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Abstract

The evolution of technology has led to an increasing demand for data in both customer- and industry-specific
applications. The current infrastructure is capable of meeting the present requirements. However, as data-
centric applications continue to advance, recent statistics on consumer behavior indicate an exponential growth
in bandwidth requirements. This necessitates the adoption of new technologies that can exploit more efficient
methods in addition to the existing architecture. Optical communications currently heavily rely on single-mode
fibers (SMF) with wavelength division multiplexing (WDM), which is efficient but needs to address the issue
of "Capacity crunch" in the coming years. One proposed solution involves exploring other dimensions with
optimized algorithms to achieve higher data rates. A particularly promising multiplexing scheme that has
been extensively researched in recent years is space division multiplexing (SDM), which involves transmitting
data through multiple spatial paths in the space domain. This can be achieved using multimode fibers (MMF),
multi-core fibers (MCFs), or a combination of these techniques, such as few mode fibers (FMF), which utilize
a single fiber with a sufficiently large core to carry multiple modes. Upgrading the transmitter, receiver, and
various processing schemes allows for spatial filtering, resulting in increased capacity and reduced cost per bit.
To reconstruct the transmitted signal and mitigate challenges or impairments in the network, digital signal
processing (DSP) offers a variety of algorithms with pre- and post-processing techniques. One interesting
approach is to blindly reconstruct the signal from the transmitted signal without knowledge of the training
sequence, using popular blind algorithms adaptively. In this thesis work, we study and discuss the constant
modulus algorithm (CMA), multi-modulus algorithm (MMA), and decision-directed feed-forward equalization
(DDFFE) for PS QPSK (polarization-switched QPSK) and PDM 16 QAM (polarization-division multiplexed 16
QAM). The proof of concept for few-mode fibers in the back-to-back case is validated through simulations
and an experimental setup. The primary focus of this work is on linear effects such as chromatic dispersion,
polarization modal loss, additional noise, and crosstalk. The performance of the adaptive blind equalization
schemes is measured using the bit error rate (BER) and error vector magnitude (EVM) metrics for all modes
with X and Y polarization.
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1 Introduction

Technical innovation and industrial advancement have greatly contributed to the rapid growth
of digitization and the availability of high-speed communication systems. The deployment of
5th Generation (5G) communications, along with the extended support of IoT 4.0 standards,
has paved the way for a new era of integrated smart solutions that incorporate artificial
intelligence and machine learning. These advancements have significantly transformed
consumer behavior and technological reliance.

According to estimates in the Ericsson Mobility Report, the total mobile network traffic is
projected to reach 472 Exabytes by the end of 2028, accounting for 80% of data traffic[1].

1.1 Motivation

In the field of optical communications, the demand for data is expected to increase by more
than 1.5Pbit/s by 2030[2]. This poses a challenge in terms of capacity limitations for
bandwidth-intensive applications. To overcome the scarcity of available frequencies, new
technologies have emerged that explore new dimensions for data transmission.

Experimental results in the field of space division multiplexing (SDM) have shown the
potential to achieve data rates exceeding 10 Pbit/s over multicore fibers. This achievement
has beenmade possible through the use of SDM-optimized fibers, enhanced channel reception
schemes, and digital signal processing techniques at the receiver[2].

Researchers are currently analyzing and evaluating methods for the real-time implementation
and development of a real-time SDM demonstrator [2]. As these advancements have led to
an increase in factors such as noise, crosstalk, and dispersion, the quality of signal reception
has been affected. To compensate these effects, digital signal processing schemes play a
crucial role at the receiver end [3].

Over the past 40 years, the average capacity of optical networks has experienced a yearly
growth rate of 40%, thanks to network evolution and standardization efforts [4]. This
consistent increase in capacity has been challenging in meeting the growing demands for
data transmission.

In the last decade, data consumption has continued to grow rapidly, driven by bandwidth-
intensive services such as video streaming, cloud computing, and machine-to-machine
communications. These services alone account for approximately 80% of the total internet
traffic [4].

Figure 1.1 illustrates the progression of system capacity over fiber systems, showcasing
advancements made with already implemented, or possibly available solutions over sev-
eral years as it approaches the Shannon limit. To address this, various methods can be
implemented, such as reducing power between optical interfaces or incorporating additional
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elements to amplify signal power [5]. However, the main driving factor for successful
deployment of these additional elements in the future is the goal of achieving reduced cost
per bit, energy-efficient systems, and improved spectrum utilization.

Figure 1.1: System Capacity Comparison for Various Modulation Formats Reprinted
from ref. [6]

Note: Figure reprinted from ref. [6], with cross-reference to refs. [7, 8], under a Creative
Commons license on 23.08.2023.

1.1.1 Improved Capacity and Spectral Efficiency

To address the capacity demand, one of the fundamental concepts in information theory is
Shannon’s formula. This formula provides the theoretical upper limit of achievable informa-
tion rate for a given communication channel and is given by

C = B log2(1+ SNR) (1.1)

This derives the spectral efficiency, SE = C
B , and the signal-to-noise ratio as SNR= P

N .

It is well-known that a single channel cannot achieve higher capacity, as indicated by the
maximum limit derived from Shannon’s formula. To double the capacity of a single channel,
squared power (or, overall exponential increase by reducing noise) is required. In contrast,
when multiple paths are added to this single channel, the required power increases additively.
This phenomenon can be attributed to the interplay between the signal-to-noise ratio (SNR)
and spectral efficiency (SE), and the impact of multiple modes on gain evaluation[9].

For the sake of simplicity, we can consider SE and C synonymous for a unit bandwidth
channel (assuming B = 1) in the analysis of gain for a single channel. In the case of a multi-
channel system, which may involve different spatial paths with spatial modes or polarization
modes, similar considerations can be made.

Firstly, while considering the Gain to achieve fixed SE[9]
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GSE =
SE(M)

SE
(1.2)

Here, mode M is the product of spatial modes and the number of polarization modes. In the
above equation, while assuming the noise in the case of the multi-path channel is identical
to the noise of the reference single channel (i.e., Nm = N , in all regimes). Similarly, power
distribution in each channel is identical (i.e., Pc = Pm, for M channels with the same SNRm,
also total SEm of M channels is M times SE of each channel). Using this formula, we can
say that the ratio depends on the number of modes, the corresponding power per channel
compared to the power of a single mode channel, and the SNR (Signal-to-Noise Ratio) of
the reference channel. The low SNR regime is of particular interest as it demonstrates the
maximum impact of reduced power per channel.

Additionally, we can define the SNR per bit for M modes and the gain in energy per bit in
terms of spectral efficiency as follows[9]

GE =
SNRb

SNR(M)b

=
2SE − 1

M[2SE/M − 1]
(1.3)

where, SNRb =
SNR
SE

=
2SE − 1

SE
, SNR(M)b =

2SE/M − 1
SE/M

(1.4)

Equations 1.3 and 1.4 provide the results that indicate that a certain number of M is enough
to achieve a significant portion of GE . However, going beyond 16 does not show much
improvement, as reported in the study by [9]. Furthermore, an equal split of signal power
brings notable power savings in the case of multiple channels.

The objective here is to increase the overall capacity and optimize the transmission cost per
bit in the future. This mathematical expression can be visualized through Figure 1.2, which
presents comparative plots of these results.

Therefore, we observe a spectral-efficient multipath multiplexing scheme that utilizes the
spatial domain for parallel data transmission in fiber, thereby enhancing the overall capacity
offered by Space Division Multiplexing (SDM). In a recent work 1.53Pb/s data rate and
spectral efficiency of 332bit/s/Hz was reported to validate this[10]. This technique, known as
MIMO (Multiple-Input Multiple-Output) in wireless communications, is currently regarded
as the most effective solution in optical communications, offering advantages over traditional
Wavelength Division Multiplexing (WDM) techniques.

1.1 Motivation 5



(a) Relation between GSE and SNR per bit of single
channel (Equally split single channel power

between M independent channels)

(b) Relation between GSE and SNR

(c) Relation between GSE/M and PC/P (Power ratio
of signal power per mode with power of single
channel, independent of number of modes)

(d) Relation between GE by using M channels with
single channel at same SE with equal power split

between all channels

Figure 1.2: Analysis of Improved Spectral Efficiency and Gain for Single Mode vs.
Multi Modes [9]

1.1.2 Space Division Multiplexing in Fiber Communication

An advancement over single-mode fiber includes few-mode fibers (FMF), multimode fibers
(MMF), and multicore fibers (MCF), which have the potential to enable multiple parallel data
transmission through multiple paths within the fiber. Fibers that support multiple spatial
modes are referred to as multimode fibers. When the diameter of a single-core fiber is large
enough to accommodate multiple modes, it is known as a few-mode fiber (FMF), which can
support tens of modes within a single core[11].

Multi-core fibers and space-division multiplexing enable increased capacity by utilizing
multiple parallel data streams as separate pipelines with minimal overlap within the same
optical fiber[9]. This increases the degree of freedom in the spatial domain. The level of
overlap can be adjusted to increase the density of spatial modes by utilizing spatial filtering
for multiplexing and demultiplexing purposes[9].

1.1 Motivation 6



Figure 1.3: SDM System with Transmitter, Channel, and Receiver Unit

Figure 1.3 illustrates the basic SDM (Space Division Multiplexing) optical communication
system, which can be divided into three main parts:

• Transmitter: The transmitter employs a DSP (Digital Signal Processing) unit, enhancing
overall performance when deployed at both the transmitting and receiving ends. The
DAC performs digital-to-analog conversion of the transmit data, comprising the header
and payload. The modulated data, along with the carrier, is fed to all the modes by the
local oscillator. Additionally, a polarization beam splitter (PBS) may be used for beam
splitting, followed by a polarization beam combiner (PBC). An intermediate variable
optical attenuator (VOA) allows for adjustment of the OSNR (Optical Signal-to-Noise
Ratio) to the desired level. Amplifiers boost the signal, and the transmission occurs
over degenerated LP (Linearly Polarized) modes[12].

• Channel: The channel section consists of a multiplexer (MUX) and a demultiplexer
(DEMUX) responsible for spatial multiplexing and demultiplexing, respectively. These
components propagate the signals through the fiber unit, along with an amplifier such
as EDFA (Erbium-Doped Fiber Amplifier).

• Receiver: The receiver section receives the signal at the front end and mixes it with a
local oscillator to generate a baseband signal. Subsequently, the electrical in-phase and
quadrature components undergo analog-to-digital conversion. The resampled signal is
then passed through a coherent receiver and further processed using a DSP unit.

The spatial filtering technique allows for the manipulation of the spatial properties of light,
such as intensity, phase, and polarization. These properties can be utilized to control the
propagation of data streams through modes, enabling independent transmission[13].

Several components are involved in this technique:

• Mode-selective couplers: These couplers facilitate the coupling of light from one mode
to another, enabling mode multiplexing or demultiplexing[14].

• Spatial mode multiplexers and demultiplexers: These components are responsible for
combining and separating different modes during transmission.

• Mode converters: These are utilized to change the modes of the transmitted light[15].

In the case of uncoupled multicore fibers, crosstalk is not a significant problem. However,
mode coupling between modes or cores can occur, resulting from interference between the
various modes or cores within the fiber. This coupling can lead to certain challenges:

• Dispersion: Modal dispersion arises due to different propagation velocities, resulting
in inter-symbol interference (ISI) that deteriorates signal quality[16].
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• Coupling: Coupling causes unwanted interaction between different modes, degrading
overall capacity and performance[17, 16].

Additionally, mode-dependent loss (MDL) refers to the reduction in signal strength caused
by power transfer between various modes due to coupling[18].

