cm in length and for cod larger than 120 cm, and higher during 1991–1993 when

the stock experienced a substantial decline. I incorporated this index into an age-based

stock assessment model as a component of natural mortality. This substantially reduced

the uncertainty in population dynamics not explained by the model, indicating that this

index improved the model of stock productivity. In conclusion, this index explains a

substantial portion of the variation in natural mortality, and proves to be an important

component of the productivity of SGB cod.

iv



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Noel Cadigan,

for his expert advice and extraordinary support throughout my study. The training

strategy he employs for his students is unique. In particular, his guidance, encour-

agement, and motivation for proper scientific writing were simply outstanding, which

greatly boosted my confidence in true scientific writing. He truly molds his students

into independent scientists, and that is something to be admired.

I extend my heartfelt thanks to Dr. Kunasekaran Nirmalkanna, a postdoctoral fel-

low of Prof. Cadigan, for his immense support in modeling work and explanations of

significant statistical modeling concepts.

My sincere thanks also go to Dr. Paul M. Regular and Dr. Rick M. Rideout of Fish-

eries & Oceans Canada, for providing their expert knowledge in developing, reviewing,

and contributing to the research papers I produced based on my thesis.

I am thankful to my external thesis reviewers, Dr. Divya Varkey of Fisheries &

Oceans Canada and Dr. Matthew Robertson of Fisheries and Marine Institute of Memo-

rial University of Newfoundland, for their valuable suggestions to improve the thesis

text.

I am also deeply thankful for the generous funding provided for this research by the

Ocean Frontier Institute, through an award from the Canada First Research Excellence

Fund. Without their generous financial support during my program, this research work

v



would not have been possible.

My sincere gratitude also goes to my parents for their love and unconditional support

throughout my life and my studies. Finally, but not least, special thanks go to my loving

wife, son, and daughter for their incredible support, love, and endurance throughout

this journey. This effort would not have been successful without their understanding

and support.

vi



Co-authorship statement

The research presented in this thesis was conducted by S. J. W. W. M. M. P. Weerasek-

era under the guidance of his supervisor, Dr. Noel G. Cadigan. Dr. Cadigan was respon-

sible for the initial development of research ideas. The model described in Chapter 2

was initially developed by Dr. Kunasekaran Nirmalkanna, a Postdoctoral Fellow at the

Marine Institute of Memorial University. The model implementation and further analy-

sis and refinements were conducted by S. J. W. W. M. M. P. Weerasekera. For Chapters

3, 4, and 5, the initial modeling work was supported by Dr. Cadigan. The model im-

plementation and further analysis were done by S. J. W. W. M. M. P. Weerasekera.

Chapters 2 and 3 of the thesis produced a research paper co-authored by Dr. Noel G.

Cadigan and Dr. Kunasekaran Nirmalkanna of the Marine Institute of Memorial Univer-

sity, and Dr. Paul M. Regular and Dr. Rick M. Rideout of Fisheries & Oceans Canada.

Dr. Nirmalakanna reviewed the methodology part of the paper. Dr. Cadigan reviewed

the initial draft of the manuscript. Dr. Regular and Dr. Rideout provided comments

for the improvement of the manuscript and also contributed to the discussion text. The

paper was submitted to Fisheries Research and is currently under review. The second

research paper is being compiled based on Chapters 4 and 5. Dr. Cadigan reviewed the

first draft of the manuscript. Further review of the manuscript is being conducted by

Dr. Regular and Dr. Rideout. The paper will be submitted to Fisheries Research or

other journal.

vii



Table of contents

Title page i

Abstract ii

General summary iv

Acknowledgements v

Co-authorship statement vii

Table of contents viii

List of tables xii

List of figures xiii

List of abbreviations xix

1 Introduction 1

1.1 Overview of Atlantic cod . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 History and synopsis of the recent status of cod fishery in the Northwest
Atlantic and Atlantic Canada . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Atlantic cod in the SGB . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Distribution and habitat . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 History and present status of the cod fishery on the SGB . . . . 11

1.3.4 Summary of data and assessments for SGB cod . . . . . . . . . 12

1.4 Fish length-weight relationship . . . . . . . . . . . . . . . . . . . . . . 19

viii



1.5 Fish condition index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Natural mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Spatiotemporal statistical modeling . . . . . . . . . . . . . . . . . . . . 21

1.8 State-space models (SSMs) in fisheries stock assessment . . . . . . . . . 23

1.9 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.10 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.11 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Spatiotemporal condition model for SGB cod 35

2.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 Statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.4 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 Spatiotemporal condition model for 3NO cod . . . . . . . . . . . 44

2.4.2 Interaction effects of spatiotemporal model . . . . . . . . . . . . 45

2.4.3 Variance model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.4 Temporal variability in mean gutted-weight . . . . . . . . . . . 47

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Starvation mortality index for SGB cod 68

3.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.1 Modeling starvation mortality index . . . . . . . . . . . . . . . . 70

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 Estimates of starvation mortality index (MK) . . . . . . . . . . 73

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ix



3.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 A Stochastic Growth Model to Estimate an Age-based Starvation
Mortality Index from the Length-based Index, to Include in Age-based
State-space Stock Assessment Model (SSAM) 82

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Growth model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3 Calculate age-based starvation mortality index . . . . . . . . . . 86

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Model effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Length-at-age estimates . . . . . . . . . . . . . . . . . . . . . . 88

4.3.3 Age-based starvation mortality index (MKI,a,y) . . . . . . . . . . 88

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Integrating an Age-based Starvation Mortality Index into a State-
space Stock Assessment Model 99

5.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.2 State-space stock assessment model . . . . . . . . . . . . . . . . 101

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.1 Natural mortality . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.2 Fishing mortality . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.3 Biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.4 Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.5 Retrospective patterns . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.6 Upper catch bound sensitivity runs . . . . . . . . . . . . . . . . 113

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

x



5.6 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Conclusions and Research Recommendations 136

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2 Research recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography 138

A Atlantic cod at a glance 161

B Tables 162

C Figures 165

xi



List of tables

2.1 Model comparisons using: 1) Akaike information criterion (AIC), 2)
bayesian information criteria (BIC), and 3) root mean squared error
(RMSE). The total number of observations is 26,660, and the minimum
AIC and BIC values and RMSE are -55 169.32, -5 5021.89, and 0.08,
respectively. MLL is the marginal loglikelihood and k is the number of
model parameters. Models are numbered in the first column. ∆ effects
are defined in Table B.3. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Parameter estimates and standard errors (SE) for model 2 (see M02 in
Table. 2.1). Parameters are defined in Table. B.3. . . . . . . . . . . . . 52

4.1 Estimates (EST) and standard errors (SE) for the covariance parameters
of the stochastic growth model (Eqn. 4.1). Variances are marginal, for
the equilibrium distribution of the time-series processes. Correlations
are lag 1. A * indicates a bounded estimate . . . . . . . . . . . . . . . 91

5.1 Description of acronyms and parameters. . . . . . . . . . . . . . . . . . 117

5.2 Estimates (EST) of model parameters from the SSAM with baseline
M ’s (SSAMB) and the model with M estimated using condition indices
(SSAMM). CV stands for coefficient of variation. . . . . . . . . . . . . 118

5.3 Estimates (EST) of survey catchability parameters (qs,a) from the SSAMB

and SSAMM models. SE stands for the standard error of the estimate. 119

5.4 Mohn’s rho statistics for SSB, Recruitment, and Average F . . . . . . . 119

B.1 Summary of data processed for the analysis. . . . . . . . . . . . . . . . 162

B.2 Summary statistics for spatial strata. . . . . . . . . . . . . . . . . . . . 162

B.3 Definition of mathematical notations, including symbols used, their type
(Index, Data, Parameter, Random Effect “RE”, Derived Quantity “DQ”,
and Assumed Value “AV”), and dimension. . . . . . . . . . . . . . . . . 163

B.4 Definitions, model notations, and parameters. . . . . . . . . . . . . . . 164

xii



List of figures

1.1 Spatial distribution of Atlantic cod stocks (shaded), their spawning areas
(darkly shaded) and the annual mean temperature at 100 m depth in the
North Atlantic. Figure courtesy of Sundby (2000). . . . . . . . . . . . . 26

1.2 Variation in weight-at-age 4 for cod from various regions around the
North Atlantic with respect to temperature. Abbreviations: STP - St.
Pierre Bank; LAB - Labrador/ Grand Bank; NSL - Northern Gulf of St.
Lawrence; SSL - Southern Gulf of St. Lawrence; SGB - Southern Grand
Bank; ESS - Eastern Scotian shelf; NEA - Northeast Arctic; EWG - East
& West Greenland; ICE - Iceland; WSS - Western Scotian shelf; FAR -
Faroe; GEO - Georges Bank; NS - North Sea; ECH - Eastern channel;
WSC - West Scotland; IRS - Irsh Sea; CEL - Celtic Sea. Data source:
Brander (1995). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Estimated mean catch weight-at-age (ages 3 and 12) for 3NO cod, 1959–
2019. Data source: Rideout et al. (2021). . . . . . . . . . . . . . . . . . 28

1.4 Nominal catches of Atlantic cod in the Northwest Atlantic, 1960–2022.
Data source: NAFO, STATLANT 21A. . . . . . . . . . . . . . . . . . 29

1.5 Top Panel: Time series (1990–2021) of commercial landings (i.e., catch
in tonnes) of Atlantic cod in Atlantic Canada (i.e, the total of landings
from Nova Scotia, New Brunswick, Prince Edward Island, Quebec, and
Newfoundland). Bottom panel: Percentage of total landings from North-
west Atlantic that were taken by Atlantic Canadian fleets. Data source:
DFO, Canada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.6 3NO cod average length-at-age values calculated using DFO fall and
spring survey data from 1959–2020. . . . . . . . . . . . . . . . . . . . . 31

1.7 Atlantic cod fishery landings (in tonnes) reported by the fleets of Cana-
dian and other countries for the Divisions 3NO. Data source: DFO,
Canada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.8 Estimates of total number of cod caught per year and age-groups 4–
12+ and 7–10+ for ICNAF Divisions 3NO (i.e., SGB) during 1959–1970.
Data source: Pinhorn and Wells (1973). . . . . . . . . . . . . . . . . . . 33

xiii



1.9 ADAPT estimates of SSB during 1959–2020. Dashed line represents the
SSB limit reference point. Data source: Rideout et al. (2021). . . . . . 34

2.1 Southern Grand Bank and adjacent areas. The red dashed line indicates
the boundary of Canadian 200 nautical mile Exclusive Economic Zone
(EEZ). SGB is enclosed by the boundaries of NAFO Divisions 3NO. . . 53

2.2 Variation in the mean strata-time interaction effects (∆gt) over years and
across strata. The analysis accounted for 35 years, 1984–2018, however,
spatiotemporal maps are produced every second year to simplify the
visualization and interpretation. . . . . . . . . . . . . . . . . . . . . . . 54

2.3 Variation in spatial correlations with respect to centroid distance of
strata. Black curves are the fitted lines of the correlation and distance
data to the formula, corr∆ = exp

{
−(d/D)δ

}
, where D is the distance

between centroids of two strata and δ is a parameter. The vertical grey
dashed lines are at fitted average distance that the spatial correlation
was 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Variation in the mean strata-length interaction effects (∆gl3) over spatial
strata. Each panel is for a selected length class. . . . . . . . . . . . . . 56

2.5 Variation in the mean time-length interaction effect (∆tl3). Variability
of mean ∆ over years and lengths are annotated at the top and right of
the main plot, respectively. Dashed lines indicate the series average. . . 57

2.6 Variation in the mean time-length interaction effect (∆tl3). Sample sizes
for years and lengths are annotated at the top and right of the main plot,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7 Season (month) and length interaction effect (∆sl3) from model M02 (see
Tables 1 and 2). Colors indicate the size of the effect, which is described
in the legend at the top-right. Variability of mean ∆ over seasons and
lengths are annotated as marginal summaries at the top and right of the
main plot, respectively. Dashed lines indicate the series average. . . . . 59

2.8 The non-linear variance model (see Eqn. 2.12) used for the residuals of
the spatiotemporal weight-length model (top panel). The frequency of
log-lengths are shown in the bottom panel. . . . . . . . . . . . . . . . . 60

2.9 Time-series of area-weighted mean gutted-weights of 3NO cod (kg; de-
fined in Eqn. 2.14) in the spring (orange line) and fall (green line). Month
5 is May and Month 10 is October. Shaded regions indicate 95 % con-
fidence intervals. Each panel represents a different sized cod. Horizontal
dashed lines indicate the series averages. . . . . . . . . . . . . . . . . . 61

2.10 Annual average values of the log condition coefficient parameter (Āgls =
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Chapter 1

Introduction

I first provide an overview of Atlantic cod population demographics. I then provide

an overview of the history of cod fisheries in the Northwest Atlantic and the status of

the cod fishery in the Northwest Atlantic and Atlantic Canada in general, followed by

specific information for Southern Grand Bank (SGB) cod. This stock is also referred to

as 3NO cod in the literature, but I usually refer to it as SGB cod.

1.1 Overview of Atlantic cod

Atlantic cod widely occupy the continental shelves of the Northwest and Northeast

Atlantic Ocean (Sundby, 2000; COSEWIC, 2003; DFO, 2021), primarily at depths

less than 500 m (Righton and Metcalfe, 2004). Additionally, cod can be found along

inshore-offshore gradients (Rose, 2019). Overall, this distribution spans from about

40◦N (south of Georges Bank in the US) to 80◦N (to the north of West Spitsbergen)

(Sundby, 2000; Rose, 2019) (Figure 1.1). In Newfoundland and Labrador, Atlantic cod

occupy the waters spanning from Cape Chidley (i.e., northern tip of Labrador) southeast

to the Grand Bank off eastern Newfoundland (COSEWIC, 2003). The biogeographic

distribution of cod is primarily influenced by temperature (Coutant, 1987; Sundby,

2000; Mieszkowska et al., 2009). The ambient temperature within their distribution
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range typically ranges from 1◦C to 11◦C for the stocks in the the West Greenland and

northern Labrador, and southern part of the North Sea, the Irish and the Celtic Seas,

respectively (Sundby, 2000). Nevertheless, they are sometimes found in water less than

-1◦C and over 20◦C (Drinkwater, 2005; Mieszkowska et al., 2009). Atlantic cod from

the Labrador and northeast Newfoundland shelves (i.e., NAFO 3K and northern 3L)

to the northern Grand Banks are consistently distributed more to the north in warm

ocean periods and more to the south in cold periods (DeYoung and Rose, 1993; Rose

et al., 1994). In Labrador, cod are widely distributed within the temperature range of

-1.0 to 3.5◦C, whereas on the northeast Newfoundland shelf, this range is 2.0 to 3.5◦C.

On the northern Grand Bank, most of the cod inhabit cooler waters (-1 to 0.5◦C) (Rose

et al., 1994).

Atlantic cod is a moderately long-lived fish with a maximum recorded age of 25 years

(O’Brien et al., 1993; Mieszkowska et al., 2009; Froese and Pauly, 2023). It reaches

adulthood at an average length of 65.4 cm, which can vary between 31 cm and 74

cm (Froese and Pauly, 2023). The maximum recorded length and weight are 200 cm

(O’Brien et al., 1993; Mieszkowska et al., 2009; Froese and Pauly, 2023) and 96 kg

(O’Brien et al., 1993; Froese and Pauly, 2023), respectively. The growth of cod is cor-

related with food availability, temperature (Brander, 1995; Morgan et al., 2007, 2018),

and other factors (Brander, 1995). Brander (1995) investigated the effect of tempera-

ture on growth for 17 North Atlantic cod stocks and found that the temperature effect

on growth rate declines with age and is only significant up to age 4. Average weight-

at-age 4 ranged from 0.6 kg in Labrador (2◦C) to 7.3 kg in the Celtic Sea (11◦C) (see

Figure 1.2). Brander also established an exponential relationship between cod growth

and temperature, indicating approximately a 30% increase in the weight-at-age 4 for

every 1◦C rise in temperature. According to Jobling (1988), an increase in cod growth

rate can be supported by temperature up to a maximum of 14◦C, but it declines above

that threshold.
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Atlantic cod is considered an early to medium-maturing fish compared to other fish

species (Trippel, 1995; Myers et al., 1997; Link and Sherwood, 2004). Thus, cod shows

a wide range of age and size of maturity (Wright and Rowe, 2004). In general, A50

(age at which 50% of fish in a population is assumed to be matured) varies between

two (O’Brien et al., 1993; Trippel, 1995; Myers et al., 1997; Link and Sherwood, 2004;

Mieszkowska et al., 2009) and seven years (Trippel, 1995; Myers et al., 1997; Link

and Sherwood, 2004). A50 can vary across different locations and among populations

(Trippel, 1995; Myers et al., 1997; Link and Sherwood, 2004), and even between females

and males (Link and Sherwood, 2004). For instance, in the Northeast Arctic region,

Ajiad et al. (1999) reported A50 values of 6.9 and 6.4 years, respectively for female and

male cod. In contrast, Fahay (1999) reported A50 of 1.7 years for females and 1.9 years

for males in Georges Bank. The highest A50’s recorded for both female and male cod

on the Icelandic north coasts were 7.3 and 6.6 years, respectively (Marteinsdottir and

Begg, 2002). A summary of reported A50 values for various regions can be found in

Table 3 of Link and Sherwood (2004).

Atlantic cod is a highly fecund species (Link and Sherwood, 2004; Wright and Rowe,

2004; Mieszkowska et al., 2009), meaning they produce a large number of eggs, which

usually is directly proportional to the body size of the fish (Fudge and Rose, 2008;

Rideout and Morgan, 2010a). Larger and older females may produce a relatively higher

number of eggs compared to smaller females (Lambert et al., 2005). However, Atlantic

cod are broadcast spawners, releasing their eggs into the water to disperse with the

current. Consequently, only a very small percentage of these eggs, as low as 1 in 10

million, survive to maturity (Duarte and Alcaraz, 1989; Link and Sherwood, 2004;

Wright and Rowe, 2004).

Habitat suitability for cod primarily depends on the food availability and temper-

ature, particularly during early life stages. Habitat characteristics are critical as they

settle to the bottom and live in their juvenile stage for one to four years. They prefer a
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heterogeneous nearshore habitat such as in eelgrass (Zostera marina) beds (COSEWIC,

2003), where they find protection from predators. Juvenile cod tend to exhibit seasonal

movements and migrations after age four (COSEWIC, 2003). Adult cod’s habitat is

quite diverse (COSEWIC, 2003; Grabowski and Grabowski, 2004). Usually, they move

farther offshore to deeper habitats (Dalley and Anderson, 1997; Anderson and Gregory,

2000; Grabowski and Grabowski, 2004), while older juvenile cod still prefer to remain

in coastal waters (Clark and Green, 1990; Gregory and Anderson, 1997; Cote et al.,

2003; Grabowski and Grabowski, 2004).

Atlantic cod have more complicated spawning dynamics than was previously un-

derstood as a simple and random process (Zemeckis et al., 2014). Depending on the

geographic location, spawning time can vary between December and June, and eggs

take 2–4 weeks to hatch (Mieszkowska et al., 2009). They spawn both in inshore areas

and on offshore banks (Stokesbury et al., 2017). The spawning occurs in the waters

where depths can vary from tens (Smedbol and Wroblewski, 1997) to hundreds of me-

ters (Brander, 1994; Morgan et al., 1997). The spawning period usually lasts less than

three months (Brander, 1994; Chambers and Waiwood, 1996; Kjesbu et al., 1996). Even

though spawning primarily occurs during the spring or winter, it also occurs during sum-

mer and autumn (ICES, 2005). Individuals with mature gonads are infrequently found

outside the peak spawning periods (Zemeckis et al., 2014). In coastal regions, Atlantic

cod spawn in a range of habitats such as rocky slopes (Meager et al., 2010), boulder

outcrops (Dean et al., 2012), and patchy rock elevations (Marteinsdottir et al., 2000).

As cod is a highly fecund fish species, with only a handful of offspring surviving to

recruit to the fishery, spawning in the right place and at the right time is crucial for

successful recruitment (Link and Sherwood, 2004). Recruitment refers to the process

by which small, young fish transition to an older, larger life stage (Camp et al., 2020,

p. 01).
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Cod are omnivorous (animals that eat both plants and animals) demersal feed-

ers (Link and Sherwood, 2004). Juvenile cod are specialized feeders (Grabowski and

Grabowski, 2004), preferring small crustaceans, such as mysids, euphausiids, amphipods

(Lilly and Fleming, 1981; Link and Sherwood, 2004) and small shrimps (Rose and

O’Driscoll, 2002; Dawe et al., 2012; DFO, 2021). Medium-sized cod prefer to feed on

larger crustaceans and small fish, in particular capelin, sand lance, herring, arctic cod,

and other juvenile gadids (e.g., hakes). Large cod feed on crabs and medium-sized

demersal and forage fish (Lilly and Fleming, 1981; Link and Sherwood, 2004), such as

capelin and sand lance. Sometimes forage fish may be supplemented by squids or the ju-

veniles of larger fish. In addition, their diet may include other taxa such as ctenophores,

cnidarians, polycheates, gastropods, bivalves and echinoderms. However, these are rare

in large quantities. Large amount of ctenophores and brittle stars in the gut content of

cod is an indication of poor feeding condition. In general, it is more accurate to consider

cod as opportunistic feeders that feed upon whatever is available in the prey field (Link

and Sherwood, 2004).

