
The University of Manchester Research

Recording provenance of workflow runs with RO-Crate

DOI:
10.48550/arXiv.2312.07852

Document Version
Submitted manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Leo, S., Crusoe, M. R., Rodríguez-Navas, L., Sirvent, R., Kanitz, A., Geest, P. D., Wittner, R., Pireddu, L., Garijo,
D., Fernández, J. M., Colonnelli, I., Gallo, M., Ohta, T., Suetake, H., Capella-Gutierrez, S., Wit, R. D., Kinoshita, B.
P., & Soiland-Reyes, S. (2024). Recording provenance of workflow runs with RO-Crate. Manuscript submitted for
publication. https://doi.org/10.48550/arXiv.2312.07852
Published in:
PLoS ONE

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:17. Jul. 2024

https://doi.org/10.48550/arXiv.2312.07852
https://research.manchester.ac.uk/en/publications/0eecdb19-3474-4a64-b3b6-63525aaf7cab
https://doi.org/10.48550/arXiv.2312.07852

Recording provenance of workflow runs with RO-Crate

Simone Leo1*, Michael R. Crusoe2,3,4, Laura Rodŕıguez-Navas5, Raül Sirvent5,
Alexander Kanitz6,7, Paul De Geest8, Rudolf Wittner9,10,11, Luca Pireddu1, Daniel
Garijo12, José M. Fernández5, Iacopo Colonnelli13, Matej Gallo9, Tazro Ohta14,15,
Hirotaka Suetake16, Salvador Capella-Gutierrez5, Renske de Wit2, Bruno P. Kinoshita5,
Stian Soiland-Reyes17,18

1 Center for Advanced Studies, Research, and Development in Sardinia (CRS4), Pula
(CA), Italy
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
3 DTL Projects, The Netherlands
4 Forschungszentrum Jülich, Germany
5 Barcelona Supercomputing Center, Barcelona, Spain
6 Biozentrum, University of Basel, Basel, Switzerland
7 Swiss Institute of Bioinformatics, Lausanne, Switzerland
8 VIB Data Core, Gent, Belgium
9 Faculty of Informatics, Masaryk University, Brno, Czech Republic
10 Institute of Computer Science, Masaryk University, Brno, Czech Republic
11 BBMRI-ERIC, Graz, Austria
12 Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain
13 Computer Science Department, Università degli Studi di Torino, Torino, Italy
14 Database Center for Life Science, Joint Support-Center for Data Science Research,
Research Organization of Information and Systems, Shizuoka, Japan
15 Institute for Advanced Academic Research, Chiba University, Chiba, Japan
16 Sator, Incorporated, Tokyo, Japan
17 Department of Computer Science, The University of Manchester, Manchester,
United Kingdom
18 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

* simone.leo@crs4.it (SL)

Abstract

Recording the provenance of scientific computation results is key to the support of
traceability, reproducibility and quality assessment of data products. Several data
models have been explored to address this need, providing representations of workflow
plans and their executions as well as means of packaging the resulting information for
archiving and sharing. However, existing approaches tend to lack interoperable adoption
across workflow management systems. In this work we present Workflow Run RO-Crate,
an extension of RO-Crate (Research Object Crate) and Schema.org to capture the
provenance of the execution of computational workflows at different levels of granularity
and bundle together all their associated objects (inputs, outputs, code, etc.). The model
is supported by a diverse, open community that runs regular meetings, discussing
development, maintenance and adoption aspects. Workflow Run RO-Crate is already
implemented by several workflow management systems, allowing interoperable
comparisons between workflow runs from heterogeneous systems. We describe the
model, its alignment to standards such as W3C PROV, and its implementation in six

July 16, 2024 1/37

workflow systems. Finally, we illustrate the application of Workflow Run RO-Crate in
two use cases of machine learning in the digital image analysis domain.

1 Introduction 1

A crucial part of scientific research is recording the provenance of its outputs. The W3C 2

PROV standard defines provenance as “a record that describes the people, institutions, 3

entities, and activities involved in producing, influencing, or delivering a piece of data or 4

a thing” [1]. Provenance is instrumental to activities such as traceability, reproducibility, 5

accountability, and quality assessment [2]. The constantly growing size and complexity 6

of scientific datasets and the analysis that is required to extract useful information from 7

them has made science increasingly dependent on advanced automated processing 8

techniques in order to get from experimental data to final results [3–5]. Consequently, a 9

large part of the provenance information for scientific outputs consists of descriptions of 10

complex computer-aided data processing steps. This data processing is often expressed 11

as workflows – i.e., high-level applications that coordinate multiple tools and manage 12

intermediate outputs in order to produce the final results. 13

In order to homogenise the collection and interchange of provenance records, the 14

W3C consortium proposed a standard for representing provenance in the Web (PROV 15

[1]), along with the PROV ontology (PROV-O) [6], an OWL [7] representation of 16

PROV. PROV-O has been widely extended for workflows (e.g., D-PROV [8], 17

ProvONE [9], OPMW [10] (Open Provenance Model for Workflows), P-PLAN [11]), 18

where provenance information is collected in two main forms: prospective and 19

retrospective [12]. Prospective provenance – the execution plan – is essentially the 20

workflow itself: it includes a machine-readable specification with the processing steps to 21

be performed and the data and software dependencies to carry out each computation. 22

Retrospective provenance refers to what actually happened during an execution – 23

i.e. what were the values of the input parameters, which outputs were produced, which 24

tools were executed, how much time did the execution take, whether the execution was 25

successful or not, etc. Retrospective provenance may be represented at different levels of 26

abstraction, depending on the information that is available and/or required: a workflow 27

execution may be interpreted i) as a single end-to-end activity, ii) as a set of individual 28

execution of workflow steps, or iii) by going a step further and indicating how each step 29

is divided into sub-processes when a workflow is deployed in a cluster. Various workflow 30

management systems, such as WINGS [13] (Workflow INstance Generation and 31

Specialization) and VisTrails [15, 16], have adopted PROV and its PROV-O 32

representation to lift the burden of provenance collection from tool users and 33

developers [17,18]. 34

D-PROV, PROV-ONE, OPMW, P-PLAN propose representations of workflow plans 35

and their respective executions, taking into account the features of the workflow 36

systems implementing them (e.g., hierarchical representations, sub-processes, etc.). 37

Other data models, such as wfprov and wfdesc [19], go a step further by considering not 38

only the link between plans and executions, but also how to package the various 39

artefacts as a Research Object (RO) [20] to improve metadata interoperability and 40

document the context of a digital experiment. 41

However, while these models address some workflow provenance representation 42

issues, they have two main limitations: first, the extensions of PROV are not directly 43

interoperable because of differences in their granularities or different assumptions in 44

their workflow representations; second, their support from Workflow Management 45

Systems (WMS) is typically one system per model. An early approach to unify and 46

integrate workflow provenance traces across WMSs was the Workflow Ecosystems 47

through STandards (WEST) [14], which used WINGS to build workflow templates and 48

July 16, 2024 2/37

different converters. In all of these workflow provenance models, the emphasis is on the 49

workflow execution structure as a directed graph, with only partial references for the 50

data items. The REPRODUCE-ME ontology [21] extended PROV and P-PLAN to 51

explain the overall scientific process with the experimental context including real life 52

objects (e.g. instruments, specimens) and human activities (e.g. lab protocols, 53

screening), demonstrating provenance of individual Jupyter Notebook cells [22] and 54

highlighting the need for provenance also where there is no workflow management 55

system. 56

More recently, interoperability has been partially addressed by Common Workflow 57

Language Prov (CWLProv) [23], which represents workflow enactments as research 58

objects serialised according to the Big Data Bag approach [24]. The resulting format is 59

a folder containing several data and metadata files [25], expanding on the Research 60

Object Bundle approach of Taverna [26]. CWLProv also extends PROV with a 61

representation of executed processes (activities), their inputs and outputs (entities) and 62

their executors (agents), together with their Common Workflow Language (CWL) 63

specification [27] – a standard workflow specification adopted by at least a dozen 64

different workflow systems [28]. Although CWLProv includes prospective provenance as 65

a plan within PROV (based on the wfdesc model), in practice its implementation does 66

not include tool definitions or file formats.Thus, for CWLProv consumers to reconstruct 67

the full prospective provenance for understanding the workflow, they would also need to 68

inspect the separate workflow definition in the native language of the workflow 69

management system. Additionally, the CWLProv RO may include several other 70

metadata files and PROV serialisations conforming to different formats, complicating its 71

generation and consumption. 72

As for granularity, CWLProv proposes multiple levels of provenance [23, Figure 2], 73

from Level 0 (capturing workflow definition) to Level 3 (domain-specific annotations). 74

In practice, the CWL reference implementation cwltool [30] and the corresponding 75

CWLProv specification [25] record provenance details of all task executions together 76

with the intermediate data and any nested workflows (CWLProv level 2). This level of 77

granularity requires substantial support from the workflow management system 78

implementing the CWL specification, resulting appropriate for workflow languages 79

where the execution plan, including its distribution among the various tasks, is well 80

known in advance. However, it can be at odds with other systems where the execution 81

is more dynamic, depending on the verification of specific runtime conditions, such as 82

the size and distribution of the data (e.g., COMPSs [31]). This design makes the 83

implementation of CWLProv challenging, which the authors suspect may be one of the 84

main causes for the low adoption of CWLProv (at the time of writing the format is 85

supported only by cwltool). Finally, being based on the PROV model, CWLProv is 86

highly focused on the interaction between agents, processes and related entities, while 87

support for contextual metadata (such as workflow authors, licence or creation date) in 88

the Research Object Bundle is limited [32] and stored in a separate manifest file, which 89

includes the data identifier mapping to filenames. A project that uses serialised 90

Research Objects similar to those used by CWLProv is Whole Tale [33], a web platform 91

with a focus on the narrative around scientific studies and their reproducibility, where 92

the serialised ROs are used to export data and metadata from the platform. In contrast, 93

our work is primarily focused on the ability to capture the provenance of computational 94

workflow execution including its data and executable workflow definitions. 95

RO-Crate [34] is an approach for packaging research data together with their 96

metadata and associated resources. RO-Crate extends Schema.org [35], a popular 97

vocabulary for describing resources on the Web. In its simplest form, an RO-Crate is a 98

directory structure that contains a single JSON-LD [36] metadata file at the top level. 99

The metadata file describes all entities stored in the RO-Crate along with their 100

July 16, 2024 3/37

relationships, and it is both machine-readable and human-readable. RO-Crate is general 101

enough to be able to describe any dataset, but can also be made as specific as needed 102

through the use of extensions called profiles. Profiles describe “a set of conventions, 103

types and properties that one minimally can require and expect to be present in that 104

subset of RO-Crates” [100]. The broad set of types and properties from Schema.org, 105

complemented by a few additional terms from other vocabularies, make the RO-Crate 106

model a candidate for expressing a wide range of contextual information that 107

complements and enriches the core information specified by the profile. This 108

information may include, among others, the workflow authors and their affiliations, 109

associated publications, licensing information, related software, etc. This approach is 110

used by WorkflowHub [37], a workflow-system-agnostic workflow registry which specifies 111

a Workflow RO-Crate profile [38] to gather the workflow definition with such metadata 112

in an archived RO-Crate. 113

In this work, we present Workflow Run RO-Crate (WRROC), an extension of 114

RO-Crate for representing computational workflow execution provenance. Our main 115

contributions include: 116

• a collection of RO-Crate profiles to represent and package both the prospective 117

and the retrospective provenance of a computational workflow run in a way that is 118

machine-actionable [39], independently of the specific workflow language or 119

execution system, and including support for re-execution; 120

• implementations of this new model in six workflow management systems and in 121

one conversion tool; 122

• a mapping of our profiles against the W3C PROV-O Standard using the Simple 123

Knowledge Organisation System (SKOS) [40]. 124

To foster usability, the profiles are characterised by different levels of detail, and the 125

set of mandatory metadata items is kept to a minimum in order to ease the 126

implementation. This flexible approach increases the model’s adaptability to the diverse 127

landscape of WMSs used in practice. The base profile, in particular, is applicable to any 128

kind of computational process, not necessarily described in a formal workflow language. 129

All profiles are supported and sustained by the Workflow Run RO-Crate community, 130

which meets regularly to discuss extensions, issues and new implementations. 131

The rest of this work is organised as follows: we first describe the Workflow Run 132

RO-Crate profiles in Section 2; we then illustrate implementations in Section 3 and 133

usage examples in Section 4; finally, we include a discussion in Section 5 and we 134

conclude the paper with our plans for future work in Section 6. 135

2 The Workflow Run RO-Crate profiles 136

RO-Crate profiles are extensions of the base RO-Crate specification that describe how 137

to represent the classes and relationships that appear in a specific domain or use case. 138

An RO-Crate conforming to a profile is not just machine-readable, but also 139

machine-actionable, as a digital object whose type is represented by the profile 140

itself [41]. 141

The Workflow Run RO-Crate profiles are the main outcome of the activities of the 142

Workflow Run RO-Crate Community [42], an open working group that includes 143

workflow users and developers, WMS users and developers, and researchers and software 144

engineers interested in workflow execution provenance and Findable, Accessible, 145

Interoperable and Reusable (FAIR) approaches for data and software. One of the first 146

steps in the development of the Workflow-Run RO-Crate profiles was to compile a list of 147

July 16, 2024 4/37

requirements to be addressed by the model from all interested participants, in the form 148

of competency questions (CQs) [43]. The process also included reviewing existing state 149

of the art models, such as wfprov [19], ProvONE [9] or OPMW [10]. The result was the 150

definition of 11 CQs capturing requirements which span a broad application scope and 151

consider different levels of provenance granularity. Each requirement was supported by 152

a rationale and linked to a GitHub issue to drive the public discussion forward. When a 153

requirement was addressed, related changes were integrated into the profiles and the 154

relevant issue was closed. All the original issues are now closed, and the profiles have 155

had five official releases on Zenodo [50, 51, 55]. The target of several of the original CQs 156

evolved during profile development, as the continuous discussion within the community 157

highlighted the main points to be addressed. This continuous process is reflected in the 158

corresponding issues and pull requests in the community’s GitHub repository. The final 159

implementation of the CQs in the profiles is validated with SPARQL queries that can 160

be run on RO-Crate metadata samples, also available on the GitHub repository [44]. 161

As requirements were being defined, it became apparent that one single profile 162

would not have been sufficient to cater for all possible usage scenarios. In particular, 163

while some use cases required a detailed description of all computations orchestrated by 164

the workflow, others were only concerned with a “black box” representation of the 165

workflow and its execution as a whole (i.e., whether the workflow execution as a whole 166

was successful and which results were obtained). Additionally, some computations 167

involve a data flow across multiple applications that are executed without the aid of a 168

WMS and thus are not formally described in a standard workflow language. These 169

observations led to the development of three profiles: 170

1. Process Run Crate, to describe the execution of one or more tools that contribute 171

to a computation; 172

2. Workflow Run Crate, to describe a computation orchestrated by a predefined 173

workflow; 174

3. Provenance Run Crate, to describe a workflow computation including the internal 175

details of individual step executions. 176

In the rest of this section we describe each of these profiles in detail. We use the 177

term “class” to refer to a type as defined in RDF(s) and “entity” to refer to an instance 178

of a class. We use italics to denote the properties and classes in each profile: these are 179

defined in the RO-Crate JSON-LD context [46], which extends Schema.org with terms 180

from the Bioschemas [47] ComputationalWorkflow profile [48] and other vocabularies. 181

Note that terms coming from Bioschemas are not specific to the life sciences. We also 182

developed a dedicated term set [49] to represent concepts that are not captured by 183

terms in the RO-Crate context. New terms are defined in RDF(s) following Schema.org 184

guidelines (i.e., using domainIncludes and rangeIncludes to define domains and ranges 185

of properties). In the rest of the text and images, the following prefixes are used to 186

represent the corresponding namespaces: 187

s: → https://schema.org/

bioschemas: → https://bioschemas.org/

bsp: → https://bioschemas.org/properties/

wfrun: → https://w3id.org/ro/terms/workflow-run#

188

2.1 Process Run Crate 189

The Process Run Crate profile [50] contains specifications to describe the execution of 190

one or more software applications that contribute to the same overall computation, but 191

are not necessarily coordinated by a top-level workflow or script (e.g. when executed 192

manually by a human, one after the other as intermediate datasets become available). 193