Optical fibers can have various modes and cores, which contribute to the spatial channels
within a fiber bundle, such as a bundle of single-mode fibers (SMFs). Single-mode fiber
can be used independently or in combination with few-mode fibers and multicore fibers
to enhance capacity. Fiber design and mode multiplexing techniques can be employed to
mitigate crosstalk and other impairments[16].

However, it is important to note that higher modes can introduce challenges such as increased
crosstalk and dispersive effects. These issues tend to worsen beyond a certain point as more
modes are utilized.

Figure 1.4: (a) Multi-Core Fiber (MCF) and Multi-Mode Fiber (MMF) (b) Crosstalk
Demonstration in Multi-Core Fiber (MCF) and Multi-Mode Fiber (MMF)
within the Same Fiber[17]

As the number of modes and cores increases in multimode fibers or multicore fibers, the
likelihood of higher crosstalk, mode coupling, and modal dispersion also increases. These
impairments not only limit the system performance but also restrict the achievable data rate.
They can be caused by fiber imperfections or perturbations that occur during transmission.
However, these effects can be mitigated to a certain extent through the use of spatial filtering
techniques and efficient DSP with robust algorithms.

The DSP unit plays a crucial role in reconstructing the transmitted signal to ensure better
signal quality while maintaining energy efficiency[19]. In optical communications, linear
and non-linear effects can degrade the quality of received signals. Non-linear effects such
as the Kerr effect, self-phase modulation, and cross-phase modulation distort the received
signal. Linear amplitude stimulated emission can also contribute to noise. Additionally,
intrinsic material properties and dispersion can cause signal degradation. Various non-linear
techniques have been proposed to address these challenges. It is essential to synchronize
the transmit and receive signals in terms of phase and frequency.

In this work, the focus is primarily on linear effects such as chromatic dispersion (CD)
and polarization modal dispersion (PMD) in single-mode fibers (SMFs), as well as modal
dispersion and crosstalk in multimode fibers (MMFs) or multicore fibers (MCFs) [20]. The
analysis presented here explores adaptive equalization techniques for higher-order MIMO (N
x N MIMO) structures in SDM (Space Division Multiplexing) optical communication systems,
where the number of transmitters and receivers is equal for a single MMF or MCF.

The digital signal processing unit, in conjunction with optical coherent detection, effectively
compensates for linear effects. However, the challenge of reducing energy consumption while
achieving higher capacity remains a major concern for the next generation of communications
[3]. As infrastructure advances, algorithm complexity and processing requirements become
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more power-intensive. Therefore, it is worth revisiting classic algorithms and lower-order
modulation schemes for signal acquisition at the receiver.

Traditionally, known training sequences have been widely used at the receiver. However,
these may not be the preferred choice when bandwidth constraints exist. The reason is that
pilot sequences need to be decoded at the receiver and are sent as part of the sequence
header, occupying a portion of the bandwidth. In scenarios where bandwidth constraints
are a concern, approaches that eliminate the need for additional training sequences become
more attractive[21].

These equalization techniques are commonly referred to as blind equalization techniques.
They rely solely on signal statistics, such as signal amplitude or knowledge of the constellation,
to infer the transmitted constellation during the acquisition stage. This is followed by the
tracking and recording stage. Numerous algorithms exist that can perform these tasks
effectively.

1.1 Motivation 9



1.2 Task Description

As previously mentioned, the digital signal processing unit at the receiver plays a crucial
role in compensating for degradation and reducing impairments. It equalizes the distortions
and aims to recover the transmitted signal. In this thesis, we focus on linear impairments,
specifically those caused by chromatic dispersion, polarization losses, inter-mode crosstalk,
inter-core crosstalk, and mode-dependent losses (MDL). To address these impairments, we
primarily consider linear equalizers. The main objective of the thesis are as follows

1. Study the implementation of MIMO equalizers in Space Division Multiplexing (SDM)
systems.

2. Implementation of a MIMO equalizer into an offline data processor into Matlab.

3. Validate the implementation of the MIMO equalizer by numerical simulations and
potentially with lab measurements.

In this thesis, the main focus is on classic equalization algorithms, particularly the Constant
Modulus Algorithm (CMA), Multi Modulus Algorithm (MMA), and the non-linear Decision-
Directed Least Mean Square Algorithm (DDLMS). These algorithms are employed after
achieving pre-convergence using any of the aforementioned linear equalizers.

1.3 Outline

This thesis is organized into six chapters, followed by the bibliography and appendix sections.
Chapter one serves as the Introduction, providing a comprehensive overview of the work and
outlining the structure of the thesis. Chapter two focuses on the state-of-the-art algorithms,
highlighting relevant information and discussing ongoing novel approaches for various
scenarios. Chapter three presents the mathematical representation and objective function
of the equalizer, which are essential for the implementation of adaptive blind equalization
algorithms. The discussion is extended in chapter four, where the chosen conditions and
experimental setup used for evaluating the task are described. The main highlight of the
work is covered in chapter five, which includes the analysis and presentation of the obtained
results. Finally, chapter six concludes the thesis by offering final remarks related to the task
and discussing potential areas for further research and exploration in the future.

1.2 Task Description 10



2 Fundamentals of Digital Signal Processing
in Optical Communications

Communication over optical networks can be significantly affected by various distortions
caused by material properties, dispersion, and coupling between different modes. Non-linear
impairments can be mitigated partially using backpropagation and other non-linear filtering
techniques [22]. Chromatic dispersion (CD) and polarization mode dispersion (PMD) are
major contributors to linear impairments in fiber transmission.

These linear impairments can be effectively compensated by using digital coherent receivers,
which are capable of mitigating phase and polarization distortions and mapping the optical
field into the electrical domain [20]. In addition to that, other multi-mode/core effects in
the fiber, linear equalization techniques are sufficient[17].

In this work, we specifically focus on the linear degradations caused by CD, PMD, and other
multi-mode/core effects in the fiber. Linear equalization techniques prove to be effective in
compensating for these combined effects[19]. Chromatic dispersion occurs because waves
with different wavelengths travel at different speeds depending on the refractive index of
the fiber material[19]. This leads to a delay and broadening of the optical pulse over time,
ultimately limiting the overall data rate.

PMD, on the other hand, is caused by birefringence, where different orthogonal polarization
modes experience different delays[23]. This results in the spreading of the optical pulse,
causing inter-symbol interference and degrading signal quality. PMD also limits the overall
capacity of the system. The birefringence can be caused by asymmetry or external factors,
which can be mitigated up to an extent through optimized fiber design.

The integration of a digital signal processing (DSP) unit with the coherent receiver further
enhances the effectiveness of compensation, providing a lower complexity solution compared
to optical homodyne detectors. After digitizing the received signal, tracking is performed
to compensate for phase and frequency offsets resulting from the mismatch between the
local oscillator and the incoming signal. Forward Error Correction (FEC) is then applied to
improve the overall system performance [20].

Coherent receivers can rely on either blind adaptation methods or training sequences,
depending on the availability of signal information and specific requirements. Equalization
can be performed in two stages, initially compensating for chromatic dispersion, which is a
polarization-independent effect, followed by compensation for polarization mode dispersion
(PMD). This approach allows for adaptation to different rates and properties of these effects
[17, 20].
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2.1 Coherent Receivers with Digital Signal Processing

As mentioned earlier, coherent detection combined with digital signal processing is highly
beneficial in mitigating linear impairments. In this section, we introduce the DSP modules at
the receiver, as depicted in Figure 2.1. This differs from data-aided equalization and includes
blind equalization subsystems.

In the simulation setup, it is not necessarily required to have chromatic dispersion (CD)
compensation. Instead, we focus on pre-and post-frequency offset recovery units along with
equalizer stage 1.

Figure 2.1: Coherent Receiver and DSP Subsystems

Figure 2.1 depicts the coherent receiver combined with a DSP unit. While Chapter 1 explains
some of the basic subsystems, there are additional modules introduced:

• Carrier frequency estimation corrects the frequency offset. The receiver incorporates
carrier frequency offset recovery in two stages, one before the blind equalization stage
and an additional unit after the first stage of equalization.

• Normalization ensures the correct amplitude of the received signal.

2.1 Coherent Receivers with Digital Signal Processing 12



• Two-stage digital equalization compensates for impairments introduced during channel
propagation. The first stage compensates for channel-induced crosstalk, while the
second stage compensates for frontend-induced impairments.

• Clock recovery determines and corrects timing errors in the received signal.

• Interpolation rectifies timing errors by interpolating the received signal.

• Carrier phase estimation mitigates phase errors of the carrier signal[19].

• Deskew performs temporal alignment of the digital signal.

These additional modules, working in conjunction with the coherent receiver and DSP
unit, enhance performance and compensate for impairments introduced during channel
propagation.

The fiber channel can be regarded as a concatenation of filter elements with the inclusion of
a noise source. In optical communication systems, the primary source of noise is typically the
Erbium Doped Fiber Amplifier (EDFA) which introduces Amplified Spontaneous Emission
(ASE) noise. To estimate the transmitted signal, the receiver takes into account the band-
limited channel, along with the presence of Additive White Gaussian Noise (AWGN) and
other performance-limiting factors such as crosstalk.

In many cases, the receiver is provided with a training sequence in the form of a fixed-length
preamble block. This training sequence plays a crucial role in the estimation and recovery
process. Equalization, in this scenario, necessitates knowledge of the channel impulse
response, and the inversion of the channel matrix is performed to obtain an estimate of the
transmitted data[3].

When utilizing a training sequence, the auto-correlation and cross-correlation proper-
ties are often exploited. Alternatively, shift-orthogonal sequences created through cyclic
shifting can be employed. A widely used option for complex training sequences are the
Constant-Amplitude Zero Auto-correlation (CAZAC) sequences, which offer ideal cyclic auto-
correlation properties regardless of the length of the training sequence[3]. Additionally,
pre-compensation techniques can be employed to mitigate the effects of the scalar Chromatic
Dispersion (CD) in an uncompensated link. This approach serves to reduce the length of the
Multiple-Input Multiple-Output (MIMO) equalizer and the required training sequences.

Overall, considering these aspects ensures efficient estimation and recovery of the transmitted
data in the presence of noise and other performance-limiting effects in optical communication
systems.

2.1.1 MIMO Equalization

MIMO equalization can be performed either in the time domain or in the frequency domain
using distance-minimizing algorithms.

In the case of frequency domain equalization (FDE), the overall complexity is lower when
using long filters[18, 24, 25]. However, for shorter distances, time domain equalization
(TDE) has lower complexity.

In general, implementing FDE offers reduced complexity and a bandwidth-efficient scheme,
making it widely used[24, 18, 21]. This approach, also known as data-aided equalization,
provides stable performance independently of the modulation format in the payload, allowing
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for scalable receiver design. Figure 2.2 illustrates an example of FDE using overlap-save
processing for a 2× 2 MIMO system. The overlap factor can be adjusted as needed[26].

The filter adaptation function is responsible for computing the tap values of the equalization
matrix coefficients, aiming to estimate the output as closely as possible to the input. The
objective function in this case seeks to minimize the mean square error (MSE) to reduce
overall distortion, assuming a joint wide sense stationary stochastic process with zero mean
for the input and desired output. By setting the derivative of the cost function to zero, the
optimal value can be obtained. Minimizing the MSE leads to the MinimumMean Square Error
(MMSE) equalizer, which can be computed using the Least Mean Square (LMS) algorithm
with low complexity for the update function[27, 3].