1.2 History and synopsis of the recent status of cod
fishery in the Northwest Atlantic and Atlantic
Canada

The history of Northwest Atlantic fishery resources dates back to the 1490s and has

evolved over the centuries. Initially, the groundfish fishery was exclusively dependent

on cod due to its abundance. Later, the fishery developed to include other groundfish

and eventually expanded to include all the fishing areas of the Northwest Atlantic. The

efficiency of fish harvesting improved with the introduction of fishing gears such as cod

traps and longlines in the late 1800s. This efficiency was further enhanced in the 1900s

with the introduction of otter-trawlers in 1908 parallel to the industrialization (Lear,

1998).
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In the Northwest Atlantic, the nominal catches of cod increased sharply during the

1960s, reaching a peak in 1968 at slightly over 1800 kilotonnes. However, catches de-

creased rapidly during the 1970s, dropping below 500 kilotonnes by 1977. An increase

in catch (up to 750 kilotonnes) occurred after that until 1982, followed by minor fluc-

tuations until 1989. Subsequently, catches rapidly decreased in the 1990s until 1995.

Since then, catches have remained relatively steady, not exceeding 80 kilotonnes to date

(Figure 1.4).

In Atlantic Canada, there was a substantial fishery for Atlantic cod and almost 400

kilotonnes were caught in 1990. However, a rapid decline in fishery landings occurred

from 1990 to 1995, coinciding with the collapse of Atlantic cod populations in Canadian

waters. There was no fishery catches greater than 50 kilotonnes thereafter, except in

1999 when the catch slightly exceeded 50 kilotonnes. The landings dropped below 15

kilotonnes by 2021 (Figure 1.5).

1.3 Atlantic cod in the SGB

1.3.1 Distribution and habitat

Newfoundland and Labrador populations of Atlantic Cod inhabit the inshore and off-

shore waters from the northern tip of Labrador to eastern Newfoundland, including the

Grand Banks. Atlantic cod consists of four stocks on the Grand Banks and Labrador

shelf: NAFO Divisions 2GH, 2J3KL, 3M, and 3NO (Figure C.4) (DFO, 2021). The cod

stock in the NAFO Divisions 3NO is also referred to as SGB cod. During the sum-

mer, the juvenile cod tend to distribute over shallower areas of the bank, notably in

the Southeast shoal area of 3N (Walsh et al., 1995; Lilly et al., 2000; Rideout et al.,

2021). This is the nursery site for SGB cod (Walsh et al., 1995; NAFO, 2001). Older

fish aggregate on the southwestern and southeastern slope areas (see Figure 2.1) when
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winter cooling begins and distribute over the plateau of the bank during the summer

(Lilly et al., 2000; Rideout et al., 2021).

1.3.2 Biology

Even though cod show a common life history pattern, considerable regional variations in

their recruitment, growth rate, age of maturity, migration patterns, food and spawning

time are apparent. Noticeably, population parameters (e.g., K; von Bertalanffy growth

parameter) also vary among the stocks due to different temperature regimes (Brander,

1995; Rätz and Lloret, 2003).

Spawning

Historical reports had initially indicated that cod predominantly spawned in the slope

areas of the SGB (Lilly, 2005). However, according to spring survey catches, Hutch-

ings et al. (1993) reported that cod spawning is more prominent on plateaus compared

to slopes. The precise locations of cod spawning are not yet fully understood. Con-

sequently, further studies are crucial to demarcate these spawning areas, employing

methods such as acoustic surveys to minimize disturbances compared to traditional

trawl surveys (Lilly et al., 2000). However, the Southeast Shoal and the tail of the

SGB (see Figure 2.1) have been identified as a crucial spawning sites for Atlantic cod

in NAFO divisions 3NO (Walsh et al., 1995; NAFO, 2001; Drinkwater, 2005). Cod

spawning on the Grand Bank begins in April, peaks in late May, and extends into June

(Templeman, 1981; Lilly, 2005). The mean spawning date in 3NO is approximately one

week earlier than in NAFO Division 3Ps and 3–4 weeks earlier than in NAFO Division

3L (Lilly, 2005).
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Fecundity

May (1967), reported fecundity estimates, which represent the number of eggs produced

by a mature fish, for Divisions 3NO cod, in relation to length and age. In Division 3N,

fecundity estimates ranged from approximately 0.5 to 7 million eggs for cod aged 6 to

26 years. For Division 3O, these estimates varied between around 0.5 million and over

9 million eggs for cod aged 6 to 15 years. May (1967) also provided fecundity estimates

based on length for fish aged 9 and 10. Fecundity for cod with lengths approximately

ranging from 62 to 93 cm at age 9 ranged from 1 to approximately 3.2 million eggs. At

age 10, the estimates were between 1.5 million and close to 5 million eggs.

Recruitment

Since the mid–1960s, there has been a stark decline in cod recruitment on the Southern

Grand Bank (SGB), with relatively low recruits per spawner observed since the mid–

1980s, as reported by Morgan et al. (2000) and Healey et al. (2003). These studies

highlighted that recruitment has been poor while spawning stock biomass (SSB) has

been poor, which is the ecological expectation for almost all stocks (i.e., Ricker, 1954).

However, the stock exhibited significant productivity at moderately high SSBs during

the 1960s, than at comparable levels during the 1980s. Similarly, it exhibited greater

productivity at relatively low SSBs during the late 1970s compared to comparable levels

during the early 1990s. Recruitment of SGB cod has been consistently poor for over

three decades (e.g., Stansbury et al., 1998b,a; Rideout et al., 2021), and biomass is far

below the SSB limit reference point, which is Blim = 60 kilotonnes (see Rideout et al.,

2021).
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Growth and maturity

The mean age at 50% maturity (i.e., A50) for combined male and female SGB cod was

about 6 years (Trippel et al., 1997; Stansbury et al., 2001; COSEWIC, 2003), based

on data from the 1970’s and 1980’s. For female cod, A50 ranged between 5.9 and 7.4

years for cohorts throughout the 1950’s and 1980’s. Between 1980 and the late 1990’s,

it declined from around 6.8 to 4.5 years (Healey et al., 2003; Rideout et al., 2021).

During subsequent years A50 was variable, with an average of 5.5 years (see Figure 10

in Rideout et al., 2021). Furthermore, they reported the estimated mean catch weight-

at-ages 3–12 for the period from 1959 to 2019 (see Table 5 in Rideout et al., 2021). The

highest and lowest weights-at-age 3 observed in 1994 and 1982 from the fishery catches

were 0.27 kg and 0.94 kg, respectively. For age 12, these values were 5.47 kg and 15.27

kg, respectively for the years 2017 and 2016. The variability of estimated mean catch

weight-at-ages 3 and 12 from commercial sampling are illustrated in Figure 1.3.

For 3NO cod, Stansbury et al. (1998b) estimated mean lengths-at-age using sampling

data from Canadian surveys conducted in the springs of 1972 to 1997. Mean lengths-

at-age increased from the early 1970s to the early 1980s, followed by a slight decline.

However, from the late 1980s to the late 1990s, little consistent change in mean lengths-

at-age was observed. Furthermore, they provided estimates for the average weight and

length at different ages for the fishery in 3NO during 1999 and 2000. In 1990, the

average weight and length at age 1 were 0.10 kg and 22.99 cm, respectively, while at

age 20, they were 19.22 kg and 126.81 cm. In 2000, these values increased to 0.2 kg

and 29.37 cm at age 1, and 22.27 kg and 133 cm at age 20. From 1959 to 2020, DFO

fall and spring surveys in NAFO Divisions 3NO collected age and length data from 0

to 23 years and 4 to 148 cm, respectively. The mean length-at-age ranged from 10.17

cm (for age 0) to 129.53 cm (for age 21) (see Figure 1.6).

Morgan et al. (2007) reported a significant effect of temperature on the growth
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in length, when the temperature is included in the modified Von Bertalanffy growth

model. However, the effect they observed was negative. This means the cod in 3NO

growing less at higher temperatures.

Food and feeding

Capelin is a significant prey item for small and average-sized cod inhabiting the south-

ernmost shoal of the SGB. These cod feed on redfish (Albikovskaya et al., 1991; González

et al., 1998), flatfishes and even juvenile cod, a phenomenon commonly referred to as

cannibalism. Additionally, benthic invertebrates such as crabs, molluscs and amphipods

are also an important part of cod’s diet in this area (Albikovskaya et al., 1991). González

et al. (1998) found an extensive variety of prey items during stomach content analysis.

In total, 76 prey items were discovered in the stomach contents of 3NO cod. However,

only five prey items were dominant, collectively representing 74% of the total stom-

ach content. Among the dominant prey groups, fish and crustaceans played significant

roles, contributing 64% and 31%, respectively. Notable prey items included northern

sand lance (40%), capelin (13%), and snow crab (11%). Mysids, which are small shrimp-

like crustaceans, were also identified as important prey items in cod less than 20 cm in

length. In contrast, cod 20–50 cm displayed preferences for feeding on crustaceans like

hyperiids and northern shrimp, as well as fish such as capelin and northern sand lance.

Furthermore, González et al. (1998) found a notable correlation between feeding

habits and habitat depth among all fish species studied, including cod. Specifically, the

consumption of fish as prey decreased with increasing depth, representing approximately

59% of the diet up to a depth of 800 m. Conversely, there was an increase in the

consumption of other prey groups within the depth range of 400 m to 1000 m. For cod,

sand lance was the dominant prey item at depths less than 200 m, but it was surpassed

by capelin at depths between 200 m and 400 m, where capelin exceeded twice the weight
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percentage of sand lance in the prey content. Capelin dominance continued in the depth

range of 400–600 m, with no recorded instances of sand lance as a prey item. Neither

sand lance nor capelin were observed at depths between 600 m and 800 m. Moreover,

capelin reemerged as the dominant prey item at depths between 800 m and 1000 m, with

no recorded sand lance contribution. At depths greater than 1000 m, cod relied on other

prey items (see Figure 7 in González et al., 1998). Additionally, González et al. (1998)

indicated instances of competition between thorny skate and cod for the consumption

of northern sand lance and snow crab. Moreover, they also compete, to some extent,

with American plaice (Langton, 1982; González et al., 1998) and Greenland halibut in

relation to capelin predation González et al. (1998). However, the notion of competition

between marine fishes is heavily debated in the literature (e.g., Link and Auster, 2013).

1.3.3 History and present status of the cod fishery on the SGB

There was a substantial fishery for Atlantic cod (Gadus morhua) on the Southern Grand

Bank (SGB) of Newfoundland for over 500 years. In 1967, catches peaked at 227000

tonnes but gradually decreased to 15000 tonnes by 1978. Catches increased in the 1980s

and peaked at 51,000 t in 1986, followed by a decrease to around 11000 tonnes in 1993

(ICES, 2005; Rideout et al., 2021). In 1994, the total catch was 2702 tonnes, of which

47 tonnes was caught by Canadian fleets (Figure 1.7). That year the Total Allowable

Catch (TAC; the maximum quantity of fish that a fishery is permitted to harvest within

a designated season or year.) was set at 6000 tonnes, but in February of that year a

fishing moratorium was declared and all directed fishing was entirely restricted within

and outside of the NAFO regulatory area (Rideout et al., 2021). Therefore, since 1994,

cod are caught as a by-catch from the other commercial fisheries.
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1.3.4 Summary of data and assessments for SGB cod

Two sources of data are available for SGB cod in NAFO divisions 3NO: annual research

surveys and fisheries landings.

Surveys and survey data

Both the Department of Fisheries and Oceans Canada (DFO) and Spain conduct annual

bottom trawl surveys in NAFO Divisions 3NO. DFO’s surveys have been conducted

in Divisions 3N and 3O since 1971 and 1973, respectively. There were no surveys in

Division 3N in 1983 and Division 3O in 1974 and 1983. The spring survey in 2020 and

the surveys in 2021 were not conducted due to the COVID-19 pandemic (Rideout et al.,

2021). The spring survey in 2022 was also not conducted. DFO’s spring surveys take

place from April to June and follow a stratified-random sampling approach (Doubleday,

1981). Stratification is based on depth, and prior to 1991, surveys covered depths up to a

maximum of 367 meters (200 fathoms). However, the survey depth was extended in 1991

to a maximum of 732 meters (400 fathoms). The research vessel (RV) A.T. CAMERON

was used for surveys from 1971 to 1982. Since 1984, surveys have been conducted using

the RV WILFRED TEMPLEMAN or its sister ship RV ALFRED NEEDLER. In cases

where mechanical issues arise with RV WILFRED TEMPLEMAN, the RV TELEOST

is occasionally deployed to ensure the completion of the spring surveys (Rideout et al.,

2021).

DFO conducts fall surveys from September to December. In 1990, DFO initiated

fall surveys in 3NO using the RV WILFRED TEMPLEMAN for strata with depths

less than 732 meters, continuing until 2008. However, starting in 1995, DFO utilized

the RVTELEOST to sample strata with depths greater than 732 meters, reaching a

maximum depth of 1463 meters (800 fathoms). The coverage in greater depths was

not consistent. As a result, in 1996, RV ALFRED NEEDLER conducted surveys in
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strata less than 732 meters. In the fall of 2009, the survey was carried out using the RV

ALFRED NEEDLER, while strata greater than 732 meters in Division 3N were partially

covered by TELEOST. Mechanical issues with the vessel led to the incomplete fall

survey in 2014. However, from 2018 to 2020, fall surveys were successfully completed.

Initially, all surveys used the Engel 145 net trawl type. However, in 1995, the Engel 145

net trawl was replaced by the Campelen 1800 shrimp trawl with rockhopper footgear

(Rideout et al., 2021). The Campelen trawl is more effective at catching small cod and

slightly less effective for large cod compared to the Engel 145 net trawl (Warren, 1996;

Warren et al., 1996; Rideout et al., 2021).

DFO has developed an R package, “Rstrap” (Healey et al., 2020) for the analysis

of observations obtained from DFO multi-species surveys. The package has been in-

tegrated with the data collected during the annual surveys. The current version 1.14

includes data up to 2020. The annual survey data covers the Fall season from 1990 to

2020, Spring surveys from 1984 to 2019, and Juvenile surveys from 1989 to 1994. DFO

survey data includes a wide range of biological measurements, including fish length,

body weight (whole and gutted), girth, gonad weight, stomach fullness, maturity, age,

sex, and parasites. In addition, data has also been included with survey information,

including season (i.e., fall, spring), and other information such as survey gear (i.e., ei-

ther Campelen or Engel), survey strata, fish depth, and trip information, such as day,

month and year of the survey. In general, during DFO surveys the maximum and min-

imum lengths recorded were 5 cm and 148 cm, respectively. For age, the minimum and

maximum records were 0 and 23 years, respectively.

Spain has consistently conducted surveys during the spring–summer period (i.e.,

May–June) from 1995 to 2022, with the exception of 2020 (Garrido et al., 2023). Spanish

surveys also collect similar data to DFO surveys. However, the Spanish surveys are

geographically restricted to the areas outside the Canadian Exclusive Economic Zone

(EEZ), specifically the tail of the SGB (see Figure 2.1). They used commercial vessel
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Playa de Menduíña with a net trawl type Pedreira for the surveys from 1995–2000,

followed by RV Vizconde de Eza with the Campelen trawl since 2001 (Garrido et al.,

2023). During these surveys, the maximum and minimum recorded cod lengths were 6

cm and 132 cm respectively. For age, the minimum and the maximum values were 1

and 20 years, respectively (González-Troncoso et al., 2012; Garrido et al., 2023).

Fisheries landing data

Landing data for 3NO cod is accessible from 1953 to 2020. Notably, a fishing moratorium

was imposed on 3NO cod in February 1994, leading to the absence of reported land-

ings from directed fishing activities thereafter. Consequently, post-1994 landing data is

reported primarily as by-catch during other directed commercial fisheries. This data

is further categorized, with separate reporting for Canadian fleets and other nations,

including Spain, Russia (USSR), and Portugal (see Figure 1.7). The majority of the

landings are attributed to the otter trawl fishery, although there are also some catches

reported from the longline fishery (see Rideout et al., 2021).

In recent years, the commercial sampling of cod by-catch from Division 3NO has

been poor, which can significantly impact future catch-at-age estimations (Rideout

et al., 2021). For the years 2018 and 2019, commercial sampling data were available

for the Canadian otter trawl fishery (Healey and Parrill, 2019; Rogers and Simpson,

2020; Rideout et al., 2021). Commercial sampling data were also available from the 130

mm Spanish otter trawl fishery, with the exception of the 280 mm Spanish otter trawl

fishery (González-Costas et al., 2019, 2020; Rideout et al., 2021). In 2018, sampling data

were available from the Portuguese 130 mm otter trawl fisheries; however, no data were

available from the 280 mm trawl fishery, and there was a complete absence of sampling

data for 2019. Additionally, no sampling data from the Russian commercial fishery were

available for either 2018 or 2019 (Fomin and Pochtar, 2019, 2020; Rideout et al., 2021).
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This complicates the estimation of catch-at-age (e.g., Rideout et al., 2021). In 2020,

no commercial sampling data of cod by-catch were available from any country(Rideout

et al., 2021). Consequently, the data for 2018, 2019, and 2020 are provisional.

3NO cod stock assessments

I summarize the scientific assessments presented at the annual scientific meetings of the

regional fisheries management bodies: the International Commission for Northwest At-

lantic Fisheries (ICNAF) and the Northwest Atlantic Fisheries Organization (NAFO).

First I provide a brief outline of these regional fisheries management bodies before

reviewing the assessments.

In 1950, ICNAF was officially formed after ratification by contracting parties (i.e.,

participating countries), including Canada (including Newfoundland), Iceland, the United

Kingdom (UK), and the USA. ICNAF’s mission was to investigate, protect, and con-

serve the fisheries of the Northwest Atlantic to enable the sustainable harvest of max-

imum yields. In 1976, the USA and Canada declared their intention to extend their

fishing zones to the limit of 200 nautical miles. Consequently, in 1977, ICNAF’s con-

tracting parties came up with a new arrangement for multinational fisheries manage-

ment in the Northwest Atlantic. This led to the establishment of NAFO in January

1979, officially dissolving ICNAF on December 31, 1979. NAFO has since continued its

regional fisheries management activities in the Northwest Atlantic (Anderson, 1998).

I utilized the NAFO online library archive (www.nafo.int/Publications) to explore

and compile this concise review of 3NO cod assessments. The ICNAF research document

by Pinhorn and Wells (1973) was the oldest research document available about the

assessment of 3NO cod. They used virtual population analysis for the period spanning

from 1959–1970 with length and age data from Sampling Yearbooks and age-length keys

from the Newfoundland research vessel surveys to supplement or replace commercial
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age-length keys for certain years. Their results indicated an overall increase in stock

abundance (see Figure 1.8).

Bishop (1977) estimated biomass trends using four different approaches and com-

pared them to Spanish Pair Trawl catch-per-unit-effort (CPUE, tonnes/hour) values

during 1971–1975. These estimates indicated that biomass remained at decreased lev-

els compared to late 1960. Consequently, ICNAF set the total allowable catch (TAC)

at 15000 tonnes for 1978 to facilitate the rebuilding of the sock. Assessments continued

in 1978 and 1979. Bishop and Wells (1978, 1979) updated the abundance estimates,

similar to Bishop (1977), but, they additionally introduced a general production model.

The assessment concluded that in 1977, the stock was depleted to a level insufficient to

sustain a catch equilibrium at 2/3 of the effort for Maximum Sustainable Yield (MSY;

the maximum fishery yield that stock can sustain).

Gavaris (1979) implemented a generalized stock production model Fox (1975) using

standardized catch and effort data from Spanish pair trawlers. The production model

estimated a MSY of 104768 tonnes. The yield at 2/3 of the effort for MSY was approx-

imately 85000 tonnes.

However, Vazquez and Larraneta (1980) were skeptical regarding the previous con-

clusions about the depletion of the 3NO cod because of fishing. Referring to the Figure

3 in Gavaris (1979), they pointed out that there was no reasonable evidence to support

the claim of overfishing. They further elaborated that the results of production model

in Gavaris (1979) lacked realism. Their assessment emphasized that overfishing was not

be the sole reason for the depletion of 3NO cod, and the low CPUE could be attributed

to its association with periods of low recruitment. They also recommended a TAC of

68500 tonnes for 1980. Furthermore, they suggested that 2/3 of MAY was around 65000

tonnes rather than 85000 tonnes postulated by Gavaris (1979).

Chekhova and Postolaky (1981) performed an assessment using the data from a
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trawl survey conducted in 1980. They used the catchability coefficients determined by

Chumakov and Serebrov (1978) to assess the abundance and biomass. By considering

the number of cod in a catch (n) and the catchability coefficient (K), the total number

of fish caught per trawling hour in the area of fished was estimated. The assessment

estimated an increase in the abundance and biomass of SGB cod compared to 1978–79.

Subsequent assessments for 3NO cod were continued annually, using similar method-

ologies with updated data.