July 16, 2024 5/37

https://schema.org/
https://bioschemas.org/
https://bioschemas.org/properties/
https://w3id.org/ro/terms/workflow-run#

The Process Run Crate is the basis for all profiles in the WRROC collection. It 194

specifies how to describe the fundamental classes involved in a computational run: i) a 195

software application represented by a s:SoftwareApplication, s:SoftwareSourceCode or 196

bioschemas:ComputationalWorkflow class; and ii) its execution, represented by a 197

s:CreateAction class, and linking to the application via the s:instrument property. 198

Other important properties of the s:CreateAction class are s:object , which links to the 199

action’s inputs, and s:result , which links to its outputs. The time the execution started 200

and ended can be provided, respectively, via the s:startTime and s:endTime properties. 201

The s:Person or s:Organization class that performed the action is specified via the 202

s:agent property. Fig 1 shows the classes used in Process Run Crate together with their 203

relationships. 204

T�4PGUXBSF"QQMJDBUJPO

T�$SFBUF"DUJPO

T�1FSTPO�PS

T�0SHBOJ[BUJPO

T�.FEJB0CKFDU�PS

T�1SPQFSUZ7BMVF

T�JOTUSVNFOU

�

�

�

�

��

T�PCKFDU

�

T�BHFOU

��1SPTQFDUJWF�QSPWFOBODF�	QMBO

��3FUSPTQFDUJWF�QSPWFOBODF�	XIBU�IBQQFOFE

T�SFTVMU

�

Fig 1. UML class diagram for Process Run Crate. The central class is the
s:CreateAction, which represents the execution of an application. It links to the
application itself via s:instrument , to the entity that executed it via s:agent , and to its
inputs and outputs via s:object and s:result , respectively. In this and following figures,
classes and properties are shown with prefixes to indicate their origin. Some inputs
(and, less commonly, outputs) are not stored as files or directories, but passed to the
application (e.g., via a command line interface) as values of various types (e.g., a number
or string). In this case, the profile recommends a representation via s:PropertyValue.
For simplicity, we left out the rest of the RO-Crate structure (e.g. the root s:Dataset),
and attributes (e.g. s:startTime, s:endTime, s:description, s:actionStatus). In this UML
class notation, diamond ♢ arrows indicate aggregation and regular arrows indicate
references, ∗ indicates zero or more occurrences, 1 means single occurrence.

As an example, suppose a user named John Doe runs the UNIX command head to 205

July 16, 2024 6/37

https://schema.org/SoftwareApplication
https://schema.org/SoftwareSourceCode
https://bioschemas.org/ComputationalWorkflow
https://schema.org/CreateAction
https://schema.org/instrument
https://schema.org/CreateAction
https://schema.org/object
https://schema.org/result
https://schema.org/startTime
https://schema.org/endTime
https://schema.org/Person
https://schema.org/Organization
https://schema.org/agent
https://schema.org/CreateAction
https://schema.org/instrument
https://schema.org/agent
https://schema.org/object
https://schema.org/result
https://schema.org/PropertyValue
https://schema.org/Dataset
https://schema.org/startTime
https://schema.org/endTime
https://schema.org/description
https://schema.org/actionStatus

extract the first ten lines of an input file named lines.txt, storing the result in 206

another file called selection.txt. John then runs the sort UNIX command on 207

selection.txt, storing the sorted output in a new file named sorted selection.txt. 208

Fig 2 contains a diagram of the two actions and their relationships to the other 209

involved entities. Note how the actions are connected by the fact that the output of 210

“Run Head” is also the input of “Run Sort”: they form an “implicit workflow”, whose 211

steps have been executed manually rather than by a software tool. 212

IFBE

3VO�)FBE

+PIO�%PFTFMFDUJPO�UYU

T�JOTUSVNFOU

T�PCKFDU

T�BHFOU

T�SFTVMU

TPSU

MJOFT�UYU

TPSUFE@TFMFDUJPO�UYU

3VO�4PSU

T�PCKFDU

T�SFTVMU

T�BHFOU

T�JOTUSVNFOU

T�.FEJB0CKFDU�	'JMF

T�$SFBUF"DUJPO

T�1FSTPO

T�4PGUXBSF"QQMJDBUJPO

Fig 2. Diagram of a simple workflow where the head and sort programs were run
manually by a user. The executions of the individual software programs are connected
by the fact that the file output by head was used as input for sort, documenting the
computational flow in an implicit way. Such executions can be represented with Process
Run Crate.

Process Run Crate extends the RO-Crate guidelines on representing software used to 213

create files with additional requirements and conventions. This arrangement is typical 214

of the RO-Crate approach, where the base specification provides general 215

recommendations to allow for high flexibility, while profiles – being more concerned 216

with the representation of specific domains and machine actionability – provide more 217

detailed and structured definitions. Nevertheless, in order to be broadly applicable, 218

profiles also need to avoid the specification of too many strict requirements, trying to 219

strike a good trade-off between flexibility and actionability. 220

2.2 Workflow Run Crate 221

The Workflow Run Crate profile [51] combines the Process Run Crate and 222

WorkflowHub’s Workflow RO-Crate [38] profiles to describe the execution of 223

computational workflows managed by a WMS. Such workflows are typically written in a 224

July 16, 2024 7/37

domain-specific language, such as CWL or Snakemake [52], and run by one or more 225

WMS (e.g., StreamFlow [53], Galaxy [54]). Fig 3 illustrates the classes used in this 226

profile together with their relationships. As in Process Run Crate, the execution is 227

described by a s:CreateAction that links to the application via s:instrument , but in this 228

case the application must be a workflow, as prescribed by Workflow RO-Crate. More 229

specifically, Workflow RO-Crate states that the RO-Crate must contain a main 230

workflow typed as File (an RO-Crate mapping to s:MediaObject), s:SoftwareSourceCode 231

and bioschemas:ComputationalWorkflow . The execution of the individual workflow 232

steps, instead, is not represented: that is left to the more detailed Provenance Run 233

Crate profile (described in the next section). 234

The Workflow Run Crate profile also contains recommendations on how to represent 235

the workflow’s input and output parameters, based on the Bioschemas 236

ComputationalWorkflow profile. All these elements are represented via the 237

bioschemas:FormalParameter class and are referenced from the main workflow via the 238

bsp:input and bsp:output properties. While the classes referenced from s:object and 239

s:result in the s:CreateAction represent data entities and argument values that were 240

actually used in the workflow execution, the ones referenced from bsp:input and 241

bsp:output correspond to formal parameters, which acquire a value when the workflow is 242

run (see Fig 3). In the profile, the relationship between an actual value and the 243

corresponding formal parameter is expressed through the s:exampleOfWork property. 244

For instance, in the following JSON-LD snippet a formal parameter (#annotations) is 245

illustrated together with a corresponding final-annotations.tsv file: 246

{ 247

"@id": "#annotations", 248

"@type": "FormalParameter", 249

"additionalType": "File", 250

"encodingFormat": "text/tab-separated-values", 251

"valueRequired": "True", 252

"name": "annotations" 253

}, 254

{ 255

"@id": "final-annotations.tsv", 256

"@type": "File", 257

"contentSize": "14784", 258

"exampleOfWork": {"@id": "#annotations"} 259

} 260

2.3 Provenance Run Crate 261

The Provenance Run Crate profile [55] extends Workflow Run Crate by adding new 262

concepts to describe the internal details of a workflow run, including individual tool 263

executions, intermediate outputs and related parameters. Individual tool executions are 264

represented by additional s:CreateAction instances that refer to the tool itself via 265

s:instrument – analogously to its use in Process Run Crate. The workflow is required to 266

refer to the tools it orchestrates through the s:hasPart property, as suggested in the 267

Bioschemas ComputationalWorkflow profile, though in the latter it is only a 268

recommendation. 269

To represent the logical steps defined by the workflow, this profile uses s:HowToStep 270

– i.e., “A step in the instructions for how to achieve a result” [56]. Steps point to the 271

corresponding tools via the s:workExample property and are referenced from the 272

workflow via the s:step property; the execution of a step is represented by a 273

s:ControlAction pointing to the s:HowToStep via s:instrument and to the 274

July 16, 2024 8/37

https://schema.org/CreateAction
https://schema.org/instrument
https://schema.org/MediaObject
https://schema.org/SoftwareSourceCode
https://bioschemas.org/ComputationalWorkflow
https://bioschemas.org/FormalParameter
https://bioschemas.org/properties/input
https://bioschemas.org/properties/output
https://schema.org/object
https://schema.org/result
https://schema.org/CreateAction
https://bioschemas.org/properties/input
https://bioschemas.org/properties/output
https://schema.org/exampleOfWork
https://schema.org/CreateAction
https://schema.org/instrument
https://schema.org/hasPart
https://schema.org/HowToStep
https://schema.org/workExample
https://schema.org/step
https://schema.org/ControlAction
https://schema.org/HowToStep
https://schema.org/instrument

T�.FEJB0CKFDU

T�4PGUXBSF4PVSDF$PEF

CJPTDIFNBT�$PNQVUBUJPOBM8PSLbPX

	XPSLbPX

CJPTDIFNBT�'PSNBM1BSBNFUFS

T�$SFBUF"DUJPO

	XPSLbPX�SVO

T�1FSTPO�PS

T�0SHBOJ[BUJPO

T�.FEJB0CKFDU�PS

T�1SPQFSUZ7BMVF

CTQ�JOQVU

�

�

T�JOTUSVNFOU

�

�

�

�

�

�

T�PCKFDU

�

T�FYBNQMF0G8PSL

�

�

T�BHFOU

��1SPTQFDUJWF�QSPWFOBODF�	QMBO

��3FUSPTQFDUJWF�QSPWFOBODF�	XIBU�IBQQFOFE

T�SFTVMU

�

CTQ�PVUQVU

�

�

Fig 3. UML class diagram for Workflow Run Crate. The main differences with
Process Run Crate are the representation of formal parameters and the fact that the
workflow is expected to be an entity with types s:MediaObject (File in RO-Crate
JSON-LD), s:SoftwareSourceCode and bioschemas:ComputationalWorkflow . Effectively,
the workflow belongs to all three types, and its properties are the union of the
properties of the individual types. In this profile, the execution history (retrospective
provenance) is augmented by a (prospective) workflow definition, giving a high-level
overview of the workflow and its input and output parameter definitions
(bioschemas:FormalParameter). The inner structure of the workflow is not represented
in this profile. In the provenance part, individual files (s:MediaObject) or arguments
(s:PropertyValue) are then connected to the parameters they realise. Most workflow
systems can consume and produce multiple files, and this mechanism helps to declare
each file’s role in the workflow execution. The filled diamond ♦ indicates composition,
empty diamond ♢ aggregation, and other arrows relations.

s:CreateAction entities that represent the corresponding tool execution(s) via s:object . 275

Note that a step execution does not coincide with a tool execution: an example where 276

this distinction is apparent is when a step maps to multiple executions of the same tool 277

over a list of inputs (e.g. the “scattering” feature in CWL). 278

An RO-Crate following this profile can also represent the execution of the WMS 279

itself (e.g., cwltool) via s:OrganizeAction, pointing to a representation of the WMS via 280

s:instrument , to the steps via s:object and to the workflow run via s:result . The s:object 281

attribute of the s:OrganizeAction can additionally point to a configuration file 282

containing a description of the settings that affected the behaviour of the WMS during 283

the execution. Fig 4 illustrates the various classes involved in the representation of a 284

workflow run via Provenance Run Crate together with their relationships. 285

July 16, 2024 9/37

https://schema.org/MediaObject
https://schema.org/SoftwareSourceCode
https://bioschemas.org/ComputationalWorkflow
https://bioschemas.org/FormalParameter
https://schema.org/MediaObject
https://schema.org/PropertyValue
https://schema.org/CreateAction
https://schema.org/object
https://schema.org/OrganizeAction
https://schema.org/instrument
https://schema.org/object
https://schema.org/result
https://schema.org/object
https://schema.org/OrganizeAction

T�.FEJB0CKFDU

T�4PGUXBSF4PVSDF$PEF

CJPTDIFNBT�$PNQVUBUJPOBM8PSLbPX

T�)PX5P

	XPSLbPX

T�)PX5P4UFQ

T�4PGUXBSF"QQMJDBUJPO

	UPPM

T�4PGUXBSF"QQMJDBUJPO

	XPSLbPX�FOHJOF

CJPTDIFNBT�'PSNBM1BSBNFUFS

T�$POUSPM"DUJPO

T�0SHBOJ[F"DUJPO

	XPSLbPX�FOHJOF�SVO

T�$SFBUF"DUJPO

	XPSLbPX�SVO

V�1FSTPO�PS

T�0SHBOJ[BUJPO

T�.FEJB0CKFDU�PS

T�1SPQFSUZ7BMVF

T�$SFBUF"DUJPO

	UPPM�FYFDVUJPO

CTQ�JOQVU

�

�

T�JOTUSVNFOU

�

�

� �

T�SFTVMU

T�PCKFDU

�

T�TUFQ

�

�

T�XPSL&YBNQMF

�

�

T�JOTUSVNFOU

�

�

T�JOTUSVNFOU

T�PCKFDU

�

T�PCKFDU

�

T�FYBNQMF0G8PSL

�

�

T�SFTVMU

�

�

T�BHFOU

T�IBT1BSU

�

�

��1SPTQFDUJWF�QSPWFOBODF�	QMBO

��3FUSPTQFDUJWF�QSPWFOBODF�	XIBU�IBQQFOFE

�

CTQ�JOQVU

�

T�SFTVMU

�

T�PCKFDU

�

�

�

CTQ�PVUQVU

�

CTQ�PVUQVU

�

�

�

�

�

T�JOTUSVNFOU

�

�

�

�

�

�

Fig 4. UML class diagram for Provenance Run Crate. In addition to the
workflow run, this profile represents the execution of individual steps and their related
tools. The prospective side (the execution plan) is shown by the workflow listing a
series of s:HowToSteps, each linking to the s:SoftwareApplication that is to be executed.
The bsp:input and bsp:output parameters for each tool are described in a similar way to
the overall workflow parameter in Fig 3. The retrospective provenance side of this
profile includes each tool execution as an additional s:CreateAction with similar
mapping to the realised parameters as s:MediaObject or s:PropertyValue, allowing
intermediate values to be included in the RO-Crate even if they are not workflow
outputs. The workflow execution is described the same as in the Workflow Run Crate
profile with an overall s:CreateAction (the workflow outputs will typically also appear
as outputs from inner tool executions). An additional s:OrganizeAction represents the
workflow engine execution, which orchestrated the steps from the workflow plan through
corresponding s:ControlActions that spawned the tool’s execution (s:CreateAction). It
is possible that a single workflow step had multiple such executions (e.g. array
iterations). Not shown in figure: s:actionStatus and s:error to indicate step/workflow
execution status. The filled diamond ♦ indicates composition, empty diamond ♢
aggregation, and other arrows relations.