Figure 2.2: Frequency Domain Filtering with Overlap-Save Processing and Overlap
Factor for 2× 2 MIMO

Blind equalization algorithms, or blind source separation (BSS), provide attractive alter-
natives to training-based approaches. In blind equalization, the equalization is performed
without any prior knowledge of the input signal or channel values. It relies solely on the
properties or statistics of the received signal. This leads to faster acquisition and reduced
overall overhead, as there is no need for a preamble block or training sequence in the header,
resulting in reduced packet overhead and more efficient bandwidth utilization. Therefore,
this approach is preferred when efficient bandwidth utilization with reduced overhead is a
primary concern. It assumes independent and identically distributed (i.i.d.) symbols[27].

As mentioned earlier, blind equalization can be performed in both the time and frequency
domains. Finite impulse response (FIR) filters or infinite impulse response (IIR) filters can
be used, but FIR filters are preferred due to their stability, linear phase response, and ease of
implementation[28].

Mathematically, this can be explained by modeling the dispersion compensating filter (DCF)
in the time domain, which provides an upper bound on the number of filter taps. While
converging to the Wiener filter solution is considered ideal, utilizing the physics or prior
knowledge of the underlying system can provide an intuitive closed-form solution to the
problem.

By using the derivative form of the pulse envelope and transforming it into the frequency
domain, we obtain the transfer function. Taking the inverse of the transfer function and
convolving it with the arbitrary input signal gives us the impulse response of the CD com-
pensating filter[20]
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gc(z,t) =

⌜

⎷ jc
Dλ2z

exp(− jφ(t)) where, φ(t) = πc
Dλ2z

t2 (2.1)

Where, D represents the dispersion coefficient of the fiber, z represents the propagation
distance with time variable t within a frame, λ represents the wavelength, and c represents
the speed of light.

Implementing the filter in the digital domain poses several challenges. The equation is
non-causal and has infinite duration, leading to aliasing due to finite sampling frequency
and passing of all frequencies. Consequently, a very high number of filter taps is required. To
address this, the impulse response (IR) of the filter is truncated using windowing techniques,
allowing for the realization of the filter digitally with a sufficient number of taps. The
obtained tap weights are then used for chromatic dispersion (CD) compensation. A static
filter can be used to compensate for most of the CD, while an adaptive equalizer can handle
residual dispersion.

The upper bound for the number of taps in a specific frequency range is determined by
−0.5

T ≤ f ≤ 0.5
T . By adjusting the number of taps for a particular frequency f , a constant dis-

persion can be achieved within this frequency range. Additionally, to model the polarization-
dependent effects on wave propagation, a non-unitary Jones matrix can be utilized. Estimat-
ing and inverting this matrix adaptively helps mitigate impairments[20].

The equalizer’s task is to compute the filter coefficients and update them with each iteration
based on the received signal. The objective is to minimize the cost function by taking the
gradient and setting it to zero. This allows convergence towards the optimum solution, which
can be achieved using techniques such as stochastic gradient descent or ascent.

In the context of blind equalization with stochastic gradient descent (SGD), the problem
of multiple local minima can lead to singularities and convergence issues. Choosing the
appropriate step size is crucial as it affects the algorithm’s performance. Both too-large and
too-small step sizes can hinder convergence[19].

The suitable range of step sizes can vary depending on factors such as the number of
input symbols, added crosstalk and noise, window length, and other parameters. This is
discussed and demonstrated in Chapter 4, which presents the error curve. For adaptive blind
equalization in the time domain, the least mean square (LMS) method is commonly used,
along with some derived approaches.

In the context of multimode or multicore fiber systems, the equalizer implemented with a
coherent optical receiver should be capable of tracking the time-varying polarization state
after the acquisition step. This time-varying effect is caused by the birefringence of the fiber
material[29].

However, in the case of links with potentially high levels of modal dispersion, implementing
MIMO equalizers with a large number of taps becomes challenging. Addressing this issue is
crucial for achieving effective equalization in such systems.

2.2 State of the Art

In recent years, researchers have proposed novel algorithms, including those based on
machine learning, to compensate for non-linear effects in equalization. These algorithms
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often build upon state-of-the-art techniques such as recursive least squares (RLS) or the
constant modulus algorithm (CMA)[18].

RLS is an efficient algorithm that minimizes the mean square error (MSE) recursively.
However, its complexity increases as a drawback[16].

CMA is particularly attractive for scenarios with bandwidth constraints and faster acquisition.
It exploits the property of constant amplitude and works well with low-order modulation
schemes like BPSK and QPSK. Research has demonstrated that PDM (Polarization division
multiplexed) QPSK (Quadrature Phase Shift Keying) improves overall efficiency by doubling
the transmission rate compared to DP (Dual Polarization) QPSK. Therefore, PDM QPSK has
been widely adopted in classic algorithms [19].

CMA requires an additional carrier phase recovery unit and can only equalize based on the
received signal amplitude. While CMA is robust in the presence of noise, it may amplify
noise signals when the received signal is highly correlated with noise. Therefore, CMA is not
suitable for signal tracking, and alternative algorithms or extensions to CMA are needed for
better acquisition and tracking performance [3].

CMA can also be used with lower-order QAM and still yield good results, even though the
constant modulus property is violated. However, in such cases, a larger number of input
symbols is typically required.

As an extension to CMA, multi-modulus algorithms (MMA) can be employed in cases where
the constant modulus property is not applicable. MMA does not impose a condition of
fixed average power in the error calculation. Instead, it utilizes different rings with varying
power levels, resulting in enhanced performance. MMA can be used for both acquisition and
tracking and tends to provide good results for higher-order modulation schemes[3].

Decision-directed equalization (DDE) is a popular non-linear approach that uses decision-
based criteria to recover the constellation in a second step, following the pre-convergence
achieved using algorithms like CMA or MMA. DDE focuses on the reference and received
points rather than the power level of the constellation, allowing it to compensate for phase
offsets and produce a high-quality received signal constellation. However, DDE typically
requires pre-conditioning of the filter coefficients to ensure good convergence, as it may have
poor convergence in the absence of such pre-conditioning[29].

On the other hand, least mean square (LMS) algorithms work well with known training se-
quences and ensure convergence towards the global minimum, regardless of the initialization
conditions. This is in contrast to CMA, where the complete blindness of the algorithm can
lead to multiple local minima, often influenced by the initialization of tap weights. Therefore,
LMS can be used as a second step in equalization, in combination with a decision-directed
feedback system[30].

Another non-linear approach is the Maximum Likelihood Sequence Estimator (MLSE), which
utilizes statistical properties and the statistical model of the transmitted sequence to estimate
the sequence accurately.

2.3 Related Work

In the realm of MIMO digital signal processing (DSP) for spatial division multiplexing (SDM),
various approaches have been proposed to optimize performance and energy consumption.
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Recent advancements have seen the combination of novel algorithms with classic blind
equalization techniques in optical and wireless communication systems.

Previous demonstrations have shown that 16-QAM is a favorable choice for achieving high-
speed data rates using state-of-the-art DSP algorithms such as CMA and MMA, combined
with coherent detection. This combination proves to be effective in mitigating chromatic
dispersion (CD), polarization mode dispersion (PMD), and crosstalk, thereby improving
performance in MIMO structures[31].

For higher-order QAM, assuming a fractionally spaced equalizer, extensions of MMA have
been proposed, including the multimodulus radius-directed algorithm and the symbol-based
decision algorithm. Additionally, the regional multimodulus algorithm addresses challenges
related to convergence speed and divergence by incorporating adjustment with initialization
parameters. These algorithms aim to converge towards the Wiener filter solution to minimize
misadjustment in steady state[32, 33, 34].

Independent component analysis (ICA) is another blind source separation technique used
in MIMO DSP. It assumes uncorrelated source signals with non-Gaussian distributions and
makes use of the central limit theorem to maximize the relative distance from the Gaussian
distribution of individual components. ICA applies a pre-whitening matrix, followed by
principal component analysis using singular value decomposition until the projection yields
maximum variance[35].

A model-based approach was proposed for optical communications utilizing linear butterfly
finite impulse response (FIR) filters in conjunction with a variational autoencoder equalizer.
The goal was to address convergence issues associated with classic CMA by employing
variational inference to approximate the maximum likelihood criterion for higher-order
probabilistic constellation shaping (PCS). This approach also allows for potential exten-
sions with various machine learning techniques, enabling joint communication and sensing
capabilities[36, 37].

In the context of terahertz band wireless communication systems, a neural network-based
Joint Deep Belief Network (J-DBN) approach was proposed alongside CMA and DD-LMS.
The aim was to integrate fiber-wireless communication for lower cost, reduced power con-
sumption, and increased capacity, with an offline experimental demonstration conducted for
a 2x2 MIMO link using QPSK over standard single-mode fiber (SSMF). The results showed a
reduction in computation complexity, improved computational time, better training accuracy,
enhanced signal-to-noise ratio (SNR) gains, and improved bit error rate (BER) for receiver
sensitivity[38]. However, it is worth noting that the specific interest lies in multi-mode fiber
(MMF), few-mode fiber (FMF), and multi-core fiber (MCF) systems.
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3 Problem Formulation

The linear distortion experienced by the received signal as it traverses an unknown channel
during transmission can be mitigated through the utilization of either a known training
sequence or statistical properties of the signal. In Chapter 2, the mathematical representation
for compensating for impairments such as chromatic dispersion (CD) and polarization mode
dispersion (PMD) was thoroughly discussed, highlighting the significance of equalization
techniques and pertinent filter parameters.

The primary objective is to estimate the channel effects at the receiver and effectively reverse
the distortions encountered during the recovery process of the received signal. This is
accomplished by employing well-established equalization methods and algorithms that adapt
the coefficients of the equalizer based on characteristics observed in the received signal. The
ultimate goal is to minimize the discrepancy between the expected signal and the received
signal, thereby effectively mitigating the adverse effects of channel distortion.

Problem Formulation: When a transmitted training sequence is not available at the receiver,
estimation can be done using Blind algorithms. These algorithms rely on the statistical
properties or signal characteristics of the received signal to estimate the channel effects
without prior knowledge of the transmitted training sequence[20].

Blind Equalization: Estimate the transmitted signal at the receiver by utilizing the signal
statistics, such as the shape or power of the received signal. The input to the blind equalization
algorithm is the received signal, denoted as a discrete-time sequence of complex-valued
samples y[n], where n represents the sample index. The channel coefficients hi j and equalizer
coefficients wi j are utilized in the numerical analysis for blind equalization[20].
Approach: The Task of the filter adaptation function in blind equalization is to compute
the tap values of the equalizer coefficients (W) to generate an output signal that closely
matches the true transmitted signal. This is achieved by minimizing the error(ε) between
the expected signal and the received signal. The choice of the cost function depends on
the specific requirements of the application. Some commonly used cost functions in blind
equalization include

1. Mean Square Error(MSE): The cost function is defined as the average square difference
between the expected signal and the received signal. The goal is to find the optimal
coefficients that minimize the expectation of the difference between the desired and
equalized signals[18].

2. Maximum Likelihood Estimation: The cost function is defined as the logarithm of
the likelihood function. This estimation is based on the statistical distribution of
the received signal, such as a Gaussian distribution. The objective is to find the
optimal equalizer coefficients that maximize the probability of observing the received
signal[36].

3. Constant Modulus: This cost function is suitable for transmitted signals with a constant
modulus property, where the amplitude is known but the phase is not. The cost

18



function aims to minimize the deviation from the constant modulus constraint, making
it well-suited for low-order modulation schemes with robust performance. However,
the performance may degrade when the constant modulus property is violated or when
the noise signal dominates over the desired signal.

The objective function is given by

Wopt = argmin
w
(ε) (3.1)

In blind equalization, the update of equalizer taps can be performed using various algorithms
such as the Constant Modulus Algorithm (CMA), Recursive Least Squares (RLS), or Least
Mean Squares (LMS), as discussed in Chapter 2. The objective is to converge toward
the optimum solution by minimizing the chosen cost function over a certain number of
iterations.