Gavaris (1988) introduced an adaptive framework (ADAPT ) for population size

estimation, which involves minimizing the discrepancy between observed variables and

the values predicted as functions of population parameters (see Gavaris, 1988, for full

model description). Subsequently, Baird and Bishop (1989) implemented ADAPT

with research vessel data for 3NO cod. They derived population abundance estimates

at ages 3–12 and 3+, and fishing mortality rates at ages 3–12. Notably, their analysis

revealed that the total abundance estimates of age 3+ (i.e., 42 millions fish) derived

from ADAPT was 7% higher than those from their 1988 assessment (see Baird and

Bishop, 1988).

Different from previous assessments, Bulatova (1990) assessed the 3NO cod based on

the data collected during an acoustic survey conducted in 1989. Their findings indicated

a gradual decline in abundance from 1983–1988 due to poor recruitment.

However, the invention of ADAPT was revolutionary. Following the the assessment

by Baird and Bishop (1989), a majority of subsequent assessments for 3NO cod relied

on ADAPT . Remarkably, since the 2000’s, assessments of this stock have exclusively

depended on ADAPT , and this model formulation remained unchanged for over two

decades (Rideout et al., 2021; Cadigan et al., 2022a). However, considering the recom-

mendations made in the 2018 assessment (see Rideout et al., 2018, 2021) attempted
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to explore an alternative ADAPT formulation. However, the inclusion of Spanish sur-

vey data resulted poorer model fit, as indicated by a higher mean square error and

an increase in the relative error for estimates of catchability. Additionally, they made

number of attempts to incorporate a plus group age into the assessment model, but

these efforts were unsuccessful.

Major weaknesses identified for the 3NO cod ADAPT model formulation are: 1)

it does not include a plus group, 2) it assumes catch-at-age is known without error

despite the poor quality of catch information that is frequently emphasized in recent

assessments (e.g., Rideout et al., 2021), 3) the model assumes M = 0.2, while NAFO

(2021) recommended exploring other non-stationary options, 4) it does not use indices

from an EU-Spain survey on the tail of the Grand Bank in the NAFO Regulatory Area

(NRA). However, all of these issues were addressed in a state-space stock assessment

model (SSAM) for SGB cod developed by Cadigan et al. (2022a) as an alternative to the

ADAPT VPA (Virtual Population Analysis) model currently used for this stock. The

SSAM considered the same assessment period (1959–2020) as Rideout et al. (2021). The

SSAM found that since 1990, SSB estimates were largely similar to ADAPT estimates.

In contrast, there were larger differences during 1960-1900 (see Figure 17 in Cadigan

et al., 2022a). They concluded that these differences were due to to differences in the M

assumptions, the inclusion or exclusion of a plus group, and different estimates for fish

weights-at-age. For 2020, the biomass estimates were 7279 tonnes (ADAPT ) and 5757

tonnes (SSAM). However, these values still remain far below the limit reference point

(Blim = 60000 tonnes; González-Costas and González-Troncoso, 2013), indicating no

signs of recovery since the cod collapse in the earl 1990’s and even after implementing

a fishing moratorium in 1994.
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1.4 Fish length-weight relationship

Length and weight measurements are fundamental data collected in fisheries surveys,

that provide the basis for defining metrics of fish condition, which assess the weight of a

fish relative to what is expected given its length. This expectation is often established

using the conventional Length-Weight Relationship (LWR), originally introduced by

Keys (1928), in the form of W (l) = alb or its logarithmic representation, log{W (l)} =

log(a) + b log(l). In this equation, W (l) represents the weight as a function of length

l, a is the condition coefficient parameter, and b is the allometric coefficient.

LWRs play a vital role in fisheries research and management. They are utilized to

estimate total stock biomass, facilitate the conversion of growth in length to growth

in weight within stock assessment models, and enable comparisons of various life his-

tory characteristics among fish species (Jellyman et al., 2013). Furthermore, LWRs are

instrumental in estimating the number of fish from the total weight caught (Cadigan

et al., 2022b), a fundamental input for many stock assessment models. As a result, the

accurate estimation of LWRs is crucial for obtaining precise estimates of other derived

quantities, including stock size and reference points.

1.5 Fish condition index

The condition index is often used to assess the general well-being of fish populations

(Bolger and Connolly, 1989; Ridanovic et al., 2015; Latour et al., 2017). Moreover, it is

intricately connected to critical aspects of fish biology, including survival, reproduction

(Ridanovic et al., 2015; Mu et al., 2021; Haberle et al., 2023), and maturity (Ridanovic

et al., 2015). Fish growth and condition are indicative of energy reserves within the

body, which, in turn, profoundly influence population productivity by impacting sur-

vival and reproduction dynamics (Lloret and Planes, 2003; Morgan et al., 2018). Poor
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condition among fish individuals can lead to reduced productivity, manifested as slow

growth and limited recruitment potential (Lloret and Planes, 2003). Fish with poor con-

dition may also face higher natural mortality rates (M) due to heightened vulnerability

to diseases and predation, along with a diminished ability to capture mobile prey (Du-

til et al., 1999; Dutil and Lambert, 2000; Rose and O’Driscoll, 2002). In contrast, fish

exhibiting improved growth and condition contribute to enhanced population produc-

tivity (Rätz and Lloret, 2003), characterized by increased survival (Dutil et al., 2006;

Casini et al., 2016) and higher reproductive rates (Rideout and Rose, 2006; Rideout and

Morgan, 2010b). It is worth noting that a significant portion of inter-annual and long-

term variability in fish production is attributed to recruitment (Rätz and Lloret, 2003),

with good condition in fish individuals holding the potential for favorable recruitment

outcomes (Rätz and Lloret, 2003; Marshall et al., 2000). Furthermore, Haberle et al.

(2023) proposed that fish condition can serve as an indicator of stock size relative to

the carrying capacity in food-limited populations.

1.6 Natural mortality

In fisheries science, accurately quantifying the total number of fish deaths within a

population is a complex task that cannot be directly observed (Lee et al., 2011). Con-

sequently, indirect methods are employed to estimate natural mortality rates (M ) (Xiao,

2001; Lee et al., 2011). Direct estimation of M poses considerable challenges, partic-

ularly for exploited fish stocks (Lee et al., 2011; Punt et al., 2021b; Björnsson et al.,

2022). As a result, M is often assumed to be a constant value, such as M = 0.2, across

time, age, and sex (Lee et al., 2011; Casini et al., 2016; Björnsson et al., 2022).

However, Lee et al. (2011) demonstrated that it is possible to estimate M in stock

assessment models when appropriate data are available. Their profile likelihood analyses

underscored the necessity of informative length or age composition data for reliable M
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estimation. More recently, a component of M has been linked to variations in the

proportion of Atlantic cod (Gadus morhua) in very poor condition. Casini et al. (2016)

estimated a condition-based M (MK) for Eastern Baltic cod, which was added to the

constant M (i.e., M = 0.2) to obtain a condition-corrected M , denoted as MKcorrected
=

0.2 +MK . For Northern cod, Regular et al. (2022) found a positive correlation between

an MK index and independent M estimates derived from an integrated assessment

model. Additionally, Björnsson et al. (2022) estimated the annual condition-based M

(MC) using factors such as the condition factor and liver condition of Icelandic cod.

They proposed that M could be expressed as the sum of the condition-based M and

length-based M (ML), i.e., M = MC + ML. An index of condition is used to model

time-varyingM in the state-space assessment model HYBRID (see Varkey et al., 2022),

developed for the neighbouring stock of 3NO cod (i.e., cod stock in NAFO Division 3Ps).

This model combines features from both the State-space Assessment Model (SAM) by

Nielsen and Berg (2014) and the State-Space Assessment Model for 3Ps (Cod3PsSSAM)

by Cadigan (2023b).

1.7 Spatiotemporal statistical modeling

Spatiotemporal statistical models have gained widespread popularity across diverse sci-

entific disciplines due to their ability to elucidate and predict spatially explicit processes

that evolve over time. These models serve a multitude of purposes, including: 1) pre-

diction in space (e.g., interpolation): They enable accurate predictions of phenomena at

unobserved spatial locations by leveraging the information from observed data points; 2)

prediction in time (forecasting): Spatiotemporal models are instrumental in forecasting

future developments in dynamic processes, allowing for informed decision-making and

planning; 3) assimilation of observations with deterministic models: They facilitate the
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integration of observational data with deterministic models, enhancing our understand-

ing of complex spatiotemporal systems; and 4) inference on parameters: Spatiotemporal

modeling allows for the estimation of key parameters that describe various components

of the spatiotemporal process, providing valuable insights into underlying mechanisms

(Wikle, 2015).

Spatiotemporal statistical modeling encompasses two primary approaches: the de-

scriptive approach and the dynamic approach. The descriptive approach characterizes

the spatiotemporal process with regard to its mean function and covariance function.

This approach often relies on an important statistical characteristic of dependent data;

that is, in space and time, nearby observations tend to be more alike than those far

apart. The dynamic spatiotemporal modeling approach examine how a spatial process

changes over time (Wikle et al., 2019).

The role of autocorrelation in spatiotemporal statistical modeling is significant. “The

term ‘autocorrrelation’ refers to the degree of correlation of a variable and itself (‘auto’)”

(Dale and Fortin, 2014, p. 9). In spatiotemporal statistical modeling there are two types

of autocorrelation: spatial and temporal. “Given a set S containing n geographical units,

spatial autocorrelation (SA) refers to the relationship between some variable observed in

each of the n localities and a measure of geographical proximity defined for all n(n− 1)

pairs chosen from S” (Hubert et al., 1981, p. 224). The magnitude of the SA is inversely

proportional to spatial distance, spatial correlation decreases when the spatial distance

increases and vice versa (Dale and Fortin, 2014). The relationship between successive

values (i.e., lags) of the same variable is simply referred to as temporal autocorrelation

(TA). This is also called serial correlation (Abdulhafedh, 2017).

SA seeks to identify correlations in all geographic directions, making the study more

complex and specialized. In contrast, temporal autocorrelation primarily focuses on a

one-way direction. However, when studying both SA and TA, it is essential to identify
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outliers, spatial and temporal trends, degrees of association, statistical significance,

and appropriate models. Nevertheless, they are calculated and understood differently.

Therefore, compared to TA, SA is more complex and multifaceted (Getis, 2008).

1.8 State-space models (SSMs) in fisheries stock as-
sessment

Models that allow both process and observation errors are generally referred to as SSMs

(Aeberhard et al., 2018). These models combine stochastic assumptions about both

observed quantities and unobserved states deriving a dynamic system (Aanes et al.,

2007; Gudmundsson and Gunnlaugsson, 2012). The SSM framework was first intro-

duced by Kalman (1960) and Kalman and Bucy (1961). This was initially applied in

engineering, focusing on online computations, where real-time data required efficient

implementation of iterative predictions and updates (Aeberhard et al., 2018). However,

SSM’s are now commonly used in analyzing ecological time-series data (Newman et al.,

2014; Auger-Méthé et al., 2021). For instance, SSM’s are often used to model popula-

tion dynamics (Newman et al., 2014) and in particular, for fisheries stock assessment,

SSMs were introduced by Sullivan (1992) and Gudmundsson (1994). Thus, in fisheries

stock assessment, SSMs allow inclusion of the process error in population dynamics and

the observation error in the data used to estimate the model parameters (Aeberhard

et al., 2018), making the modeling process more flexible and reliable. In particular, it

is useful in fisheries management in which future prediction of stock size is a significant

component.

With the development of Automatic Differentiation Model Builder (ADMB), a sta-

tistical application that used automatic differentiation using C++ classes and a native

template language (Fournier et al., 2012) followed by Template Model Builder (TMB),
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an R package that implements automatic differentiation using C++ templates (Kris-

tensen et al., 2016), SSMs received much more attention (e.g., Nielsen and Berg, 2014;

Cadigan, 2015) as they enabled efficient implementation of highly nonlinear models

with a large number of parameters. These recent advancements made SSMs fully oper-

ational and frequently used in stock assessment and fisheries management (Aeberhard

et al., 2018) to provide tactical advise.

1.9 Thesis objectives

The principle objective of this thesis is to develop a spatiotemporal condition model for

SGB cod and utilize it to derive starvation mortality indices to include in a state-space

stock assessment model (SSAM) for SGB cod. The specific objectives of the study are

to,

1. integrate data from fall and spring surveys to describe how condition changes over

time (years and seasons) and space.

2. develop estimates of annual condition for the stock as a whole.

3. estimate the annual proportion of cod in severe condition and unlikely to survive

in the short-term.

4. estimate age-based starvation mortality rates from length-based ones.

5. integrate age-based starvation mortality rates with the SSAM in Cadigan et al.

(2022a).
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1.10 Outline of the thesis

Chapter 2 is the core of the thesis that introduces a novel spatiotemporal model of

condition for Atlantic cod on the SGB (i.e., NAFO Divisions 3NO), using DFO’s annual

research survey data. Chapter 3 describes how the spatiotemporal model can be utilized

to derive a length-specific starvation mortality index. Chapter 4 describes a stochastic

growth model to estimate the probability distribution of length at age and how that can

be used to convert length-specific starvation mortality rates into age-specific starvation

mortality rates. The purpose of the Chapter 5 is to update the SSAM developed by

Cadigan et al. (2022a) by integrating age-specific starvation mortality rates derived in

Chapter 4. Finally, in Chapter 6, I conclude the research and provide recommendations

for future work, followed by bibliography and appendices.
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1.11 Figures

Figure 1.1: Spatial distribution of Atlantic cod stocks (shaded), their spawning areas (darkly shaded)
and the annual mean temperature at 100 m depth in the North Atlantic. Figure courtesy of Sundby
(2000).

.
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Figure 1.2: Variation in weight-at-age 4 for cod from various regions around the North Atlantic with
respect to temperature. Abbreviations: STP - St. Pierre Bank; LAB - Labrador/ Grand Bank; NSL
- Northern Gulf of St. Lawrence; SSL - Southern Gulf of St. Lawrence; SGB - Southern Grand Bank;
ESS - Eastern Scotian shelf; NEA - Northeast Arctic; EWG - East & West Greenland; ICE - Iceland;
WSS - Western Scotian shelf; FAR - Faroe; GEO - Georges Bank; NS - North Sea; ECH - Eastern
channel; WSC - West Scotland; IRS - Irsh Sea; CEL - Celtic Sea. Data source: Brander (1995).
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Figure 1.3: Estimated mean catch weight-at-age (ages 3 and 12) for 3NO cod, 1959–2019. Data source:
Rideout et al. (2021).
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Figure 1.4: Nominal catches of Atlantic cod in the Northwest Atlantic, 1960–2022. Data source: NAFO,
STATLANT 21A.

.
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Figure 1.5: Top Panel: Time series (1990–2021) of commercial landings (i.e., catch in tonnes) of At-
lantic cod in Atlantic Canada (i.e, the total of landings from Nova Scotia, New Brunswick, Prince
Edward Island, Quebec, and Newfoundland). Bottom panel: Percentage of total landings from North-
west Atlantic that were taken by Atlantic Canadian fleets. Data source: DFO, Canada.

.
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Figure 1.6: 3NO cod average length-at-age values calculated using DFO fall and spring survey data
from 1959–2020.
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Figure 1.7: Atlantic cod fishery landings (in tonnes) reported by the fleets of Canadian and other
countries for the Divisions 3NO. Data source: DFO, Canada.
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Figure 1.8: Estimates of total number of cod caught per year and age-groups 4–12+ and 7–10+ for
ICNAF Divisions 3NO (i.e., SGB) during 1959–1970. Data source: Pinhorn and Wells (1973).
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Figure 1.9: ADAPT estimates of SSB during 1959–2020. Dashed line represents the SSB limit reference
point. Data source: Rideout et al. (2021).
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Chapter 2

Spatiotemporal condition model for
SGB cod

The purpose of this chapter is to describe a novel spatiotemporal model of condition

for Atlantic cod on the SGB.

2.1 Rationale

Historically, there was a substantial fishery for SGB cod for over 500 years (Lear,

1998). However, cod on the SGB of Newfoundland have been at low levels for nearly

three decades since the inception of the fishing moratorium in 1994. The most recent

assessment also estimated the stock was only about 12% of the limit reference point

(see Rideout et al., 2021, and Figure 1.9). Linked to the lack of recovery are reports

of periods of very low productivity for SGB cod (e.g., Morgan et al., 2014b) and low

fish condition relative to some other cod stocks in the North Atlantic (Rätz and Lloret,

2003).

Previous studies have found an association between the poor condition of cod and

population decline (e.g., Lambert and Dutil, 1997; Marshall et al., 2000; Bundy and

Fanning, 2005). For instance, this may have contributed to the decline in northern

35



cod, particularly in the northern areas (Morgan et al., 2018). Additionally, other stud-

ies have suggested that poor growth and/or condition could have contributed to the

lack of recovery of northern cod (Rose and O’Driscoll, 2002; Sherwood et al., 2007;

Buren et al., 2014; Mullowney and Rose, 2014). Regular et al. (2022) concluded that

starvation-induced mortality is an important component of northern cod natural mor-

tality. Morgan et al. (2010) found that temperature is an important factor for SGB

cod condition and reproduction. This study revealed significant inter-annual variations

in relative gutted body condition and liver condition for SGB cod, but trends were not

consistent among two types of condition (see Figure 3 in Morgan et al., 2010). Interest-

ingly, they found the highest gutted body condition at warm temperatures, consistent

with the findings of Rätz and Lloret (2003). In contrast, they found liver condition was

highest at low temperatures. However, they did not investigate spatial or size differences

in body condition.

As I previously mentioned in Chapter 1, fish with poor body condition can expe-

rience elevated M due to increased vulnerability to diseases and predation, as well as

reduced ability to capture mobile prey. These factors ultimately impact population pro-

ductivity by impacting survival and reproduction dynamics. Therefore, modeling and

investigating the spatial and temporal changes in condition of SGB cod can provide a

basis for developing a starvation mortality index. Importantly, this index may provide

important information of variation in M , which can be included in stock assessment

models, such as age-based SSAM’s.

2.2 Research approach

Similar to Thorson (2015) and Cadigan et al. (2022b), I use a spatiotemporal LWR

model to derive a population-level condition metric. The model in Cadigan et al. (2022b)
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was

log(Wi) = Agiti +Bgitili log(li) + ∆dili + εwi, εwi
iid∼ N(0, σ2

w). (2.1)

The random variable Wi represented the weight of the i’th fish sampled at spatial

location gi in year ti, day di, and length bin li. Note that different fish in the same

strata and year share the same A and B parameters. The model assumed the slope

Bgtl varied over length, space, and time, and the condition parameter Agt varied across

space and time. The survey timing effect was ∆dl, where d was the Julian date. εwi

is the measurement error. In this model, condition may vary spatially and temporally,

both within- and between-years, because of changes in prey availability, among other

reasons.

In this thesis, I extend the models of Thorson (2015) and Cadigan et al. (2022b) for

SGB cod. Here, the main innovation is an approach to model cyclical seasonal changes

in gutted-weight condition. Different from Cadigan et al. (2022b), a single b fixed-effect

slope parameter is used instead of Bgtl, while the A effect is dynamic and varies over

length, space, and time. The rationale for this change is that in preliminary models,

a high correlation in estimates of Agt and Bgtl in Eqn. (2.1) was found, which com-

plicated the interpretation of these effects. However, by using a constant b parameter,

spatiotemporal and length changes in Agtl can be directly interpreted as spatiotemporal

changes in condition. In contrast to Cadigan et al. (2022b) but similar to Regular et al.

(2022), month is used as the seasonal (s) temporal resolution of the spatiotemporal

model for the survey timing effect, ∆sl (see Section 2.3.3).

37



2.3 Methods

2.3.1 Study area

The study area, SGB, and adjacent areas are illustrated in Figure 2.1. The SGB

is a large offshore bank (Lilly, 2005) located to the south and east of the island of

Newfoundland (Lilly, 2005; DFO, 2007). It is separated from Newfoundland by the

Avalon Channel (Lilly, 2005). The continental slope along the SGB is notably steep,

with depths exceeding 1000 meters over a relatively short distance. Importantly, the

tail of the SGB extends beyond the Canadian 200 nautical mile Exclusive Economic

Zone (EEZ) (DFO, 2007). More information can be found in Section 1.3.

2.3.2 Data

Total length and gutted-weight measurements of cod collected during Fisheries and

Oceans Canada’s (DFO) annual spring and fall bottom surveys in NAFO Divisions 3NO

(i.e., SGB) from 1984 to 2018 were utilized. All surveys were conducted using a stratified

random sampling design (Doubleday, 1981). DFO provided shapefiles delineating strata

boundaries, which are illustrated in Figure C.1. Bathymetry data were sourced from the

National Oceanic and Atmospheric Administration (NOAA) server using the R package

"marmap" (Pante and Simon-Bouhet, 2013). The digital data were in the WGS84 map

projection. For this analysis, gutted-weight data of cod measuring ≥ 15 cm in length

were employed. Weight data for sizes < 15 cm were deemed unreliable due to numerous

outliers and were therefore excluded from the dataset. A summary of the survey data

processed for the analyses is presented in Table B.1.
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2.3.3 Statistical model

All the mathematical notations are summarized in Table B.3.