Additionally, this profile specifies how to describe connections between parameters, 286

through parameter connections – a fundamental feature of computational workflows. 287

Specifically, parameter connections describe: (i) how tools consume as input the 288

July 16, 2024 10/37

https://schema.org/HowToStep
https://schema.org/SoftwareApplication
https://bioschemas.org/properties/input
https://bioschemas.org/properties/output
https://schema.org/CreateAction
https://schema.org/MediaObject
https://schema.org/PropertyValue
https://schema.org/CreateAction
https://schema.org/OrganizeAction
https://schema.org/ControlAction
https://schema.org/CreateAction
https://schema.org/actionStatus
https://schema.org/error

intermediate outputs generated by other tools; and (ii) how workflow-level parameters 289

are mapped to tool-level parameters. As an example, consider again the workflow 290

depicted in Fig 2, and suppose it is implemented in a workflow language such as CWL: 291

the workflow-level input (a text file) is linked through a parameter connection to the 292

input of the head tool wrapper, and then a second parameter connection links this 293

tool’s output to the input of the sort tool wrapper. A representation of parameter 294

connections is particularly useful for traceability, since it provides the means to 295

document the inputs and tools on which workflow outputs depend. Since the current 296

RO-Crate context has no suitable terms for the description of such relationships, we 297

added appropriate ones to the aforementioned dedicated term set [49]: a 298

wfrun:ParameterConnection type with wfrun:sourceParameter and 299

wfrun:targetParameter attributes that respectively map to the source and target formal 300

parameters, and a wfrun:connection property to link from the relevant step or workflow 301

to the wfrun:ParameterConnection instances. 302

In our set of profiles, Provenance Run Crate is the most detailed one and offers the 303

highest level of granularity; its specification is a superset of Workflow Run RO-Crate, 304

which in turn is a superset of Process Run Crate. This relationship between the three 305

profiles is illustrated in Fig 5, as a Venn diagram. Theoretically, all computational 306

provenance information could be represented through the Provenance Run Crate profile 307

alone (possibly relaxing some requirements), since it inherits from the other ones. In 308

practice, though, this choice would require the use of the most complex model even for 309

simple use cases. Having three separate profiles provides a way to represent information 310

at different levels of granularity, while keeping all RO-Crates generated with them 311

interoperable. This approach gives a straightforward path to supporting the 312

representation of computational provenance in simpler use cases such as with simple 313

command executions, i.e. the Process Run Crate. Additionally, the approach lowers the 314

accessibility barrier for implementation in WMSs, as developers may choose to initially 315

implement only the more basic support in their WMS, with reduced effort and 316

complexity, and gradually scale to more detailed representations. This encourages the 317

adoption of WRROC across the diverse landscape of use cases and WMSs. 318

2.4 Profile formats 319

The WRROC profiles are available both in human-readable (HTML) and in 320

machine-readable format (RO-Crate). The human-readable profiles are at: 321

• https://w3id.org/ro/wfrun/process/0.5 322

• https://w3id.org/ro/wfrun/workflow/0.5 323

• https://w3id.org/ro/wfrun/provenance/0.5 324

And the corresponding machine-readable ones at: 325

• https://doi.org/10.5281/zenodo.12158562 326

• https://doi.org/10.5281/zenodo.12159311 327

• https://doi.org/10.5281/zenodo.12160782 328

The RO-Crate metadata files for the machine readable profiles can be retrieved using 329

the same URLs as the human-readable ones, but with JSON-LD content negotiation: 330

this is done by setting "Accept:application/ld+json" in the HTTP header. 331

The new terms we defined to represent concepts that could not be expressed with 332

existing Schema.org ones are at: 333

July 16, 2024 11/37

https://w3id.org/ro/terms/workflow-run#ParameterConnection
https://w3id.org/ro/terms/workflow-run#sourceParameter
https://w3id.org/ro/terms/workflow-run#targetParameter
https://w3id.org/ro/terms/workflow-run#connection
https://w3id.org/ro/terms/workflow-run#ParameterConnection
https://w3id.org/ro/wfrun/process/0.5
https://w3id.org/ro/wfrun/workflow/0.5
https://w3id.org/ro/wfrun/provenance/0.5
https://doi.org/10.5281/zenodo.12158562
https://doi.org/10.5281/zenodo.12159311
https://doi.org/10.5281/zenodo.12160782

1SPWFOBODF�3VO�$SBUF

8PSLbPX�3VO�$SBUF

1SPDFTT

3VO�$SBUF

8PSLbPX

30�$SBUF

Fig 5. Venn diagram of the specifications for the various RO-Crate profiles.
Process Run Crate specifies how to describe the fundamental classes involved in a
computational run, and thus is the basis for all profiles in the WRROC collection.
Workflow Run Crate inherits the specifications of both Process Run Crate and
Workflow RO-Crate. Provenance Run Crate, in turn, inherits the specifications of
Workflow Run Crate (and in a sense includes multiple Process Runs for each step
execution, but within a single Crate).

• https://w3id.org/ro/terms/workflow-run 334

These terms are available in multiple formats with content negotiation, as explained at 335

the above link. 336

3 Implementations 337

Support for the Workflow Run RO-Crate profiles presented in this work has been 338

implemented in a number of systems, showing support from the community and 339

demonstrating their usability in practice. We describe seven of these implementations 340

(one in a conversion tool and six in WMS) in the following sections. Table 1 provides an 341

overview of the implementations, along with the respective profile implemented, and 342

links to the implementation itself and to an example RO-Crate. These tools have been 343

developed in parallel by different teams, and independently from each other. RO-Crate 344

has a strong ecosystem of tools [34], and the WRROC implementations have either 345

re-used these or added their own approach to the standards. 346

3.1 Runcrate 347

Runcrate [57] is a Workflow Run RO-Crate toolkit which also serves as a reference 348

implementation of the proposed profiles. It consists of a Python package with a 349

command line interface, providing a straightforward path to integration in Python 350

software and other workflows. The runcrate toolkit includes functionality to convert 351

CWLProv ROs to RO-Crates conforming to the Provenance Run Crate profile 352

(runcrate convert), effectively providing an indirect implementation of the format for 353

cwltool. Indeed, the CWLProv model provided a basis for the Provenance Run Crate 354

profile, and the implementation of a conversion tool in runcrate at times drove the 355

improvement and extension of the profile as new requirements or gaps in the old designs 356

July 16, 2024 12/37

https://w3id.org/ro/terms/workflow-run

emerged. Runcrate converts both the retrospective provenance part of the CWLProv 357

RO (the RDF graph of the workflow’s execution) and the prospective provenance part 358

(the CWL files, including the workflow itself). Both parts are thus converted into a 359

single, workflow-language-agnostic metadata resource. 360

Another functionality offered by the runcrate package is runcrate report, which 361

reports on the various executions described in an input RO-Crate, listing their starting 362

and ending times, the values of the various parameters, etc. Runcrate report 363

demonstrates how the provenance profiles presented in this work enable comparison of 364

runs interoperably across different workflow languages or different implementations of 365

the same language. This functionality has also been used as a lightweight validator for 366

the various implementations. 367

Runcrate also includes a run subcommand to re-execute the computation described 368

by an input Workflow Run Crate or Provenance Run Crate where CWL is used as a 369

workflow language. It works by mapping the RO-Crate description of input parameters 370

and their values (the workflow’s bsp:input and the action’s s:object) to the format 371

expected by CWL, which is then used to relaunch the workflow on the input data. This 372

functionality shows the machine-actionability of the profiles to support reproducibility, 373

and was used to successfully re-execute the digital pathology annotation workflow 374

described in Section 4.1. Of course, achieving a full re-execution in the general case may 375

not always be possible: reproducibility is supported by the profiles, but also benefits 376

from specific characteristics of the workflow language (which should provide a clear 377

formalism to map input items to their corresponding parameter slots) and of the 378

specific workflow’s implementation, which can be made considerably easier to reproduce 379

by containerising the computational environment required by each step (if allowed by 380

the workflow language). 381

3.2 Galaxy 382

The Galaxy project [54] provides a WMS with data management functionalities as a 383

multi-user platform, aiming to make computational biology more accessible to research 384

scientists that do not have computer programming or systems administration experience. 385

Galaxy’s most prominent features include: a collection of 7500+ integrated tools [58]; a 386

web interface that allows the definition and execution of workflows using the integrated 387

tools; a network of dedicated (public) Galaxy instances. 388

The export of workflow execution provenance data as Workflow Run Crates was 389

added to Galaxy in version 23 [96] providing a more interoperable alternative to the 390

basic export of Galaxy workflow invocations. A WRROC export from Galaxy includes: 391

the workflow definition; a set of serialisations of the invocation-related metadata in 392

Galaxy native, JSON-formatted files; and the input and output data files. This result is 393

achieved by: i) extracting provenance data from Galaxy entities related to the workflow 394

run, along with their associated metadata; ii) converting them to RO-Crate metadata 395

using the ro-crate-py library [59]; iii) describing all files contained in the basic 396

invocation export within the RO-Crate metadata; and iv) making the Workflow Run 397

Crate available for export to the user through Galaxy’s web interface and API [60]. We 398

extract the prospective provenance contained in Galaxy’s YAML-based gxformat2 [61] 399

workflow definition, which includes details of the analysis pipeline such as the graph of 400

the tools that need to be executed and metadata about the data types required. The 401

retrospective provenance – i.e., the details of the executed workflow, such as the inputs, 402

outputs, and parameter values used – is extracted from Galaxy’s data model, which is 403

not directly accessible to users in the context of a public Galaxy server. All of this 404

provenance information is then mapped to RO-Crate metadata, including some 405

Galaxy-specific data entities such as dataset collections. An exemplary Workflow Run 406

Crate exported from Galaxy, through its Workflow Invocations list, is available on 407

July 16, 2024 13/37

https://bioschemas.org/properties/input
https://schema.org/object

Zenodo [62]. 408

In practice, a user would take the following steps to obtain a Workflow Run Crate 409

from a Galaxy instance: i) create or download a Galaxy workflow definition (e.g.: from 410

WorkflowHub) and import it in a Galaxy instance, or create a workflow through the 411

Galaxy GUI directly; ii) execute the workflow, providing the required inputs; iii) after 412

the workflow has run successfully, the corresponding RO-Crate will be available for 413

export from the Workflow Invocations list. 414

3.3 COMPSs 415

COMPSs [31] is a task-based programming model that allows users to transform a 416

sequential application into a parallel one by simply annotating some of its methods, thus 417

facilitating scaling applications to increasing amounts of computing resources. When a 418

COMPSs application is executed, a corresponding workflow describing the application’s 419

tasks and their data dependencies is dynamically generated and used by the COMPSs 420

runtime to orchestrate the execution of the application in the infrastructure. As a WMS, 421

COMPSs stands out for its many advanced features that enable applications to achieve 422

fine-grained high efficiency in HPC systems, such as the ability to exploit underlying 423

parallelisation frameworks (e.g. MPI [63], OpenMP [64]), compilers (e.g. NUMBA [65]), 424

failure management, task grouping, and more. Also, provenance recording for COMPSs 425

workflows has been explored in previous work [66], where the Workflow RO-Crate 426

profile was used to capture structured descriptive metadata about the executed 427

workflow, without introducing any significant run time performance overheads. 428

In this work, COMPSs has been further improved by implementing the generation of 429

provenance information conformant to the Workflow Run Crate profile, thus also 430

capturing details about the actual execution of the workflow. The dynamic nature of 431

COMPSs workflows poses some challenges to capturing provenance, which were met 432

thanks to the instruments provided by the WRROC model. For instance, a COMPSs 433

workflow is created when the application is executed and, thus, a prior static workflow 434

definition does not exist before that moment. Due to this design, the workflow entity in 435

the metadata file references the entry point application run by COMPSs – instead of, for 436

instance, a dedicated workflow definition file as one might find with other WMSs. Also, 437

formal parameters are not included in the prospective provenance (note that specifying 438

them is not required by the profile) because inputs and outputs (both for each task and 439

the whole workflow) are determined at runtime. However, the RO-Crate generation by 440

COMPSs leverages the information recorded by the runtime to automatically add 441

metadata of all input or output data assets used or produced by the workflow. 442

Because of the supercomputing environments where COMPSs is used, the integration 443

of Workflow Run Crate support required paying particular attention to the generation of 444

a unique ID for the s:CreateAction representing the workflow run. Our implementation 445

uses UUIDs for distributed environments, while it adds a combination of hostname and 446

queuing system job ID for supercomputer executions, to provide as much information as 447

possible from the run while preserving ID uniqueness. In the s:CreateAction, the 448

s:description term includes system information, as well as relevant environment 449

variables that provide details on the execution environment (e.g., node list, CPUs per 450

node). Finally, the s:subjectOf property of the s:CreateAction references the system’s 451

monitoring tool (when available), where authorised users can see detailed profiling of the 452

corresponding job execution, as provided by the MareNostrum IV supercomputer [67]. 453

To showcase the COMPSs adoption of the Workflow Run Crate profile, we provide 454

as an example the execution of the BackTrackBB [68] application in the MareNostrum 455

IV supercomputer. BackTrackBB targets the detection and location of seismic sources 456

using the statistical coherence of the wave field recorded by seismic networks and 457

antennas. The resulting RO-Crate [69] captures the provenance of the execution results 458

July 16, 2024 14/37

https://schema.org/CreateAction
https://schema.org/CreateAction
https://schema.org/description
https://schema.org/subjectOf
https://schema.org/CreateAction

and complies with the Workflow Run Crate profile. It includes the application source 459

files, a diagram of the workflow’s graph, application profiling and input and output files. 460

The implementation of provenance recording using Workflow Run Crate has been 461

fully integrated in the COMPSs runtime and is available as of release 3.2 [70]. 462

3.4 StreamFlow 463

The StreamFlow framework [53] is a container-native WMS for the execution of 464

workflows defined in CWL. It has been designed around two primary principles: first, it 465

allows the execution of tasks in multi-container environments, supporting the concurrent 466

execution of communicating tasks in a multi-agent ecosystem; second, it relaxes the 467

requirement of a single shared data space, allowing for hybrid workflow executions on 468

top of multi-cloud, hybrid cloud/HPC, and federated infrastructures. StreamFlow 469

orchestrates hybrid workflows by combining a workflow description (e.g., a CWL 470

workflow description and a set of input values) with one or more deployment 471

descriptions – i.e. representations of the execution environments in terms of 472

infrastructure-as-code (e.g., Docker Compose files [71], HPC batch scripts, and Helm 473

charts [72]). A streamflow.yml file – the entry point of each StreamFlow execution – 474

binds each workflow step with the set of most suitable execution environments. At 475

execution time, StreamFlow automatically takes care of all the secondary aspects, like 476

scheduling, checkpointing, fault tolerance, and data movements. 477

StreamFlow collects prospective and retrospective provenance data in a custom 478

format and persists it into a pluggable database (using sqlite3 as the default choice). 479

After a CWL workflow execution completes, users can generate an RO-Crate through 480

the streamflow prov command, which extracts the provenance data stored in the 481

database for one or more workflow executions and converts it to an RO-Crate archive 482

that is fully compliant with the Provenance Run Crate Profile, including the details of 483

each task run by the WMS. Support for the format has been integrated into the main 484

development branch and will be included in release 0.2.0 [73]. 485

From the StreamFlow point of view, the main limitation in the actual version of the 486

Provenance Run Crate standard is the lack of support for distributed provenance – i.e., 487

a standard way to describe the set of locations involved in a workflow execution and 488

their topology. As a temporary solution, the StreamFlow configuration and a 489

description of the hybrid execution environment are preserved by directly including the 490

streamflow.yml file into the generated archive. However, this product-specific solution 491

prevents a wider adoption from other WMS and forces agnostic frameworks (e.g., 492

WorkflowHub) to provide ad-hoc plugins to interpret the StreamFlow format. Since the 493

support for hybrid and cross-facility workflows is gaining traction in the WMS 494

ecosystem, we envision support for distributed provenance as a feature for future 495

versions of Workflow Run RO-Crate. 496

3.5 WfExS-backend 497

WfExS-backend [74] is a FAIR workflow execution orchestrator that aims to address 498

some of the difficulties found in analysis reproducibility and analysis of sensitive data in 499

a secure manner. WfExS-backend requires that the software used by workflow steps is 500

available in publicly accessible software containers for reproducibility. Actual workflow 501

execution is delegated to one of the supported workflow engines – currently either 502

Nextflow [75] or cwltool. The orchestrator prepares and stages all the elements needed 503

to run the workflow – i.e. all the files of the workflow itself, the specific version of the 504

workflow engine, the required software containers and the inputs. All these elements are 505

referenced through resolvable identifiers, ideally public, permanent ones. Thanks to this 506

approach, the orchestrator can consume workflows from various types of sources, such 507

