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Universal linguistic inductive biases via meta-learning

R. Thomas McCoy,1 Erin Grant,? Paul Smolensky,3’1 Thomas L. Griffiths,* and Tal Linzen!
tom.mccoy@jhu.edu, eringrant@berkeley.edu, smolensky@jhu.edu, tomglprinceton.edu, tal.linzen@jhu.edu
'Department of Cognitive Science, Johns Hopkins University
2Department of Electrical Engineering & Computer Sciences, University of California, Berkeley
3Microsoft Research Al Redmond, WA USA
“Departments of Psychology and Computer Science, Princeton University

Abstract

How do learners acquire languages from the limited data avail-
able to them? This process must involve some inductive
biases—factors that affect how a learner generalizes—but it is
unclear which inductive biases can explain observed patterns
in language acquisition. To facilitate computational model-
ing aimed at addressing this question, we introduce a frame-
work for giving particular linguistic inductive biases to a neu-
ral network model; such a model can then be used to em-
pirically explore the effects of those inductive biases. This
framework disentangles universal inductive biases, which are
encoded in the initial values of a neural network’s param-
eters, from non-universal factors, which the neural network
must learn from data in a given language. The initial state
that encodes the inductive biases is found with meta-learning,

Step 1: Translate a desired set of inductive biases into a space of languages.

Language 1 Language2 Language3
ptu — .pa.tu. up —.up. fafd — faf.
o — .ko. ptu — .tu. ag — .ag.
Sz:)Tgssiy viu — .viku. os — .lo.si.  woi — .wo.i.

Step 2: Have a model “meta-learn” from these languages to find a parameter
initialization from which the model can acquire any language in the space.

Random initial
u n parameters
Language 3 * Meta-learned
parameters

Language 2 Meta-learning

* . “ trajectory

a technique through which a model discovers how to acquire

Language 1

O O Language 4

Possible

language

new languages more easily via exposure to many possible lan-
guages. By controlling the properties of the languages that are
used during meta-learning, we can control the inductive biases
that meta-learning imparts. We demonstrate this framework
with a case study based on syllable structure. First, we specify
the inductive biases that we intend to give our model, and then
we translate those inductive biases into a space of languages
from which a model can meta-learn. Finally, using existing
analysis techniques, we verify that our approach has imparted
the linguistic inductive biases that it was intended to impart.

Keywords: meta-learning, inductive bias, language univer-
sals, syllable structure typology, neural networks

Introduction

Human learners can acquire any of the world’s languages
from finite data. The acquisition of a particular language in-
volves two factors: data from that language, and the learner’s
inductive biases, which are the factors that determine how
the learner will generalize beyond the particular utterances in
the data (Mitchell, [1997). Many inductive biases are shared
by all humans (e.g., because of shared brain anatomy or
shared communicative goals), so these biases exert universal
pressures on language acquisition. A central task of linguis-
tics is to determine which inductive biases affect language ac-
quisition and how those biases interact with learning to yield
a learner’s linguistic knowledgeﬂ

There are two major approaches for modeling the interplay
between universal inductive biases and learning. One ap-
proach, probabilistic modeling, typically follows a top-down
methodology that commits to a representation and an infer-
ence algorithm. Such strong commitments allow targeted in-
vestigations (e.g.,[Perfors, Tenenbaum, and Regier} 2011) but

IThough the term inductive biases often refers to cognitive bi-
ases, we use it to encompass all pressures that shape the language
that a learner learns; see Figure [2] and the Background section.

Step 3: Verify that meta-learning has imparted the desired inductive biases
by training the model on analysis datasets.