Let Wi be a random variable representing the fish weight for the i’th observation

in year ti, stratum gi, and for a length li fish sampled. The spatiotemporal statistical

model I considered, for individuals i = 1, . . . , n, is

log(Wgi,ti,li) = Agi,ti,l3i + ∆si,l3i + b log(li) + εwi, εwi,
iid∼ N(0, σ2

w), (2.2)

where iid means independent and identically distributed. In Eqn. (2.2), the intercept

Ag,t,l3 varies across strata g, years t, and lengths l3 in 3 cm length bins. The survey

month (s) effect ∆sl3 is also assumed to be length-dependent. These length effects can

account for nonlinearity in the log(W ) versus log(L) relationship. To improve the model

run times, 3 cm length bins were used for the seasonal (month) and spatiotemporal

effects. The slope b (i.e., the allometric coefficient) was assumed to be constant for all

l, t, g, and s. It was assumed t = 1, . . . , T are the years, g = 1, . . . , G are the strata,

l = 1, . . . , L indicate the 1 cm length bins, l3 = 1, . . . , L3 indicate the 3 cm length bins,

and s = 1, . . . , S are the months. The intercept, Ag,t,l3 was modeled as a sum of main

effects: ∆g for spatial location g, ∆t for time t, and ∆l3 for length l3. The effects ∆gt

for strata-time, ∆gl3 for strata-length, and ∆tl3 for time-length were included in the

model as second-order interaction effects (i.e., random effects). These random effects

are correlated across strata, years, and lengths, which is described as follows.

The stochastic model I used for Ag,t,l3 is

Ag,t,l3 = a+ ∆g + ∆t + ∆l3 + ∆gt + ∆gl3 + ∆tl3 , (2.3)

Similar to Cadigan et al. (2022b), the sets of temporal effects {∆t; t = 1, . . . , T} and

the length effects {∆l3 ; l3 = 1, . . . , L3} are modelled as AR(1) autoregressive Gaussian
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stochastic processes in time and length, with zero means and autocorrelations ϕT and

ϕL3 and standard deviations σT and σL3 , respectively ( see Eqn. 2.4 and 2.5).

∆t = ϕT∆t−1 + εt (i.e., ∆t ∼ AR1 (0, σ2
T )) (2.4)

∆l3 = ϕL3∆l3−1 + εl3 (i.e., ∆l3 ∼ AR1 (0, σ2
L3)). (2.5)

Including third-order interactions between g, t, and l was computationally very slow

and this was not pursued.

The spatiotemporal interaction effects {∆gt; g = 1, . . . , G, t = 1, . . . , T} had a

mean zero multivariate normal (MVN) distribution with a covariance matrix that is

Kronecker products of a spatial GMRF covariance matrix (with qGT and ωGT parame-

ters) and an AR(1) covariance matrix (with ϕGT autocorrelation parameter; see Eqn.

2.6). Similar to ∆gt, the set of spatial-length interaction effects {∆gl3 ; g = 1, . . . , G,

l3 = 1, . . . , L3} had a MVN distribution with mean zero and a GRMF ×AR(1) covari-

ance matrix with qGL3 , ωGL3 and ϕGL3 (see Eqn. 2.7) parameters.

∆gt = ϕGT∆g,t−1 + εgt (i.e., ∆gt in t ∼ GMRF & ∆gt in g ∼ AR1(0, 1))

(2.6)

∆gl3 = ϕGL3∆g,l3−1 + εgl3 (i.e., ∆gl3 in l3 ∼ GMRF & ∆gl3 in g ∼ AR1(0, 1))

(2.7)

The set of temporal-length interactions {∆tl3 ; t = 1, . . . , T, l3 = 1, . . . , L3} had a mean

zero MVN distribution with a covariance matrix that was a Kronecker product of two

AR(1) covariance matrices, with ϕT ∗L3 , ϕT L∗3 and σT L3 parameters, where σT L3 is the
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standard deviation (see Eqn. 2.8).

∆tl3 − ϕT ∗L3∆t−1,l3 = ϕT L∗3(∆t,l3−1 − ϕT ∗L3∆t−1,l3−1) + εtl3 (2.8)

(i.e., ∆tl3 in t ∼ AR1(0, σT L3) & ∆tl3 in l3 ∼ AR1(0, σT L3)

The set of seasonal (month)-length interaction effects {∆sl3 ; s = 1, . . . , S, l3 = 1, . . . , L3}

is modeled somewhat similar to the ∆tl3 ’s; that is, the ∆sl3 ’s had a mean zero MVN dis-

tribution with a covariance matrix that was a Kronecker product of an AR(1) covariance

matrix (with ϕSL∗3 autocorrelation parameter) for length and a seasonal AR(1) covari-

ance matrix (with ϕS∗L3 autocorrelation parameter) for month. The standard deviation

of ∆sl3 was assigned with parameter σSL3 (see Eqn. 2.9).

∆sl3 − ϕS∗L3∆s−1,l3 = ϕSL∗3(∆s,l3−1 − ϕS∗L3∆s−1,l3−1) + εsl3 (2.9)

(i.e., ∆sl3 in s ∼ AR(1)(0, σSL3) & ∆sl3 in l3 ∼ AR(1)N (µ,Σs)

The covariance matrix for the seasonal AR(1) process is

Σs(ϕ) =
1

1− ϕ2



1 ϕ . . . ϕ5 ϕ6 ϕ5 . . . ϕ2 ϕ

ϕ 1 . . . ϕ4 ϕ5 ϕ6 . . . ϕ3 ϕ2

... . . . . . . ...
...

... . . . ...
...

ϕ5 ϕ4 . . . 1 ϕ ϕ2 . . . ϕ6 ϕ5

ϕ6 ϕ5 . . . ϕ 1 ϕ . . . ϕ5 ϕ6

ϕ5 ϕ6 . . . ϕ2 ϕ 1 . . . ϕ4 ϕ5

...
... . . . ...

...
... . . . ...

...

ϕ2 ϕ3 . . . ϕ6 ϕ5 ϕ4 . . . 1 ϕ

ϕ ϕ2 . . . ϕ5 ϕ6 ϕ5 . . . ϕ 1



. (2.10)

This is a symmetric and positive definite matrix with the same correlation between
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January–February and December–January, etc. This process can account for cyclic sea-

sonal changes in condition from higher values in the summer and fall following improved

feeding conditions, to lower values in the winter and spring, presumably when prey are

more scarce. However, seasonal variation may also be affected by a combination of

temperature related metabolic effects, overlap with prey, and energetic investment in

reproductive organs. This seasonal process is assumed to be the same each year.

The covariance matrices for the spatial fields (e.g., ∆gt, ∆gl3) in Eqn. (2.3) were

based on GMRF’s (e.g., Rue and Held, 2005). The elements of precision matrices Ω

were

Ωgg′ = q


−hgg′

(
1

dgg′

)τ

if g 6= g′,

ω +
∑

g′ 6=g hgg′

(
1

dgg′

)τ
if g = g′,

(2.11)

where hgg′ = 1 if strata g and g′ are neighbours, and is 0 otherwise, dgg′ was the

distance between the centroids of strata g and g′. The positive parameters q and ω were

estimated separately for each ∆ and subscripts were used similar to the ∆’s to indicate

this. I used irregular spatial units (i.e., strata), so I also used the distance between

strata centroids to model spatial correlation. An extra power parameter τ was included

to improve its flexibility in modeling irregular spatial strata, and a common value was

assumed for all ∆’s.

The parameter q scales the precision matrix, so that q−1 is an overall measure of

the level of the covariance matrix. Interpreting the spatial correlation parameter ω

can be challenging. To aid in understanding this parameter, I plotted the elements

of the correlation matrices against the distance between centroids of the strata. The

decorrelation formula used by Zheng et al. (2020b) was fitted, corr(d) = exp
{
−(d/D)δ

}
,

which is a model to describe how the correlation declines as a function of the distance

d between two strata, based on the parameters D (i.e., the decorrelation distance)
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and δ (i.e., the speed of decorrelation). Estimating the values of D and δ allows for

the calculation of the average distance at which the spatial correlation reaches 0.5,

denoted as d̄0.5. This measure offers a straightforward way to assess the extent of spatial

correlation.

In preliminary analyses I found that σ2
w in Eqn. 2.12 depended on fish length; in

particular, when the length was small then the residual variation was much larger.

However, for larger sized fish the residual variance was approximately constant. This

was accounted for using a non-linear variance model,

σ2
w(l) = c+ exp {d− e log(l)} , (2.12)

where c is a positive parameter, and d and e are real-valued parameters to estimate.

To derive annual average stock weight-at-length, it is needed to average estimated

weights across all strata each year, and weight by abundance (λgtl),

w̄tl =

∑
g λgtl × wgtl∑

g λgtl
. (2.13)

However, estimating the λgtl for all strata, years, and lengths is complex because there

are missing strata in some years, and no surveys in some years. Therefore, for simplicity,

similar to Cadigan et al. (2022b), a strata-size weighted average was employed,

w̄tl =

∑
g Sg × wgtl∑

g Sg
, (2.14)

where Sg is the size (i.e., area) of stratum g. Eqn. (2.14) is easier to implement but it

is only suitable for stocks that have an approximately homogeneous distribution over

space.

The Template Model Builder (TMB; Kristensen et al., 2016) package within R (R
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Core Team, 2022) was used to implement the models. The R function “nlminb” was

used to find the maximum likelihood estimates.

2.3.4 Model selection

Model selection was performed to identify and retain effects that significantly explained

variability in the data. The Akaike Information Criterion (AIC) and Bayesian Informa-

tion Criterion (BIC) were used, along with residuals and mean squared residuals (MSE)

to compare model predictions. AIC evaluates the accuracy of the predictions, while BIC

measures the goodness of fit (Sober, 2002). Both criteria were used as it is not clear

which criterion performs better. The model was run for eleven different combinations

of the main effects (i.e., ∆g, ∆t and ∆l3) and interaction effects (i.e., ∆gt, ∆gl3 , ∆tl3 ,

and ∆sl3) to yield eleven distinct models (see Table 2.1), from which the best one was

selected.

2.4 Results

2.4.1 Spatiotemporal condition model for 3NO cod

All the tables and figures referred to in the text below are separately presented in the

Sections, 2.6 and 2.7 respectively.

Model selection results are presented in Table 2.1. The full model (see Eqn. 2.2),

which included all main effects (∆g, ∆t and ∆l3) and interactions (∆gt, ∆gl3 , ∆tl3), did

not provide the best fit as measured by AIC and BIC. The best fitting model included

only the interaction effects, including the survey timing (season) and length interaction

effects (∆sl3). This was selected as the final model formulation (see M02 in Table 2.1).

Consequently, the intercept, Agi,ti,li of the final model is sum of the interaction effects.
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Thus, the full version of the final spatiotemporal model is

log(Wgi,ti,li) = Agi,ti,l3i + ∆si,l3i + b log(li) + εwi, εwi,
iid∼ N(0, σ2

w),

where

Agi,ti,l3i = a+ ∆giti + ∆gil3i + ∆til3i . (2.15)

The parameter estimates for the final model are presented in Table 2.2. The esti-

mates of a and b were 4.7× 10−6 and 3.119, respectively.

2.4.2 Interaction effects of spatiotemporal model

Spatiotemporal interaction effect (∆gt)

The estimates of the spatiotemporal effects ∆gt ranged between -0.05 and 0.05 (Figure

2.2), with low spatial correlation. The average distance at which the correlation reached

0.5 (d̄0.5GT ; detailed in Table 2.2 and Figure 2.3) was only 0.69 km. The estimate of

the temporal correlation parameter, ϕGT = 0.173, was also low. Many of these effects

were estimated to be close to zero, which is also indicated by the low value of
√
q−1
GT as

shown in Table 2.2.

Spatial strata-length interaction effect (∆gl3)

The spatial strata-length interactions ∆gl3 were usually larger in absolute value than

the spatiotemporal effects, a fact that is also evident from the greater value of
√
q−1
GL3

compared to
√
q−1
GT as presented in Table 2.2. The length correlation estimate (ϕGL3 =

0.950; Table 2.2 and Figure 2.3) indicates that ∆gl3 were similar for fish of similar sizes.

There was a higher spatial correlation observed in ∆gl3 in comparison to ∆gt, with an
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average distance of 44 km at which the correlation reached 0.5 (i.e., d̄0.5gl3 = 44 km).

Summary statistics for spatial strata are presented in Table B.2.

Temporal length interaction effect (∆tl3)

The temporal length interaction effects (Figure 2.5) exhibited a magnitude similar to

that of the ∆gl3 effects. This similarity is evidenced by the comparable values of σ2
T L3

and
√
q−1
GL3 provided in Table 2.2. These effects displayed a high level of length corre-

lation (ϕT L∗3 = 0.93 in Table 2.2). There was usually high between-year consistency in

these estimates, but more abrupt changes in 1990–1991 and 2013–2014, which is why

the temporal correlation estimate (ϕT ∗L3 = 0.70) was lower. This indicates more abrupt

changes in condition in those years. Figure 2.5 also indicates poorer condition overall

for fish between 45–75 cm and larger fish over 120 cm, although the sample sizes at the

larger sizes were low as indicated in Figure 2.6.

Seasonal length interaction effect (∆sl3)

The seasonal effects are shown in Figure 2.7. The main trend is a decrease in fish

condition from January to April and May, followed by an increase that continues until

September. Smaller increases occur during the period from September to December.

Similar to the temporal length interaction effects displayed in Figure 2.5, the seasonal

effects also indicate poorer condition overall for fish between 45–75 cm and larger fish

over 120 cm. The length correlation in the seasonal effects was high (ϕT L∗3 = 0.93 in

Table 2.2) and the month correlation was somewhat lower (ϕS∗L3 = 0.79).

2.4.3 Variance model

The estimates of the error variance model (Eqn. 2.12) indicate that the variation was

approximately constant at fish sizes of about 30 cm and higher, but the error variation
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was higher for smaller fish (see Figure. 2.8).

2.4.4 Temporal variability in mean gutted-weight

The spatiotemporal model was used to predict mean gutted-weight for SGB cod for

every length bin, month, strata, and year. The Eqn. (2.14) was used to summarize the

temporal patterns as illustrated in Figure 2.9. The results indicate that weight is lower

in the spring (e.g., May) than the fall (e.g., October), particularly for fish between 40–

80 cm. Larger fish experienced an abrupt decrease in weight in 1990, and after several

years weight improved. This pattern was more gradual for smaller-sized fish. At larger

sizes, weight also decreased after 2013 but this did not appear to happen to the same

extent for fish between 40–60 cm.

Annual average spatial and seasonal patterns of the log condition coefficient pa-

rameter (Āgls) values are illustrated in Figure 2.10. The overall pattern is low spatial

variability in cod weight, both in the spring and fall. Figure 2.11 demonstrates a good

fit of the spatiotemporal model to the data (also see Figures 2.12 - 2.14). The patterns

presented in Figure 2.9 are less obvious in Figure 2.11. However, the observed trends

in Figure 2.11 are also influenced by noise from measurement error and spatiotemporal

variability in sampling locations (e.g., Figure 2.15 and C.2), which is accounted for in

Figure 2.9.

2.5 Discussion

I developed a novel spatiotemporal model to examine variations in fish condition over

time (year and season), space (i.e., spatial strata), and size (i.e., fish length). The

spatiotemporal condition model incorporates random effects to account for interactions

among length, space, time, and season (i.e., survey months). This modeling approach
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was employed to address issues related to sampling gaps and changes in the locations

where fish were weighed. The spatiotemporal interaction effects of the model (i.e., ∆gt)

had low variability and low temporal and spatial correlation. Many of the predicted

spatiotemporal interactions were very close to zero. These interaction effects were rel-

atively low compared to the spatial length interaction effects (i.e., ∆gl3), which had

higher variability and more spatial correlation. For Atlantic cod on the Icelandic shelf,

Pardoe et al. (2008) found little variation in mean relative body condition, while the

hepatosomatic index was identified as a dynamic indicator of condition. Their study

revealed that condition can have an important spatial component. Thus, they high-

lighted the significance of considering the spatial aspect, especially for stocks living

under heterogeneous environmental conditions. Moreover, their study emphasized the

importance of identifying a suitable index for condition and determining the most ap-

propriate spatial resolution. The temporal length interaction effects (∆tl3) were of sim-

ilar magnitude compared to the ∆gl3 effects. In general, ∆tl3 had a relatively high

between-year consistency, with only a few exceptions in some years (see Figure 2.5).

The random interaction effects between year-length and month-length (i.e., ∆tl3 and

i.e., ∆sl3) together indicated poorer condition overall for fish between 45–75 cm and

larger fish over 120 cm, although the sample sizes at the larger sizes were low. The

spatiotemporal model fit to the data reasonably well. By quantifying the correlations

in the weight-length intercept by space, year, season, and length, we can use the model

to predict the weight for any length fish in each survey strata, month, and year.

I used gutted-weight and total length of Atlantic cod in SGB to model the cod

condition, which extended the models in Thorson (2015) and Cadigan et al. (2022b).

However, the spatiotemporal model preserves the fundamentals of the conventional

LWR first introduced by Keys (1928) (see section 1.4). Therefore, it can easily be

utilized to estimate mean total weights-at-length over the stock area. Importantly, these

estimates can be used as inputs for certain stock assessment models. Changes in the
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sample locations year to year affect the comparability of the condition information, and

we use our model to standardize condition for the entire stock. In this thesis, I did

not focus much on the spatial variations in weights, which seemed low from the model

results. However, I illustrated the temporal variability (annual and seasonal) in the

model-predicted and observed area-weighted (strata average) gutted weights for April

and October (see Figure 2.9). This figure illustrates differences in condition between

the spring (i.e., April) and the fall (i.e., October), but also years with poor condition

for the stock as a whole. An improvement for future research will be to use a stock

density-weighted average to aggregate spatial results for the whole stock, rather than

the area-weighted average that I used in this thesis. I did not have spatial density-at-

length estimates available for my research.

I employed a novel procedure to model the seasonal effect, utilizing a modified AR(1)

process (see Eqn. 2.10). This adjustment ensures that January and December maintain

the same correlation as other consecutive months. Thus, this process can account for

cyclic seasonal changes in body condition. It is important to note that in this modeling

approach, I assumed that the seasonal effects remained consistent across all years. This

is why we estimate the same annual trends in relative condition between the spring and

fall. However, this assumption may not entirely reflect reality. I examined residuals

versus month for each year and did not find evidence of lack of fit for the assumption

of the same seasonal effect each year.

Our results indicated substantial annual variation in gutted-weight relative condi-

tion, with low values during 1991-1993. These findings are consistent with the results in

(Morgan et al., 2010), who analyzed spring survey conditions only. Stares et al. (2007)

did not find significant differences between SGB cod condition between 1993–1995 and

2002–2004 (see Table 5 in Stares et al., 2007), which is somewhat consistent with our

results that indicated only small increases in condition between these two time periods,

depending on the length of the fish (see also Figure 9 in Taggart et al., 1994). I also
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found that SGB cod were in poorer condition in the spring compared to the fall, which

is a seasonal cycle commonly reported for north Atlantic cod stocks (e.g., Regular et al.,

2022; Taggart et al., 1994).

The a (condition coefficient parameter) and b (allometric growth coefficient param-

eter) estimates of the spatiotemporal model are reported in section 2.4. The allometric

growth coefficient estimated is close to the value reported (b = 3.088) by Healey et al.

(2013) and the value reported (b = 3.174) by Cadigan et al. (2022b) for Atlantic cod in

NAFO Division 3Ps. The value of a in Healey et al. (2013) was 5.4×10−6, which is sim-

ilar to the value estimated by the model. Walsh and Hiscock (2005) estimated b = 2.86

for cod in the inshore of 3Ps, which is less than the value estimated by the model, and

their estimate a = 13 × 10−6 was greater. These variations may be attributed to the

influence of spatial and temporal components, as demonstrated by previous studies such

as Pardoe et al. (2008), Thorson (2015), and Cadigan et al. (2022b). Re-estimating these

parameters (Cadigan et al., 2022b), would enhance the accuracy of LWR estimations,

especially in studies where the role of spatial and temporal components is significant.

The estimation of spatial correlations was based on the centroid distance between

spatial strata, following a similar approach to Cadigan et al. (2022b). In their work,

Cadigan et al. (2022b) suggested the potential use of depth information to calculate

3-dimensional centroid distances of the strata. However, there are complications in

weighting vertical and horizontal distances when incorporating depth information. This

is an aspect to consider in potential future extensions of the model. Additionally, Par-

doe et al. (2008) found that the impact of depth on mean relative condition can vary

depending on the region.

The primary objective of this chapter was to develop a novel spatiotemporal con-

dition model, aiming to utilize it to derive starvation-induced natural mortality index

(i.e., starvation mortality index) for SGB cod. The approach I used for deriving the
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starvation mortality index is elaborated in Chapter 3.

51



2.6 Tables

Table 2.1: Model comparisons using: 1) Akaike information criterion (AIC), 2) bayesian information
criteria (BIC), and 3) root mean squared error (RMSE). The total number of observations is 26,660,
and the minimum AIC and BIC values and RMSE are -55 169.32, -5 5021.89, and 0.08, respectively.
MLL is the marginal loglikelihood and k is the number of model parameters. Models are numbered in
the first column. ∆ effects are defined in Table B.3.