To update the equalizer taps, the gradient of the cost function with respect to the filter
coefficients is computed. Optimization algorithms like Stochastic Gradient Descent (SGD)
can be employed to iteratively update the equalizer taps based on the gradient information.
SGD adjusts the filter coefficients in a way that moves towards the minimum of the cost
function, thereby improving the equalization performance.

By iteratively updating the equalizer taps using the chosen algorithm and optimizing the
cost function, the blind equalization process aims to converge toward the optimal solution,
effectively compensating for channel distortions and improving the accuracy of the recovered
transmitted signal.

3.1 Channel Model and System Setup

Figure 3.1: Simplified Channel Model with Equalizer

The linear time-invariant channel model for the MIMO System is given as

yN×1 = HN×M · xM×1 + zN×1 (3.2)

alternatively, y[n] =
M
∑︂

m=1

H[n,m] · x[m] + z[n] (3.3)
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where elements of vectors xM×1, yN×1, HM×N , zN×1 are vectors of dimensions xM×1×x Leng th,
yN×1×y Leng th, HM×N×hLeng th and zN×1×y Leng th respectively. The above equation can be rewrit-
ten in the time domain as the convolution between matrix HM×N and vector xM×1 for time
instant p as

y[n](p) =
M
∑︂

m=1

⎡

⎣

l−1
∑︂

q=0

H[n,m](q) · x[m](p− q)

⎤

⎦+ z[n](p) (3.4)

l = min(hLeng th, x Leng th)

Here n and m are iteration indexes over the N and M elements of the the vectors yN×1×y Leng th,
xM×1×x Leng th and the channel matrix HM×N . Similarly, p and q iteration indexes are used
for each element in the vectors and channel matrix in the discrete-time dimension. Here
x Leng th, hLeng th denote the length of the transmitted signal vector and the channel matrix
in discrete time dimensions respectively.

MIMO equalization matrix: Using equation (3.1), the Time-domain MIMO equalization
matrix WM×N can be defined to obtain an estimation of the system input signal xM×1 as
mentioned below

x̂m×1 =WM×N · yN×1 =WM×N · (HN×M · xM×1 + zN×1) (3.5)

We perform convolution in the time domain for time instants p and q, similar to the equation
(3.3), and shifting y[n] by wLeng th. Here this shift in y[n] does not change the nature of
the representation of the equation, as mentioned below

x̂[m](p) =
N
∑︂

n=1

⎡

⎣

wLeng th−1
∑︂

q=0

W[m,n](q) · y[n](p− q+wLeng th− 1)

⎤

⎦ (3.6)

To evaluate it further, we do the batch processing of y[n] by defining a reversed time batch
of size wLeng th with p batches Samples per Symbol (SPS) as

ỹ p[n] = y[n](wLeng th− 1+ p ∗ SPS : −1 : p ∗ SPS) (3.7)

further, x̂ p[m] = x̂[m](p) =
N
∑︂

n=1

W [m,n] · ỹ p[n] (3.8)

This batch processing is done in the time domain and gives impressive results.

3.2 Algorithms

The choice of algorithm for blind equalization depends on the specific application require-
ments. In this context, we will discuss three popular classic blind algorithms that have
demonstrated efficiency. Figure (3.2) depicts the contour and decision boundary of these
algorithms, which are utilized in simulations and experiments.
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It is important to note that without further context or information, the specific algorithms
and their associated properties cannot be elaborated upon. However, the figure serves as a
visual representation of the algorithms’ performance and their ability to accurately separate
decision boundaries in a given application scenario.

3.2.1 CMA

CMA utilizes the constant modulus property of the transmitted signal, hence it works well
with lower-order modulation schemes. It can be used for the acquisition of 16-QAM as well
despite the nonconstant modulus, however the performance degrades with the increase in the
order. CMA can be combined with stochastic gradient descent (SGD) to achieve convergence
towards the optimum solution[20].

While CMA is robust in the acquisition phase, it may not perform as well in the tracking
phase. Therefore, it is often used in conjunction with a second stage of equalization to
further compensate for front-end impairments. Additional units can be employed to enhance
phase and frequency components.

It is important to note that CMA primarily focuses on the amplitude of the received signal and
does not explicitly consider the phase in the acquisition stage. As a result, an additional carrier
phase recovery stage is required. The update rule for the equalizer taps in CMA imposes
constraints on the constant modulus while minimizing the error using SGD, |sk| = 1∀k.
Possible solution is to look for coefficient W such that, |yk|= 1∀k. The Equalizer tap update
rule is given as

W j+1[m,n] =W j[m,n] +µε j
m x̂ j[m]( ỹ j[n])∗ (3.9)

Error function εm for the j th iteration is calculated as

ε j
m = (| x̃

j[m]|2 − P0,m) (3.10)

Here, P0,m is the average power of the reference constellation for the lane/path m. This
reference power is fixed based on the type of modulation scheme(lower order with constant
modulus property), and the received signal power is compared with it. This allows the
algorithm to assess the deviation from the constant modulus property and make appropriate
adjustments to the equalizer taps to minimize the error. By comparing the received signal
power with the reference power, CMA can effectively equalize the signal while maintaining
the desired constant modulus property.

3.2.2 MMA

The Multi Modulus Algorithm (MMA) is an extension of the Constant Modulus Algorithm
(CMA) that is used for equalization in communication systems. It addresses the issue of
violating the constant modulus property for constellations with higher orders. MMA aims to
minimize the mean square error (MSE) by adjusting the equalizer taps based on the distance
between the received signal power and different radii or power levels associated with the
rings formed by these levels. The tap update rule in MMA is similar to CMA, but the error
calculation rule is modified to account for the violation of the constant modulus property
and the use of multiple power levels or rings. This modification allows MMA to effectively
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equalize constellations with higher orders and improve equalization performance. The tap
update rule is given by

W j+1[m,n] =W j[m,n] +µε j
m x̂ j[m]( ỹ j[n])∗ (3.11)

The error update rule is given by the following equation

ε2 = (|xout |2 − PM MA)
2 (3.12)

As we can see the the tap update rule is similar to CMA, but error calculation rule is different
here.

Figure 3.2: (a) CMA Circular Region (b) MMA Rings (c) DD-FFE Decision Bound-
ary

3.2.3 DD-FFE

In decision-directed feed-forward equalization, the least mean square (LMS) algorithm is
used to minimize the cost function. This approach is effective when preconvergence has
been achieved using algorithms like CMA or MMA. The received constellation is improved
by considering a target point in the reference constellation. LMS minimizes the Euclidean
distance between the target and received data points, allowing for the enhancement of the
constellation by considering both the phase and magnitude of the data points.

The tap update rule in decision-directed feed-forward equalization is slightly different. The
processed output signal from the first stage of equalization is treated as the input signal for
the tap update process. This allows for further refinement of the equalization process and
improvement of the received constellation. The update rule is given by

W j+1[m,n] =W j[m,n]−µε j
m( ỹ

j[n])∗ (3.13)

Error update rule differs here due to the consideration of reference and received data points
instead of the Power values. The error update rule is given by

ε2 = |xout − xre f |2 (3.14)
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The result obtained from DD-LMS gives sharp constellation and the phase and frequency
offsets are already corrected.

3.2.4 Algorithm Implementation

The algorithm flow remains consistent across all three cases, differing only in the error
calculation and filter tap coefficient update functions. For instance, the Constant Modulus
Algorithm (CMA) exemplifies this flow. The initialization of the number of taps has been
elucidated in Chapter 2. Employing batch processing proves advantageous for augmenting
performance in the time domain. Alternatively, time domain equalization can be transformed
into the frequency domain by leveraging the Fast Fourier Transform (FFT) and Inverse FFT
(IFFT) techniques. In subsequent chapters, we will present experimental results pertaining
to the short-length (1 km) Few Mode Fibers (FMF), thereby demonstrating the practical
implementation of time domain equalization. Within the CMA algorithm, spatial modes
are denoted by row indices, and samples are denoted by column indices. The number of
Samples per Symbol (SPS) can be flexibly configured as either 1 or 2, contingent upon
specific requirements.

Algorithm 1: Algorithm for CMA
Data: M , N , W, SPS, P0,m, niterat ions, Identi t y Ini t, x ,µ, nTaps
Result: xout ,Wopt,ErrOpt,er r Ini t
ε→ 0
for i = 1 : nI terat ion do

Initialization;
Err Ini t ←∞ ;
if m=n then

W 0[m,m](nTaps/2)← 1 ; / m= n /
else

W 0[m,m] = 0 ; / otherwise (̸= nTaps/2) /
end
Define numberOfBatches for BatchLength ’p’
numberO f Batches = floor((y Leng th/SPS)
for p = 1 : numberO f Batches do

Define batchId x
batchId x = batchleng th+ (p− 1) ∗ SPS : −1 : (p− 1) ∗ SPS + 1
Evaluate x̃ j=0 with initialized W j=0 and batched received signal ỹ j=0

end
Save the sample x̃ j=0 in xout (the output vector)
Calculate every ε j=0

m
Update W j=1[m,n]
if ε < Err Ini t then

Iterate until j = required number of iteration
ErrOpt ← ε;
Wopt ←W ;

end
end

The overall performance of time domain equalization is influenced by several key factors:
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• Pre-processing steps are undertaken before stage 1 of equalization.

• Proper initialization of filter coefficients W 0[m,m], as this greatly affects the conver-
gence of the Constant Modulus Algorithm (CMA) and overall performance.

• Selection of an appropriate step size µ, which is crucial for achieving stable and rapid
convergence. It may need to be adapted dynamically during the equalization process.

• Careful consideration of tap length (nTap) is necessary to accurately model the channel
response, as discussed in Section 2 of the thesis.

These factors collectively contribute to the overall effectiveness and efficiency of the time
domain equalization technique.
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4 Simulation Setup of Adaptive Equalizers

4.1 Setup and Implementation

4.1.1 Simulation Setup:

A generic code was developed for a M × N MIMO system, where M = N , using batch
processing. The simulation and experimental setup includes a two-stage equalization. The
focus here remains only on the adaptive blind equalizer for MIMO system stage 1, as depicted
in Figure 4.1 of the thesis. For demonstration and experimental simulations, MATLAB with
its GUI capabilities was utilized. Although Python or C could have been chosen, we opted
for MATLAB due to the availability of existing prototype files in MATLAB.

An existing 2× 2 MIMO demo file, served as a reference for evaluating the new demo and
experimental setup. The subsequent chapter will provide detailed insights into both the
demo and experimental results. In this particular section, our focus is primarily on the
MATLAB generic code and offline processing used for validating the theoretical proof of
concept.

To initiate the simulation setup, we defined the channel model by specifying parameters
such as the number of transmitted modes, number of fibers, modulation scheme, coding type,
number of transmitted symbols, impairments, and filter type. We then generated random
transmitted symbols for the chosen modulation order and modulated the data accordingly.
In the theoretical simulation, we considered three cases:

• Signal + Noise

• Signal + Noise + Crosstalk

• Signal + Crosstalk

To assess the impact of crosstalk, we considered a 4× 4 unitary matrix of the same dimen-
sions as our channel model. This matrix was added for observation purposes, as it simplifies
calculations and can be directly incorporated into our mathematical model without affect-
ing any channel properties. The inversion of the unitary matrix can be easily performed.
Additionally, Additive White Gaussian Noise (AWGN) was generated. This random noise is
independent and identically distributed. It is worth to note that in this scenario the channel
model considered is memoryless, however in demo and experimental setup some memory
is introduced. Blind algorithms utilizes tap update for the adjustment of filter coefficient
by considering the previously transmitted symbol to minimize the error metric. Hence, we
need certain number of taps in this case which increases in practical scenario.
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The number of filter taps and Samples per Symbol (SPS) can be chosen based on specific
requirements. The transmitted data was resampled for further processing, and noise and/or
crosstalk were added. We then defined the type of equalizer, or combination of equalizer
parameters, and assessed the convergence. For the Constant Modulus Algorithm (CMA), the
average power was fixed, while for the Multi Modulus Algorithm (MMA), the number of
rings and their respective power levels were defined.