?. Analvei -
nalysis e

Analysis K dataset 2 K X Analysis

dataset 1 . e dataset 3

Figure 1: Summary of our approach. The steps shown above give a
pre-specified set of inductive biases to a model; alternately, Step 1
could be skipped by having the model meta-learn from existing lan-
guages, in which case the approach would discover a set of biases
sufficient to acquire those existing languages rather than imparting a
pre-specified set of biases (see Figure

can be too restrictive, making it difficult for these models
to represent all possible languages. In contrast, neural net-
work modeling takes a bottom-up, data-driven approach that
gives greater flexibility in representing the full span of lan-
guages. In recent work, neural networks trained on naturally-
occurring data have shown success at learning linguistic phe-
nomena such as subject-verb agreement (Gulordava et al.
2018). Since neural networks do not have overt biases spe-
cific to language, their successes give insight into which as-
pects of language are learnable from realistic input paired
with domain-general biases. However, these models often
generalize in different ways from humans (McCoy et al.
2019), and they require far more training data than humans,
indicating that their learning is underconstrained (van Schi-
jndel et al.l 2019). To address these problems, it would be
necessary to give these models additional inductive biases
that would appropriately constrain their learning to be more
human-like, but their bottom-up nature makes it difficult to
build in additional biases (Griffiths et al., [ 2010).
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Figure 2: Factors that shape languages and hypothesized examples.

In this work, we propose a computational modeling frame-
work for imparting a hypothesized set of universal linguistic
inductive biases in a way that is compatible with the flexibility
of neural networks. Our approach is based on meta-learning,
a technique in which a learner is exposed to a variety of tasks,
each of which comes with a limited amount of data (Thrun &
Pratt, 1998} Hochreiter et al.| [2001). This process instills in
the learner a set of inductive biases which allow it to learn
tasks similar to those it has seen before from limited data. In
our setting, each “task” is a different language, and the in-
ductive biases that result from meta-learning are encoded in
a neural network’s initial state. This initial state is found in a
data-driven manner; by controlling the data, we can influence
which inductive biases will be encoded in the initial state, and
the initial state can then be analyzed to verify that it encodes
the universal inductive biases that it is intended to encode.

As a first case study, we show the effectiveness of this ap-
proach on the acquisition of a language’s syllable structure, a
paradigmatic example of universal linguistic inductive biases.
We define a set of inductive biases relating to syllable struc-
ture that we intend to give our model, and we then translate
this set of inductive biases into a space of possible languages
from which we have a model meta-learn. Through analysis
of the meta-learned initial state, we verify that meta-learning
has successfully imparted the inductive biases that it was in-
tended to impart; for example, the model has meta-learned
that the presence of certain input-output mappings in a lan-
guage implies the presence of other input-output mappings

Background

Universal linguistic inductive biases Evidence for univer-
sal inductive biases that shape language acquisition primarily
comes from two areas. First, in typology (the taxonomy of
observed language types), certain grammatical structures are

20ur code is at https://github .com/tommccoyl /meta
-learning-linguistic-biases; there is also a demo at http://
rtmccoy.com/meta-learning-linguistic-biases.html.
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much more common than others even across unrelated lan-
guages (Greenberg, |1963), and at least some of these patterns
appear to arise from learners’ inductive biases (Culbertson
et al.| [2012). Second, in acquisition, the argument from
the poverty of the stimulus (Chomskyl |1980) notes that all
language learners generalize in similar ways despite being
faced with stimuli that are consistent with multiple general-
izations. We use the phrase universal linguistic inductive
biases for any pressures that universally affect acquisition,
including the types of innate, language-specific constraints
sometimes termed Universal Grammar, as well as other influ-
ences such as articulatory or information-maximizing consid-
erations; see Figure |2| for a categorization of universal pres-
sures. We group these factors together because our frame-
work could be used to impart any type of inductive bias re-
gardless of what source that bias might have in the real world.