Model with MLL k ∆ AIC ∆ BIC ∆ MSE ∆ RMSE
∆g ∆t ∆l ∆gt ∆gl ∆tl ∆sl

M01 + + + + + + + 27602.66 24 12.00 61.15 0.000000 0.000000
M02 + + + + 27602.66 18 0.00 0.00 0.000000 0.000000
M03 + + + 25662.47 15 3874.39 3849.82 0.000821 0.004717
M04 + + + 27475.88 15 247.56 222.99 0.000169 0.000993
M05 + + + 27518.87 15 161.58 137.01 0.000104 0.000611
M06 + + 27393.35 12 406.62 357.48 0.000275 0.001609
M07 + + + 27341.50 15 516.32 491.74 0.000384 0.002240
M08 + + 26907.65 12 1378.02 1328.88 0.000753 0.004335
M09 + + 26703.65 11 1784.02 1726.68 0.000829 0.004760
M10 + 20750.28 7 13682.77 13592.67 0.006457 0.032049
M11 -47051.22 4 149279.75 149165.08 2.663730 1.549576

Table 2.2: Parameter estimates and standard errors (SE) for model 2 (see M02 in Table. 2.1). Param-
eters are defined in Table. B.3.

Parameter Category Estimate SE
ϕGT correlation 0.173 0.079
ϕGL3 correlation 0.950 0.014
ϕT ∗L3 correlation 0.696 0.089
ϕT L∗3 correlation 0.925 0.020
ϕS∗L3 correlation 0.785 0.081
ϕSL∗3 correlation 0.978 0.010√
q−1
GT Standard Deviation 0.004 0.007√
q−1
GL3 Standard Deviation 0.027 0.004

σ2
T L3 variance 0.023 0.003
σ2
SL3 variance 0.021 0.004
ωGT other 1.430 0.899
ωGL3 other 0.077 0.056
d̄0.5GT other 0.687 −
d̄0.5GL3 other 43.764 −
a other -12.270 0.060
b other 3.119 0.014
c other 0.080 0.000
d other 14,179 0.812
e other 5.997 0.285
τ other 0.005 0.174
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2.7 Figures

Figure 2.1: Southern Grand Bank and adjacent areas. The red dashed line indicates the boundary of
Canadian 200 nautical mile Exclusive Economic Zone (EEZ). SGB is enclosed by the boundaries of
NAFO Divisions 3NO.
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Figure 2.2: Variation in the mean strata-time interaction effects (∆gt) over years and across strata.
The analysis accounted for 35 years, 1984–2018, however, spatiotemporal maps are produced every
second year to simplify the visualization and interpretation.
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Figure 2.3: Variation in spatial correlations with respect to centroid distance of strata. Black curves
are the fitted lines of the correlation and distance data to the formula, corr∆ = exp

{
−(d/D)δ

}
, where

D is the distance between centroids of two strata and δ is a parameter. The vertical grey dashed lines
are at fitted average distance that the spatial correlation was 0.5.
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Figure 2.4: Variation in the mean strata-length interaction effects (∆gl3) over spatial strata. Each
panel is for a selected length class.
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Figure 2.5: Variation in the mean time-length interaction effect (∆tl3). Variability of mean ∆ over
years and lengths are annotated at the top and right of the main plot, respectively. Dashed lines
indicate the series average.
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Figure 2.6: Variation in the mean time-length interaction effect (∆tl3). Sample sizes for years and
lengths are annotated at the top and right of the main plot, respectively.
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Figure 2.7: Season (month) and length interaction effect (∆sl3) from model M02 (see Tables 1 and 2).
Colors indicate the size of the effect, which is described in the legend at the top-right. Variability of
mean ∆ over seasons and lengths are annotated as marginal summaries at the top and right of the
main plot, respectively. Dashed lines indicate the series average.

59



Figure 2.8: The non-linear variance model (see Eqn. 2.12) used for the residuals of the spatiotemporal
weight-length model (top panel). The frequency of log-lengths are shown in the bottom panel.
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Figure 2.9: Time-series of area-weighted mean gutted-weights of 3NO cod (kg; defined in Eqn. 2.14) in
the spring (orange line) and fall (green line). Month 5 is May and Month 10 is October. Shaded regions
indicate 95 % confidence intervals. Each panel represents a different sized cod. Horizontal dashed lines
indicate the series averages.

61



Figure 2.10: Annual average values of the log condition coefficient parameter (Āgls = T−1
∑T
t=1Agtls),

illustrated for four choices of month (i.e., spring and fall; figure columns) and a wide range of fish lengths
(rows).
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Figure 2.11: Time-series of seasonal (columns) sample-average predicted (line) and observed (circle)
gutted-weight of 3NO cod from the spatiotemporal weight-at-length model. The circles are proportional
to sample sizes. Each row represents a 10 cm length range. Horizontal dashed lines indicate the series
average. The annual number of gutted-weight samples are annotated at the top and the number of
samples per length range is annotated at the right.
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Figure 2.12: Standardized residuals of the model M02 over length and seasons (months). The red and
green lines in the top and middle panels indicate the means and medians of standardized residuals,
respectively.
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Figure 2.13: Standardized residual of model versus length. Red lines indicate the linear models (i.e.,
trend lines) of standardized residuals. The gray shaded regions indicate 95% confidence intervals.
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Figure 2.14: Absolute standardized residuals vs. log-length for model M02. The red and green lines
indicate the means and medians at log-lengths, and the blue line indicates the overall mean of the
absolute standardized residuals.
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Figure 2.15: Spatiotemporal variability in sampling locations (i.e., strata).
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Chapter 3

Starvation mortality index for SGB
cod

This chapter focuses on the application of the spatiotemporal condition model developed

in Chapter 2 to derive a novel starvation mortality index. It describes the rationale, the

approach, the methodology used, the findings, and the significance of this index within

the context of my thesis objectives.

3.1 Rationale

The mortality of fish due to natural processes (i.e., natural mortality, M) such as

starvation, predation and senescence is difficult to observe and quantify (Lee et al.,

2011; Vincent and Pilling, 2023). While direct estimation of M is feasible through

tag-recapture experiments, it is constrained by the high costs associated with tagging

programs (Höffle and Planque, 2023). Consequently, indirect methods are commonly

employed to estimate M (Xiao, 2001; Lee et al., 2011; Punt et al., 2021a; Vincent and

Pilling, 2023), assuming M remains constant over space, time, and age Punt et al.

(2021a); Vincent and Pilling (2023). However, it is widely recognized that M likely

varies with age, sex, and time (Punt et al., 2021a; Cadigan et al., 2022b; Hamel et al.,

2023). In the spatiotemporal condition model I developed for SGB cod (see Chapter 2),
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I assumed the condition parameter (i.e., slope, Ag,t,l3) varied across spatial strata, years

and length along with seasonal (months) effects (see Eqn. 2.2). Therefore, the use of this

information to establish an indirect method for deriving a starvation M index, which

I refer to as MK , is potentially important. Such an index can be utilized in a stock

assessment model to give better estimates of time– and age–varying M (e.g., Casini

et al., 2016; Varkey et al., 2022), potentially improving the reliability of assessment

model estimates of stock size and fishery harvest rates. This is important for SGB cod,

where the potential for change in M is a concern (Cadigan et al., 2022a), which we

describe in Chapter 5 in more detail.

3.2 Research approach

For many species, interpretations of changes in body condition should be done carefully,

as they vary over annual cycles and between individuals (Cren, 1951; Lambert and Dutil,

1997; Rikardsen et al., 2006; Regular et al., 2022). Consequently, starvation mortality

rates can display seasonal patterns and there can be wide differences in condition among

fish in the population at any time. Only fish in really poor condition are at risk of dying

due to starvation. Therefore, the mean body condition of fish in a population may not

directly correlate with starvation mortality; instead, starvation mortality rates can be

inferred from the proportion of fish that fall below a certain critical threshold Dutil and

Lambert (2000); Geissinger et al. (2021); Regular et al. (2022).

Estimating annual MK for the entire stock requires aggregating results across space

and throughout the year. For SGB cod, research surveys conducted in the spring and

fall provide information about seasonal changes in condition, but the survey fish weight

data are not random samples from the stock, and standardization is required. The

spatiotemporal model is used to account for these issues. Like Casini et al. (2016), the

probability that a fish is in critical condition is estimated and, assuming fish in critical
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condition will soon die, it is translated into spatiotemporal estimates of the starvation-

induced M . Eventually, the goal is to use condition indices to estimate trends in a

component of M . The methodology used is elaborated in Section 3.3.

3.3 Methods

3.3.1 Modeling starvation mortality index

The weight-length relationship for a length l fish in stratum g, year t, and month s

(Eqn. 2.2), can also be written as

log(wg,t,l,s,i) = Ag,t,l3,s + b log(li) + εBI,i + εME,i, (3.1)

where

Ag,t,l3,s = a+ ∆gt + ∆gl3 + ∆tl3 + ∆sl3 . (3.2)

εBI is between individual variability in weight-at-length within a stratum, and εME

is the log-weight measurement error. It is assumed that εME is close to zero for large

fish and that εBI ∼ N(0, σ2
BI) and σ2

BI ≈ 0.08 (see Figure 2.8). We have no empirical

estimates of the measurement error variance for weight, but we assume this is small

relative to the total weight of larger fish. The “true” log-weight of an individual fish i

is Ag,t,l,s + b log(li) + εBI,i. The expected log-weight of a length l fish, averaged over

all strata, years, and months, is a + b log(l). In Chapter 2 we used model selection to

remove unnecessary terms in Eqn. 2.3, and found the main effects could be dropped

but all second-order interaction terms were important in Eqn. 3.2 (i.e., M02 in Table

2.1).

The relative condition is the weight of an individual relative to the average weight
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of the same size. The log of relative condition is Kg,t,l3,s,i = Ag,t,l3,s − a + εBI,i. The

probability of being less than a critical value, Kcrit, is

Pr(Kg,t,l3,s,i < Kcrit) = Pg,t,l3,s = Φ

(
Kcrit − Ag,t,l3,s + a

σBI

)
, (3.3)

where Φ(z) is the cumulative distribution function of a standard normal random vari-

able. The probability of critical condition can be estimated,

P̂g,t,l3,s = Φ

(
Kcrit − Âg,t,l3,s + â

σ̂BI

)
. (3.4)

I used a residual-based Kcrit = 0.18, which was also used by Regular et al. (2022) for

Northern cod starvation mortality. Hence, the survival probability for the entire year is

Pg,t,l3 = Pr (Kg,t,l3,s,i > Kcrit, s = 1..., 12) =
12∏
s=1

(1− Pg,t,l3,s). (3.5)

IfMK,g,t,l3,s is the monthly mortality rate due to poor condition, defined via the survival

probability, exp (−MK,g,t,l3,s), then

MK,g,t,l3,s = −log(1− Pg,t,l3,s) (3.6)

and the annual total is

MK,g,t,l3 =
12∑
s=1

MK,g,t,l3,s. (3.7)

Thus, MK,g,t,l3 can be estimated using Eqn. (3.7).

MK,g,t,l3 is the annual mortality rate due to poor condition for a length l fish in

stratum g and year t. For stock assessment that needs to be aggregated for the entire

stock. Ideally this should be a strata abundance (i.e., number-at-length, Ng,t,l3) weighted

average, and to estimate the stock level MK , the Ng,t,l3 should be estimated. While

71



it is possible to use average survey catch-at-length and assume it is proportional to

Ng,t,l, not all strata are sampled each year. A spatiotemporal model can be developed

for survey catches to estimate spatial abundance-at-length for all strata, but this is

beyond the scope of this thesis. Hence, for simplicity, I assumed a spatially homogeneous

stock distribution to facilitate aggregation using stratum areas (Sg). I consider this

assumption further in the discussion. Hence, Eqn. (3.8) is used to estimate length-based

condition mortality rates each year,

M̂K,t,l3 =

∑G
g=1 SgM̂K,g,t,l3∑G

g=1 Sg
(3.8)

Alternatively, the survival probabilities Pg,t,l3 can be aggregated using the same

procedure used in Eqn. (3.8). Thus, the stratum-average survival probability can be

obtained using,

P̂t,l3 =

∑G
g=1 SgP̂g,t,l3∑G

g=1 Sg
, (3.9)

and therefore, the length-specific annual mortality rates can also be calculated as

M̂∗
K,t,l3

= −log(1− P̂t,l3). (3.10)

This can be used as an alternative method to calculate MK ’s. I calculated the MK ’s

using both methods and compared the results from both methods to examine the sen-

sitivity for deriving the final MK values for SGB cod.
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3.4 Results

3.4.1 Estimates of starvation mortality index (MK)

Estimates of annual condition M̂K,t,l3 by length-bin (Figure 3.1) were aggregated over

months using Eqn. (3.7), and then aggregated over strata using Eqn. (3.8). The latter

step is justified by the low spatial variation in condition (i.e., Figure 2.10). The values

of M̂K,t,l ranged between 0.01 and 0.96, and the overall mean MK over length and years

was 0.2. MK was elevated in 1991–1993 and 2016, particularly for cod between 55 and

80 cm. For example, in 1991, the MK was 0.96 at size class 64 cm. MK was also high

in 1991–1995 for cod larger than 120 cm. However, cod of these sizes are relatively

rare. Time-series of MK for each length bin, including confidence intervals, are shown

in Figure 3.2. I compared theseMK values to the values calculated using the alternative

method (i.e., using equations 3.9 and 3.10). Notably, the MK values calculated via the

first method were almost identical to those obtained through the alternative method

(see Figures 3.3 and 3.4).

3.5 Discussion

The spatiotemporal condition model was used to estimate a starvation mortality index

(i.e., MK) by year, spatial strata, length, and month (i.e., season), for cod on the

SGB. It was assumed that the death of a cod due to starvation occurs within a month

(30 days) of critically poor condition, following the same assumption made by Regular

et al. (2022) for indexing starvation mortality of Northern cod. The primary conclusions

drawn from this analysis are: MK is 1) higher in the spring than the fall, 2) higher

for cod between 55 and 80 cm, and cod greater than 120 cm, and 3) higher during

1991–1993 when the stock experienced a significant decline, but was also high in 2016.
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Cod between 55–80 cm feed on forage fish such as capelin and sand lance more than

smaller cod that are too small to prey on these forage fish, or very large cod that can

feed on many fish species in additional to forage fish. Later in this chapter, I describe

how temporal changes in the abundance of forage fish may have influenced M for cod

between 55–80 cm.

Total mortality (Z) in exploited fish stocks is the sum of natural mortality (M)

and fishing mortality (F ): Z = M + F . Therefore, the accuracy of estimating fishing

mortality (F ) depends on obtaining precise estimates of natural mortality (M) (e.g.,

Höffle and Planque, 2023). While M is one of the most crucial parameters for fish stock

assessment models, its estimation is challenging. More often M is simply assumed to

be 0.2 or some value considered to be appropriate for the species. However, recent ad-

vancements have introduced both direct and indirect methods for estimating M (Hamel

et al., 2023). Direct estimation of M is possible using tag-recapture experiments, but it

is limited by the high cost of tagging programs (Höffle and Planque, 2023). Therefore,

indirect methods are often used to estimate M . The spatiotemporal model I devel-

oped was used to derive length-specific MK for SGB cod. This may offer a promising

alternative to direct estimation methods.

As detailed in Section 3.3.1, I tested two methods to calculate final MK index. How-

ever, results indicated that there was no significant difference among the MK values

calculated using both methods. Therefore, either of the two methods is valid for calcu-

lating the final MK values. Figure 3.1 is based on the first method (i.e., Eqn.’s 3.7) and

3.8). Similar to the recommendation in Chapter 2, an improvement for future research

will be to use a stock density-weighted average to aggregate spatial M estimates for

the whole stock, rather than the area-weighted average that I used in this thesis. I did

not have spatial density-at-length estimates available for my research.

Starvation can be directly impacted by a lack or limited accesses to food, which
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causes body mass to reduce due to utilization of available energy reserves (Bar, 2014;

Regular et al., 2022). For Northern cod, Regular et al. (2022) found that variations

in starvation-induced mortality correlate with the relative biomass of key prey species,

capelin and shrimp. Sand lance (Ammodytes dubius) and capelin (Mallotus villosus) are

considered significant prey items for cod on the Grand Bank (Lilly and Fleming, 1981).

The relative importance of these forage species has likely varied through time, however,

results from the spring bottom-trawl surveys in this area between 1984 and 1986 showed

that sand lance’s contribution for cod diet was rather significant compared to capelin

(Lilly and Meron, 1986). The high abundance of sand lance during this period may have

contributed to the low estimates of MK (see Figure 3.1). This period was, however,

followed by a collapse of the cod stock in the early 1990s, which aligns with an increase

in the estimates of MK . This coincides with the disappearance of the Southeast Shoal

(see Figure 2.1) stock of capelin (Fomin, 2021) and a broader collapse of the demersal

fish community (Pedersen et al., 2017). While it is unknown whether the sand lance

population collapsed alongside the rest of the community, capelin have not shown any

signs of recovery (Fomin, 2021) and a novel diet-based model indicates that the sand

lance population has oscillated without increase since 1995 (Robertson et al., 2022).

Interestingly, periods when sand lance estimates were above average (see Figure 9 in

Robertson et al., 2022) roughly correspond to local minima of MK estimates (1998,

∼ 2005, ∼ 2011). If these patterns are more than correlations, results suggest that

a lack of sustained growth in the local forage fish populations may be hampering the

recovery of SGB cod.

The dependence of SGB cod on sand lance and/or capelin may have also varied with

size, location, and season. For instance, Lilly and Fleming (1981) reported that cod be-

tween 35–90 cm in length mainly feed on capelin in the Avalon channel, while sand lance

was the dominant prey for cod between 50–69 cm length in the Eastern Grand Bank.

Thus, this may contribute to variability in condition over time and space with respect
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to prey abundance. Changes in the condition of Northern cod have been observed over

time corresponding to the trends in capelin availability (Rose and O’Driscoll, 2002;

Morgan et al., 2018; Regular et al., 2022). This could be a reason for the spatial and

temporal (including seasonal) variability of condition, which is observed for 3NO cod

(see Figures 2.4, 2.2, 2.5, and 2.7).

Physiological impacts due to environmental changes (e.g., water temperature) can

also influence fish condition and growth (Portner and Knust, 2007). For instance, re-

duced condition was reported for Atlantic cod when the bottom temperature decreased

(Krohn et al., 1997; Sandeman et al., 2008). Cadigan et al. (2022b) suggested that the

productivity of the ecosystem, reflected by the availability of prey, can be affected by

environmental phenomena. For instance, based on the observations on stomach fullness

of Atlantic cod in eastern Grand Bank, Lilly and Fleming (1981) reported that sand

lance predation in 1967 was even higher in the length range of 50–69 cm compared

to 1966, that presumably reflected the fluctuation of sand lance abundance due to the

effect of Labrador current in those years. Therefore, this may ultimately impact on

cod diet, and hence the cod condition. Cod are highly mobile fish and likely seek opti-

mal temperatures within smaller geographic regions. Moreover, while temperature is a

crucial factor, other environmental variables, such as prey availability, habitat charac-

teristics, and oceanographic conditions, could also play a significant role in shaping cod

distribution. If these factors are relatively consistent across spatial regions, they might

mask the potential influence of temperature on distribution. These could be possible

reasons why we did not observe significant spatial differences in condition.

Condition is found to be an important metric which influences or correlates with a

number of life parameters. It is linked with energetic processes, and potentially provide

significant information about the productivity and the reproductive potential of stock

(Pardoe et al., 2008). Moreover, as previously mentioned in Chapter 1, poor condi-

tion may result in increased rates of natural mortality through greater vulnerability
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to disease, predation, and reduced capability to catch mobile prey (Dutil et al., 1999;

Dutil and Lambert, 2000; Rose and O’Driscoll, 2002; Dutil et al., 2006). Thus, patterns

generated by length as a function of gutted-weight provided the basis for estimating a

component of natural mortality index (i.e., starvation mortality index). Therefore, this

index can be used in stock assessment, along the lines of Casini et al. (2016). Cadi-

gan et al. (2022a) have proposed an age-based state-space stock assessment model for

3NO cod. Thus, the next step is to investigate how to integrate these length-based es-

timates of MK into that age-based assessment model. This is investigated and reported

in Chapter 4 and 5, respectively.
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3.6 Figures

Figure 3.1: Starvation mortality index (i.e., MK) for each year and length (bin size = 3 cm). MK

was averaged across strata. Colors indicate the magnitude of MK as indicated in the top right-hand
legend. Raw average MK over years and lengths is annotated as marginal summaries at the top and
right, respectively. Dashed lines in the marginal plots indicate the series average.
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Figure 3.2: Length bin-wise (bin size = 3 cm; panels) variability of MK index. The red dashed lines
indicate the mean MK index. Shaded regions indicate 95% confidence intervals.
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Figure 3.3: Comparison for MK values calculated from two methods. The top panel shows the MK

values calculated using the second method (see Eqn. 3.10), and the bottom panel shows the MK values
calculated using the first method (see Eqn. 3.8)
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Figure 3.4: Representation for log(MK) values, the second method vs. first method. Grey colour points
represent MK values, and red dashed line indicates the regression line.

81



Chapter 4

A Stochastic Growth Model to
Estimate an Age-based Starvation
Mortality Index from the
Length-based Index, to Include in
Age-based State-space Stock
Assessment Model (SSAM)

The purpose of this chapter is to outline a methodology for converting the length-based

starvation mortality index, which I refer to as MKI,l,y, derived in Chapter 3, into an

age-based index, which I denote as MKI,a,y.