July 16, 2024 15/37

as git repositories, Software Heritage, or even RO-Crates from WorkflowHub. 508

WfExS-backend development milestones have aimed to reach FAIR workflow execution 509

through the generation and consumption of RO-Crates following the Workflow Run 510

Crate profile, which has proven to be a mechanism suitable to semantically describe 511

digital objects in a way that simplifies embedding details crucial to analysis 512

reproducibility and replicability. 513

When the orchestrator prepares a workflow for execution it records details relevant 514

to the prospective provenance, such as the public URLs used to fetch input data and 515

workflows, content digestion fingerprints (typically sha256 checksums) and metadata 516

derived from workflow files, container images and input files. Most of this captured 517

metadata is later included in the generated RO-Crates. WfExS-backend has explicit 518

commands to generate and publish both prospective and retrospective provenance 519

RO-Crates based on a given existing staged execution scenario. These RO-Crates can 520

selectively include copies of used elements as payloads. Workflows can be executed more 521

than once in the same staged directory, with all the executions sharing the same inputs. 522

In this case, run details from all the executions are represented in the retrospective 523

provenance RO-Crate. Support for the consumption of Workflow Run RO-Crates to 524

reproduce the operations they document is available as of WfExS-backend version 525

1.0.0a0 [74]. We have created examples of Workflow Run Crates generated by 526

WfExS-backend to capture provenance information from the execution of a Nextflow 527

workflow [76] and a CWL workflow [30]; these crates are both available on 528

Zenodo [77,78]. Future developments to WfExS-backend will also add support for 529

embedding in the RO-Crates the URLs of output results that have been deposited into 530

a suitable repository (like Zenodo DOIs, for instance). 531

3.6 Sapporo 532

Sapporo [79] is an implementation of the Workflow Execution Service (WES) API 533

specification [109]. WES is a standard proposed by the Global Alliance for Genomics 534

and Health (GA4GH) for cloud-based data analysis platforms that receive requests to 535

execute workflows. Sapporo supports the execution of several workflow engines, 536

including cwltool [30], Toil [80], and StreamFlow [53]. Sapporo includes features 537

specifically tailored to bioinformatics applications, including the calculation of feature 538

statistics from specific types of outputs generated by workflow runs. For example, the 539

system calculates the mapping rate of DNA sequence alignments from BAM format files. 540

To describe the feature values, Sapporo uses the Workflow Run Crate profile extended 541

with additional terms to represent these biological features [81]. 542

Further, the Tonkaz companion command line software has integrated functionality 543

to compare Run Crates generated by Sapporo to measure the reproducibility of the 544

workflow outputs [82]. Developers can use this unique feature to build a CI/CD 545

platform for their workflows to ensure that changes to the product do not produce an 546

unexpected result. Workflow users can also use this feature to verify the results from 547

the same workflow deployed in different environments. 548

While Sapporo supports Workflow Run Crate, since WES is a WMS wrapper, it 549

does not parse the provided workflow definition files. Instead, it embeds the information 550

in the files passed by the WES request to record the provenance of execution rather 551

than using the actual workflow parameters meant for the wrapped WMS. Therefore, the 552

current implementation of Sapporo does not capture the connections between the 553

inputs/outputs depicted in the workflow and the actual files used/generated during the 554

run. The profile generated by Sapporo has fields representing input and output files, 555

but they are not linked to formal parameters. 556

Sapporo supports export to Workflow Run Crate as of release 1.5.1 [83]. An example 557

of a Workflow Run RO-Crate generated by Sapporo is available on Zenodo [84]. 558

July 16, 2024 16/37

3.7 Autosubmit 559

Autosubmit [85] is an open source, lightweight workflow manager and meta-scheduler 560

tailored to configuring and running scientific experiments in climate research. It 561

supports scheduling jobs via SSH to Slurm [86], PBS [87] and other remote batch 562

servers used in HPC. 563

Autosubmit’s “archive” feature archives the experiment directory and all its contents 564

into a ZIP file, which can be used later to access the provenance data or to execute the 565

Autosubmit experiment again. Even though the data in the ZIP file includes 566

prospective provenance and retrospective provenance, it is not structured, and a simple 567

examination yields no way to distinguish the provenance types. 568

Recent releases of Autosubmit 4 have added features to increase user flexibility. An 569

updated YAML configuration management system has been implemented that allows 570

users to combine multiple YAML files into a single unified configuration file. Also, the 571

option to use only the experiment manager features of Autosubmit has been added, 572

delegating the workflow execution to a different backend workflow engine – like 573

ecFlow [88], Cylc [89], or a CWL runner. While these features provide some much 574

appreciated flexibility, they have increased the complexity involved in reliably tracking 575

the experiment configuration and other metadata for provenance documentation 576

purposes. 577

In order to give users a more structured way to archive provenance, which includes 578

the complete experiment configuration, the parameters used to generate it, and is also 579

interoperable between workflow managers, the archive feature was enhanced with a new 580

option in Autosubmit 4.0.100 [90] to enable the generation of provenance data in 581

Workflow Run RO-Crates. The prospective provenance data for the crate is extracted 582

from the Autosubmit experiment configuration. This data includes the multiple YAML 583

files, the unified YAML configuration, as well as the parameters used to preprocess each 584

file – preprocessing replaces placeholders in script templates with values from the 585

experiment configuration. The retrospective provenance data is included with the 586

RO-Crate archive and includes logs and other traces produced by the experiment 587

workflow. Both prospective and retrospective provenance data are included in the final 588

RO-Crate, which is compliant with the Workflow Run Crate profile. At a practical level, 589

the implementation was able to leverage the ro-crate-py library for many of the 590

details pertaining to the creation of the RO-Crate archive in Python, and adding 591

information for the JSON-LD metadata. 592

One of the main challenges for implementing WRROC support in Autosubmit was 593

incorporating Autosubmit’s Project feature. A Project in Autosubmit is an abstract 594

concept that references a code repository and is used to define experiment configuration 595

and contains template scripts defining workflow tasks and other auxiliary files. The 596

project has a type that defines the type of the repository (e.g., git) and a location that 597

is the URL to retrieve it. The RO-Crate file generated by Autosubmit includes the 598

project type and location, but it does not include the complete Project and so it is 599

lacking configuration details and scripts. Therefore, users receive provenance data of the 600

Project, but only those with the appropriate privileges can access its constituent 601

resources (many applications run with Autosubmit can not be publicly shared without 602

consent). After consulting with the RO-Crate community regarding the specific 603

Autosubmit requirements, the Autosubmit team adopted a mixed approach where 604

Autosubmit initialises the JSON-LD metadata from its configuration and local trace 605

files, and the user is responsible for providing a partial JSON-LD metadata object in 606

the Autosubmit YAML configuration. ro-crate-py was extended to allow the 607

RO-Crate JSON-LD metadata to be patched by these partial JSON-LD metadata 608

objects. This way, users are able to provide the information that is missing from the 609

Autosubmit configuration model, but is required by WRROC – e.g., licence, authors, 610

July 16, 2024 17/37

inputs, outputs, formal parameters, etc. 611

Future implementations of WRROC support should be facilitated by the new 612

functionality added to ro-crate-py to support the user-mediated metadata integration 613

approach. On the other hand, the integration of WRROC support would have been 614

facilitated by an automated validation tool for RO-Crate archives, and by 615

documentation and examples on how to use the profiles with coarse-grained workflow 616

management systems (as defined in [91]) that do not track inputs and outputs, which is 617

the case of Autosubmit – as well as the Cylc and ecFlow workflow engines. The 618

feedback generated by this use case was welcomed by the WRROC community and 619

work to address these issues is either planned on under way at the time of writing. 620

To demonstrate Autosubmit’s new WRROC-based functionality to generate 621

structured provenance data, a workflow was created using an example Autosubmit 622

Project designed using UFZ’s mHM (mesoscale Hydrological Model) [93, 94], and it was 623

executed with Autosubmit. The resulting Workflow Run Crate is available from 624

Zenodo [92]. 625

Table 1. Workflow Run Crate implementations

Impl. Profile Version URL/DOI Example

runcrate Provenance [57] [95]

Galaxy Workflow [96] [62]

COMPSs Workflow [70] [69]

Streamflow Provenance [73] [97]

WfExS Workflow [74] [77]

Sapporo Workflow [83] [84]

Autosubmit Workflow [90] [92]

Summary of each WRROC implementation, together with the profile it implements, the software
version that makes it available and an example RO-Crate. Runcrate is a toolkit that converts
CWLProv ROs to Provenance Run Crates, while the others are workflow management systems.

4 Exemplary use cases 626

We illustrate Workflow Run RO-Crate on two exemplary use cases. These are similar in 627

terms of application domain, as they both relate to the application of machine learning 628

techniques for the analysis of human prostate images for the purpose of supporting 629

cancer tissue detection. However, the use cases are quite different in the way 630

computations are executed and provenance is represented: in the first, the analysis is 631

conducted by means of a CWL workflow and the outcome is represented with 632

Provenance Run Crate; in the second, Process Run Crate is used in combination with a 633

complementary model to represent a provenance chain that can extend beyond the 634

computational analysis. 635

4.1 Provenance Run Crate for digital pathology 636

In this section, we present a use case that demonstrates the effectiveness of the 637

Provenance Run Crate profile at capturing provenance data in the context of digital 638

pathology. More specifically, we demonstrate the generation of RO-Crates to save 639

provenance data associated with the computational annotation of magnified prostate 640

tissue areas and cancer subregions using deep learning models [98]. The image 641

annotation process is implemented in a CWL workflow consisting of three steps, each 642

executing inference on an image using a deep learning model: i) inference of a 643

July 16, 2024 18/37

low-resolution tissue mask to select areas for further processing; ii) high-resolution 644

tissue inference to refine borders; iii) high-resolution cancer tissue identification. The 645

two tissue inference steps run the same tool, but set different values for the parameter 646

that controls the magnification level, and the second runs on a subset of the image area. 647

The workflow is integrated in the CRS4 Digital Pathology Platform [99], a web-based 648

platform to support clinical studies involving the examination and/or the annotation of 649

digital pathology images. 650

To assess the interoperability of WRROC, we recorded the provenance of the 651

execution of the same exemplary workflow on two different WMSs. In the first case, we 652

executed the CWL workflow with cwltool and converted the resulting CWLProv RO to 653

a Provenance Run Crate with the runcrate tool (Section 3.1). In the second case, the 654

workflow was executed with the StreamFlow WMS (Section 3.4). The RO-Crates 655

obtained in the two cases [95,97] are very similar to each other, differing only in a few 656

details. For instance, Streamflow includes its configuration file in the crate and has 657

separate files for the workflow and the two tools, while cwltool with runcrate results in 658

the workflow and the tools being stored in a single file (CWL’s “packed” format). Apart 659

from these minor differences, the description of the computation is essentially the same, 660

so the RO-Crates are fully interoperable. Four actions are represented: the workflow 661

itself, the two executions of the tissue extraction tool and the execution of the tumour 662

classification tool. Each action is linked to the corresponding workflow or tool via the 663

s:instrument property, and reports its starting and ending time. For each action, input 664

and output slots are referenced by the workflow, while the corresponding values are 665

referenced by the action itself. The data and s:PropertyValue entities corresponding to 666

the input and output values link to the corresponding parameter slots via the 667

s:exampleOfWork property, providing information on the values taken by the 668

parameters during execution. Listing 1 shows the output of the runcrate report 669

command for the StreamFlow RO-Crate. For each action (workflow or tool run), 670

runcrate reports the associated instrument (workflow or tool), the starting and ending 671

time and the list of inputs and outputs, with pointers from the formal parameter to the 672

corresponding actual value taken during the execution of the action. 673

The s:exampleOfWork link between input / output values and parameter slots is 674

used by runcrate run to reconstruct the CWL input parameter mapping needed to 675

rerun the computation. The s:alternateName property (a Schema.org property 676

applicable to all entities), which records the original name of data entities (at the time 677

the computation was run), is also crucial for reproducibility in this case: both 678

StreamFlow and CWLProv, to avoid clashes, record input and output files and 679

directories using their SHA1 checksum as their names. However, for this particular 680

workflow file names are important: it expects the input image data to be in the 681

MIRAX [101] format, where the “main” dataset file taken as an input parameter by the 682

processing application must be accompanied by a directory of additional data files, in 683

the same location and with the same name, apart from the extension. The runcrate tool 684

uses the s:alternateName to rename the input dataset as required, so that the expected 685

pattern can be picked up by the workflow during the re-execution. This use case was 686

the main motivation to include a recommendation to use s:alternateName with the 687

above semantics in Process Run Crate. 688

Thanks to the fact that both RO-Crates were generated following the best practices 689

to support reproducibility mentioned in the profiles, we were able to automatically 690

re-execute both computations with the runcrate tool. This was also made possible by 691

the fact that the CWL workflow included information on which container images to use 692

for each tool. Overall, this shows how reproducibility is a hard-to-achieve goal that can 693

only be supported, but not ensured, by the profiles, since it also depends on factors like 694

the characteristics of the computation, the choice of workflow language and whether 695

July 16, 2024 19/37

https://schema.org/instrument
https://schema.org/PropertyValue
https://schema.org/exampleOfWork
https://schema.org/exampleOfWork
https://schema.org/alternateName
https://schema.org/alternateName
https://schema.org/alternateName

Listing 1. Output of the runcrate report command executed on the Provenance Run
Crate generated by StreamFlow in the digital pathology inference use case (Section 4.1).
This informal listing of relevant RO-Crate entities describes each step of the execution.
Note that inputs and outputs are of different types (not shown): e.g., tissue low>0.9

is a string parameter, 6b15de... is a filename, and #af0253... is a collection.

action: #30a65cba -1b75 -47dc-ad47 -1 d33819cf156
instrument: predictions.cwl ([’ SoftwareSourceCode ’,

’ComputationalWorkflow ’, ’HowTo ’, ’File ’])
started: 2023 -05 -09 T05 :10:53.937305+00:00
ended: 2023 -05 -09 T05 :11:07.521396+00:00
inputs:

#af0253d688f3409a2c6d24bf6b35df7c4e271292 <- predictions.cwl#slide
tissue_low <- predictions.cwl#tissue -low -label
9 <- predictions.cwl#tissue -low -level
tissue_low >0.9 <- predictions.cwl#tissue -high -filter
tissue_high <- predictions.cwl#tissue -high -label
4 <- predictions.cwl#tissue -high -level
tissue_low >0.99 <- predictions.cwl#tumor -filter
tumor <- predictions.cwl#tumor -label
1 <- predictions.cwl#tumor -level

outputs:
06133 ec5f8973ec3cc5281e5df56421c3228c221 <- predictions.cwl#tissue
4fd6110ee3c544182027f82ffe84b5ae7db5fb81 <- predictions.cwl#tumor

action: #457 c80d0 -75e8 -46d6-bada -b3fe82ea0ef1
step: predictions.cwl#extract -tissue -low
instrument: extract_tissue.cwl ([’ SoftwareApplication ’, ’File ’])
started: 2023 -05 -09 T05 :10:55.236742+00:00
ended: 2023 -05 -09 T05 :10:55.910025+00:00
inputs:

tissue_low <- extract_tissue.cwl#label
9 <- extract_tissue.cwl#level
#af0253d688f3409a2c6d24bf6b35df7c4e271292 <- extract_tissue.cwl#src

outputs:
6b15de40dd0ee3234062d0f261c77575a60de0f2 <- extract_tissue.cwl#tissue

action: #d09a8355 -1a14 -4ea4 -b00b -122 e010e5cc9
step: predictions.cwl#extract -tissue -high
instrument: extract_tissue.cwl ([’ SoftwareApplication ’, ’File ’])
started: 2023 -05 -09 T05 :10:58.417760+00:00
ended: 2023 -05 -09 T05 :11:03.153912+00:00
inputs:

tissue_low >0.9 <- extract_tissue.cwl#filter
6b15de40dd0ee3234062d0f261c77575a60de0f2 <- extract_tissue.cwl#filter_slide
tissue_high <- extract_tissue.cwl#label
4 <- extract_tissue.cwl#level
#af0253d688f3409a2c6d24bf6b35df7c4e271292 <- extract_tissue.cwl#src

outputs:
06133 ec5f8973ec3cc5281e5df56421c3228c221 <- extract_tissue.cwl#tissue

action: #ae2163a8 -1a2a -4d78 -9c81 -caad76a72e47
step: predictions.cwl#classify -tumor
instrument: classify_tumor.cwl ([’ SoftwareApplication ’, ’File ’])
started: 2023 -05 -09 T05 :10:58.420654+00:00
ended: 2023 -05 -09 T05 :11:06.708344+00:00
inputs:

tissue_low >0.99 <- classify_tumor.cwl#filter
6b15de40dd0ee3234062d0f261c77575a60de0f2 <- classify_tumor.cwl#filter_slide
tumor <- classify_tumor.cwl#label
1 <- classify_tumor.cwl#level
#af0253d688f3409a2c6d24bf6b35df7c4e271292 <- classify_tumor.cwl#src

outputs:
4fd6110ee3c544182027f82ffe84b5ae7db5fb81 <- classify_tumor.cwl#tumor

July 16, 2024 20/37

best practices such as containerisation are followed. 696

This use case highlighted the need to add specifications on how to represent 697

multi-file datasets [50, section “Representing multi-file objects”], driven by the need to 698

handle the aforementioned MIRAX image format. To represent these, we added 699

specifications to the Process Run Crate profile on describing “composite” datasets 700

consisting of multiple files and directories to be treated as a single unit – as opposed to 701

more conventional input or output parameters consisting of a single file. The profile 702

specifies that such datasets should be represented by a s:Collection class linking to 703

individual files and directories via the s:hasPart property, and referencing the main part 704