The algorithm then performed the tasks outlined in Section 3.2.4, depending on the type of
equalization being applied. The performance and convergence of the system were evaluated
based on these parameters and the defined equalization approach.

Define Channel Model

Transmitter

Add Fiber Propagation

Coherent Receiver + DSP

Stage 1: CMA Equalization Parameters

Stage 2: DD-LMS Equalization Parameters

Converged?

Further DSP Processing

Performance Metrics

No

Yes

Figure 4.1: Setup and Implementation of 2-stage Adaptive Equalizers
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After the Time Domain Equalization (TDE) process, the desired plots are obtained, which
can be further processed. To address existing offsets, frequency offset correction and
Viterbi carrier phase recovery techniques are employed. The corrected data is then sent for
evaluation.

To determine the appropriate step size for the equalization algorithms, an extensive search
was conducted using a brute force approach. Various combinations of the number of symbols,
ranging from 216 to 222, different numbers of taps, and varying iterations were tested. It
was observed that a higher number of symbols resulted in better convergence and improved
received constellations. Specifically, symbol numbers around 219 and 221 demonstrated
similar performance, beyond which there was no significant improvement in the received
constellation.

Interestingly, the appropriate step sizes for the Constant Modulus Algorithm (CMA), Multi
Modulus Algorithm (MMA), and Decision-Directed Feed-Forward Equalization (DD-FFE)
were found to be distinct from each other, despite having the same channel and initial
conditions. For the chosen setup and conditions, all three algorithms yielded optimum
results with step sizes within the range of 10−4 to 10−8. Very high or very low step sizes did
not yield significant enhancements or make practical sense. It is worth reiterating that the
selection of an appropriate step size is crucial in determining the overall performance of the
equalization algorithms. Figure 4.2 illustrates the comparison of step size selection criteria
under identical conditions.
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Figure 4.2: Step Size for CMA with 100 Iterations and 219 Symbols

Figure 4.2 illustrates the relationship between the step size and the average error metric
for 100 iterations. This simulation was conducted during the early stage of algorithm
development when the equalizer was still unstable. It was observed that after a certain point,
the equalizer stopped converging, and further iterations did not contribute significantly to
the performance improvement. Therefore, a condition on the error was redefined, and the
step size was further adjusted and tested.

In this specific figure, the Constant Modulus Algorithm (CMA) was used for QPSK modulation
in the presence of noise and crosstalk. The plot indicates that the error metric reaches a
minimum between step sizes of 10−4 and 10−5. This finding suggests that the optimal step
size for achieving the lowest error lies within this range.
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Figure 4.3: Step size for CMA for another range 100 iterations, 219 symbols for 16-
QAM

Figure 4.3 displays the plot of the Constant Modulus Algorithm (CMA) for 16-QAM modula-
tion over 100 iterations, with step sizes ranging from 10−7 to 10−4. This closer view allows
for a better assessment of the step size selection. It can be observed that the minima are
located near 10−4 and 10−5, indicating that the optimal step size for achieving the lowest
error lies within this range. However, it is important to note that further exhaustive search
and simulation runs are required to thoroughly evaluate different step sizes and determine
the most appropriate one. Figure 4.4 provides a more detailed overview compared to Figure
4.2, allowing for a closer examination of the step size performance.
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Figure 4.4: Step Size for CMA with 20 Iterations and 219 Symbols (16-QAM)

Figure 4.4 presents the step size selection for 16-QAM modulation using the Constant
Modulus Algorithm (CMA) in presence of noise and crosstalk. In this case, a total of 20
iterations were performed for 219 symbols. The plot reveals a different behavior compared
to the previous figure, but the optimum range for the step size still lies between 10−4−10−5.
This indicates that the best performance in terms of error minimization can be achieved
within this range of step sizes.
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Figure 4.5: Step Size for MMA with 20 Iterations and 219 Symbols (16-QAM)

Figure 4.5 illustrates the step size selection for the Multi Modulus Algorithm (MMA) applied
to 16-QAM modulation. In this case, 20 iterations were performed using 219 symbols. The
plot demonstrates a lower average error amplitude compared to CMA, and the optimal step
size is found within the range of 10−6 to 10−5. Although the figure shows a decent behavior,
further simulations are needed to obtain a closer look at the minima. These results suggest
that this range is appropriate for MMA in achieving optimal performance in case of noise
and crosstalk.
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Figure 4.6: Step Size for DD-FFE 20 iterations, 219 symbols, 16-QAM

Figure 4.6 depicts the step size selection for the Decision-Directed Feed-Forward Equalization
(DD-FFE) which can be used in combination with CMA and MMA, in this case with MMA,
using 219 symbols for 16-QAM modulation. The curve adapts a slightly different pattern. In
both cases, the minimum error is found within the range of 10−5 to 10−3, which has shown
promising results. The error amplitude is quite low even when the noise and crosstalk was
added to this. These findings suggest that the simulated range of step size is appropriate for
achieving optimal performance in DD-FFE when combined with CMA or MMA.
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Table 4.1 presents the numerical values associated with the step sizes µ and error vectors for
Figures 4.4 to 4.7. In some cases, the values are marked as "Inf," indicating that the algorithm
stops working beyond that specific step size. Consequently, the algorithm terminates at that
particular step size. It is important to note that although convergence is achieved, it does not
guarantee finding global minima, as mentioned earlier. Nevertheless, these results allow for
making inferences, and further assessment can be conducted to determine the appropriate
step size.

µvect or εvect or1 εvect or2 εvect or3

1.00E-06 9.74E+00 2.27E+00 5.03E-01
2.15E-06 9.99E+00 2.08E+00 6.28E-01
4.64E-06 9.90E+00 1.42E+00 7.00E-01
1.00E-05 9.60E+00 1.81E+00 6.43E-01
2.15E-05 9.38E+00 2.02E+00 6.61E-01
4.64E-05 9.40E+00 2.03E+00 7.14E-01
1.00E-04 1.02E+01 2.02E+00 6.82E-01
2.15E-04 Inf 2.02E+00 5.48E-01
4.64E-04 Inf Inf 3.48E-01
1.00E-03 Inf Inf 1.73E-01

Table 4.1: Numerical Values of εvect or corresponding to µvect or of CMA, MMA and DD-
FFE respectively, for 16-QAM, 20 iterations, 219 symbols

A comparison between the step size selection of CMA and MMA in an identical scenario is
depicted. The modulation scheme used was 16-QAM for 219 symbols, with 20 iterations, and
the presence of added noise and crosstalk. The error amplitude for CMA and MMA differs.
As anticipated, CMA exhibits a higher average error amplitude and achieves the minimum
at a step size of 2.1× 10−5. On the other hand, MMA demonstrates a significantly lower
average error amplitude and attains the minimum at 4.6× 10−6, while also performing well
at a slightly higher step size of 10−5.

It is worth noting that the chosen step size varies for different scenarios and the length of
the transmitted sequence. For DD-FFE, the step size was calculated in a similar manner and
showed an optimum at a step size of 10−4, albeit with minor variations across different cases.
Consequently, when encountering slightly new scenarios, a similar step size can be selected
based on the aforementioned values, which would still yield reasonable results.
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4.1.2 Implementation

The error plots and received constellations were generated using Matlab code for CMA
and MMA, with an additional evaluation of DD-FFE. The error plot exhibits a noisy and
unstable shape, which could be attributed to the presence of offsets. The oscillating pattern
observed indicates some level of convergence; however, it does not converge towards the
global optimum. The lower amplitude on the y-axis signifies that the algorithm is functioning,
albeit providing variable results with different iterations.

Figure 4.7 demonstrates that the constellation is significantly affected by the presence of
noise and crosstalk, resulting in the loss of modulation properties. Consequently, it becomes
challenging to draw meaningful inferences from such a pattern. However, adaptive blind
equalization enables inference during the acquisition phase, allowing the data points to
align on circular rings, which indicate different power levels. This alignment facilitates the
recovery of the original information despite the adverse effects of noise and crosstalk.
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Figure 4.7: Scatterplot with Noise and Crosstalk Before Equalization

Figure 4.8 depicts the scatter plot after equalization with CMA in the presence of only noise,
without the inclusion of crosstalk. The corresponding error plot is also shown. The error plot
exhibits heavy oscillation; however, the error amplitude differs significantly between CMA
and MMA. As anticipated, CMA performs well with QPSK modulation, resulting in a low error
amplitude within the range of 0.1. The received constellation after equalization appears
sharp and exhibits good quality. Figure 4.9 depicts the scatter plot for both QPSK and 16-
QAM modulation schemes in a scenario similar to Figure 4.9. However, in this case, noise and
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(a) Scatterplot and Error Curve for QPSK with CMA Equalization (Noise Only)

(b) Scatterplot and Error Curve for 16-QAM with CMA Equalization (Noise Only)

Figure 4.8: Results for CMA for stepsize 1e-5, only noise and no crosstalk added
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(a) Scatterplot for QPSK with CMA Equalization
(Noise + Crosstalk)
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(b) Scatterplot for 16-QAM with CMA Equalization
(Noise + Crosstalk)

Figure 4.9: Results of CMA with 219 Symbols and Step Size 2.5e-5

crosstalk are introduced. Despite these disturbances, the equalizer effectively mitigates their
impact and produces satisfactory results. Notably, some data points may appear sporadic
due to the number of symbols considered in the model and their misinterpretation during
equalization. The rotation observed in the constellation is a consequence of phase offsets. It
is important to highlight that the analysis focuses solely on evaluating the adaptive blind
equalizers and does not address the phase offset in this context.

Figure 4.10 displays the results obtained using the Multi Modulus Algorithm (MMA) with
a step size of 4.6e-6, which is different from the step size used in the Constant Modulus
Algorithm (CMA). The constellations considered in this analysis are QPSK and 16-QAM. As
expected, there is a noticeable rotation of the constellation. However, despite this rotation,
the data points remain compact and do not exhibit sporadic behavior in the presence of
noise. The performance of MMA is quite good even in the presence of crosstalk.

4.2 Evaluation and Performance Metrics

To assess the overall performance, effectiveness, flexibility, and adaptive extension to higher
spatial dimensions of the adaptive blind equalization, it is crucial to conduct a thorough
evaluation. In this chapter, we have addressed this evaluation by discussing the synthetically
generated channel impairments and focusing on the convergence of the algorithms towards
the optimum. Both the Constant Modulus Algorithm (CMA) and the Multi Modulus Algorithm
(MMA) have demonstrated good performance during the acquisition stage, even in the
presence of added crosstalk and noise. Furthermore, an extension with Decision-Directed
Feed-Forward Equalization (DD-FFE) has proven to enhance the sharpness of the received
constellation.

In order to evaluate the performance of the implemented blind algorithms, several well-
known metrics have been defined. These metrics serve as effective measures to assess the
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(a) Scatterplot for MMA Equalization (Noise Only)
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(b) Scatterplot for MMA Equalization (Noise +
Crosstalk)
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(c) Scatterplot for 16-QAM MMA Equalization
(Noise Only)
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(d) Scatterplot for 16-QAM MMA Equalization
(Noise + Crosstalk)

Figure 4.10: Results of MMA with 219 Symbols and Step Size 4.6e-6
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accuracy, quality, and signal-to-noise characteristics of the received equalized signals. The
following metrics have been considered:

• Bit Error Rate (BER): The BER is a widely used performance metric that measures the
accuracy of the received equalized signals. It quantifies the ratio of erroneous bits to
the total number of transmitted bits. A lower BER indicates a more accurate estimation
of the transmitted data. In the case of higher modulation orders, a higher BER is
expected, which is still considered acceptable in terms of performance evaluation.