4.1 Introduction

Direct inclusion of a length-based mortality index in an age-based State-space Stock

Assessment Model (SSAM) is not possible. Therefore, an appropriate methodology is

required to convert the length-based starvation mortality index (i.e., MKI,l,y) derived in

Chapter 3 into an age-based starvation mortality index (i.e., MKI,a,y). These age-based

values will then be incorporated into a SSAM in Chapter 5.

The process of converting length-based starvation mortality index into an age-based
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starvation mortality index involves two key steps:

1. Growth model: create a stochastic growth model to estimate the probability dis-

tribution of length at each age.

2. Calculate MKI,a,y: use the estimated distribution of length at each age to convert

MK,l,y into MKI,a,y.

I use a stochastic growth model based on the mixed-effects growth model developed

by Cadigan and Rideout (2022) for 3NO cod. Their model for mean length at age a in

year y (L̄ay) is

log
(
L̄ay
)

= βa + δy + δc + δay + εay = µay + εay, (4.1)

where µa,y = E
{

log
(
L̄ay
)}

= βa+δy+δc+δa,y. The log-length model is a linear function

of an age-effect (βa), a year-effect (δy), a cohort-effect (δc), an age-year interaction (δay),

and a measurement error term (εay). I customize this model appropriately to estimate

the length-at-age values and utilize it to calculate an age-based starvation mortality

index. The methodology and the associated assumptions are detailed in Section 4.2.

4.2 Methods

4.2.1 Data

The “Rstrap” (Healey et al., 2020, an R package specifically developed for the analysis

of observations obtained from DFO multi-species surveys) version 1.14 (Date: 2020–

08–05) was used to extract fall and spring survey data for the years 1984–2018. The

extracted data includes age and mean length-at-age (in cm) observations, along with

the corresponding survey year (see Figure 4.1), number of age-length measurements,
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the survey (i.e., either Campelen or Engel), and the season (i.e., either fall or spring).

These data were utilized to fit a growth model using TMB.

4.2.2 Growth model

In the log length model log
(
L̄ay
)

= βa + δy + δc + δay + εay = µay + εay, βa age-effects

were modeled to increase monotonically with age, as described in Cadigan and Rideout

(2022). The random effects, δy and δc, were assumed to have mean zero Gaussian

distributions with AR(1) time-series covariances (Eqn.’s 4.2 and 4.3).

δy = ϕYδy−1 + εy δy ∼ AR(1) (0, σY ) (4.2)

δc = ϕCδc−1 + εc δc ∼ AR(1) (0, σC), (4.3)

where ϕY and ϕC are autocorrelation parameters, and εy and εc are residual error terms.

The δay are also Gaussian random effects with separable AR(1) correlation by age and

year with autocorrelation parameters, ϕA∗Y and ϕAY∗ , and a residual error term εay (see

Eqn.’s 4.4.

δa,y − ϕA∗Yδa−1,y = ϕAY∗(δa,y−1 − ϕA∗Yδa−1,y−1) + εay (4.4)

Cadigan and Rideout (2022) simply assumed that the standard deviation SD {log (Lay)}

is constant, which implies that the coefficient of variation (CV) of Lay is constant. How-

ever, residuals analyses in Cadigan and Rideout (2022) suggested that the CV was not

constant. To produce a better model of the distribution of size-at-age, I assumed that

σay = SD {log (Lay)} = exp (τ0 − τ1µay) , (4.5)
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where τ0 and τ1 are parameters to estimate. If τ1 > 0 then σay is a decreasing function

of µay, and σay will also be a decreasing function of a if µay is an increasing function

of a, which will usually be the case. Of course if τ1 = 0 then Eqn. (4.5) is the same

assumption as used by Cadigan and Rideout (2022).

Modeling individual growth data is complicated for many reasons (e.g., see Zheng

et al., 2020a), but an important reason is that the DFO surveys use length-stratified age

sampling, which produces a biased sample of length and age from the survey catches.

For simplicity I only analyzed the bias-corrected mean length-at-age estimates (L̄ay; e.g.,

Echave et al., 2012) and sample sizes (i.e., na,y) provided by Rstrap. If the age samples

were randomly selected from all catches then SD
{

log
(
L̄ay
)}
≈ σay/n

1/2
a,y . However, it is

unlikely that these samples are completely random, so I introduced a parameter φ ≤ 1

to model the effective sample size. Finally, I approximated the standard deviation of

the estimates of the log of mean length-at-age (L̄a) using

SD
{

log
(
L̄ay
)}

= σay/n
φ/2
ay , (4.6)

where σay is based on Eqn. 4.5.

In Chapter 3, the length-based starvation mortality index was estimated using 3

cm length bins, with mid-points ranging from 16, 19, ...., 148 cm, a total of 45 length

bins. I denote these bins as B16, B19, ..., B148, with lower and upper limits Bl,lo = l−1.5

and Bl,hi = l + 1.5, l = 16, 18, ..., 148. To convert MKI,l,y to MKI,a,y, the probability

that an age a fish is in each length bin, Pl|ay = Prob(Lay ∈ Bl), for l = 16, 19, ..., 148

was calculated for each year. Note that Pl|ay is also equal to Prob {log(Lay) ∈ log(Bl)}.
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Defining zlay,lo = {log(Bl,lo)− µay} /σay and zlay,hi = {log(Bl,hi)− µay} /σay, then

Pl|ay =


Φ(zlay,hi), l = 16,

Φ(zlay,hi)− Φ(zlay,lo), 19 ≤ l ≤ 145,

1− Φ(zlay,lo), l = 148,

y = 1, ..., Y, (4.7)

where Φ(x) is the cumulative distribution function of a standard normal random vari-

able. Eqn. (4.7) defines the stochastic growth model I use. Note that the growth model

in (Cadigan and Rideout, 2022, i.e., Eqn. 4.1) only had age-effects, with fractional ages

for the spring and fall surveys. Some interpolation is required to use this model to

predict size at other times of the year. However, I used length-at-age in the spring for

µay when computing Pl|ay because I use this to combine starvation mortality estimates,

and in chapter 2 I demonstrated that this mostly represented mortality in the spring.

4.2.3 Calculate age-based starvation mortality index

I used the following equation to convert the length-based starvation mortality index

(MKI,l,y) to an age-based starvation mortality index (MKI,a,y),

MKI,a,y =
148∑
l=16

MKI,l,y × Pl|ay. (4.8)

For each age, MKI,a,y is a weighted average of MKI,16,y,MKI,19,y, ...,MKI,148,y since∑148
l=16 Pl|ay = 1. I used ages from 1 to 23 to convert the length-based starvation mor-

tality indices; however, the SSAM has a plus group at age 10. I used a steady-state

age distribution approximation similar to Cadigan and Rideout (2022) to average the

starvation mortality indices at ages 10–23, to match the plus group at age 10 in the
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SSAM. The steady-state age distribution is based on a total mortality rate Z = 0.4.

M̄KI,10+,y =

∑13
i=0 MKI,i+10,y exp(−0.4i)∑13

i=0 exp(−0.4i)
. (4.9)

In Chapter 3, theMKI values were derived using the data from 1984–2018. Thus, the

age-converted starvation mortality rates (MKI,a,y’s) were also estimated for that specific

period. However, the SGB cod SSAM model years are from 1959–2020. Therefore, I used

the average MKI ’s at each age during 2016–2018 for the values in 2019–2020. To fill

in values for the years 1959–1983, I used the averages from 1984–1988. These are the

values to be used in the SSAM described in Section 5.3.2).

4.3 Results

4.3.1 Model effects

Estimates of the effects in Eqn. (4.1) are illustrated in Figures 4.2 and 4.3. As expected,

the age effects emerge as the most significant source of variability in these growth data.

Cohort effects are more prominent than year effects and the age × year interaction

effects. While Figure 4.3 does not provide the size of the effects, the lower values of σAY

and σY compared to σC in Table 4.1 indicate that the predicted values for both the δay’s

and the δy’s are usually smaller than those for δc’s. The τ1 parameter is significantly

greater than zero, suggesting that variation in length-at-age does not exhibit a constant

CV. This declines rapidly as a function of mean length (see Figure 4.4). The estimate

of φ is approximately exp(-0.44) ≈ 0.64, which indicates that the effective age sample

sizes are substantially less than the number of samples, especially when the number of

samples is large.
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4.3.2 Length-at-age estimates

The model fit the sampled average lengths well (Figure 4.5), specifically at the ages

2–7 when sample sizes were higher (see Figures 4.1 and C.3). However, even at these

ages, there were occasional years with anomalous means that the model could not

fit accurately. Notably, there were no patterns in the model residuals (Figure 4.6).

Although the average absolute residual is usually less than 1.0, indicating potential

over-estimation of the variance of length-at-age, there is no trend with age or the mean.

This is an improvement compared to the weight-at-age model presented by Cadigan

and Rideout (2022), where the variation decreased with age.

4.3.3 Age-based starvation mortality index (MKI,a,y)

The values of MKI,a,y are illustrated in Figure 4.7. The MKI,a,y estimates ranged be-

tween 0.03 and 0.74. They were elevated in 1991–1993, but also high in 2014 and

2016–17. Notably, these higher values were consistently observed at ages 6–8 years. In-

terestingly, the mean MKI,a,y across age and years remained close to 0.2 (i.e., M̄KI,a,y

= 0.18).

4.4 Discussion

I customized the mixed-effects growth model developed by Cadigan and Rideout (2022)

for the purpose of estimating the distribution of length-at-age for SGB cod. The method-

ology I used to model the variance of length-at-age differs from the model in Cadigan

and Rideout (2022). They simply assumed the standard deviation SD {log (Lay)} is

constant, which implies that the coefficient of variation (CV) of Lay is constant. This

is a common assumption in growth studies (e.g., Perreault et al., 2020). However, Fig-

ure 8 in Cadigan and Rideout (2022) indicated that the variance decreased with age.
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In preliminary analyses I found the same result for SGB cod. Therefore, I focused on

this during the analysis because my objective is to model the distribution of length-

at-age, which involves both the mean and variance of length. The focus of Cadigan

and Rideout (2022) was only to model the means of the distribution of length-at-age.

Using extensive individual growth data for American plaice, Zheng et al. (2020a) also

found that the CV was not constant; they found that SD(Lay) increased with mean

length, and at larger lengths it was a concave function that converged to a constant.

This implies that the CV was decreasing function of the mean. This is consistent with

the CV of length, and the SD of log-length, decreasing with age, which was the pattern

for SGB cod in our preliminary analyses. Hence, I modelled the SD(Lay) as presented

in Eqn.’s 4.5 and 4.6.

Use of Von Bertalanffy (VonB) growth model with modifications often involves

mathematical assumptions about the body growth of fish (e.g., Cadigan, 2016; Cadigan

and Konrad, 2016) but the mixed models do not. Fitting raw data from length-stratified

age samples (LSAS) to the VonB growth model is also often complicated because the

sampling design has to be accounted for (e.g., see Perreault et al., 2020), but the realized

sampling design can be complex and change annually and by NAFO Divisions. Note

that LSAS’s are a biased sample of the population distribution of length-at-age, and not

accounting for the sampling design will produce biased estimates of mean length-at-age

and VonB parameters. Therefore, in stock assessment a bias-corrected mean length-at-

age (BCLA’s) are estimated (e.g., Perreault et al., 2020). This estimation is commonly

performed using

L̄a =

∑
kNk (na,k/nk) lk∑
kNk (na,k/nk)

, (4.10)

where lk is the midpoint of length bin k, na,k is the number of age a fish in length bin k,

and Nk is the total number of fish sampled in length bin k in the first sampling phase.

The R package “Rstrap” has been included with length data in the form of BCLA and

I used them to formulate mixed effect model.
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The ages of cod in the fall and spring surveys ranged from 0 to 23 years old. However,

the number of survivors in the catch or stock at older ages is low (Cadigan, 2023a). I

used a plus group of age 10+ for the MKI,a,y calculations (see Eqn. 4.9), to match the

plus group age in the SSAM of Cadigan and Rideout (2022). Furthermore, a steady-

state-age-distribution approximation based on Z value of 0.4 was assumed for this plus

group MKI,a,y calculation, consistent with the value used in Cadigan (2023a) for 3Ps

cod. Other values of Z could be assumed; however, reasonable values will not change

results substantially. For example, I used Z = 0.6 and the age 10+ M ’s changed within

-10% to 15%, and the average change for all years was only 0.06%.

The age-based starvation mortality indices (i.e., MKI,a,y) that I calculated here are

utilized in Chapter 5 to include in a SSAM.
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4.5 Tables

Table 4.1: Estimates (EST) and standard errors (SE) for the covariance parameters of the stochastic
growth model (Eqn. 4.1). Variances are marginal, for the equilibrium distribution of the time-series
processes. Correlations are lag 1. A * indicates a bounded estimate

Parameter Link EST SE
σY log -3.790 0.290
σC log -3.235 0.182
σAY log -3.669 0.159
ϕY logit 0.237 1.143
ϕC logit 0.301 0.640

ϕA∗Y logit −10.0∗ -
ϕAY∗ logit 0.933 0.625
τ0 identity 0.454 0.272
τ1 identity 0.620 0.059
φ log -0.440 0.091
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4.6 Figures

Figure 4.1: Mean length-at-age from the fall and spring surveys. Panels are for age. Colors are defined
at the top. The bubble centers indicate length and the bubble areas are proportional to sample size.
Horizontal lines indicate series averages.
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Figure 4.2: Estimates of the main effects in the length-at-age model. Vertical line segments indicate
95% confidence intervals.
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Figure 4.3: Estimates of the age × year interactions effects. The area of the circles indicates the
absolute value of the effect, and the color indicates the sign (red +; blue -).

94



Figure 4.4: Standard deviation (black curve) and coefficient of variation (green) of length as a function
of the mean.
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Figure 4.5: Time-series of observed (points) and model-predicted (lines) average length-at-age from
Spring (green) and Fall (red) DFO bottom-trawl surveys in NAFO Divisions 3NO. Each panel is for
an age class. Shaded regions indicate 95% confidence intervals.
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Figure 4.6: Pearson standardized residuals versus year (top left), age (top right), cohort (bottom left)
and the mean (bottom right). Red lines indicate the average residual, and the blue line indicates the
average absolute residual.
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Figure 4.7: Condition mortality (MKI) for each year and age. Colors indicate the magnitude of MKI

as indicated in the top right-hand legend. Average MKI over years and ages are indicated at the top
and right, respectively. Dashed lines in the marginal plots indicate the series average.
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Chapter 5

Integrating an Age-based Starvation
Mortality Index into a State-space
Stock Assessment Model

The purpose of this chapter is to describe the integration of the age-based starvation

mortality index (i.e., MKI,a,y) calculated in Chapter 4 into a SSAM for SGB cod.

Subsequently, I will compare the assessment results with those obtained from the initial

SSAM model formulation of Cadigan et al. (2022a) and the results obtained using the

NAFO assessment (ADAPT ), as discussed in Rideout et al. (2021).

5.1 Rationale

Natural mortality plays a significant role in modern fisheries stock assessment models.

However, it is among the most difficult parameters to estimate (Punt et al., 2021a;

Hamel et al., 2023). Cadigan et al. (2022a) developed a State-space Stock Assessment

Model (SSAM) for 3NO cod, where they treated M ’s as user-supplied model inputs,

although the SSAM involved process errors that can partially account for uncertainty

about M values. They used baseline M ’s derived from body weights (e.g., Lorenzen,
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1996),

Ma,y = MB,a,y = M0W
b
a,y, (5.1)

where Ma,y is the natural mortality rate at age a in year y, Wa,y is the stock weight-

at-age, M0 is a scaling parameter, and b is an allometric scaling factor. The basic

assumption with Eqn. (5.1) is that M ’s for small fish are larger due to predation ef-

fects. Cadigan et al. (2022a) used b = -0.305, which was the value for ocean systems

in Lorenzen (1996). This value was also used in Miller and Hyun (2018) and Kumar

et al. (2020). The scaling parameter was chosen so that min
a,y

Ma,y = 0.15. Cadigan

et al. (2022a) identified these input M ’s as preliminary estimates. However, stock as-

sessment models are sensitive to input values of M (Clark, 1999; Williams, 2002). For

instance, M significantly affects estimates of stock size and productivity, which in turn

determines optimal harvest rates (Clark, 1999). Therefore, it is crucial to update an age-

based SSAM with improved estimates of M , and subsequently, investigate the changes

to assessment model results. This process also provides valuable insights into the signif-

icance of including a starvation mortality index in age-based SSAM’s as a component

of M .

5.2 Research approach

In Chapter 2 I developed a spatiotemporal condition model for SGB cod and utilized it

to derive a length-based starvation mortality index in Chapter 3. However, the natural

mortality rates in Cadigan et al. (2022a) were estimated similar to Lorenzen (1996),

and were age-based. Therefore, I converted the length-based starvation mortality index

into an age-based index as described in Chapter 4, to use it in the SSAM of Cadigan

et al. (2022a). In this chapter, I use two components of natural morality rates, the
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starvation mortality rate and the so called “Lorenzen M", which may be considered

as the predation mortality rate, to include in the SSAM and update the results. The

SSAM described by Cadigan et al. (2022a) and the procedure to estimate new input

M ’s for the SSAM are described in subsection 5.3.2. The results of the updated model

are compared to the initial SSAM results and those obtained by Rideout et al. (2021)

using the ADAPTive framework.

5.3 Methods

5.3.1 Data

The assessment period of the 3NO cod SSAM in Cadigan et al. (2022a) is 1959–2020.

I used annual fisheries landing estimates and age compositions from 1959–2020, and

indices from DFO’s surveys in the fall (1990–2020), spring (1984–2019), and EU surveys

conducted by Spain during 1997–2019. In addition, I used external estimates of catch

weights-at-age, stock weights-at-age, and mature proportions-at-age for the assessment

period as inputs for the SSAM. These are the same inputs used in the SSAM described in

Cadigan et al. (2022a). The values calculated for age-based starvation morality indices

are available from Chapter 4.

5.3.2 State-space stock assessment model

Model definitions, notations and parameters are summarized in Table B.4.
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Population dynamics process model

Cadigan et al. (2022a) used the common stochastic cohort population dynamics model

for SGB cod, which included a plus group at age A = 10,

log(Na,y) =


log (Na−1,y−1)− Za−1,y−1 + δa,y, a < A,

log
{
Na−1,y−1 exp(−Za−1,y−1)

+Na,y−1 exp(−Za−1,y−1)
}

+ δa,y, a = A,

y = 1, ..., Y, (5.2)

where Na,y is stock abundance at age a in year y and Za,y is the total mortality rate,

which is the sum of fishing morality (Fa,y) and natural mortality (Ma,y) rates; Za,y =

Fa,y+Ma,y. For the first year, log(Na,y=1) were considered unknown and free parameters

to estimate. They were modelled as random effects with no distribution. The process

errors δ’s were assumed to be independent for all ages and years and had a normal

distribution with mean zero and variance σ2
δ .

The recruitment vector R = (N1,1, ...N1,Y ) was assumed to be a lognormal random

vector variable,

log(R) ∼MVN(µR,ΣR) (5.3)

where µR is a parameter vector. To account for major changes in the level of recruitment

over time, three time-blocks with constant µR’s were selected; 1) y < 1970, 2) 1970 ≤

y ≤ 1991, and 3) y > 1991. ΣR is the stationary covariance matrix of an AR(1) process

defined by µR and ϕR. The correlation between log(Ri) and log(Rj) is ϕ|i−j|R .

The main difference between my model and the SSAM in Cadigan et al. (2022a)

involves how Ma,y is treated. Cadigan et al. (2022a) used external assumed values of

Ma,y’s (see Eqn. 5.1). However, I combine these external values with the starvation

mortality indices, which is described in the next section.
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Natural mortality

I assumed that the M is the sum of two components, a starvation mortality rate MK ,

and a remainder term MR, that will mostly represent the natural mortality rate due to

predation of fish that are not in critical condition. That is,

Ma,y = MK,a,y +MR,a,y. (5.4)

I assumed that MR,a,y is proportional to the baseline values (i.e., MB,a,y’s in Eqn. 5.1)

based on body weights (e.g., Lorenzen, 1996); that is, MR,a,y = βy × MB,a,y. The

MB,a,y are shown in (Cadigan et al., 2022a, Fig. 14). They varied little and ranged

from 0.6–0.8 at age 2, but ranged less at older ages and were essentially constant over

time at ages 5–10+. However, preliminary analyses (i.e., retrospective runs) indicated

that time variation in β is important. Thus, I assumed the log(βy)’s follow a Gaussian

random walk with mean zero and standard deviation σβ. I also assumed that MK,a,y

is proportional to MK indices based on critical body condition; that is, MK,a,y = ηa ×

MKI,a,y, whereMKI,a,y are the age-based starvation mortality indices. Finally, the total

M I include in the extended SGB cod SSAM is

Ma,y = ηaMKI,a,y + βyMB,a,y, (5.5)

where ηa, a = 1, ..., A, and the SD of the βy’s, i.e., σβ, are scalar parameters to estimate.