(if any) via the s:mainEntity property. Note that, by adding this specification to Process 705

Run Crate, we also made it available to Workflow Run Crate and Provenance Run 706

Crate. In the output of the runcrate report tool the additional files are not shown, since 707

the formal parameter points to the s:Collection class that describes the whole dataset. 708

This use case also demonstrates the usage of parameter connections (described in 709

Section 2.3). The RO-Crate resulting from the workflow run contains a representation 710

of all connections between workflow-level parameters (the overall input and output 711

parameters) and tool-level parameters. This allows crate consumers to 712

programmatically find which tool is affected by a workflow-level parameter, thus 713

providing insight on how the workflow works internally (the main feature of the 714

Provenance Run Crate profile). For instance, the tissue-high-level workflow 715

parameter is connected to the level parameter of the extract tissue.cwl tool by the 716

extract-tissue-high step. This parameter regulates the resolution level (pyramidal 717

images are organised into multiple levels of resolution) at which the image is processed 718

in the high-resolution tissue extraction phase. A similar connection is present for the 719

tissue extraction at low resolution. Since wfrun:ParameterConnections are referenced 720

from the relevant s:HowToStep, the crate consumer can easily determine the resolution 721

level used for both image processing phases from the retrospective provenance. 722

4.2 Process Run Crate and CPM RO-Crate for cancer detection 723

This section presents an RO-Crate created to describe an execution of a computational 724

pipeline that trains AI models to detect the presence of carcinoma cells in 725

high-resolution digital images of magnified human prostate tissue. This RO-Crate 726

makes use of Process Run Crate and CPM RO-Crate [102], an RO-Crate profile that 727

supports the representation of entities described according to the Common Provenance 728

Model (CPM) [103,104,106]. 729

The CPM is a recently developed extension of the W3C PROV model [1]. It enables 730

the representation of distributed provenance, which is created when an object involved 731

in the research process – either digital or physical (e.g., biological material) – is 732

exchanged between organisations, so that each organisation can document only a 733

portion of the object’s life cycle. Using CPM, each involed organisation can document 734

its portion of the life cycle by generating, storing, and managing individual provenance 735

components, which are then linked together in a chain that spans multiple organizations. 736

The CPM prescribes how to represent such provenance, and how to enable its traversal 737

and processing using a common algorithm, independently from the type of object being 738

described. In addition, the CPM defines a notion of meta-provenance, which contains 739

metadata about the history of individual provenance components. 740

CPM RO-Crate supports the identification of CPM-based provenance and 741

meta-provenance files within an RO-Crate, so that data, metadata, and CPM-based 742

provenance information can be packed together. An RO-Crate generated according to 743

the CPM-RO-Crate profile embeds parts of the distributed provenance, which may be 744

linked to the provenance of precursors and successors of the packed data. The 745

CPM-RO-Crate profile synergises well with Process Run Crate, since the former can 746

July 16, 2024 21/37

https://schema.org/Collection
https://schema.org/hasPart
https://schema.org/mainEntity
https://schema.org/Collection
https://w3id.org/ro/terms/workflow-run#ParameterConnection
https://schema.org/HowToStep

add references to CPM-based provenance descriptions of computational executions 747

described with the latter, integrating them in the distributed provenance. Since 748

CPM-based provenance and meta-provenance files are typically themselves produced by 749

computations, Process Run Crate allows to represent these along with the main 750

computations that produce the datasets being exchanged, providing the full picture in a 751

cohesive ensemble. 752

The use case pipeline consists of three main computational steps: i) a preprocessing 753

step that splits input images into small patches and divides them into a training and a 754

testing set; ii) a training step that trains the model to recognise the presence of 755

carcinoma cells in the images; iii) an evaluation step that measures the accuracy of the 756

trained model on the testing set. In addition to these pipeline steps, the RO-Crate 757

describes additional computations related to the generation of the CPM provenance and 758

meta-provenance files. All computations are described according to the Process Run 759

Crate profile, while the CPM files are referenced according to the CPM RO-Crate 760

profile. Also represented via Process Run Crate are: the input dataset; the results of 761

the pipeline execution; the scripts that implement the pipeline; the log files generated 762

by the scripts; a script that converts the logs into the CPM files. This approach allowed 763

us to describe all elements as a single RO-Crate, which is available on Zenodo [105]. 764

Listing 2 presents the runcrate report output for the RO-Crate, including action 765

inputs and outputs while omitting other details. The listing shows the connections 766

between the actions, forming an “implicit workflow” as discussed in Section 2.1. For 767

instance, the prov train.log file is both an output of the training action 768

(#train script:ROCRATE-PUB-...) and an input of the CPM provenance generation 769

action for the training phase (#train script:6efa9a06-...:CPM-provgen), 770

highlighting the interdependency between the steps. 771

The CPM files complement the RO-Crate with details about the pipeline execution 772

process, such as how the input dataset was split into training and testing sets, or 773

detailed information about each training iteration of the AI model. For instance, the 774

RO-Crate contains a representation of a checkpoint of the AI model after the second 775

training iteration, with the corresponding entity’s attributes containing paths to the 776

respective model stored as a file. The entity is related to the respective training 777

iteration activity, which contains the iteration parameters represented as an attribute 778

list. In addition, the CPM generally provides means to link the input dataset 779

provenance to the provenance of its precursors – human prostate tissues and biological 780

samples the tissues were derived from; this is not included in the example because we 781

used a publicly available input database for which provenance of the precursors was not 782

available. However, the linking mechanism for provenance precursors is exactly the 783

same as between the bundles for the AI pipeline parts. While the RO-Crate is focused 784

on the execution of the pipeline, the provenance included in the CPM files intends to be 785

interlinked with provenance of the precursors or successors, providing means to traverse 786

the whole provenance chain. For the described digital pathology pipeline, the precursors 787

would be: i) a biological sample acquired from a patient; ii) slices of the sample 788

processed and put on glass slides; iii) the images created as a result of scanning the 789

slides using a microscope. As a result, combining the CPM and RO-Crate enables the 790

lookup of research artefacts related to the computation across heterogeneous 791

organisations using the underlying provenance chain. 792

5 Discussion 793

The RO-Crate profiles presented in this work provide a unified data model to describe 794

the prospective and retrospective provenance of the execution of a computational 795

workflow, together with contextual metadata about the workflow itself and its 796

July 16, 2024 22/37

Listing 2. Excerpt of the output of the runcrate report command for the AI model
training Process Run Crate; only inputs and outputs of the actions are shown. The
listing shows the connections between the pipeline actions through the entities they
produce or consume – e.g., cam16 mrxs.h5 is output of the conversion script
convert script:ff67... and input for the training script train script:ROCRATE...

action: #convert_script:ff67ce65 -736f-46d5 -9fec -10953 cad8695
inputs:

wsi/test/
wsi/train/
prov_converter_config.json

outputs:
cam16_mrxs.h5
prov_preprocess.log

action: #test_script:ROCRATE -PUB -1438 b57a750ce887d4433d9e
inputs:

prov_test_config.json
cam16_mrxs.h5

outputs:
predictions.h5
prov_test.log

action: #test_script:d3cfd9cf -6851 -43c6-bee9 -c8dc18f22368:CPM -provgen
inputs:

prov_test.log
outputs:

prov_test.provn
prov_test.provn.log
prov_test.png

action: #train_script:ROCRATE -PUB -1438 b57a750ce887d4433d9e
inputs:

prov_train_config.json
cam16_mrxs.h5

outputs:
prov_train.log
model/weights/auc_01.ckpt.index
model/weights/auc_01.ckpt.data -00000 -of -00001
model/weights/auc_02.ckpt.index
model/weights/auc_02.ckpt.data -00000 -of -00001
model/weights/best_loss.ckpt.index
model/weights/best_loss.ckpt.data -00000 -of -00001
model/weights/auc_03.ckpt.index
model/weights/auc_03.ckpt.data -00000 -of -00001

action: #train_script :6efa9a06 -b8e9 -4cfc -88c7-e9d35e5263c3:CPM -provgen
inputs:

prov_train.log
outputs:

prov_train.provn
prov_train.png
prov_train.provn.log

action: #convert_script :9d030b68 -70d8 -4526 -82fe -160 d9cfe4806:CPM -provgen
inputs:

prov_preprocess.log
outputs:

prov_preprocess.provn
prov_preprocess.png
prov_preprocess.provn.log

action: #meta_provn_script :86bae258 -4c51 -4215 -854b-32 cb49f239ab:CPM -provgen
inputs:

prov_train.provn.log
prov_test.provn.log
prov_preprocess.provn.log

outputs:
meta_provenance.provn
meta_provenance.png
meta_provenance.provn.log

July 16, 2024 23/37

associated entities (inputs, outputs, code, etc.). The profiles are flexible, allowing one to 797

tailor the provenance description to a broad variety of use cases, agnostic to the WMS 798

used, and allow describing provenance traces at different levels of granularity. These 799

characteristics facilitate implementing support in workflow systems. Six WMS have 800

already integrated support for a WRROC profile, as described in Section 3. These new 801

RO-Crate profiles enable interoperability between implementations, which has been 802

demonstrated through the comparison of workflow executions on heterogeneous systems. 803

Choosing to base our approach on the RO-Crate model has led to a number of 804

benefits. The collected provenance data can be treated with standard RDF tools. As an 805

example, the following SPARQL [107] query returns all actions in a Workflow Run 806

RO-Crate, together with their instruments and their starting and ending times, 807

independently of the original workflow type or the WMS that executed the workflow: 808

PREFIX schema: <https://schema.org/> 809

SELECT ?action ?instrument ?start ?end 810

WHERE { 811

?action a schema:CreateAction . 812

?action schema:instrument ?instrument . 813

OPTIONAL { ?action schema:startTime ?start } . 814

OPTIONAL { ?action schema:endTime ?end } 815

} 816

Further, having workflow runs and plans described according to the RO-Crate model 817

allows capturing the context of the workflow itself (e.g. authors, related publications, 818

other workflows, etc.), in addition to the trace alone. Another advantage of RO-Crate is 819

that the files corresponding to the data entities (inputs, outputs, code, etc.) do not 820

necessarily have to be stored together with the metadata file: for instance, they can be 821

remote and referred to via an http(s) URI. This aspect is mostly relevant in situations 822

where the file is very large or cannot be shared publicly, since a URI can reference a 823

resource to which access is limited (e.g., accessible only after authentication, or from 824

specific network boundaries, etc.). 825

The WRROC profiles are extensions of the base RO-Crate specification that 826

specialise it for the use case of workflow execution provenance representation. The 827

additional terms, constraints and recommendations introduced by the profiles allow 828

users to represent classes and relationships involved in a workflow execution in a precise 829

and detailed way, so that consumers of the RO-Crate can programmatically retrieve the 830

relevant information according to predefined patterns and act upon it. This is a crucial 831

advantage over using the base RO-Crate specification, which was not designed to answer 832

the competency questions defined for capturing the provenance of workflow executions. 833

The ability to build FAIR into Workflow Management Systems was identified as one 834

of the current open challenges in the Scientific Workflows domain at the Workflows 835

Community Summit [108], with the objective of achieving FAIR Computational 836

Workflows. The profiles introduced in this article help tackle this challenge by 837

introducing interoperable metadata among WMSs that captures the provenance of their 838

corresponding workflow executions. The derivation of Workflow Run Crate, and in turn 839

Provenance Run Crate, from Workflow RO-Crate makes the digital objects that 840

conform to these new profiles compatible with the WorkflowHub workflow registry [37]. 841

This design entails that Workflow Run RO-Crates directly reference the workflow with 842

which the provenance was generated, and it allows workflow runs to be registered on 843

WorkflowHub and easily found and shared with other researchers. Additionally, the 844

inheritance mechanism allows reusing the specifications already developed for Workflow 845

RO-Crate, which form part of the guidelines on representing the prospective provenance. 846

The Workflow Run RO-Crate profiles, the associated tooling, the implementations 847

and the examples are developed and supported by the open WRROC Community. At 848

July 16, 2024 24/37

the time of writing, the Community numbers nearly 40 members and brings together 849

members of the RO-Crate community [34], WMS users and developers, workflow users 850

and developers, GA4GH [109] Cloud developers and provenance model authors, and is 851

open to anyone who is interested in the representation of workflow execution 852

provenance. The inclusion of WMS developers and workflow users has been key to 853

keeping the specifications flexible, easy to implement and grounded on real use cases, 854

while the diversity of the stakeholders has included a plurality of viewpoints while 855

driving the model’s development forward, resulting in profiles that are already being 856

used (as described in Section 3). 857

In the following subsections, we provide an evaluation of the metadata coverage of 858

runcrate and we discuss how WRROC relates to standards such as W3C PROV-O and 859

to other community projects. 860

5.1 Evaluation of metadata coverage using runcrate convert 861

Since CWLProv was a starting point in the development of WRROC (Section 3.1), as a 862

baseline validation we chose to verify that the metadata contained in CWLProv ROs is 863

preserved in the RO-Crates produced by their conversion through runcrate’s convert 864

command. In previous work we had conducted a qualitative analysis of metadata 865

coverage in CWLProv (version 0.6.0), based on concrete examples of ROs associated 866

with a realistic bioinformatics workflow [110]; in this work we repeated this analysis for 867

WRROC, and compared the WRROC RDF representation (in 868

ro-crate-metadata.json) with the CWLProv RDF provenance graph. To summarise, 869

the analysis focuses on the comparison of the degree of representation by the two 870

models of six provenance data types defined in [110], which we recall here for clarity. 871

T1. Scientific context: the choices which were made in the design of the workflow 872

and parameter values. 873

T2. Data: input and output data. 874

T3. Software: the tools directly orchestrated by the workflow, and their 875

dependencies. 876

T4. Workflow: the workflow and tool descriptions, but not the software they control. 877

T5. Computational environment: metadata about the system on which the 878

workflow was executed, comprising both software and hardware. 879

T6. Execution details: additional information about the workflow execution itself. 880

Each type is in turn articulated in a set of data subtypes, forming a hierarchy of 881

elements that should be represented in workflow provenance data to satisfy a range of 882

use cases spanning from supporting workflow development to supporting a service based 883

on the execution of the workflow, with several other use cases in between. For a full 884

motivation and description of the criteria the reader may refer to the original work [110]. 885

Our analysis shows that, overall, most of the information contained in the CWLProv 886

RDF is transferred to the RO-Crate metadata. The results are summarised in Table 2; 887

for completeness, we also report the (non-RDF) representation of provenance metadata 888

in CWL-specific documents (packed.cwl and primary-job.json), which are included 889

in both CWLProv ROs and RO-Crates generated by runcrate. We observe that out of 890

the total 20 provenance data subtypes that are part of the analysis, WRROC 891

represented 13 (65%) of them (9 fully, 4 partially), while CWLProv RDF captured 8 (3 892

fully, 5 partially). The representation of some entire categories of metadata has 893

improved – notably Workflow parameters (WF2), which were insufficiently described in 894

July 16, 2024 25/37

CWLProv RDF, but defined with type and format in RO-Crate. Moreover, the 895

Workflow Run RO-Crate RDF contains a representation of tools orchestrated by the 896

workflow (T3), as well as a much more extensive description of the workflow itself (T4) 897

compared to CWLProv. 898

In conclusion, our analysis shows that runcrate preserves most provenance metadata 899

previously shown to be relevant in realistic RO use case scenarios. More detailed results 900

of the analysis can be found in [111]. 901

Table 2. Summarised results of our qualitative analysis of Provenance Run Crates generated with
runcrate.