Several linguistic formalisms provide theories of the
universal/non-universal distinction. In the Principles and Pa-
rameters framework (Chomskyl [1981)), universal principles
interact with non-universal parameter settings; in Optimal-
ity Theory (Prince & Smolensky, 1993/2004), a universal set
of constraints interacts with non-universal rankings of these
constraints. In contrast, our approach does not require any
formal characterization of universal or non-universal factors;
instead, due to the data-driven nature of the approach, these
factors are characterized purely in terms of the behaviors they
would lead to when paired with particular types of training
data. If a formal characterization of the model’s inductive bi-
ases is desired, it must come from an analysis of the trained
model, because the meta-learning process itself does not pro-
vide a formal characterization of the biases it imparts.

Learning and meta-learning The models we use are arti-
ficial neural networks, which are governed by a large num-
ber of numerical parameters such as connection weights. At
the core of our approach are two processes for determining
the values of those parameters: standard training and meta-
training. Standard training iteratively minimizes error within
a single training language: the model starts with a particu-
lar set of initial values for its parameters and is exposed to
a training set of example input-output pairs from the lan-
guage to be learned. For each training example, the output
that the model generates is compared to the target value, and
the model’s parameters are adjusted to decrease the difference
between the predicted output and the correct target. Ideally,
after many such updates, the model will perform well not only
on its training set but also on a test set, which contains un-
seen examples drawn from the same language as the training
set. Standard training requires the model to begin with some
initial parameter values; it is the task of meta-training to set
these initial values based on data.

Standard training requires only a single language. Meta-
training, by contrast, samples multiple languages from a
distribution of possible languages, p(L). The particular
form of meta-learning that we use is model-agnostic meta-
learning (MAML; |Finn, Abbeel, & Levine, [2017): The


https://github.com/tommccoy1/meta-learning-linguistic-biases
https://github.com/tommccoy1/meta-learning-linguistic-biases
http://rtmccoy.com/meta-learning-linguistic-biases.html
http://rtmccoy.com/meta-learning-linguistic-biases.html

Universal factors Non-universal factors Example language

i. A set of 4 violable constraints:
e ONSET: Every syllable should
begin with a consonant.

e NOCODA: No syllable should
end with a consonant.

e NOINSERTION: No sounds
should be inserted.

i. Constraint ranking (drawn randomly from
the 8 unique input-output mappings)

ii. Set of 2, 3, or 4 consonants (drawn ran-
domly from 20 possible consonants)

iii. Set of 2, 3, or 4 vowels (drawn randomly
from 10 possible vowels)

iv. Consonant used when insertion of a con-

e NODELETION: No sounds sonant is needed (drawn randomly from euzun —  .e.u.zu.ne.
should be deleted. the language’s consonants) un —  .u.ne.
) ) XXXne —  .Xe.xe.xe.ne.
ii. Mechanisms for mapping inputs v. Vowel used when insertion of a vowel nezu  —  .ne.zu.
to outputs based on a ranking of is needed (drawn randomly from the eznx —>  .e.ze.ne.xe.
the constraints. language’s vowels) zZuxue —  .Zu.Xu.e.

Constraint ranking:
NoCoODA > NODELETION >
NOINSERTION > ONSET
Consonants: z x n; Vowels: e u
Consonant for insertion: z
Vowel for insertion: e

Example input-output pairs:

1. A bias for languages with a consis-
tent constraint ranking.

4. A bias for grouping sounds into two
universal phoneme classes, namely

consonants and vowels. CoDA).

\

2. A bias for languages that use a
consistent set of constraints.

5. A bias for ONSET and NOCODA
over similar constraints (NOONSET,

Inductive biases that we test for

3. A bias for applying observed patterns
to novel lengths.

6. A bias for assuming that certain
mappings imply certain other map-
pings (implicational universals).

Figure 3: A summary of basic syllable structure theory in Optimality Theory (Prince & Smolenskyl |1993/2004)). The top middle panel posits
8 unique input-output mappings because many of the 24 orderings of the 4 constraints are equivalent in the outputs they produce. The top
right panel gives an example language; the chosen constraint ranking leads to a language where no syllables end in a consonant, and where
violations of this restriction are fixed by vowel insertion rather than consonant deletion. Periods (present in the output but not the input)
indicate syllable boundaries. The bottom panel lists the inductive biases that we use as behavioral tests of the universal factors.