Catch equation

The Baranov catch equation,

Ca,y = Na,y
{1− exp(−Za,y)}Fa,y

Za,y
, (5.6)
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was used to model catches at ages 2 to 10+. The F at age 1 was assumed to be zero,

as no catches were reported at this age for SGB cod. Other F ’s were modeled as a

stochastic process about a small number of mean values µF , similar to recruitment. Six

age-year blocks were used to map µF ’s, to account for shifts in mean F because of the

moratorium on fishing that started in 1994, and ages 2 and 3 cod are historically not

targeted the same as older and larger sized cod. Hence, there are six µF parameters

for ages 2, 3, and 4+, each for pre- and post-moratorium. The F deviations at age

2, ∆F,2,y = log(F2,y) − µF2,y, were modelled as independent normal random variables,

∆F,2,y ∼ N(0, σ2
F2). If F is an (A− 2)Y × 1 vector of all Fa,y’s for ages 3–10+, then

log (F ) ∼MVN(µF ,ΣF ). (5.7)

The ∆F = log(F ) − µF was modeled as an AR(1) stochastic process in age and year,

and the elements of ΣF were based on

Cov {∆F,a,y,∆F,a−j,y−k} =σ2
F,3ϕ

j
F,ageϕ

k
F,yr; (5.8)

Corr {∆F,a,y,∆F,a−j,y−k} =ϕjF,ageϕ
k
F,yr. (5.9)

There was no correlation between F deviations at age 2 and those at ages 3 and older.

In the SSAM, the catch-at-age in abundance and biomass were internally calculated,

and summed over ages to calculate total catch-weight each year.

The state-space model latent random variables are the stock size (i.e., N ’s, whose

distributions are derived using the δ’s in Eqn. 5.2) and fishing mortality rates (i.e., F ’s).

They have probability distributions and likelihood components with a small number of

mean and covariance parameters that need to be estimated. Survey and catch data are

used to estimate these parameters through observation equations as described below.
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Observation equations

Marginal maximum likelihood and the Template Model Builder (TMB; Kristensen et al.,

2016) package within R (R Core Team, 2022) was used to estimate the model parame-

ters. This involves 1) modelling the probabilities of the data conditional on the states

of N ’s and F ’s (i.e., observation equations), and then 2) integrating over all the likely

states of N ’s and F ’s to get the marginal distribution of the data, which the marginal

likelihood is based on. TMB was used to calculate the marginal negative loglikelihood

(mnll). The model parameters were estimated using the R function, nlminb(). The

mnll was derived from a “joint” nll which is the sum of conditional nll’s of the data given

N and F , and the nll’s of N and F . TMB uses the Laplace approximation to integrate

the joint nll over the random effects to calculate the mnll. Thus, the conditional nll’s

of the data are the observation equations.

TMB also provides predictions of random effects and functions of random effects

and model parameters, and generalized delta-method “standard errors” for these derived

quantities (i.e., model parameters). I generated these “standard errors” for N -weighted

annual average F ’s at ages 4–6 and ages 6–9, among other derived quantities. With

respect to the distributions of N and F , the “standard errors” are actually marginal

mean squared errors. These marginal mean squared errors provide a more robust basis

for inference about the values of N and F , as detailed in Zheng and Cadigan (2021).

In some contexts, the marginal mean squared errors are also referred to as prediction

standard errors.

Fishery catches

Fishery landings data and estimates of catch age-compositions were modeled separately

because they originate from two different data sources (i.e., sampling programs). A

censored likelihood approach (e.g., Cadigan, 2015; Van Beveren et al., 2017; Perreault
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et al., 2020) was used to address uncertainties and possible bias associated with fishery

landings information. The censored likelihood is based on subjective assumptions re-

garding potential inaccuracies in landings. However, I examined the sensitivity of key

assessment outputs to a range of assumptions about these inaccuracies. The reliability

of the landings is quantified by lower and upper landings bounds that are inputs to the

assessment model. In fact, the SSAM does not directly use 3NO cod landings estimates;

it only uses the bounds. Note that using landings bounds via a censored likelihood is

very different than a sensitivity analyses with landings bounds as catch options, and

the latter is an incomplete way to account for uncertainty in landings.

Let Ly be the true but unknown landings in year y, and Llo,y and Lhi,y are the lower

and upper bounds (i.e., the data). The conditional censored nll landings observation

equation for the SSAM parameters, collected in a vector θ, is

nll =
(
θ|Llo,y, Lhi,y

)
= −

Y∑
y=1

log

[
ΦN

{
log(Lhi,y)− log(Ly)

σl

}
− ΦN

{
log(Llo,y)− log(Ly)

σl

}]
,

(5.10)

where ΦN is the cumulative distribution function of a standard normal random variable,

and σl is a parameter that controls the sharpness of the bounds. I set σl equal to 0.02

to ensure that the negative log-likelihood (nll) surface is nearly flat within the specified

landings bounds and rises steeply outside of those bounds. This keeps the predicted

landings within or just outside of the bounds, and otherwise predicted landings will be

estimated to be consistent with other data sources.

Prior to 1994, the bounds on landings were assumed to be Llo,y = 0.9Lobs,y, Lhi,y =

1.5Lobs,y, where Lobs,y’s are the reported (observed) landings. These were the same

bounds used in Cadigan et al. (2022a). Note that they indicated in their report that

the upper bound was Lhi,y = 2Lobs,y prior to 1994, which was a text error and this
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was not the model they implemented. The upper bound is too high for historic peri-

ods when landings were relatively high; it suggests the potential that large amounts

(i.e., hundreds of kt’s) of SGB cod could be misreported, which seems unreasonable.

Thus, the upper bound Lhi,y = 1.5Lobs,y seems like a more reasonable value. This was

the bound that assessment results reported in Cadigan et al. (2022a) were based on.

However, the bounds I assume are only illustrative, I recommend that better bounds

should be provided during the NAFO assessment process when more expertise about

the various fleets fishing for SGB cod is available. Since 1994 when by-catches have

only been about 1 kt on average, Cadigan et al. (2022a) assumed that Llo,y = Lobs,y,

while 3 options were explored for Lhi,y≥1994:

1. M1: Lhi,y = 1.25Lobs,y,

2. M2: Lhi,y = 1.5Lobs,y, and

3. M3: Lhi,y = 2.0Lobs,y.

I also investigate the sensitivity of the model results to these choices for upper bounds

on landings since 1994. Cadigan et al. (2022a) found that these choices of landings

upper bounds since 1994 had little impact on estimates of SSB or average F values.

The time-series of catch abundance proportion at ages 2,. . . , 10+ (i.e., the catch

age compositions) were modeled using the multiplicative logistic multivariate normal

distribution based on the continuation ratio logit (crl) transformation of the proportions

described in Cadigan (2015),Perreault et al. (2020), Cadigan et al. (2022a), among

others. There are only A − 1 crl’s derived from A catch proportions because catch

proportions only contribute A − 1 independent observations since ΣA
a=1Pa,y = 1. The

observation equation nll for the vector Xo,y of observed crl’s in year y was based on

Xoy = Xy + εX,y, εX,y ∼MVN(0,ΣX), (5.11)

107



where Xy is the vector of model predicted crl’s and ΣX was assumed to be an AR(1)

process, with variance parameter σ2
X and correlation ϕX . Thus, the crl errors were

assumed AR(1) correlated within years but independent between years.

No catches were reported at age 2 before 1987. Therefore, for that period the crl’s

were derived from ages 3 to 10+. However, for this time period, the SSAM predicted

catches at age 2. Here, the catches were assumed to be missing but not zero. The crl

was not defined when other observed catch-at-age proportions are zero (see Cadigan

et al., 2022a). These values were replaced with half the minimum non-zero estimated

catch.

Survey indices

Let Is,a,y denote the observed age-based abundance index for survey s. Let t be the

midpoint of the survey dates which is expressed in a fraction of the year. The model

predicted index is

E(Is,a,y) = qs,aNy,a exp(−ts,yZy,a). (5.12)

The exp(−ts,yZy,a) term projects beginning-of-year abundance to the time of the survey.

The qs,a’s are catchability parameters to estimate, with possible constraints or blocking

among ages. Let

µs,y,a = log {E(Is,a,y)} = log(qs,a) + log(Ny,a)− ts,yZy,a. (5.13)

The index observation equation is

log(Is,a,y) = µs,y,a + εs,y,a. (5.14)
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I assumed the observation errors, εs,y,a are independent, and follow a normal distribution

with zero mean and variance, σ2
s,a,y; εs,y,a ∼ N(0, σ2

s,a,y). For each survey, the error

variances are blocked for all ages and years, but these variances can be split further

if residual diagnostics indicate a need for this. Eqn. (5.14) can be used for all survey

ages and years, including the plus group age for plus group survey indices. Within-

year correlation in errors is common and the SSAM can be easily modified to account

for such correlations. A small number of indices (zero’s and age 1 prior to 1995) were

excluded from estimation, as described by Cadigan et al. (2022a). I assumed survey q’s

were asymptotic for the fall survey because it covers the whole stock area and the trawl

selectivity is expected to be flat-topped.

The EU-Spain survey covers a relatively small part of the total 3NO cod stock area.

However, in recent years the majority of the DFO fall survey biomass has been located

in the area covered by the EU-Spain survey. This suggests that the fraction of the stock

available to this survey may have changed over time. I accommodate potential q-drift

for the EU-Spain survey by using a separable q-model,

log(qs,a,y) = log(qs,a) + γs,y. (5.15)

In the Eqn. 5.15 the γs,y’s were modelled as a zero mean normal random-walk with

variance σ2
γ. The qs,a’s for the EU-Spain survey were treated as fixed-effects parameters

to estimate, similar to the other surveys. Hence, the EU-Spain survey q’s can change

from year-to-year but the ratio of q’s for any two years were assumed to be the same

for all ages.
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5.4 Results

The parameter estimates and fits of the SSAMB model from Cadigan et al. (2022a) and

the new model with starvation M indices and time-varying predation M using Eq. 5.5

(i.e., SSAMM) are shown in Tables 5.2 and 5.3. Overall, the SSAMM model fit better,

as indicated by lower values of both AIC and BIC. This model exhibited a significantly

lower cohort process error standard deviation (σ̂δ = 0.13) compared to the SSAMB

model (σ̂δ = 0.34). This suggests that the inclusion of starvation mortality indices

and time-varying predation M using Eq. (5.5) explained a substantial portion of the

process error in the SGB assessment model. This is also evident in the model predicted

process errors illustrated in Figure 5.1. Note that in Eq. (5.5) I included age-specific η

parameters; however, in preliminary models I found that they were estimated with high

uncertainty, they were not significantly different from each other, and produced high

retrospective variability. As a result, I constrained all their values to be the same. The

model fit with age-specific η’s yielded an AIC value of 3625.02, which was substantially

higher than the final model with the same η for each age (SSAMM AIC value in Table

5.2). In Section 5.4.5 below, I will also examine the retrospective variability of the

estimates of the η and γ parameters in Eq. (5.5).

5.4.1 Natural mortality

The estimates of MK,a,y, MR,a,y, and Ma,y ranged from 0.02–0.67, 0.09–2.31, and 0.16–

2.47, respectively (Figure 5.2). At young ages (i.e., less than 6) the total M ’s were

mostly due to predation mortality MR, as expected; however, at ages 6–10+, starvation

mortality MK was approximately the same as MR since the late 1980’s. Note that M

was assumed to be 0.2 for all ages in the NAFO ADAPT model. In the SSAMB model

M was modeled as a function of body weights (see Section 5.3.2); they varied with

age but varied little over time and were close to 0.2 for ages 7 and older. The annual
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variations in MR are driven primarily by the βy effects described in Eqn. (5.5) and

shown in Figure 5.3, because the baseline values MB,a,y from Cadigan et al. (2022a) did

not vary much over time, as described in Section 5.3.2. Figure 5.3 indicates that MR

(i.e., predation mortality) is important at younger ages but that MK was also important

at ages 6 and older. Figure 5.3 indicates several periods of higher predation mortality,

during 1985–1989, 1991–1996, 2001–2004, and 2014–2020. Average MK ’s at ages 6–10+

exceed 0.2 in 1991–1994, 2000–2002, 2008–2010, 2012–2017, and 2019–2020 (see Figure

4.7 and 5.2). I computed total M relative to the time-series average for each age, and

averaged this over ages 1–10+ to give an overall indication of years with relatively high

M ’s. These years were 1987–1989, 1991–1996, 2000–2003, and 2014–2020. M ’s in these

years are substantially higher than the assumed value of 0.2 in the NAFO ADAPT

model.

5.4.2 Fishing mortality

The F̄4−6 estimates from the SSAMs (Figure 5.4) were lower overall than the ADAPT

estimates, which is consistent with the usually higher M ’s at these ages in the SSAMs.

The SSAMM F̄4−6 were substantially lower in some years (i.e., 2005). The F̄6−9 es-

timates from the SSAMM model were usually lower as well. Since 1995, F̄6−9 from

SSAMB were close to the ADAPT estimates. The SSAM F̄ ’s had less inter-annual

variability, which is expected because the SSAMs use stochastic models with autocor-

relation for F and observation errors for catches, whereas ADAPT is a VPA and fits

catches exactly.

5.4.3 Biomass

Prior to 1975, both SSAMB and SSAMM estimated substantially higher SSB and to-

tal biomass compared to ADAPT (Figure 5.5). This is primarily because the SSAM’s
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included a plus group whereas the ADAPT did not. However, since about 1995, the

estimates from ADAPT and SSAMB were more similar, while the SSAMM biomass

values were substantially higher during this period. The inclusion of starvation mortal-

ity rates (MK,a,y) had substantial impacts on SSB and total biomass compared to the

SSAMB results, especially during 1980–1991 for SSB and between 1975–1991 for total

biomass.

5.4.4 Recruitment

Recruitment estimates from the SSAMs are substantially different than those from

ADAPT (Figure 5.6). This is mostly due to the substantially different M ’s used by the

two models, but also due to the different ages that recruitment represents; that is, age 1

for the SSAMs and age 2 for ADAPT . Recruitment estimates are more uncertain prior

to the early 1980s when there are no survey indices. The recruitment trends relative

to the mean during 1970–1990 are more similar; however, the SSAMM model does not

indicate relatively high recruitment in the 1960’s and early 1970’s compared to ADAPT

and the SSAMB models. SSAMM produces much different stock-recruit scatter-plots

(see Figure 5.7), including evidence of density-dependence, compared to ADAPT or

SSAMB (see Figures 37–38 in Cadigan et al., 2022a), where density-dependence was

unclear. Hence, these models may produce much different management reference points

and stock status evaluations. However, further exploration of this is beyond the focus

of this thesis.

5.4.5 Retrospective patterns

All the model formulations exhibited some retrospective variability and patterns for

SSB (Figure 5.8), average F (Figures 5.9 and 5.10 ), and recruitment (Figure 5.11).

Mohn’s rho’s (see Table 5.4) for the SSAMM were usually closer to zero compared
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to ADAPT and SSAMB. There were retrospective variation in the estimates of M ’s

(Figure 5.12) caused by retrospective variation in the M parameter estimates η̂ and γ̂

(Figure 5.13) in Eqn. (5.5).

5.4.6 Upper catch bound sensitivity runs

The SSAMM model predicted higher catches since 1994 when the upper catch bound

was increased (Figure 5.14). However, similar to Cadigan et al. (2022a), these choices

of catch bounds made little difference to F (Figure 5.15) or biomass (Figure 5.16)

estimates.

5.5 Discussion

It is widely recognized that M likely varies with the age, sex, and time (Punt et al.,

2021a; Cadigan et al., 2022a; Hamel et al., 2023). However, incorporating time-varying

M into stock assessment models is still a challenge and is uncommon (Hamel et al.,

2023). I estimated time-varying starvation M in the SGB cod SSAM by utilizing the

age-based starvation M index estimated in Chapter 4. The SGB cod SSAM proposed

by Cadigan et al. (2022a) (i.e., SSAMB) addressed concerns with the stock assessment

model used by NAFO. However, Cadigan et al. (2022a) considered the values of M they

used as preliminary (i.e., MB,a,y), and suggested better values could be used if they were

available. This was the purpose of this chapter. I incorporated age-based starvation

mortality indices (MKI,a,y) into the model (i.e., SSAMM), which led to a reduction

in process errors by approximately 62% compared to the assessment model that did

not use starvation mortality indices. Moreover, AIC and BIC values indicated that

SSAMM had higher goodness-of-fit compared to SSAMB (see Table 5.2). I conclude

that starvation mortality is an important source of variation in the productivity of
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SGB cod stock. Accounting for starvation mortality should improve the reliability of

management advice derived from the SSAM.

Time-varying M , if not correctly accounted for in a stock assessment model, is

a source of retrospective patterns, among others possible causes such as catch mis-

reporting and changes in survey catchability (e.g., Mohn, 1999; Hurtado-Ferro et al.,

2014). While Rideout et al. (2021) did not consider the retrospective patterns of their

SGB cod assessment model to be large, the Mohn’s rho values for ADAPT F ’s (Table

5.4) were smaller than the -0.15 rule of thumb value proposed by Hurtado-Ferro et al.

(2014) to indicate when a retrospective pattern should be addressed explicitly. Mohn’s

ρ for our SSAMM average F at ages 4–6 was close to zero but was -0.09 for ages 6–9,

which is still smaller in absolute value than the rule of thumb and better than the

ADAPT or SSAMB models. The upper bound rule of thumb in Hurtado-Ferro et al.

(2014) was 0.2, and none of the SSAMM ρ values were larger than 0.2. The SSAMB

ρ value for SSB was slightly greater than 0.2 (i.e., Mohn’s ρ = 0.22). I also conducted

7-year retrospective analyses, which the 7-year results in Figure 5.13 indicates, and

overall ρ results were similar to Table 5.4. Positive Mohn’s ρ for biomass and negative

Mohn’s ρ for F are indicators of overestimation of biomass and the highest risk for over-

fishing (Hurtado-Ferro et al., 2014). Hence, overall I conclude the SSAMM model had

improved retrospective patterns for SSB and F̄ compared to the ADAPT or SSAMB

models.

Since 1992, the SSB estimates from the SSAMB were more similar to those from

the ADAPT . Conversely, the SSB estimates from the SSAMM were higher during this

period. The increase in SSB was also more significant during 1980–1991 (see Figure

5.5). The level of fishing is a crucial factor that determines the productivity of a

fish stock (Morgan et al., 2014a,b). The higher stock size estimates from the SSAMM

model produced lower fishing morality rates estimates in the SSAMM compared to

SSAMB and ADAPT (see Figure 5.4). Moreover, the ADAPT estimate for SSB in
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2020 (see Rideout et al., 2021) was 7,279 t, which is only 12% of the SSB limit reference

point (Blim = 60,000 t; González-Costas and González-Troncoso, 2013). However, the

SSAMM estimated an SSB of 13,655 t for 2020, which was 88% larger than the ADAPT

estimate. However, it is important to note that this estimate still falls far below the

Blim, representing about 23% of the Blim. Although the SSAMM estimated a larger

terminal SSB than ADAPT , it also estimated substantially larger initial SSB (>2 times

SSB from ADAPT ). This would affect the reference points (Blim) and therefore may

actually indicate that the stock has a similar (or even worse) status relative to Blim

than was estimated via the ADAPT model.

A simulation study should be conducted to investigate the accuracy of the SSAMM

estimates of time-varying M ’s and if the SSAMM provides improved estimates of stock

size and F ’s compared to the SSAMB and ADAPT models. This should include sim-

ulating data from the estimated SSAMM model, and then calculating the simulation

bias for SSB and F̄ . An objective and rigorous simulation study is a substantial task

and beyond the scope my thesis.

The SSAMB predicted substantially different recruitment estimates compared to

those from ADAPT . The estimates from the SSAMM were also higher, that is almost

doubling of the recruitment figures compared to those from SSAMB (or even more

significant differences, such as in 1990, where SSAMM estimates were much higher

than SSAMB estimates (see the top panel of Figure 5.6)). This difference is due to the

different M values. However, it is also influenced by the different ages that recruitment

represents; specifically, age 1 for the SSAMs and age 2 for ADAPT . Conversely, the

estimates were similar since 1992. Thus, the recruitment estimates are highly affected

by M , emphasizing the importance of estimating time-varying M accurately at all ages

to model recruitment as a function of SSB (Cadigan et al., 2022a).

Both SSAMs (i.e., SSAMB and SSAMM) did not produce different conclusions
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about current SGB cod stock size. This is at a low level, as indicated by both the DFO

Spring and Fall surveys, and the Spanish survey. This is a fact that assessment models

cannot easily change. However, this does not mean that advice from these models will be

the same. The stock-recruitment patterns from the SSAMM model provided evidence of

density-dependence in recruitment and suggest that the common Beverton-Holt model

may be fit reliably and fit the assessment data adequately. The stock-recruit scatter-

plots in Cadigan et al. (2022a) did not provide evidence of asymptotic recruitment

and may not produce realistic management rebuilding projections. At the same time,

managing fish stocks is more challenging when M varies with time Punt et al. (2021a);

Hamel et al. (2023), especially when determining management targets and limits which

are usually based on stationary assumptions for stock productivity. However, a new

Blim for SSAMM will need to be produced if the SSAMM were adopted by NAFO.

This will include considering effects of time-varying M , and also need to forecast M for

short-term projections.
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5.6 Tables

Table 5.1: Description of acronyms and parameters.