CWL (non-RDF) Type Subtype Name CWLProv RDF WRROC RDF

• T1 SC1 Workflow design · •
◦ SC2 Entity annotations · ·
· SC3 Workflow execution ann. · ·
◦ T2 D1 Data identification · ·
◦ D2 File characteristics ◦ ◦
◦ D3 Data access · ·
• D4 Parameter mapping • •
• T3 SW1 Software identification · •
• SW2 Software documentation · •
• SW3 Software access · •
• T4 WF1 Workflow software ◦ •
• WF2 Workflow parameters ◦ •
• WF3 Workflow requirements · ◦
· T5 ENV1 Software environment · ·
· ENV2 Hardware environment · ·
◦ ENV3 Container image ◦ ◦
· T6 EX1 Execution timestamps • •
· EX2 Consumed resources · ·
· EX3 Workflow engine ◦ ◦
· EX4 Human agent • •

We converted CWLProv (v0.6.0) ROs to WRROC with runcrate 0.5.0. The table compares the degree to which the data
subtypes of the provenance data taxonomy (identified by the triple (Type, Subtype, Name)) are preserved by the
CWLProv RDF and the WRROC RDF models; the taxonomy is defined in previous work [110], where relevant
provenance metadata are identified based on realistic use cases for ROs associated with a real-life bioinformatics
workflow. For completeness, the CWL (non-RDF) column also reports the non-RDF representation of provenance
metadata in CWL-specific documents: packed.cwl (the workflow) and primary-job.json (the input parameter file).
Since packed.cwl and primary-job.json are also included in RO-Crate, we only considered how the metadata was
represented in ro-crate-metadata.json.
Legend: • fully represented ◦ partially represented · missing or unstructured representation

5.2 Workflow Run RO-Crate and the W3C PROV standard 902

One of our aims for the WRROC profiles is to make them compatible with both 903

Schema.org and W3C PROV. Provenance Run Crate is the profile that most closely 904

matches the level of detail provided by CWLProv, which extends W3C PROV. Table 3 905

shows how the main classes and relationships represented by Provenance Run Crate 906

map to PROV constructs, using the SKOS vocabulary to indicate the type of 907

relationship between each pair of terms. A machine-readable version of the mapping can 908

be found in the RO-Crate accompanying this article [112,113]. 909

July 16, 2024 26/37

Table 3. Mapping from Workflow Run RO-Crate to equivalent W3C PROV concepts
using SKOS [40]. For instance, s:CreateAction has broader match prov:Activity, meaning that
prov:Activity is more general. Prefix prov: https://www.w3.org/ns/prov#.

RO-Crate Relationship W3C PROV-O

s:Action (superclass of s:CreateAction,
s:OrganizeAction)

Has close match
(Schema.org Actions may

also be potential actions in

the future)

prov:Activity

s:CreateAction, s:OrganizeAction Has broader match prov:Activity
s:Person Has exact match prov:Person
s:Organization Has exact match prov:Organization
s:SoftwareApplication Has related match prov:SoftwareAgent
bioschemas:ComputationalWorkflow ,
s:SoftwareApplication, s:HowTo

Has broader match prov:Plan, prov:Entity

s:MediaObject , s:Dataset ,
s:PropertyValue

Has broader match prov:Entity

s:startTime on s:CreateAction Has close match prov:startedAtTime
s:endTime on s:CreateAction Has close match prov:endedAtTime
s:agent on s:CreateAction Has related match prov:wasStartedBy,

prov:wasEndedBy
s:agent and s:instrument on
s:CreateAction

Has broader match prov:wasAssociatedWith

s:instrument on s:CreateAction Has related match (Com-

plex mapping: an instrument

implies a qualified associa-

tion with the agent, linked

to a plan)

prov:hadPlan on
prov:Association

s:object on s:CreateAction Has exact match prov:used
s:result on s:CreateAction Has close match inverse

prov:wasGeneratedBy

5.3 Five Safes Workflow Run Crate 910

The Five Safes RO-Crate [114] profile has been developed to extend the Workflow Run 911

Crate profile for use in Trusted Research Environments (TRE), following the Five Safes 912

Framework [116] to better handle sensitive health data in federated workflow execution 913

across TREs in the UK [115]. A crate with a workflow run request references a 914

pre-approved workflow and project details for manual and automated assessment 915

according to the TRE’s agreement policy for the sensitive dataset. The crate then goes 916

through multiple phases internal to the TRE, including validation, sign-off, workflow 917

execution and disclosure control. At this stage the crate is also conforming to the 918

Workflow Run Crate profile. The final crate is then safe to be made public. 919

This extension of Workflow Run Crate documents and supports the human review 920

process – important for transparency on TRE data usage. The initial implementation of 921

this process used WfExS as the workflow execution backend, and this approach will 922

form the basis for further work on implementing federated workflow execution in the 923

British initiatives DARE UK and HDR UK [117] and in the European 924

EOSC-ENTRUST project for Trusted Research Environments [118]. 925

July 16, 2024 27/37

https://schema.org/CreateAction
https://www.w3.org/ns/prov#
https://schema.org/Action
https://schema.org/CreateAction
https://schema.org/OrganizeAction
https://schema.org/CreateAction
https://schema.org/OrganizeAction
https://schema.org/Person
https://schema.org/Organization
https://schema.org/SoftwareApplication
https://bioschemas.org/ComputationalWorkflow
https://schema.org/SoftwareApplication
https://schema.org/HowTo
https://schema.org/MediaObject
https://schema.org/Dataset
https://schema.org/PropertyValue
https://schema.org/startTime
https://schema.org/CreateAction
https://schema.org/endTime
https://schema.org/CreateAction
https://schema.org/agent
https://schema.org/CreateAction
https://schema.org/agent
https://schema.org/instrument
https://schema.org/CreateAction
https://schema.org/instrument
https://schema.org/CreateAction
https://schema.org/object
https://schema.org/CreateAction
https://schema.org/result
https://schema.org/CreateAction

5.4 Biocompute Object RO-Crate 926

IEEE 2791-2020 [119], colloquially known as Biocompute Objects (BCO), is a standard 927

for representing provenance of a genomic sequencing pipeline, intended for submission of 928

the workflow to regulatory bodies – e.g. as part of a personalised medical treatment 929

method [120]. The BCO is represented as a single JSON file which includes description 930

of the workflow and its steps and intended purpose, as well as references for tools used 931

and data sources accessed. There is overlap in the goals of BCO and Workflow Run 932

Crate profiles, however their intentions and focus are different. BCO is primarily 933

conveying a computational method for the purpose of manual regulatory review and 934

further reuse, with any values provided as an exemplar run. A Workflow Run Crate, 935

however, is primarily documenting a particular workflow execution, and the workflow is 936

associated to facilitate rerun rather than reuse. 937

Previously, a guide to packaging BioCompute Objects using RO-Crate [121] was 938

developed as a profile to combine both standards [122]. In this early approach, 939

RO-Crate was primarily a vessel to transport the BCO along with its constituent 940

resources, including the workflow and data files, as well as to provide these resources 941

with additional typing and licence metadata that is not captured by the BCO JSON. 942

Further work is being planned with the BCO community to update the BCO-RO profile 943

to align with the newer Workflow Run RO-Crate profiles. 944

6 Conclusion and future work 945

The Workflow Run RO-Crate profile collection presented in this manuscript is a new 946

model to represent and package both the prospective and the retrospective provenance 947

relating to the execution of computational workflows in a way that is 948

machine-actionable, interoperable, independent of the specific workflow language or 949

execution system, and including support for re-execution. These new profiles build on 950

RO-Crate and Schema.org to include contextual information and bundle together all 951

objects of the workflow execution (inputs, outputs, code, etc.). Our approach minimizes 952

the set of mandatory metadata items and defines a hierarchy of profiles – Process Run 953

Crate, Workflow Run Crate, and Provenance Run Crate – that capture provenance 954

information at increasing levels of detail and complexity. This flexible approach 955

increases the model’s adaptability to the diverse landscape of WMSs used in practice, 956

and modulates the implementation effort as a function of the requirements of the 957

specific use case. As a result, there has already been significant uptake of Workflow Run 958

RO-Crate, as shown by its adoption in six WMS, including Galaxy, StreamFlow and 959

COMPSs; in addition, the runcrate toolkit has been implemented as part of this work 960

providing various inspection, conversion and re-execution functionalities. Moreover, we 961

have shown how WRROC has been applied in real use cases. 962

Workflow Run RO-Crate is an ongoing project. Therefore, our profiles and the 963

surrounding software are not static entities, but keep being updated to cater for new 964

requirements and use cases. As examples of ongoing work, at the time of writing there 965

are plans to expand the runcrate toolkit to better support the creation and querying of 966

WRROC objects. Also, work is ongoing to implement automated conformance 967

validation of crates. In addition, several of the implementations presented in this work 968

will also develop new features. For instance, the Galaxy community plans to extend its 969

WRROC support to: include metadata detailing each step of a workflow run to conform 970

to the Provenance Run Crate profile; develop and/or integrate RO-Crate more deeply 971

with import and export of Galaxy histories; and further develop user-guided import of 972

RO-Crates as Galaxy datasets, histories and workflows. Further, we are currently 973

exploring the cloud execution of Workflow Run RO-Crates. The Workflow Execution 974

July 16, 2024 28/37

Service (WES) specification is used by the Global Alliance for Genomics and Health 975

(GA4GH) [109] to enable WMS-agnostic interpretation of workflows and scheduling of 976

task execution. In addition, the Task Execution Service (TES) specification enables the 977

execution of individual, atomic, containerised tasks in a compute backend-independent 978

manner. We are planning to undertake an in-depth analysis of the degree of 979

interoperability between the TES and WES API standards – roughly the equivalents of 980

Process and Workflow Run Crates, respectively – by placing their focus on the actual 981

execution of tasks/processes and workflows in cloud environments and liaising with the 982

GA4GH Cloud community to align schemas where necessary. We will then build an 983

interconversion library that attempts to i) construct WES workflow and TES task run 984

requests from RO-Crates containing Provenance, Workflow or Process Run requests and 985

therefore allow their easy (re)execution on any GA4GH Cloud API-powered 986

infrastructure, and ii) bundle information from the WES and TES (as well as other 987

GA4GH Cloud API resources, where available) to create or extend RO-Crates with 988

standards-compliant Process, Workflow or even Provenance RO-Crates. 989

The maintenance and development of WRROC is driven by an open community, 990

currently numbering about 40 members. The Community runs regular virtual meetings 991

(every two weeks at the time of writing) and coordinates on Slack and the RO-Crate 992

mailing list. Naturally, feedback and contributions from the community are welcome 993

and encouraged, and new requirements and features are discussed and sustained, 994

particularly through the WRROC GitHub repository issue tracker [45]. Through the 995

open Community we expect to encourage and support further adoption of WRROC, be 996

it by the other WMS or other use cases, maybe in time converging towards a common 997

workflow execution provenance representation. 998

Acknowledgments 999

The authors would like to thank all participants to the Workflow Run RO-Crate 1000

working group meetings for the fruitful discussions and valuable feedback. 1001

Author contributions 1002

Author contributions following the CRediT Taxonomy: 1003

Simone Leo Conceptualization, Data Curation, Investigation, Methodology, 1004

Resources, Software, Supervision, Validation, Visualization, Writing – Original 1005

Draft preparation, Writing – Review & Editing 1006

Michael R. Crusoe Conceptualization, Investigation, Software, Supervision 1007

Laura Rodŕıguez-Navas Software, Writing – Original Draft preparation 1008

Raül Sirvent Data Curation, Software, Writing – Original Draft preparation, Writing 1009

– Review & Editing 1010

Alexander Kanitz Writing – Original Draft preparation, Writing – Review & Editing 1011

Paul De Geest Data Curation, Software, Writing – Original Draft preparation 1012

Rudolf Wittner Data Curation, Writing – Original Draft preparation, Writing – 1013

Review & Editing 1014

Luca Pireddu Funding acquisition, Project Administration, Supervision, Writing – 1015

Review & Editing 1016

July 16, 2024 29/37

Daniel Garijo Conceptualization, Formal Analysis, Writing – Original Draft 1017

preparation, Writing – Review & Editing 1018

José M. Fernández Data Curation, Software, Writing – Original Draft preparation 1019

Iacopo Colonnelli Data Curation, Software, Writing – Original Draft preparation 1020

Matej Gallo Data Curation, Software 1021

Tazro Ohta Data Curation, Software, Writing – Original Draft preparation 1022

Hirotaka Suetake Data Curation, Software, Writing – Original Draft preparation 1023

Salvador Capella-Gutierrez Funding Acquisition, Resources, Supervision, Writing – 1024

Original Draft preparation 1025

Renske de Wit Software, Writing – Original Draft preparation, Writing – Review & 1026

Editing 1027

Bruno de Paula Kinoshita Data Curation, Software, Writing – Original Draft 1028

preparation, Writing – Review & Editing 1029

Stian Soiland-Reyes Conceptualization, Formal Analysis, Funding Acquisition, 1030

Investigation, Methodology, Resources, Software, Supervision, Visualization, 1031

Writing – Original Draft preparation, Writing – Review & Editing 1032

References

1. Moreau L, Missier P, Belhajjame K, B’Far R, Cheney J, Coppens S, et al. PROV-DM:
The PROV Data Model. W3C Recommendation 30 April 2013 [cited 2023 Dec 7].
https://www.w3.org/TR/2013/REC-prov-dm-20130430/

2. Herschel M, Diestelkämper R, Ben Lahmar H. A survey on provenance: What for?
What form? What from? The VLDB Journal, 2017;26:881–906. doi:
10.1007/s00778-017-0486-1

3. Himanen L, Geurts A, Foster AS, Rinke P. Data-Driven Materials Science: Status,
Challenges, and Perspectives. Advanced Science, 2019;6(21):1900808. doi:
10.1002/advs.201900808

4. Gauthier J, Vincent AT, Charette SJ, Derome N. A brief history of bioinformatics.
Briefings in Bioinformatics, 2019;20(6):1981–1996. doi: 10.1093/bib/bby063

5. Huntingford C, Jeffers ES, Bonsall MB, Christensen HM, Lees T, Yang H. Machine
learning and artificial intelligence to aid climate change research and preparedness.
Environmental Research Letters, 2019;14(12):124007. doi: 10.1088/1748-9326/ab4e55

6. Lebo T, Sahoo S, McGuinness D, Belhajjame K, Cheney J, Corsar D, et al. PROV-O:
The PROV Ontology. W3C Recommendation 30 April 2013 [cited 2023 Dec 7].
https://www.w3.org/TR/2013/REC-prov-o-20130430/

7. W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview
(Second Edition). W3C Recommendation 11 December 2012 [cited 2023 Dec 7].
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/

8. Missier P, Dey S, Belhajjame K, Cuevas-Vicentt́ın V, Ludäscher B. D-PROV: extending
the PROV provenance model with workflow structure. In Proceedings of the 5th
USENIX Workshop on the Theory and Practice of Provenance (TaPP ’13), 2013.