model’s initial state, Mo, is determined by a set of initial pa-
rameter values; then, for each sampled language L; ~ p(L),
we train our model on the training set of L; using standard
training, to yield a trained model M;. Crucially, we then com-
pute an adjustment of the initial state My using M;’s loss on
the unseen test examples from L;; M; is discarded after the
adjustment of My. Intuitively, we tweak My so that, if we
were to train the model on L; again, it would learn L; in fewer
iterations. As meta-training proceeds, the initial model state
M (the square in Figure [I] Step 2) moves to a point from
which it can readily learn any language from the distribution
of meta-training languages (the star in Figure [T} Step 2). We
hypothesize that, if we construct p(L) to encode the inductive
biases that we wish our model to have, then meta-learning
that aims to facilitate acquisition of languages in p(L) will
give a model these inductive biases.

Overview of the approach

The goal of our approach is to give a model a set of inductive
biases hypothesized to be relevant for human cognition; once
such a model has been created, it could then be used to empir-
ically investigate the effects that those inductive biases have.
The following sections walk through our 3-step approach, us-
ing a case study in syllable structure typology.

Step 1: Defining the space of learning problems

To apply our method, we must first define the inductive bi-
ases that we wish to impart; that is, we must define what in-
nate knowledge we wish our model to have. For this purpose,
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we focus on the domain of syllable structure (the study of
how words in a language are divided into syllables; Jakobson)
1962), and in particular we adopt the Optimality Theory ac-
count of |Prince and Smolensky (1993/2004) because this
account provides a clear characterization of which factors are
universal and which are non-universal.

In this account, each word has an input form, which is the
form it takes before any phonological processes have applied,
and an output form, which is the result of phonological pro-
cesses acting on the input. For example, in English, the prefix
in- combines with the word possible to create the input inpos-
sible, which is then mapped to the output impossible through
a place-assimilation process. The input-output mapping is de-
termined by a ranked set of constraints, where the set of con-
straints is universal, but their ranking is non-universal. For
syllable structure, we use four constraints. Two of them eval-
uate the output alone: ONSET favors output syllables that be-
gin with a consonant, and NOCODA favors output syllables
that end with a VoweIE] If the input does not satisfy these
constraints (e.g., kep), the output could be made to satisfy
them by either inserting or deleting phonemes (e.g., .ke.pa.
or .ke.) However, insertions and deletions are discouraged
by the remaining constraints, NOINSERTION and NODELE-
TION. When two constraints conflict with each other, the con-

3We use the simplified account from Sec. 6.1 of [Prince and
Smolensky|(1993/2004), leaving out the subsequent refinements.

#A syllable’s onset and coda consist of, respectively, syllable-
initial and syllable-final consonants (e.g., for kep, k and p, resp.).

9y

SWe use periods (“°) to indicate word and syllable boundaries.



flict is resolved by a priority-ranking of the constraints; this
ranking differs across languages. In a language where NOIN-
SERTION and NODELETION outrank NOCODA, the input kep
would map to the output .kep., because NOCODA cannot be
satisfied without violating a higher-ranked constraint. Under
other rankings, the input kep could map to .ke. or .ke.pa..
Based on this framework, we defined a set of inductive bi-
ases that we intend to give to our model via meta-learning
(Figure [3] bottom panel). These biases were chosen to pro-
vide behaviorally-defined versions of the universal factors in
the Optimality Theory framework. For example, this frame-
work includes a universal mechanism for mapping inputs to
outputs based on a constraint ranking, a mechanism which
could not be directly observed in our model’s behavior. Thus,
we instead defined inductive biases that encode properties of
this mechanism, such as a bias for languages with a consis-
tent constraint ranking, to encode the fact that the mechanism
employs a consistent ranking within each languageE] We then
translated these inductive biases into a space of possible lan-
guages and used that space to sample languages for use in
meta-learning (Figure 3] top middle and top right panels).