• Error Vector Magnitude (EVM): The EVM is a significant figure of merit for eval-
uating the quality of the received constellation. Since the estimator does not have
knowledge of the actual transmitted data, the error vector is calculated in the Eu-
clidean space with respect to the closest reference symbol. The EVM performs better
in higher signal-to-noise ratio (SNR) regimes but may exhibit poorer performance in
noisy, low SNR environments. It quantifies the root mean square error of the signal
relative to the average power of the reference symbol in the constellation. The EVM is
typically expressed as a percentage value, where a lower percentage indicates better
performance.

• Signal-to-Noise Ratio (SNR): Measuring the SNR is a standard approach to assess the
performance of the received signal. The SNR represents the ratio of the received signal
power to the noise power and is often expressed in decibels (dB). A higher SNR is
desirable for the successful decoding of the transmitted data at the receiver. However,
due to various propagation effects, the SNR can degrade. It is expected that the blind
algorithms perform reasonably well even in low SNR regimes. In the presence of higher
noise power, additional processing may be required to obtain reliable estimates.

These metrics collectively provide valuable insights into the performance of the adaptive
blind equalization algorithms, enabling an evaluation of their accuracy, constellation quality,
and signal quality.

Additional metrics that are commonly considered as good standards for evaluating the
performance of blind algorithms are the Q-factor and Symbol Error Rate (SER).

The Q-factor is a metric that provides an indication of the quality of the received signal by
quantifying the separation between signal points in the constellation. It takes into account
the effects of signal-to-noise ratio (SNR) and impairments, and it measures the overall signal
quality. A higher Q-factor signifies better system performance and a lower Bit Error Rate
(BER). Hence, a higher Q-factor is desirable in terms of system performance evaluation.

Symbol Error Rate (SER) is another important metric that measures the accuracy of the
received symbols in a similar way to BER. It quantifies the ratio of incorrectly received symbols
to the total number of transmitted symbols. SER provides insights into the robustness of the
system in terms of symbol-level accuracy.

By considering these additional metrics, such as Q-factor and SER, alongside the previously
mentioned BER and EVM, a comprehensive evaluation of the blind algorithms can be achieved,
encompassing measures of signal quality, accuracy, and overall system performance.
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5 Results of Blind Equalization

In this chapter, the results obtained from both simulations and experimental setups are
presented. In the simulation setup, the generic code was enhanced and adapted by Fraunhofer
which includes complete two-stage equalization with offset correction. This modified code
allows for a more comprehensive analysis of multiple parameters and provides efficient
results compared to the generic code. MATLAB simulations are conducted, which yield
expected results with reasonable Error Vector Magnitude (EVM) and Bit Error Rate (BER)
values.

Experimental results are obtained from multiple shots, but for the purpose of plotting, only
the best case with the lowest average BER is presented here. A detailed analysis of all the
experimental results can be found in the Appendix.

In the analysis of MIMO equalization using Digital Signal Processing (DSP), it is insightful
to include the constellations, learning curve, transfer functions, and impulse response.
However, for the purpose of this presentation, the transfer functions and impulse responses
are demonstrated only for the simulation results to provide insights into the behavior of the
filters.

By including these various analyses and results, a comprehensive understanding of the
performance and behavior of the MIMO equalization scheme can be achieved.

In the obtained plots, several key parameters can be identified and analyzed:

• The constellation before the equalizer represents the unprocessed data, encompassing
possible impairments such as fiber effects. This provides insight into the initial condition
of the signal.

• After the first stage of equalization, the acquisition is performed using an adaptive
blind equalizer for the MIMO system. However, due to the presence of offsets and other
deteriorating effects, the Error Vector Magnitude (EVM) and Bit Error Rate (BER) may
remain high. These effects are compensated for in later stages of the equalization
process.

• The learning curve demonstrates the convergence of the step size with respect to the
average error metric. It illustrates the continuous adaptation of the filter coefficients
to minimize this error metric.

• The constellation with modes showcases the circular pattern observed after the first
stage of equalization, with distinct points forming a modal pattern after the second
stage.

• The transfer function and impulse response provide insights into the system’s behavior
in the presence of perturbations. They offer an understanding of how the system
responds to different input signals.
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• The received constellation after the second stage of equalization may still exhibit some
offsets, which are further addressed and treated. This stage corrects the perturbations
caused by the front end. The results after this final performance measurement are
presented.

It is important to note that factors such as the phase trajectory are not discussed in this
chapter, as they are addressed separately. In the experimental setup, the BER and EVM are
presented for different shots, providing an understanding of the algorithm’s comparative
behavior in a realistic scenario. The subsequent section will delve into the simulation
results.

5.1 Simulation Results

The simulation was conducted using MATLAB, although it could also be implemented using
other programming languages such as C or Python. MATLAB was chosen for its existing
toolbox and functions, which facilitated the processing of large datasets and execution
of the desired tasks. In particular, MATLAB’s ’structs’ were utilized to store and process
complex-sized mathematical arrays.

Various parameters were varied during the behavioral and numerical analysis. The number
of bits chosen was 223, which is equivalent to 219 symbols in the case of 16-QAM modulation.
A samples-per-symbol ratio of 2 was set, crosstalk was added, and the linewidth was set
to 100kHz. The Optical Signal-to-Noise Ratio (OSNR) was set to 21dB. A total of 4 modes
were transmitted, which included the in-phase and quadrature components of LP11a and
LP11 b.

For each of these modes, logical channels were created with a symbol rate of 32 GBaud. The
bits were mapped to complex symbols. A root-raised cosine filter with a roll-off factor of 0.1
was used for pulse shaping, and the boundary behavior was set to truncation.

The equalizer parameters, such as the number of transmitters and receivers, were set to 4.
The signals were normalized and resampled to 1 sample per symbol (SPS). The number of
taps was set to 17, and the boundary behavior utilized cyclic extension.

For the Constant Modulus Algorithm (CMA), the step size was set to 2.5 × 10−6. It was
observed that an order of -5 did not yield the desired results compared to orders of -6 or
-7. Hence, the results presented here are for a step size of order -6. For the Multi Modulus
Algorithm (MMA) and Decision-Directed Least Mean Square (DD-LMS), step sizes in the
range of -5 were chosen.

A window length of 500 was selected for the analysis of the learning curve adaptation cycle
for 219 symbols, and 200 for 216 symbols. The subsequent plots are presented below.

Figure 5.1 and 5.2 illustrate the constellation before the equalizer, where the dominant
presence of crosstalk and other effects is observed. The absence of a discernible pattern is
evident, and the EVM is significantly high, making it difficult to distinguish individual points
in the constellation. This unprocessed constellation is then passed through the first stage
of the equalizer, which can be either the Constant Modulus Algorithm (CMA) or the Multi
Modulus Algorithm (MMA) in this particular case.

Figure 5.3 and 5.4 depict the constellation after the first stage of equalization, with a modal
representation. In these plots, circular rings can be observed, indicating the presence of
different power levels within the constellation. However, these rings are still influenced
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Figure 5.1: Mode 1 Before Equalizer 1 Figure 5.2: Mode 2 Before Equalizer 1

Figure 5.3: Mode 1 After Equalizer 1

by offsets, leading to a high Error Vector Magnitude (EVM). Despite this, a discernible
pattern can be acquired from the constellation, suggesting some level of successful blind
acquisition.

An alternative representation of Figures 5.3 and 5.4 reveals the presence of circles in the
middle of the two modes, corresponding to the "Inphase" and "Quadrature" components of
the "X" and "Y" polarization, respectively. Despite the heavy dominance of the noise over the
constellation, it is still possible to infer certain characteristics. Even with a lower number of
symbols compared to 219, distinct circles of different levels become visible which is shown in
the Appendix section. Enlarging these constellations provides a better view of the circles.
However, it should be noted that the high EVM is a result of the presence of offsets within
the constellation.

The learning curve depicted in Figure 5.5 illustrates the adaptation cycle for 219 symbols,
represented as a multiple of 106. For a lower number of symbols, the adaptation cycle is
reduced accordingly (e.g., as a multiple of 105). The convergence of the equalizer occurs
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Figure 5.4: Mode 2 After Equalizer 1

Figure 5.5: Learning Curve of Time-Averaged Equalizer Error (Window Length = 500)

before the green line, resulting in a flat response thereafter. As mentioned earlier, the learning
curve demonstrates the adaptive convergence of the equalizer by updating its coefficients
to minimize the error metric. This iterative process continues until the optimum value is
achieved.

Figures 5.6 and 5.7 present the received constellation after the second stage of equalization,
which includes frequency and phase offset correction, normalization, and frame synchroniza-
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Figure 5.6: Mode 1 After Equalizer 2 and Further Processing

Figure 5.7: Mode 2 After Equalizer 2 and Further Processing

tion. The Error Vector Magnitude (EVM) values are shown, calculated in percentage (%),
and are normalized using either the "Peak" or "Average" method. The "Peak" normalization
is relative to the peak constellation power, while the "Average" method is relative to the
average constellation power.

5.1 Simulation Results 40



The figures display different colors for visual interpretation of correctly and falsely recovered
points. The turquoise-colored circle in the middle represents the center of gravity. The center
of gravity is calculated for each received point, and signals closer to it are considered to be
correctly decoded bits. The color blue represents the correctly detected bits, while the red
color indicates false bits lying on the border. In cases where the space is tightly closed with
a higher number of bits, the appearance of red color is more noticeable.

It is important to note that relying solely on EVM for performance measurement may not be
sufficient, as it can yield false results when the noise power dominates. The average Bit Error
Rate (BER) in this case was reasonably close to 1.45× 10−3. Therefore, it can be concluded
that the algorithm performed well in the presence of crosstalk and offsets.

This leads us to the next section, where the results obtained from the experimental setup
are discussed.

5.2 Experimental Results

In this section, the results obtained from the experimental setup are presented. Two cases
are considered: the back-to-back case without any fiber, and the case with Few Mode Fiber
(FMF) of length 1 km in the lab setup are present. The back-to-back case serves as a reference
for performance comparison in the presence of FMF, taking into account crosstalk and other
propagation effects.

The experimental setup utilizes a 4 × 4 Multiple-Input Multiple-Output (MIMO) system
for PDM-16QAM modulation at a symbol rate of 32 GBaud, operating in the C-band at a
wavelength of 1550 nm. The linewidth is set to 100 kHz. A Digital-to-Analog Converter
(DAC) and an external cavity laser (ECL) modulator are used in the setup. The channel
includes a root-raised cosine filter with a roll-off factor of 0.1 for pulse shaping. The overall
setup is similar to the one explained earlier.

For the FMF case, the bit-to-symbol mapping and transmission are performed over two
degenerate modes of a 1 km FMF[12]. The data is split and inserted with a decorrelated
delay before the first degenerate mode, and similarly for the second degenerate mode.
The output signals from these two modes are received at the Coherent Receiver Frontend
(CRF) and mixed with a local oscillator. The output of the CRF is then digitized using an
Analog-to-Digital Converter (ADC) operating at a sampling rate of 100 GS/s. These samples
are processed offline using a Digital Signal Processing (DSP) unit, as illustrated in Figure
2.1.