9. Cuevas-Vicentt́ın V, Ludäscher B, Missier P, Belhajjame K, Chirigati F, Wei Y, et al.
ProvONE: A PROV Extension Data Model for Scientific Workflow Provenance, 2016
[cited 2023 Dec 7]. https://purl.dataone.org/provone-v1-dev

July 16, 2024 30/37

https://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://doi.org/10.1007/s00778-017-0486-1
https://doi.org/10.1002/advs.201900808
https://doi.org/10.1093/bib/bby063
https://doi.org/10.1088/1748-9326/ab4e55
https://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://purl.dataone.org/provone-v1-dev

10. Garijo D, Gil Y. A new approach for publishing workflows: abstractions, standards, and
linked data. In Proceedings of the 6th workshop on Workflows in support of large-scale
science (WORKS ’11) 2011. doi: 10.1145/2110497.2110504

11. Garijo D, Gil Y. Augmenting PROV with Plans in P-PLAN: Scientific Processes as
Linked Data. In Proceedings of the Second International Workshop on Linked Science,
2012.

12. Freire J, Koop D, Santos E, Silva CT. Provenance for Computational Tasks: A Survey.
Computing in Science & Engineering 2012;10(3):11–21. doi: 10.1109/MCSE.2008.79

13. Gil Y, Ratnakar V, Kim J, Gonzalez-Calero P, Groth P, Moody J, et al. Wings:
Intelligent Workflow-Based Design of Computational Experiments. IEEE Intelligent
Systems 2011;26(1). doi: 10.1109/MIS.2010.9

14. Garijo D, Gil Y, Corcho O. Towards Workflow Ecosystems through Semantic and
Standard Representations. In Proceedings of the 9th Workshop on Workflows in
Support of Large-Scale Science 2014. doi: 10.1109/works.2014.13

15. Scheidegger CE, Vo HT, Koop D, Freire J, Silva CT. Querying and re-using workflows
with VisTrails. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data 2008. doi: 10.1145/1376616.1376747

16. Costa F, Silva V, de Oliveira D, Ocaña K, Ogasawara E, Dias J, et al. Capturing and
querying workflow runtime provenance with PROV: a practical approach. In Proceedings
of the Joint EDBT/ICDT 2013 Workshops 2013. doi: 10.1145/2457317.2457365

17. Atkinson M, Gesing S, Montagnat J, Taylor I. Scientific workflows: Past, present and
future. Future Generation Computer Systems 2017;75:216–227. doi:
10.1016/j.future.2017.05.041

18. Pérez B, Rubio J, Sáenz-Adán C. A systematic review of provenance systems.
Knowledge and Information Systems 2018;57:495–543. doi: 10.1007/s10115-018-1164-3

19. Belhajjame K, Zhao J, Garijo D, Gamble M, Hettne K, Palma R, et al. Using a suite of
ontologies for preserving workflow-centric research objects. Journal of Web Semantics
2015;32:16–42. doi: 10.1016/j.websem.2015.01.003

20. Bechhofer S, Buchan I, De Roure D, Missier P, Ainsworth J, Bhagat J, et al. Why
linked data is not enough for scientists. Future Generation Computer Systems
2013;29(2):599–611. doi: 10.1016/j.future.2011.08.004

21. Samuel S, König-Ries B. End-to-End provenance representation for the
understandability and reproducibility of scientific experiments using a semantic
approach. Journal of Biomedical Semantics 2022;13:1. doi: 10.1186/s13326-021-00253-1

22. Samuel S, König-Ries B. ProvBook: Provenance-based Semantic Enrichment of
Interactive Notebooks for Reproducibility. The 17th International Semantic Web
Conference (ISWC) 2018 Demo Track, 2018.

23. Khan FZ, Soiland-Reyes S, Sinnott RO, Lonie A, Goble C, Crusoe MR. Sharing
interoperable workflow provenance: A review of best practices and their practical
application in CWLProv. GigaScience 2019;8(11):giz095. doi: 10.1093/gigascience/giz095

24. Chard K, D’Arcy M, Heavner B, Foster I, Kesselman C, Madduri R, et al. I’ll take that
to go: Big data bags and minimal identifiers for exchange of large, complex datasets.
2016 IEEE International Conference on Big Data (Big Data) 2016;319–328. doi:
10.1109/BigData.2016.7840618

25. Soiland-Reyes S, Khan FZ, Crusoe MR. common-workflow-language/cwlprov:
CWLProv 0.6.0. Zenodo, 2018. doi: 10.5281/zenodo.1471585

26. Soiland-Reyes S, Alper P, Goble C. Tracking workflow execution with TavernaProv.
Zenodo, 2016. doi: 10.5281/zenodo.51314

July 16, 2024 31/37

https://doi.org/10.1145/2110497.2110504
https://doi.org/10.1109/MCSE.2008.79
https://doi.org/10.1109/MIS.2010.9
https://doi.org/10.1109/works.2014.13
https://doi.org/10.1145/1376616.1376747
https://doi.org/10.1145/2457317.2457365
https://doi.org/10.1016/j.future.2017.05.041
https://doi.org/10.1007/s10115-018-1164-3
https://doi.org/10.1016/j.websem.2015.01.003
https://doi.org/10.1016/j.future.2011.08.004
https://doi.org/10.1186/s13326-021-00253-1
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1109/BigData.2016.7840618
https://doi.org/10.5281/zenodo.1471585
https://doi.org/10.5281/zenodo.51314

27. Crusoe MR, Abeln S, Iosup A, Amstutz P, Chilton J, Tijanić N, et al. Methods Included:
Standardizing Computational Reuse and Portability with the Common Workflow
Language. Communications of the ACM, 2022;65(6):54–63. doi: 10.1145/3486897

28. Common Workflow Language Implementations [cited 2024 May 24].
https://www.commonwl.org/implementations/

29. Soiland-Reyes S. The Roterms ontology. Release 30 July 2015 [cited 2024 May 24].
https://wf4ever.github.io/ro/2016-01-28/roterms/

30. Amstutz P, Crusoe MR, Khan FZ, Soiland-Reyes S, Singh M, Kumar K, et al.
common-workflow-language/cwltool: 3.1.20230127121939. Zenodo, 2023. doi:
10.5281/zenodo.7575947

31. Lordan F, Tejedor E, Ejarque J, Rafanell R, Álvarez J, Marozzo F, et al. ServiceSs: An
interoperable programming framework for the cloud. Journal of Grid Computing
2014;12:67–91. doi: 10.1007/s10723-013-9272-5

32. Research Object Bundle context [cited 2024 May 24]
https://w3id.org/bundle/context

33. Chard K, Gaffney N, Jones MB, Kowalik K, Ludäscher B, McPhillips T, et al.
Application of BagIt-Serialized Research Object Bundles for Packaging and
Re-Execution of Computational Analyses. 2019 15th International Conference on
eScience (eScience) 2019. doi: 10.1109/eScience.2019.00068

34. Soiland-Reyes S, Sefton P, Crosas M, Castro LJ, Coppens F, Fernández JM, et al.
Packaging research artefacts with RO-Crate. Data Science 2022;5(2):97–138. doi:
10.3233/DS-210053

35. Guha RV, Brickley D, Macbeth S. Schema.org: Evolution of Structured Data on the
Web: Big data makes common schemas even more necessary. Queue 2015;13(9):10–37.
doi: doi:10.1145/2857274.2857276

36. Sporny M, Longley D, Kellogg G, Lanthaler M, Champin PA, Lindström N. JSON-LD
1.1: A JSON-based Serialization for Linked Data. W3C Recommendation 16 July 2020
[cited 2023 Dec 11]. https://www.w3.org/TR/2020/REC-json-ld11-20200716/

37. Goble C, Soiland-Reyes S, Bacall F, Owen S, Williams A, Eguinoa I, et al.
Implementing FAIR Digital Objects in the EOSC-Life Workflow Collaboratory. Zenodo,
2021. doi: 10.5281/zenodo.4605654

38. Bacall F, Williams AR, Owen S, Soiland-Reyes S. Workflow RO-Crate Profile 1.0.
WorkflowHub community, 2022 [cited 2023 Dec 11].
https://w3id.org/workflowhub/workflow-ro-crate/1.0

39. Batista D, Gonzalez-Beltran A, Sansone SA, Rocca-Serra P. Machine actionable
metadata models. Scientific Data, 2022;9:592. doi: 10.1038/s41597-022-01707-6

40. Isaac A, Summers E. SKOS Simple Knowledge Organization System Primer. W3C
Working Group Note 18 August 2009 [cited 2023 Dec 11].
https://www.w3.org/TR/2009/NOTE-skos-primer-20090818/

41. Soiland-Reyes S, Sefton P, Castro LJ, Coppens F, Garijo D, Leo S, et al. Creating
lightweight FAIR Digital Objects with RO-Crate. Research Ideas and Outcomes,
2022;8:e93937. doi: 10.3897/rio.8.e93937

42. Workflow Run RO-Crate [cited 2024 May 24].
https://www.researchobject.org/workflow-run-crate

43. Workflow Run RO-Crate competency questions [cited 2024 May 24].
https://www.researchobject.org/workflow-run-crate/requirements

44. SPARQL queries for the Competency Questions [cited 2024 June 4].
https://github.com/ResearchObject/workflow-run-crate/tree/main/docs/sparql

July 16, 2024 32/37

https://doi.org/10.1145/3486897
https://www.commonwl.org/implementations/
https://wf4ever.github.io/ro/2016-01-28/roterms/
https://doi.org/10.5281/zenodo.7575947
https://doi.org/10.1007/s10723-013-9272-5
https://w3id.org/bundle/context
https://doi.org/10.1109/eScience.2019.00068
https://doi.org/10.3233/DS-210053
https://doi.org/doi:10.1145/2857274.2857276
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://doi.org/10.5281/zenodo.4605654
https://w3id.org/workflowhub/workflow-ro-crate/1.0
https://doi.org/10.1038/s41597-022-01707-6
https://www.w3.org/TR/2009/NOTE-skos-primer-20090818/
https://doi.org/10.3897/rio.8.e93937
https://www.researchobject.org/workflow-run-crate
https://www.researchobject.org/workflow-run-crate/requirements
https://github.com/ResearchObject/workflow-run-crate/tree/main/docs/sparql

45. Workflow Run RO-Crate GitHub repository [cited 2024 July 2].
https://github.com/ResearchObject/workflow-run-crate

46. RO-Crate JSON-LD context, version 1.1 [cited 2024 May 24].
https://www.researchobject.org/ro-crate/1.1/context.jsonld

47. Gray A, Goble C, Jimenez R, The Bioschemas Community (2017). Bioschemas: From
Potato Salad to Protein Annotation. ISWC (Posters, Demos & Industry Tracks), 2017.
https://iswc2017.semanticweb.org/paper-579/

48. Bioschemas ComputationalWorkflow Profile, version 1.0-RELEASE (09 March 2021)
[cited 2024 May 24].
https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE

49. ro-terms: Workflow run namespace [cited 2024 Jul 03].
https://w3id.org/ro/terms/workflow-run

50. Workflow Run RO-Crate working group. Process Run Crate specification. Version 0.5.
Zenodo, 2024. doi: 10.5281/zenodo.12158562

51. Workflow Run RO-Crate working group. Workflow Run Crate specification. Version 0.5.
Zenodo, 2024. doi: 10.5281/zenodo.12159311

52. Köster J, Rahmann S. Snakemake–a scalable bioinformatics workflow engine.
Bioinformatics 2012;28(19):2520–2522. doi: 10.1093/bioinformatics/bts480

53. Colonnelli I, Cantalupo B, Merelli I, Aldinucci M. StreamFlow: cross-breeding Cloud
with HPC. IEEE Transactions on Emerging Topics in Computing, 2021;9(4):1723–1737.
doi: 10.1109/TETC.2020.3019202

54. The Galaxy Community. The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2022 update. Nucleic Acids Research
2022;50(W1):W345–W351. doi: 10.1093/nar/gkac247

55. Workflow Run RO-Crate working group. Provenance Run Crate specification. Version
0.5. Zenodo, 2024. doi: 10.5281/zenodo.12160782

56. Schema.org HowToStep definition [cited 2024 May 24]. https://schema.org/HowToStep

57. Leo S, Soiland-Reyes S, Crusoe MR. Runcrate. Version 0.5.0. Zenodo, 2023. doi:
10.5281/zenodo.10203433

58. Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E, Stoler N, et al.
Dissemination of scientific software with Galaxy ToolShed. Genome Biology 2014;15:403.
doi: 10.1186/gb4161

59. De Geest P, Droesbeke B, Eguinoa I, Gaignard A, Huber S, Kinoshita B, et al.
ResearchObject/ro-crate-py: ro-crate-py 0.9.0. Zenodo, 2023. doi:
10.5281/zenodo.10017862

60. De Geest P, Coppens F, Soiland-Reyes S, Eguinoa I, Leo S. Enhancing RDM in Galaxy
by integrating RO-Crate. Research Ideas and Outcomes, 2022;8:e95164. doi:
10.3897/rio.8.e95164

61. Galaxy Workflow Format 2 Description [cited 2024 May 24].
https://galaxyproject.github.io/gxformat2/v19_09.html

62. De Geest P. Run of an example Galaxy collection workflow. Zenodo, 2023. doi:
10.5281/zenodo.7785861

63. Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM et al. Open MPI:
Goals, Concept, and Design of a Next Generation MPI Implementation. Lecture Notes
in Computer Science, 2004;3241:97–104. doi: 10.1007/978-3-540-30218-6 19.

July 16, 2024 33/37

https://github.com/ResearchObject/workflow-run-crate
https://www.researchobject.org/ro-crate/1.1/context.jsonld
https://iswc2017.semanticweb.org/paper-579/
https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE
https://w3id.org/ro/terms/workflow-run
https://doi.org/10.5281/zenodo.12158562
https://doi.org/10.5281/zenodo.12159311
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1093/nar/gkac247
https://doi.org/10.5281/zenodo.12160782
https://schema.org/HowToStep
https://doi.org/10.5281/zenodo.10203433
https://doi.org/10.1186/gb4161
https://doi.org/10.5281/zenodo.10017862
https://doi.org/10.3897/rio.8.e95164
https://galaxyproject.github.io/gxformat2/v19_09.html
https://doi.org/10.5281/zenodo.7785861
https://doi.org/10.1007/978-3-540-30218-6_19

64. Dagum L, Menon R. OpenMP: an industry standard API for shared-memory
programming. IEEE Computational Science and Engineering 1998;5(1):46-55. doi:
10.1109/99.660313.

65. Lam SK, Pitrou A, Seibert S. Numba: a LLVM-based Python JIT compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC
2015. doi: 10.1145/2833157.2833162.