SSAM State-space assessment model
SSAMB SSAM from Cadigan et al. (2022a)
SSAMM SSAM including starvation mortality indices via Eqn. (5.5)
SD Standard deviation
SGB Southern Grand Banks
s Survey (i.e., Fall, Juvenile, Spanish or Spring )
t Fraction of year a survey occurs
a, y Age and year
A Age plus group
N Stock abundance
R Recruitment vector
Z, F,M Total, fishing, and natural mortality rates
F̄4−6 Average fishing mortality at age group 4–6
F̄6−9 Average fishing mortality at age group 6–9
qs,a Survey catchability parameter
µR Recruitment parameter vector
µF Mean F
ηa Scalar parameters for MK,a,y = ηaMKI,a,y

MK,a,y Starvation/ condition mortality at age a and in year y
MKI,a,y Starvation/ condition mortality index at age a and in year y
MB,a,y Preliminary M (or baseline M) at age a and in year y
MR,a,y M remainder component at age a and in year y
Ma,y Total stock Ma,y = MR,a,y +MK,a,y

Ca,y Catch-at-age in year y
Ly Fish landings in year y
Llo,y Lower bounds of landings in year y
Lhi,y Upper bounds of landings in year y
Po,a,y Observed catch-at-age proportion in year y
Pa,y Model predicted catch-at-age proportion in year y
ΦN Cumulative distribution function of a standard normal random variable
Xo,y Vector of observed continuation-ratio logits (crl’s) of Po,a,y in year y
Xy Vector of model predicted crl’s of Pa,y in year y
πa,y Catch-at-age proportion
Is,a,y Observed age-based abundance index for survey s in year y
δa,y Process error at age a and in year y
∆F,2,y F deviation at age 2 and in year y
∆F,3−10+,y F deviation at age 3–10+ and in year y
εX,y Error term for Xo,y

εs,y,a Observation error for Is,a,y
γs,y Error term for EU–Spanish survey catchability drift
βy Random M effect, MR,a,y = βyMB,a,y

σs SD of εs,y,a
σβ SD of βy random walk
σR Stationary SD of ΣR AR1 process
σδ SD of the process errors
σF2 SD of ∆F,2,y

σF3−10+ SD of ∆F,3−10+,y

σl User–specified parameter for landings bounds
ΣX SD of Xy

σγ SD of γs,y
ϕR Autocorrelation for R AR1 process
ϕX Autocorrelation for Xy
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Table 5.2: Estimates (EST) of model parameters from the SSAM with baseline M ’s (SSAMB) and
the model withM estimated using condition indices (SSAMM ). CV stands for coefficient of variation.

Parameter Condition SSAMB SSAMM

EST CV EST CV
µR y < 1970 1060.09 0.15 1794.89 0.69

1970 ≤ y ≤ 1991 337.58 0.45 1057.41 0.72
y > 1991 25.62 0.23 141.95 0.49

µF y < 1995, a = 2 <0.01 0.54 <0.01 0.68
y < 1995, a = 3 0.08 0.85 0.03 0.51
y < 1995, a ≥ 4 0.50 0.83 0.20 0.45
y ≥ 1995, a = 2 <0.01 0.29 <0.01 0.39
y ≥ 1995, a = 3 0.01 0.86 0.01 0.48
y ≥ 1995, a ≥ 4 0.02 0.83 0.02 0.43

σs Fall survey 0.70 0.06 0.65 0.05
Juvenile survey 0.40 0.14 0.42 0.13
Spanish survey 0.90 0.06 0.93 0.05
Spring survey 0.76 0.04 0.80 0.04

σF a = 2 1.36 0.11 1.43 0.15
a > 2 1.33 0.30 0.87 0.09

2σX,y y 6= 1995 0.73 0.08 0.74 0.07
y = 1995 4.39 0.28 4.13 0.27

σR – 0.78 0.12 0.68 0.17
σδ – 0.34 0.08 0.13 0.22
σγ – 0.40 0.28 0.32 0.34
σβ – – – 0.31 0.26
ϕR – 0.33 0.45 0.51 0.31
ϕX – 0.76 0.07 0.72 0.07
ϕF,a a = 2 0.97 0.02 0.85 –
ϕF,y a = 3–10+ 0.94 0.04 0.85 –
ηa a = 1–10+ – – 0.86 0.16

AIC/BIC 3700.42 3964.97 3616.05 3880.61
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Table 5.3: Estimates (EST) of survey catchability parameters (qs,a) from the SSAMB and SSAMM

models. SE stands for the standard error of the estimate.

Survey Age Cathability (qs,a)
SSAMB SSAMM

EST CV EST CV
Fall 1 0.13 0.19 0.03 0.38
Fall 2–10 0.42 0.09 0.16 0.29
Juvenile 1 0.22 0.25 0.03 0.50
Juvenile 2 0.98 0.22 0.26 0.41
Juvenile 3 0.74 0.21 0.28 0.36
Juvenile 4 0.83 0.20 0.27 0.34
Juvenile 5 0.87 0.20 0.25 0.33
Juvenile 6 0.69 0.21 0.21 0.33
Juvenile 7 0.55 0.21 0.19 0.33
Juvenile 8 0.50 0.22 0.19 0.34
Juvenile 9 0.37 0.26 0.15 0.36
Spain 1 0.01 0.54 0.00 0.60
Spain 2 0.09 0.53 0.03 0.56
Spain 3 0.41 0.52 0.16 0.54
Spain 4 0.74 0.52 0.30 0.54
Spain 5 0.83 0.52 0.36 0.54
Spain 6 0.70 0.52 0.33 0.54
Spain 7 0.61 0.53 0.31 0.54
Spain 8 0.31 0.53 0.18 0.54
Spain 9 0.26 0.54 0.16 0.55
Spain 10 0.12 0.55 0.06 0.55
Spring 1 0.05 0.20 0.01 0.42
Spring 2 0.36 0.15 0.10 0.37
Spring 3 0.68 0.15 0.21 0.33
Spring 4 0.46 0.15 0.15 0.30
Spring 5 0.38 0.15 0.13 0.29
Spring 6 0.31 0.14 0.11 0.29
Spring 7 0.35 0.14 0.13 0.30
Spring 8 0.37 0.15 0.15 0.30
Spring 9 0.40 0.16 0.18 0.31
Spring 10 0.57 0.17 0.23 0.33

Table 5.4: Mohn’s rho statistics for SSB, Recruitment, and Average F .

Quantity Mohn’s rho
ADAPT SSAMB SSAMM

SSB 0.10 0.22 0.08
Recruitment 0.39 0.07 -0.16
Average F4−6 -0.25 -0.13 0.01
Average F6−9 -0.25 -0.26 -0.09
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5.7 Figures

Figure 5.1: Process errors estimated by the SSAMB and SSAMM models. Line colors indicate the
models, which are defined at the top.
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Figure 5.2: Natural mortality rate estimates, Ma,y = MK,a,y + MR,a,y, over time and across ages.
Notations are defined in Table B.4.
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Figure 5.3: Estimates of predation M β scaling effects, MR,a,y = βyMB,a,y. Shaded regions indicate
95% confidence intervals.
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Figure 5.4: SSAM estimates of average F at ages 4–6 (F4−6) and 6–9 (F6−9) compared to ADAPT
results. Line colors indicate assessment models, which are defined at the top. Shaded regions indicate
95% confidence intervals. SSAMB used baselineM ’s provided by Cadigan et al. (2022a), and SSAMM

included time-varying M ’s, Ma,y = MK,a,y +MR,a,y.
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Figure 5.5: SSAM estimates of SSB and total biomass compared to ADAPT results. Line colors
indicate assessment models, which are defined at the top. Shaded regions indicate 95% confidence
intervals. Inset figures focus on estimates since 1990. SSAMB used baseline M ’s provided by Cadi-
gan et al. (2022a), and SSAMM included time-varying M ’s, Ma,y = MK,a,y + MR,a,y. Dashed line
represents the NAFO SSB limit reference point for SGB cod.
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Figure 5.6: Top panel: SSAM estimates of recruitment at age 1 compared to ADAPT results. Line
colors indicate assessment models, which are defined at the top. Shaded regions indicate 95% confidence
intervals. The dashed blue and green lines indicate the recruitment mean estimates for three time-
blocks. Shaded regions indicate 95% confidence intervals. Inset figures focus on estimates since 1990.
ADAPT recruitment is at age 2 and it was back shifted one year to indicate the same cohorts as
the SSAM ’s. Bottom panel: Recruitment relative to the overall mean for each series (i.e., SSAM ’s
and ADAPT ) during 1970–1990. SSAMB used baseline M ’s provided by Cadigan et al. (2022a), and
SSAMM included time-varying M ’s, Ma,y = MK,a,y +MR,a,y.
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Figure 5.7: Stock-recruit relationship from SSAMM . Top panel: recruitment versus SSB; middle
panel: Recruits per spawner (RPS) versus SSB; bottom panel: RPS versus year. Plotting symbol
colors indicate cohort which is described at the top of the figure.
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Figure 5.8: Retrospective estimates for SSB from three assessment models defined in Fig. 5.5. Shaded
regions indicate 95% confidence intervals based on the full time-series of data. Inset figures show trends
since 2005, with Mohn’s rho listed in the top left-hand corner.
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Figure 5.9: Retrospective estimates for average F at ages 4–6 from three assessment models defined in
Fig. 5.5. Shaded regions indicate 95% confidence intervals based on the full time-series of data. Inset
figures show trends since 2005, with Mohn’s rho listed at the top.
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Figure 5.10: Retrospective estimates for average F at ages 6–9 from three assessment models defined
in Fig. 5.5. Shaded regions indicate 95% confidence intervals based on the full time-series of data.
Inset figures show trends since 2005, with Mohn’s rho listed at the top.
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Figure 5.11: Retrospective estimates of recruitment from three assessment models defined in Fig. 5.5.
Shaded regions indicate 95% confidence intervals based on the full time-series of data. Inset figures
show trends since 2005, with Mohn’s rho listed at the top right-hand corner.
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Figure 5.12: Retrospective estimates of Ma,y from the SSAMM model. Each panel indicates an age.
Red lines indicate estimates from the full time-series. Seven retrospective peels were used. Mohn’s rho
listed at the top left-hand corner.
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Figure 5.13: Retrospective estimates of theM parameters and effects in Equation 5.5) for the SSAMM

model. Top panel: η parameter and 95% confidence intervals. Bottom panel: β effects and 95% confi-
dence intervals based on the full time-series. Seven retrospective peels were used.
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Figure 5.14: Model predicted catches from the sensitivity runs for the SSAMM with Lhi,y = 1.25 ×
Lobs,y and Lhi,y = 2× Lobs,y since 1994, compared to the SSAMM with Lhi,y = 1.5× Lobs,y. Shaded
regions indicate 95% confidence intervals. Inset figures show results since 1994. UB in the legend
stands for upper bound of catch (i.e., Lhi,y ).
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Figure 5.15: Model predicted average F at ages 4–6 and 6–9 from the sensitivity runs for the SSAMM

with Lhi,y = 1.25 × Lobs,y and Lhi,y = 2 × Lobs,y since 1994, compared to the SSAMM with Lhi,y =
1.5 × Lobs,y. Shaded regions indicate 95% confidence intervals. Inset figures show results since 1994.
UB in the legend stands for upper bound of catch (i.e., Lhi,y ).
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Figure 5.16: Model predicted average SSB (top panel) and biomass (bottom panel) from the sensitivity
runs for the SSAMM with Lhi,y = 1.25 × Lobs,y and Lhi,y = 2 × Lobs,y since 1994, compared to the
SSAMM with Lhi,y = 1.5 × Lobs,y. Shaded regions indicate 95% confidence intervals. Inset figures
show results since 1994. UB in the legend stands for upper bound of catch (i.e., Lhi,y ).
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Chapter 6

Conclusions and Research
Recommendations

6.1 Conclusions

The spatiotemporal model I developed using the length and gutted-weight can be uti-

lized for deriving a fish condition index.

The results of the spatiotemporal condition model indicate that the starvation mor-

tality index is higher in the spring compared to the fall. It is elevated for cod in the size

range of 55 to 80 cm and for those greater than 120 cm. Notably, the index is higher

during 1991–1993 when the stock experienced a substantial decline, and also high in

2016.

The starvation mortality index is a significant source of variation in natural mor-

tality (M), and therefore, it can be considered as a crucial component influencing the

productivity of the SGB cod stock.

A better model of M in the SSAM should also improve the reliability of the model

estimates. This could ultimately improve the reliability of the management decisions

based on assessment model results.
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6.2 Research recommendations

During the spatiotemporal modeling of cod condition, I assumed that starvation mortal-

ity indices, derived from changes in fish condition, were linearly related to a population’s

starvation M , without considering any error. To account for this, it may be beneficial

to consider utilizing an errors-in-variables approach, similar to the methods available

in the Woods Hole Assessment Model (WHAM; Stock and Miller, 2021). According to

Stock and Miller (2021) “WHAM can estimate time- and age-varying random effects on

annual transitions in numbers at age, M , and selectivity, as well as fit environmental

time-series with process and observation errors, missing data, and nonlinear links to R

andM . WHAM can also be configured as a traditional statistical catch-at-age model in

order to easily bridge from status quo models and test them against models with state-

space and environmental effects, all within a single framework” (p. 1). This approach

would offer more realistic representation of the relationship between fish condition and

starvation mortality.

The estimation of spatial correlations was based on the centroid distance between

spatial strata, following the similar approach described in Cadigan et al. (2022b). Cadi-

gan et al. (2022b) also suggested the possibility of using depth information to compute

3-dimensional centroid distances of the strata. However, it’s worth noting that incorpo-

rating depth information in this manner can introduce complexities, particularly when

it comes to weighting vertical and horizontal distances appropriately. Nevertheless, this

could be a consideration need to be taken into account in any future extensions of the

model.
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Appendix A

Atlantic cod at a glance

Figure A.1: Atlantic cod (Gadus morhua). Source: https://www.istockphoto.com

Kingdom: Animalia Dorsal spines: 0 L50 = 65.4 cm (31–74 cm)

Phylum: Chordata Anal spines: 0 Lmax = 200 cm

Class: Teleostei Dorsal soft rays: 44–55 A50 = 2–7 yrs

Order: Gadiformes Anal soft rays: 33–45 Amax = 25 yrs

Family: Gadidae Vertebrae∗: 51–55 Wmax = 96 kg

Genus: Gadus

Species: Gadus morhua

*individual bones that interlock with each other to form the spinal code

Fecundity: 2.5 million (5 kg Female) to 9 million (34 kg Female)
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Appendix B

Tables

Table B.1: Summary of data processed for the analysis.

Survey years 1984–2018
No of survey strata 47
Survey seasons Spring: April–June

Fall: September–December
No of observations 26,660
Statistic Mean SD Min. Max.
Gutted-Weight (kg) 2.12 3.45 0.01 27.18
Length (cm) 51.75 26.18 15.00 148.00

Table B.2: Summary statistics for spatial strata.

Count Area (km2)
Mean Min. Max.

47 2,128.35 33.72 8,837.18
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Table B.3: Definition of mathematical notations, including symbols used, their type (Index, Data,
Parameter, Random Effect “RE”, Derived Quantity “DQ”, and Assumed Value “AV”), and dimension.

Name Symbol Type Dimension
Number of observations n Data 1
Number of spatial strata G Data 1
Number of years T Data 1
Number of months S Data 1
Number of length bins (Size = 1) L Data 1
Number of length bins (Size = 3) L3 Data 1
Spatial strata for observation number i gi Data n
Year for observation number i ti Data n
Length for observation number i li Data n
Month for observation number i si Data S
Length bin (size = 3 cm) for li l3i Data n
Weight for observation number i Wi Data n
Area of stratum g Ag Data G
Distance between centroids of strata g and g′ dgg′ Data G×G
Observation number i = 1, . . . , n Index -
Spatial stratum g = 1, . . . , G Index -
Year t = 1, . . . , T Index -
Month (Season) s = 1, . . . , S Index -
Length bin (Size = 1 cm) number l = 1, . . . , L Index -
Length bin (Size = 3 cm) number l3 = 1, . . . , L3 Index -
Length-Weight intercept Ag,t,l3 RE G× T × L3

Stratum effect for A(g, t, l3) ∆g RE G
Year effect for A(g, t, l3) ∆t RE T
Length effect for A(g, t, l3) ∆l3 RE L3

Year and stratum interaction effect for A(g, t, l3) ∆gt RE G× T
Stratum and length interaction effect for A(g, t, l3) ∆gl3 RE G× L3

Year and length interaction effect for A(g, t, l3) ∆tl3 RE T × L3

Month (season)-length interaction effect ∆sl3 RE S × L3

Weight measurement error for observation number i εwi RE n
Main effect for A(g, t, l3) a Parameter 1
Length-Weight slope b Parameter 1
Variance of ∆t σ2

T Parameter 1
Variance of ∆l3 σ2

L3 Parameter 1
Variance of ∆tl3 σ2

T L3 Parameter 1
Variance of ∆sl3 σ2

SL3 Parameter 1
Autocorrelation for ∆t ϕT Parameter 1
Autocorrelation for ∆l3 ϕL3 Parameter 1
Autocorrelation for ∆gt ϕGT Parameter 1
Autocorrelation for ∆gl3 ϕGL3 Parameter 1
Autocorrelation for rows of ∆tl3 ϕT ∗L3 Parameter 1
Autocorrelation for columns of ∆tl3 ϕT L∗3 Parameter 1
Autocorrelation for rows of ∆sl3 ϕS∗L3 Parameter 1
Autocorrelation for columns of ∆sl3 ϕSL∗3 Parameter 1
Spatial precision matrix for ∆g ΩG Parameter G×G
Spatial precision matrix for ∆gt ΩGT Parameter G×G
Spatial precision matrix for ∆gl3 ΩGL3 Parameter G×G
ΩG decorrelation ωG Parameter 1
ΩGT decorrelation ωGT Parameter 1
ΩGL3 decorrelation ωGL3 Parameter 1
ΩG scale qG Parameter 1
ΩGT scale qGT Parameter 1
ΩGL3 scale qGL3 Parameter 1
Parameters in σ2

w c, d, e Parameter 1, 1, 1
Precision matrix parameter τ Parameter 1
Variance of εwi σ2

w DQ 1
Distance (km) when spatial correlation of ∆g,t = 0.5 d̄0.5GT DQ 1
Distance (km) when spatial correlation of ∆g,l3 = 0.5 d̄0.5GL3 DQ 1
Critical fish condition Kcrit AV 1163



Table B.4: Definitions, model notations, and parameters.

SSAM state-space assessment model
s Survey (i.e., Fall, Juvenile, Spanish or Spring)
t Survey fraction
a Age
y Year
A Age plus group
N Stock abundance
R Recruitment vector
Z, F,M Total, fishing, and natural mortality rates
F4−6 Fishing mortality at age group 4–6
F6−9 Fishing mortality at age group 6–9
Ma,y Total stock M at age a and in year y
MK,a,y Starvation/ condition mortality at age a and in year y
MKI,a,y Starvation/ condition mortality index at age a and in year y
MB,a,y Preliminary M (or Base M) at age a and in year y
MR,a,y M remainder component at age a and in year y
Ca,y Catch-at-age in year y
Ly Fish landings in year y
Llo,y Lower bounds of landing data in year y
Lhi,y Upper bounds of landing data in year y
Pa,y Catch-at-age proportion in year y
φN Cumulative distribution function of a standard normal random variable
Xo,y Vector of observed continuation-ratio logit (crl) in year y
Xy Vector of model predicted crl in year y
Is,a,y Observed age-based abundance index for survey s in year y
Xy Vector of model predicted crl in year y
δa,y Process error at age a and in year y
ΣR Stationary covariance matrix of R
µR Recruitment parameter vector
µF Mean F
∆F,2,y F deviation at age 2 and in year y
∆F,3−10+,y F deviation at age 3–10+ and in year y
πa,y Probability of Pa,y
εX,y Error term for Xo,y

εs,y,a Observation error for Is,a,y
γs,y Error term for EU–Spanish survey catchability
γ Scalar parameter for MB,a,y

ηa Scalar parameter for MKI,a,y

σγy Standard deviation of time varying γ
σR Standard deviation of ΣR AR1 process
ϕR Autocorrelation parameter for ΣR AR1 process
σ2
δ Variance of the process errors
σ2
F2 Variance of ∆F,2,y

σ2
F3−10+ Variance of ∆F,3−10+,y

σl Parameter for landing data bounds
ΣX SD of εX,y
σ2
X Variance parameter for ΣX

ϕX Autocorrelation parameter for ΣX AR1 process
qs,a Survey catchability parameter
σ2
s,a,y Variance of εs,y,a
σ2
γ Variance of γs,y
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Appendix C

Figures

Figure C.1: DFO strata (solid lines) in NAFO Divisions 3NO (dashed lines) and depth intervals. The
strata boundaries were provided as shapefiles by DFO. The bathymetric data were obtained from the
NOAA server through the R package “marmap" (Pante and Simon-Bouhet, 2013). The map projection
is WGS84.
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Figure C.2: The number of weight samples (white text) per stratum and year. Blank cells indicate no
samples. Totals for years are shown at the top and for strata at the right.
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Figure C.3: Total number of length samples by age.
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