In the back-to-back case, the FMF is not inserted in between, resulting in the absence of
crosstalk caused by the fiber. However, some polarization rotation and offsets are expected
to be present. The setup is similar to the previous case, with the only difference being the
absence of multi-mode transmission using FMF.

5.2.1 Back-to-Back Results

In the back-to-back case, better performance is expected due to the absence of crosstalk and
fiber losses. As shown in Figures 5.8 and 5.9, the constellation after the acquisition process
from the first equalizer is displayed. The constellation before the equalizer appears similar
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to Figures 5.1 and 5.2, but with different Error Vector Magnitude (EVM) values. In this case,
the circular rings within the constellation are more visible, allowing for better inference and
analysis due to the absence of fiber effects.

Figure 5.8: Mode 1 After Equalizer 1 Figure 5.9: Mode 2 After Equalizer 1

In the back-to-back case, the learning curve in Figure 5.10 demonstrates the adaptation
cycle with a multiple of 105. It is observed that the convergence occurs at a relatively higher
number of iterations compared to the simulation results. However, the convergence for each
coefficient is smooth, and the amplitude of the error metric is reasonable.

The parameter "nInitCma" indicates the number of symbols used for the initialization of the
Constant Modulus Algorithm (CMA). Initially, it is set to false to process the samples only
once after convergence is achieved. Once convergence is achieved, the processing is stopped.
However, "nInitCma" is set to true again, and a portion of the samples is cropped. This step is
for the deskew process using the Decision-Directed Least Mean Square (DDLMS) algorithm.
The samples are reprocessed using the tap weights of the converged equalizer.

Figure 5.10: Learning Curve for Back-to-Back Case: Time-Averaged Equalizer Error
(Window Length = 200)

Figures 5.11 and 5.12 display the received constellations after the second stage of equalization
and additional processing. The results are quite impressive, particularly for the Y polarization
in both modes. The data points appear very sharp and tightly packed towards the center of
gravity, resulting in very low Error Vector Magnitude (EVM). It is highly unlikely to observe
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Figure 5.11: Constellation for Mode 1 After Second Equalization Stage (Back-to-Back
Case)

Figure 5.12: Constellation for Mode 2 After Second Equalization Stage (Back-to-Back
Case)

any red points in the Y polarization, indicating a high level of accuracy in the decoding
process.

However, for the X polarization, the EVM is relatively higher, with thicker circles observed
away from the center of gravity. The appearance of red points is slightly more frequent in
this polarization. This discrepancy could be attributed to factors such as misalignment of
the polarizer or the presence of offsets. Theoretically, both polarizations should exhibit the
same constellation properties.

The Bit Error Rate (BER) in this case was 1.16 × 10−4, further indicating a satisfactory
performance of the overall processing.
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5.2.2 Results with Few Mode Fiber (FMF)

In the presence of FewMode Fibers (FMF), additional effects such as crosstalk can deteriorate
the overall performance. To assess the impact of these effects, Figures 5.13 and 5.14 illustrate
the received constellations after the first stage of equalization. Although the circular rings
may not be very distinct, some inferences can still be made from the constellations. One
positive aspect is that despite the presence of crosstalk, the acquisition process is successfully
carried out in the experimental setup.

Figure 5.13: Mode 1 After Equalizer 1 for FMF Case

Figure 5.14: Mode 2 After Equalizer 1 for FMF Case

The learning curve in this case differs significantly from the previous cases. As depicted in
Figure 5.15, the adaptation cycle is represented as a multiple of 105. The conditions, such as
the number of symbols and the number of initialization bits, are similar to the back-to-back
case. However, the curve demonstrates a comparatively poorer convergence compared to
the last two cases. Additionally, each coefficient exhibits a sporadic nature, and the error
metric displays a slightly higher amplitude.

Despite these observations, convergence is still achieved. Initially, the convergence is set
to false until the parameter nInitCma is reached. After this point, it is set to true again to
reprocess the already converged tap weights of the equalizer. Subsequently, the convergence
is cropped.

As anticipated, the received constellations after the DSP with additional post-processing
appear to be slightly noisier. The dominance of red points is evident, and the circles appear
thicker compared to the back-to-back case. Many data points deviate from the center of
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Figure 5.15: Learning Curve for Few Mode Fiber Case: Time-Averaged Equalizer Error
(Window Length = 200)

Figure 5.16: Constellation for Mode 1 After Second Equalization Stage in FMF Case

gravity, although a clear distinction can still be made easily. The error vector magnitudes
(EVMs) are impressive, considering the presence of crosstalk. The low EVM of the Y po-
larization remains visible, indicating that some issues may be related to the experimental
setup. The constellations exhibit satisfactory performance with low EVMs, although this is
not consistently observed in every shot.

In this case, the average bit error rate (BER) was 5.65× 10−4, which is considered very good
for our specific scenario. In the next section, additional factors and comparisons will be
discussed.

Table 5.1 presents the results obtained from a total of four shots for both cases in the
experimental setup. It includes the EVMs and BERs for both modes and both polarizations.
The table demonstrates the difference between the last two back-to-back shots. Despite the
lower EVM, the average BER is slightly higher for the third shot compared to the fourth shot.
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Figure 5.17: Constellation for Mode 2 After Second Equalization Stage in FMF Case

FMF
BER EVM in %, normalization method: peak/avg

Avg BER

or B2B Mode 1 Mode 2 Mode 1 Mode 2

X Y X Y X Y X Y

FMF 1.52× 10−3 8.5× 10−4 9.2× 10−4 3.3× 10−4 11.33/15.20 10.66/14.30 10.76/14.44 9.69/13.00 6.27× 10−4

FMF 1.02× 10−3 7.65× 10−4 8.18× 10−4 3.12× 10−4 10.87/14.58 10.54/14.15 10.62/14.25 9.58/12.86 5.65× 10−4

B2B 5.73× 10−4 6.61× 10−5 2.24× 10−4 3.07× 10−5 10.21/13.70 8.29/11.12 9.05/12.14 7.35/9.86 1.27× 10−4

B2B 5.72× 10−4 8.65× 10−5 2.16× 10−4 1.64× 10−5 10.30/13.82 8.48/11.38 9.20/12.34 7.14/9.57 1.16× 10−4

Table 5.1: Results for a Specific OSNR from Experimental Data

This highlights that while EVMs serve as a good figure of merit, they do not guarantee the
accuracy of the system. Hence, the combination of BER and EVM is considered a credible
approach for analyzing the performance.

5.2.3 Comparison of Several Parameters/Results from New Shots

For experimentation, we received multiple shots at different optical signal-to-noise ratio
(OSNR) values for analysis. A total of 16 shots were processed, ranging from 16.06 dB to
45.01 dB. Due to the impracticality of plotting the constellation for each shot, this section
will focus on presenting tables associated with the back-to-back and few-mode fiber cases.

In addition, EVM versus OSNR, and BER versus OSNR plots are provided for a total of four
modes. As mentioned earlier, we have two LP modes and two polarizations, resulting in a
total of four modes. Therefore, cumulative plots of BERs and EVMs are presented against the
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OSNR levels. Additionally, the polarization of each mode was considered for BER plotting
instead of the average BER. For EVM calculations, the average method was used.

1. Back-to-back case A total of 8 shots were taken for the back-to-back case at different
OSNRs, as mentioned earlier. Figure 5.18 presents the BER versus OSNR curve, while
Figure 5.19 and Figure 5.20 present the EVM versus OSNR plots. Although the BER
plot appears reasonable for each mode considering the experimental setup, it does not
exhibit the ideal curve. It decreases as the OSNR increases, but shows saturation at 40
dB and 45 dB instead of further BER reduction. Additionally, the BER plot behaves
differently at the same OSNR for each polarization.

The EVM curves highlight an issue associated with an outlier at 20 dB for the Y
polarization of mode 2. This issue was addressed and improved by changing the initial
parameter RRC (Root-raised-cosine) to the random unitary method. However, most of
the shots showed better values with the RRC (Root-raised-cosine) method rather than
the random unitary method.

Table 5.2 presents all the BER and EVM values associated with each polarization and
mode, along with their respective OSNRs.
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Figure 5.18: Bit Error Rate (BER) of Modes LP11a and LP11b as a Function of Optical
Signal-to-Noise Ratio (OSNR) in Back-to-Back Case

2. FMF case

The FMF case also includes 8 shots for the same range of OSNRs. In this section,
we present the BER and EVM plots for their respective OSNRs. However, due to the
reported weird outliers of mode 2, each plot is shown separately instead of cumulatively
plotting. Figure 5.21 shows that the BER of mode 1 is quite stable, while for mode 2, it
exhibits significant instability. A similar behavior is observed in the EVM versus OSNR
plot. Each mode is plotted separately here, mainly due to the distinct and unusual
behavior of mode 2 in both X and Y polarizations. As seen in the figure, for mode 1,
both X and Y polarizations display relatively stable behavior.

Table 5.3 corresponds to these BER and EVM plots and shows the faulty values of mode
2. However, this peculiar behavior is somehow altered by changing the initialization
from the RRC (root-raised cosine) to the random unitary method for the receiver
adaptive equalization process. Specifically, when the "Random Unitary" method was
chosen and the "RRC" parameter was set to false, the performance for the same shot
improved drastically. Consequently, for FMF Table 5.4, is presented, which shows
comparatively improved BER and EVM values corresponding to different OSNR levels.
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Figure 5.19: Error Vector Magnitude (EVM) of Modes LP11a and LP11b as a Function
of Optical Signal-to-Noise Ratio (OSNR) in Back-to-Back Case
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Figure 5.20: Improved Behavior: Error Vector Magnitude (EVM) of Modes LP11a and
LP11b as a Function of Optical Signal-to-Noise Ratio (OSNR) in Back-to-
Back Case (Including X and Y Polarization)

This table indicates a reduction in EVM and BER associated with mode 2, although we
can not conclude the performance is close to the ideal curve but still decent behavior is
expected. However, it is important to note that this improvement was not necessarily
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OSNR(dB) BER 1 X BER 1 Y BER 2 X BER 2 Y EVM 1 X EVM 1 Y EVM 2 X EVM 2 Y

16.06 4.90× 10−2 4.37× 10−2 4.75× 10−2 3.90× 10−2 28.46 27.45 28.16 26.55

18.06 2.51× 10−2 2.41× 10−2 2.50× 10−2 2.46× 10−2 23.73 23.47 23.69 27.40

20.05 1.19× 10−2 1.13× 10−2 1.06× 10−2 7.45× 10−3 20.35 20.10 19.94 18.76

25.00 1.36× 10−3 2.39× 10−3 9.32× 10−4 8.77× 10−4 15.08 15.85 14.52 14.19

29.98 2.77× 10−4 9.56× 10−4 1.47× 10−4 2.34× 10−4 13.04 14.15 12.09 12.09

35.00 9.80× 10−5 5.81× 10−4 6.40× 10−5 1.25× 10−4 12.08 13.31 11.31 11.23

40.03 9.10× 10−5 5.25× 10−4 3.90× 10−5 1.59× 10−4 11.95 13.19 10.91 11.37

45.01 1.13× 10−4 3.97× 10−4 4.50× 10−5 1.37× 10−4 12.14 12.91 10.91 11.26

Table 5.2: BER and EVM Values for Multiple OSNR in the Back-to-Back Case

observed for all modes at distinct OSNRs, the RRC method sometimes showed better
results than the random unitary method. Therefore, a separate table for the back-to-
back case was not presented.