66. Sirvent R, Conejero J, Lordan F, Ejarque J, Rodriguez-Navas L, Fernandez JM, et al.
Automatic, Efficient, and Scalable Provenance Registration for FAIR HPC Workflows.
2022 IEEE/ACM Workshop on Workflows in Support of Large-Scale Science (WORKS),
2022. doi: 10.1109/works56498.2022.00006

67. MareNostrum 4 user’s guide [cited 2024 May 24].
https://bsc.es/supportkc/docs/MareNostrum4/intro/

68. Poiata N, Satriano C, Vilotte JP, Bernard P, Obara K. Multiband array detection and
location of seismic sources recorded by dense seismic networks. Geophysical Journal
International, 2016;205(3):1548–1573. doi: 10.1093/gji/ggw071

69. Poiata N, Satriano C, Conejero J. BackTrackBB: Multi-band array detection and
location of seismic sources (PyCOMPSs implementation). Zenodo, 2023. doi:
10.5281/zenodo.7788030

70. Ejarque J, Lordan F, Badia RM, Sirvent R, Lezzi D, Vazquez F, et al. COMPSs.
Version v3.2. Zenodo, 2023. doi: 10.5281/zenodo.7975340

71. Reis D, Piedade B, Correia FF, Dias JP, Aguiar A. Developing Docker and
Docker-Compose Specifications: A Developers’ Survey. IEEE Access, 2022;10:2318–2329.
doi: 10.1109/ACCESS.2021.3137671

72. Zerouali A, Opdebeeck R, De Roover C. Helm Charts for Kubernetes Applications:
Evolution, Outdatedness and Security Risks. 2023 IEEE/ACM 20th International
Conference on Mining Software Repositories, 2023;523–533. doi:
10.1109/MSR59073.2023.00078

73. Colonnelli I, Cantalupo B, Aldinucci M, Saitta G, Mulone A. StreamFlow. Version
0.2.0.dev10. Software Heritage Archive, 2023.
https://identifiers.org/swh:1:rev:b2014add57189900fa5a0a0403b7ae3a384df73b

74. Fernández JM, Rodŕıguez-Navas L, Muñoz-Ćıvico A, Iborra P, Lea D. WfExS-backend.
Version 1.0.0a0. Zenodo, 2024. doi: 10.5281/zenodo.12589121

75. Di Tommaso P, Chatzou M, Floden EW, Prieto Barja P, Palumbo E, Notredame C.
Nextflow enables reproducible computational workflows. Nature Biotechnology
2017;35:316–319. doi: 10.1038/nbt.3820

76. Bouyssié D, Altıner P, Capella-Gutierrez S, Fernández JM, Hagemeijer YP, Horvatovich
P, et al. WOMBAT-P: Benchmarking Label-Free Proteomics Data Analysis Workflows.
Journal of Proteome Research, 2023. doi: 10.1021/acs.jproteome.3c00636

77. Fernández González JM. RO-Crate from staged WfExS working directory
047b6dfc-3547-4e09-92f8-df7143038ff4 (overbridging templon). Zenodo, 2024. doi:
10.5281/zenodo.12588049

78. Fernández JM. RO-Crate from staged WfExS working directory
a37fee9e-4288-4a9e-b493-993a867207d0 (meer oxometalate). Zenodo, 2024. doi:
10.5281/zenodo.12622362

79. Suetake H, Tanjo T, Ishii M, Kinoshita BP, Fujino T, Hachiya T, et al. Sapporo: A
workflow execution service that encourages the reuse of workflows in various languages
in bioinformatics [version 1; peer review: 2 approved with reservations]. F1000Research
2022;11:889. doi: 10.12688/f1000research.122924.1

July 16, 2024 34/37

https://doi.org/10.1109/99.660313
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/works56498.2022.00006
https://bsc.es/supportkc/docs/MareNostrum4/intro/
https://doi.org/10.1093/gji/ggw071
https://doi.org/10.5281/zenodo.7788030
https://doi.org/10.5281/zenodo.7975340
https://doi.org/10.1109/ACCESS.2021.3137671
https://doi.org/10.1109/MSR59073.2023.00078
https://identifiers.org/swh:1:rev:b2014add57189900fa5a0a0403b7ae3a384df73b
https://doi.org/10.5281/zenodo.12589121
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1021/acs.jproteome.3c00636
https://doi.org/10.5281/zenodo.12588049
https://doi.org/10.5281/zenodo.12622362
https://doi.org/10.12688/f1000research.122924.1

80. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables
reproducible, open source, big biomedical data analyses. Nature Biotechnology
2017;35(4):314–316. doi: 10.1038/nbt.3772

81. ro-terms: Sapporo namespace [cited 2024 May 28].
https://github.com/ResearchObject/ro-terms/tree/master/sapporo

82. Suetake H, Fukusato T, Igarashi T, Ohta T. A workflow reproducibility scale for
automatic validation of biological interpretation results. GigaScience 2023;12:giad031.
doi: 10.1093/gigascience/giad031

83. Suetake H, Ohta TI, Tanjo T, Ishii M, Kinoshita BP, DrYak.
sapporo-wes/sapporo-service: 1.5.1. Zenodo, 2023. doi: 10.5281/zenodo.10134452

84. Ohta T, Suetake H. Example of Workflow Run RO-Crate Output in Sapporo. Zenodo,
2023. doi: 10.5281/zenodo.10134581

85. Manubens-Gil D, Vegas-Regidor J, Prodhomme C, Mula-Valls O, Doblas-Reyes FJ.
Seamless management of ensemble climate prediction experiments on HPC platforms.
2016 International Conference on High Performance Computing & Simulation (HPCS),
2016;895-900. doi: 10.1109/HPCSim.2016.7568429

86. Yoo AB, Jette MA, Grondona M. SLURM: Simple Linux Utility for Resource
Management. Job Scheduling Strategies for Parallel Processing (JSSPP 2003). Lecture
Notes in Computer Science, 2003;2862. doi: 10.1007/10968987 3

87. Feng H, Misra V, Rubenstein D. PBS: a unified priority-based scheduler. Proceedings of
the 2007 ACM SIGMETRICS international conference on Measurement and modeling of
computer systems, 2007;203–214. doi: 10.1145/1254882.1254906

88. Bahra A. Managing work flows with ecFlow. ECMWF Newsletter, 2011;129:30–32. doi:
10.21957/nr843dob

89. Oliver H, Shin M, Matthews D, Sanders O, Bartholomew S, Clark A, et al. Workflow
Automation for Cycling Systems. Computing in Science & Engineering 2019;21(4):7–21.
doi: 10.1109/MCSE.2019.2906593

90. Beltrán Mora D, Castrillo M, Marciani MG, Kinoshita BP, Tenorio-Ku L, Gaya-Àvila A,
et al. Autosubmit 4.0.100. Zenodo, 2023. doi: 10.5281/zenodo.10199020

91. Goble C, Cohen-Boulakia S, Soiland-Reyes S, Garijo D, Gil Y, Crusoe MR, et al. FAIR
Computational Workflows. Data Intelligence 2020;2(1-2):108–121. doi:
10.1162/dint a 00033

92. Kinoshita BP. RO-Crate created using Autosubmit version 4.0.100 workflow running
kinow/auto-mhm-test-domains. Zenodo, 2023. doi: 10.5281/zenodo.8144612

93. Samaniego L, Kumar R, Attinger S. Multiscale parameter regionalization of a
grid-based hydrologic model at the mesoscale. Water Resources Research, 2010;46(5).
doi: 10.1029/2008WR007327

94. Kumar R, Samaniego L, Attinger S. Implications of distributed hydrologic model
parameterization on water fluxes at multiple scales and locations. Water Resources
Research 2013;49(1):360–379. doi: 10.1029/2012WR012195

95. Leo S. Run of digital pathology tissue/tumor prediction workflow. Zenodo, 2023. doi:
10.5281/zenodo.7774351

96. The Galaxy Community. Galaxy. Version 23.1 Software Heritage Archive, 2023.
https://identifiers.org/swh:1:rel:33ce0ce4f6e3d77d5c0af8cff24b2f68ba8d57e9

97. Colonnelli I. StreamFlow run of digital pathology tissue/tumor prediction workflow.
Zenodo, 2023. doi: 10.5281/zenodo.7911906

July 16, 2024 35/37

https://doi.org/10.1038/nbt.3772
https://github.com/ResearchObject/ro-terms/tree/master/sapporo
https://doi.org/10.1093/gigascience/giad031
https://doi.org/10.5281/zenodo.10134452
https://doi.org/10.5281/zenodo.10134581
https://doi.org/10.1109/HPCSim.2016.7568429
https://doi.org/10.1007/10968987_3
https://doi.org/10.1145/1254882.1254906
https://doi.org/10.21957/nr843dob
https://doi.org/10.1109/MCSE.2019.2906593
https://doi.org/10.5281/zenodo.10199020
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.5281/zenodo.8144612
https://doi.org/10.1029/2008WR007327
https://doi.org/10.1029/2012WR012195
https://doi.org/10.5281/zenodo.7774351
https://identifiers.org/swh:1:rel:33ce0ce4f6e3d77d5c0af8cff24b2f68ba8d57e9
https://doi.org/10.5281/zenodo.7911906

98. Del Rio M, Lianas L, Aspegren O, Busonera G, Versaci F, Zelic R, et al. AI Support for
Accelerating Histopathological Slide Examinations of Prostate Cancer in Clinical
Studies. Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture
Notes in Computer Science 2022;13373. doi: 10.1007/978-3-031-13321-3 48

99. CRS4 Digital Pathology Platform [cited 2024 May 27].
https://github.com/crs4/DigitalPathologyPlatform

100. RO-Crate profiles [cited 2024 July 1].
https://www.researchobject.org/ro-crate/profiles.html#ro-crate-profiles

101. MIRAX format [cited 2024 May 27]. https://openslide.org/formats/mirax/

102. Common Provenance Model RO-Crate profile [cited 2024 May 27].
https://w3id.org/cpm/ro-crate

103. Wittner R, Mascia C, Gallo M, Frexia F, Müller H, Plass M, et al. Lightweight
Distributed Provenance Model for Complex Real–world Environments. Scientific Data
2022;9:503. doi: 10.1038/s41597-022-01537-6

104. Wittner R, Holub P, Mascia C, Frexia F, Müller H, Plass M. et al. Towards a Common
Standard for Data and Specimen Provenance in Life Sciences. Learning Health Systems
2023;e10365. doi: 10.1002/lrh2.10365

105. Wittner R, Gallo M, Leo S, Soiland-Reyes S. Packing provenance using CPM RO-Crate
profile. Version 1.1. Zenodo, 2023. doi: 10.5281/zenodo.8095888

106. Wittner R, Soiland-Reyes S, Leo S, Meurisse M, Hermjakob H. BY-COVID D4.3
Provenance model for infectious diseases. Zenodo, 2024 doi: 10.5281/zenodo.10927253

107. The W3C SPARQL Working Group. SPARQL 1.1 Overview. W3C Recommendation 21
March 2013 [cited 2024 May 27]. https://www.w3.org/TR/sparql11-overview/

108. Ferreira da Silva R, Badia RM, Bala V, Bard D, Bremer PT, Buckley I, et al.
Workflows Community Summit 2022: A Roadmap Revolution. arXiv:2304.00019, 2023.
doi: 10.48550/arXiv.2304.00019

109. Rehm HL, Page AJH, Smith L, Adams JB, Alterovitz G, Babb LJ, et al. GA4GH:
International policies and standards for data sharing across genomic research and
healthcare. Cell Genomics 2021;1(2):100029. doi: 10.1016/j.xgen.2021.100029

110. de Wit R. A Non-Intimidating Approach to Workflow Reproducibility in Bioinformatics:
Adding Metadata to Research Objects through the Design and Evaluation of
Use-Focused Extensions to CWLProv. Zenodo, 2022. doi: 10.5281/zenodo.7113250

111. de Wit R, Crusoe MR. Analysis of runcrate. Zenodo, 2024. doi:
10.5281/zenodo.12689424

112. Leo S, Crusoe MR, Rodŕıguez-Navas L, Sirvent R, Kanitz A, De Geest P, et al.
Recording provenance of workflow runs with RO-Crate (RO-Crate and mapping).
Zenodo, 2023. doi: 10.5281/zenodo.10368990

113. Leo S, Crusoe MR, Rodŕıguez-Navas L, Sirvent R, Kanitz A, De Geest P, et al.
Recording provenance of workflow runs with RO-Crate (RO-Crate and mapping). HTML
preview [cited 2024 May 27]. https://w3id.org/ro/doi/10.5281/zenodo.10368989

114. Soiland-Reyes S, Wheater S. Five Safes RO-Crate profile. Version 0.4. TRE-FX
Candidate Recommendation, 2023 [cited 2023 Dec 11].
https://w3id.org/5s-crate/0.4

115. Giles T, Soiland-Reyes S, Couldridge J, Wheater S, Thomson B, Beggs J, et al.
TRE-FX: Delivering a federated network of trusted research environments to enable safe
data analytics. Zenodo, 2023. doi: 10.5281/zenodo.10055354

July 16, 2024 36/37

https://doi.org/10.1007/978-3-031-13321-3_48
https://github.com/crs4/DigitalPathologyPlatform
https://www.researchobject.org/ro-crate/profiles.html#ro-crate-profiles
https://openslide.org/formats/mirax/
https://w3id.org/cpm/ro-crate
https://doi.org/10.1038/s41597-022-01537-6
https://doi.org/10.1002/lrh2.10365
https://doi.org/10.5281/zenodo.8095888
https://doi.org/10.5281/zenodo.10927253
https://www.w3.org/TR/sparql11-overview/
https://doi.org/10.48550/arXiv.2304.00019
https://doi.org/10.1016/j.xgen.2021.100029
https://doi.org/10.5281/zenodo.7113250
https://doi.org/10.5281/zenodo.12689424
https://doi.org/10.5281/zenodo.10368990
https://w3id.org/ro/doi/10.5281/zenodo.10368989
https://w3id.org/5s-crate/0.4
https://doi.org/10.5281/zenodo.10055354

116. Desai T, Ritchie F, Welpton R. Five Safes: designing data access for research.
Economics Working Paper Series, 2016;1601.
https://econpapers.repec.org/RePEc:uwe:wpaper:20161601

117. Snowley K, Edwards L, Crosby B, Tatlow H. Integrating Our Community. Year 1.
Health Data Research UK, 2023 (report) [cited 2023 Dec 11].
https://www.hdruk.ac.uk/wp-content/uploads/2023/10/

Integrating-Our-Community_v1-Oct-2023-compressed.pdf

118. EOSC-ENTRUST: Creating a European network of TRUSTed research environments
[cited 2024 May 27]. https://eosc-entrust.eu/

119. Mazumder R, Simonyan V (eds). IEEE P2791 BioCompute Working Group (BCOWG).
IEEE Standard for Bioinformatics Analyses Generated by High-Throughput Sequencing
(HTS) to Facilitate Communication. IEEE Std 2791-2020, 2020. doi:
10.1109/IEEESTD.2020.9094416

120. Alterovitz G, Dean D, Goble C, Crusoe MR, Soiland-Reyes S, Bell A. Enabling
Precision Medicine via standard communication of NGS provenance, analysis, and
results. PLOS Biology 2018;16(12):e3000099. doi: 10.1371/journal.pbio.3000099

121. Stian Soiland-Reyes. Packaging BioCompute Objects using RO-Crate [cited 2024 May
27]. https://biocompute-objects.github.io/bco-ro-crate/

122. Soiland-Reyes S. Describing and packaging workflows using RO-Crate and BioCompute
Objects. Zenodo, 2021. doi: 10.5281/zenodo.4633732

July 16, 2024 37/37

https://econpapers.repec.org/RePEc:uwe:wpaper:20161601
https://www.hdruk.ac.uk/wp-content/uploads/2023/10/Integrating-Our-Community_v1-Oct-2023-compressed.pdf
https://www.hdruk.ac.uk/wp-content/uploads/2023/10/Integrating-Our-Community_v1-Oct-2023-compressed.pdf
https://eosc-entrust.eu/
https://doi.org/10.1109/IEEESTD.2020.9094416
https://doi.org/10.1371/journal.pbio.3000099
https://biocompute-objects.github.io/bco-ro-crate/
https://doi.org/10.5281/zenodo.4633732

	Introduction
	The Workflow Run RO-Crate profiles
	Process Run Crate
	Workflow Run Crate
	Provenance Run Crate
	Profile formats

	Implementations
	Runcrate
	Galaxy
	COMPSs
	StreamFlow
	WfExS-backend
	Sapporo
	Autosubmit

	Exemplary use cases
	Provenance Run Crate for digital pathology
	Process Run Crate and CPM RO-Crate for cancer detection

	Discussion
	Evaluation of metadata coverage using runcrate convert
	Workflow Run RO-Crate and the W3C PROV standard
	Five Safes Workflow Run Crate
	Biocompute Object RO-Crate

	Conclusion and future work