We can plot BER and EVM cumulatively for all modes in Figure 5.23 and Figure 5.24.
The improved Table 5.4 utilizes RRC initialization at 16.06 dB, 30.09 dB, and 45.07 dB.
The random unitary initialization did not enhance the performance metric significantly
at these points for each polarization. Considering the difficulty with plotting due to
the inclusion of outliers, the overall performance is improved than the previous plots;
however, we can observe a sudden drop at 30 dB(RRC initialization, since the random
unitary did not show much enhancement with performance metric) and an increment
at 35 dB(Random unitary initialization improved numerically the BER and EVM metric
of outlier, but degraded the metric of some of the X\Y polarization). Afterward,
the performance exhibits a decremental trend. Considering the experimental setup
with adaptive blind equalization, we can still deduce that it worked and the results
demonstrate reasonable performance with some condition tweaking(in our case mainly
the initialization).

There is a scope for improvement, and possibilities to manipulate more parameters
or try various initialization methods with different measured datasets. For this work,
two initialization methods were tried, at some OSNRs this change improved BER and
EVM for the outliers but not necessarily for all polarizations. For the remaining OSNRs,
the performance metric is similar to Table 5.3, as the change in initialization did not
enhance overall BERs and EVMs at those specific OSNRs for all polarizations. The
experimental setup can introduce unknown performance limiting factors, which need
to be observed separately.
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OSNR(dB) BER 1 X BER 1 Y BER 2 X BER 2 Y EVM 1 X EVM 1 Y EVM 2 X EVM 2 Y

16.06 5.16× 10−2 4.35× 10−2 4.98× 10−2 3.96× 10−2 28.93 27.40 28.56 26.68

18.06 2.76× 10−2 2.46× 10−2 4.99× 10−1 2.23× 10−2 24.27 23.58 140.29 23.14

20.04 1.37× 10−2 1.21× 10−2 4.99× 10−1 9.88× 10−3 20.87 20.43 140.87 19.67

25.00 3.97× 10−3 3.63× 10−3 4.98× 10−1 1.76× 10−3 17.10 16.83 140.45 15.35

30.09 6.73× 10−4 1.20× 10−3 5.81× 10−4 4.89× 10−4 13.97 14.78 13.78 13.35

35.04 5.19× 10−4 7.85× 10−4 1.22× 10−3 4.98× 10−1 13.58 13.94 14.84 140.57

40.02 2.23× 10−4 5.43× 10−4 4.98× 10−1 4.46× 10−4 12.67 13.53 140.39 13.20

45.07 2.26× 10−4 4.52× 10−4 1.70× 10−4 1.17× 10−4 12.67 13.30 12.29 11.61

Table 5.3: BER and EVM Values for Multiple OSNR in the FMF Case

OSNR(dB) BER 1 X BER 1 Y BER 2 X BER 2 Y EVM 1 X EVM 1 Y EVM 2 X EVM 2 Y

16.06 5.16× 10−2 4.35× 10−2 4.98× 10−2 3.96× 10−2 28.93 27.40 28.56 26.68

18.06 3.93× 10−2 4.34× 10−2 4.13× 10−2 3.31× 10−2 26.60 27.35 27.01 25.40

20.04 2.57× 10−2 1.86× 10−2 2.66× 10−2 2.29× 10−2 23.83 22.16 24.01 23.20

25.00 1.07× 10−2 8.35× 10−3 1.04× 10−2 7.99× 10−3 19.93 19.07 19.90 18.93

30.09 6.73× 10−4 1.20× 10−3 5.81× 10−4 4.89× 10−4 13.97 14.78 13.78 13.35

35.04 2.08× 10−3 2.39× 10−3 2.05× 10−3 9.17× 10−4 15.73 15.90 15.77 14.29

40.02 1.21× 10−3 1.76× 10−3 1.21× 10−3 4.61× 10−4 14.87 15.40 14.85 13.39

45.07 2.26× 10−4 4.52× 10−4 1.70× 10−4 1.17× 10−4 12.67 13.30 12.29 11.61

Table 5.4: BER and EVM Values for Multiple OSNR in the FMF Case with Improved
Values
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Figure 5.21: Bit Error Rate (BER) of Modes LP11a and LP11b as a Function of Optical
Signal-to-Noise Ratio (OSNR) in Few Mode Fiber (FMF) Case (Including
X and Y Polarization)
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Figure 5.22: Error Vector Magnitude (EVM) of Modes LP11a and LP11b as a Function
of Optical Signal-to-Noise Ratio (OSNR) in Few Mode Fiber (FMF) Case
(Including X and Y Polarization)
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Figure 5.23: Improved BER of Modes LP11a and LP11b as a Function of Optical Signal-
to-Noise Ratio (OSNR) in Few Mode Fiber (FMF) Case (Including X and
Y Polarization)
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Figure 5.24: Improved EVM of Modes LP11a and LP11b as a Function of Optical Signal-
to-Noise Ratio (OSNR) in Few Mode Fiber (FMF) Case (Including X and
Y Polarization)
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6 Conclusion

Adaptive blind equalization is a preferred approach when bandwidth constraints are a
concern in high-capacity networks. This thesis has demonstrated various aspects of three
popular blind algorithms, starting from the basic concepts and extending them further by
incorporating DSP subsystems at the receiver in both simulation and experimental setups.
The key parameters and metrics used in the evaluation indicate the adaptability of these
algorithms even in diverse scenarios with added noise and crosstalk.

The next section will provide a comprehensive overview of the overall findings and discuss
potential prospects in this field.

6.1 Summary

Space division multiplexing (SDM) is a promising technology that addresses the challenge
of exponentially increasing data demand by enhancing network capacity through parallel
pipelines. However, linear impairments and the impact of crosstalk can limit the practical-
ity and make the realization of SDM systems a tedious task. The integration of adaptive
blind equalization with coherent receivers in the DSP unit effectively addresses these issues.
However, making it realizable increases the number of taps and overall system cost. Addi-
tionally, the insertion of fiber introduces dispersion and crosstalk, which are unavoidable
when utilizing parallel paths within a single core with a large radius.

This thesis work highlights the implementation issues associated with Few Mode Fiber (FMF)
and presents the outcomes in both simulation and experimental setups. To address the higher
number of taps, an additional chromatic dispersion (CD) compensation unit utilizing static
filters can be employed to compensate for most of the CD, while adaptive equalization can be
used for residual CD compensation. This approach allows for the deployment of a sufficient
number of taps. The adaptive blind equalizer successfully combats degradation caused by
additive white Gaussian noise (AWGN) and crosstalk. The presented results validate the
proof of concept and demonstrate the performance of blind equalization.

Multiple factors affect the signal recovery process, and when going blind, uncertainties
associated with equalization may increase. Higher noise levels can lead to misinterpretation
of false bits. The convergence of blind equalizers plays a crucial role in the successful
reconstruction of transmitted symbols. Using a higher number of transmitted sequences can
be an effective approach to demonstrate the effectiveness of blind equalizer convergence.

The selection of the step size is crucial and depends on the initial conditions and the
considered channel model. It is important to note that the chosen step size may not be the
same for all cases, as a common step size may not yield the best results. The adaptive blind
equalizers may not provide optimum performance due to the lack of available information at
the receiver. However, they work well when accompanied by additional units for phase and
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frequency offset correction. In this case, the algorithm operates based on the magnitude of
the received signal, making phase offsets unavoidable. Two-stage equalization demonstrates
reasonable performance in this context.

The bit error rate (BER) of both the back-to-back and few-mode fiber cases was reasonable,
and it depended on various factors as discussed in the experimental results. While the
error vector magnitude (EVM) might not be the best figure of merit as it can be heavily
influenced by noise in some cases, it still provides a comparative overview of the two stages
of equalization and highlights the improvement associated with each stage.

It is important to note that a higher optical signal-to-noise ratio (OSNR) does not necessarily
guarantee the best result, as other factors along with the impact of non-linear effects can
significantly alter the overall performance. This could be also due to misalignment of the
setup, lower receiver responsivity, or other component-related issues. However, adjusting
the initial conditions of the equalizer can still help recover the constellation.

Furthermore, outliers associated with the modes or polarization can change the dynamics
of the equalization process. However, these outliers can be limited by adjusting certain
conditions of the blind equalizer. In conclusion, the overall performance of adaptive blind
equalization depends on the suitable step size, initial conditions, and hardware setup and
alignment in the experimental setup. Strong noise power can lead to miscalculations, but the
combination of MIMO adaptive blind equalization with offset correction units and a second
stage of equalization significantly improves the overall performance.

6.2 Future Work

In this work, a few-mode fiber with two modes was used for a 4x4 multiple-input multiple-
output (MIMO) system employing 16-QAM modulation. However, this work can be extended
to explore the performance of adaptive blind equalizers in higher numbers of modes within
a few-mode fiber. As the number of modes increases, crosstalk, and modal dispersion also
increase, which presents an interesting scenario to analyze the effectiveness and flexibility
of the algorithm in a real-time setting.

By extending the study to higher modes in a few-mode fiber, researchers can gain valuable
insights into the behavior of adaptive blind equalizers under more challenging conditions.
This could help in developing robust equalization techniques that can effectively mitigate
the impact of crosstalk and modal dispersion in practical scenarios.
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A Interpreting Experimental Results

Back-to-Back results for 216 symbols

(a) (b)

(c) (d)

(e) (f)

Figure A.1: Constellations before and after 2 stage equalization
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.2: Transfer function with corresponding impulse response
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B Choosing the Right Step Size

The selection of the correct step size is a tedious task, and it is important to ensure its accuracy.
Figure B.1 provides a comprehensive overview of all four scenarios. However, relying solely
on the results depicted in the figure might be misleading. Therefore, simulations were
conducted to validate the accuracy of the desired step size.
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(a) Step size for CMA for 20 iterations
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(b) Step size for MMA for 20 iterations
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(c) Step size for DD-FFE with CMA for 20 iterations
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(d) Step size for DD-FFE with MMA for 20 iterations

Figure B.1: Step size selection for all three algorithms for 20 iterations and 219 sym-
bols
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µvect or εvect or

CMA CMA + DD-LMS MMA MMA + DD-LMS

1.000e-09 6.773 7.827 2.355 2.661

5.995e-09 1.394e+01 1.511e+01 2.367e-01 2.108e-01

3.594e-08 1.208e+01 1.448e+01 1.613e-01 2.342e-01

2.154e-07 8.067 1.141e+01 1.661 1.996

1.292e-06 8.167 1.040e+01 1.746 2.117

7.743e-06 8.712 1.003e+01 1.801 1.959

4.642e-05 8.834 9.603 1.979 1.921

2.783e-04 Inf Inf 2.011 2.068

1.668e-03 Inf Inf Inf Inf

1.000e-02 Inf Inf Inf Inf

Table B.1: Numerical Values of εvect or corresponding to µvect or for 16-QAM, 20 itera-
tions, 219 symbols
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Abbreviations

MIMO Multiple-Input and Multiple-Output

SDM Space division multiplexing

WDM Wavelength division multiplexing

QPSK Quadrature Phase Shift Keying

SPS Samples per symbol

N Received signal length

M Transmitted signal length

yLength Length of the discrete-time dimension of yN×1 and zN×1

xLength Length of the discrete-time dimension of xM×1

hLength Length of the discrete-time dimension of HN×M

wLength Number of taps of the equalizer filter (or length of the discrete-time dimension of WM×N)

x̂m×1 Equalizer output
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ỹp[n] pth batch of vector y[n]

x̂p[m] x̂ at discrete time instant p

W j[m, n] jth iteration of W[m, n]

εm Error

ε
j
m jth iteration of the error

PMD Polarization mode dispersion

RRC Root-raised-cosine

CD Chromatic dispersion

AWGN Additive white Gaussian noise

FMF Few Mode Fiber

EVM Error vector magnitude

BER Bit error rate

OSNR Optical signal-to-noise ratio

MMF Multimode fibers

SMF Single-mode fibers
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