Step 2: Meta-training

The next step is to train a meta-learner on the set of learn-
ing problems defined in Step 1. In our case study, the initial
state M and the language-specific state M; are the parame-
ters of a sequence-to-sequence neural network (Sutskever et
al.l 2014)) that maps a word’s input form to a predicted output
form. This architecture has two components: the encoder is
fed the input one phoneme at a time and outputs a vector that
encodes the entire input; this vector encoding is fed to the de-
coder, which generates the output symbols one at a time, end-
ing with a special end-of-sequence token We apply meta-
learning to such a model, allowing it to meta-learn from a
set of 20,000 unique languages (called the meta-training set).
For each language, the model was trained on 100 examples
from that language and then tested on 100 held-out examples;
the model’s meta-training objective is thus learning to per-
form 100-shot learning, that is, acquiring the ability to learn a
new language from only 100 examples. After every set of 100
meta-training languages, we evaluated how well the model
could perform 100-shot learning on each of 500 held-out lan-
guages; we terminated meta-training when there had been 10
consecutive evaluations without improvement, and then eval-
uated the meta-trained model on its ability to perform 100-

SNot all of these biases are necessarily present in humans;
e.g., languages differ in which phonemes can be syllabic nuclei,
whereas one of our target biases is knowledge of a universal class
of potential nuclei (i.e., the vowels). We do not intend to propose a
theory of syllable structure acquisition but rather to demonstrate how
meta-learning could instantiate such a theory in a neural network.

TThe particular model that we used was an LSTM (Hochreiter
& Schmidhuber, [1997) with a single hidden layer of size 256, an
embedding layer of dimension 10 (which learned distributed repre-
sentations of phonemes), and no attention. The inner loop optimiza-
tion of MAML used stochastic gradient descent with a learning rate
of 1.0 and batch size 100, while the outer loop optimization used
Adam with a learning rate of 0.001 (Kingma & Bal [2015).
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shot learning on a final set of 1,000 held-out languages called
the meta-test set. Performance on 100-shot learning was mea-
sured as the proportion of inputs in a language’s test set for
which the model generated an exactly correct output sequence
of phonemes and syllable boundaries after observing 100 ex-
amples from the language’s training set. We compared the
model whose parameters were initialized using meta-learning
to a baseline model whose parameters were initialized ran-
domly; aside from initialization, both models use the same
learning procedure to learn each language.

Meta-learning results The model with meta-learned initial
parameters had an average 100-shot accuracy (i.e., the accu-
racy after exposure to 100 examples) of 98.8% on the lan-
guages in the meta-test set. By contrast, the 100-shot accu-
racy for a randomly-initialized model was only 6.5%. In this
case study of syllable structure typology, then, meta-learning
succeeded at imparting the ability to learn languages in our
distribution of languages from a small number of examples.
To evaluate whether meta-learning imparted the specific in-
ductive biases that we intended it to impart (Figure [3), we
next analyzed the weight initialization found through meta-
learning by examining the learning behavior it produces.

Step 3: Verification of the acquired inductive bias

Ease of learning Our first approach for studying our
model’s inductive biases is to evaluate how easily they learn
languages that differ from each other in controlled ways. We
quantify ease of learning as the minimum number of training
examples that a model needs from a language to reach 95%
accuracy on that language’s test set

We first use this technique to test whether the meta-learned
inductive bias produces learning behavior that favors the set
of constraints defining our syllable structure typology. Re-
call that our space of languages was defined with the con-
straints ONSET and NOCODA. We now test our model on
languages defined by these constraints, as well as languages
defined by alternate constraint sets in which ONSET is re-
placed with NOONSET, or NOCODA with CODA, or both.

Across language types, the model initialized with meta-
learning required far fewer examples than the randomly-
initialized model (Figure 4] top). Importantly, though, meta-
learning did not improve performance equally across lan-
guages: The ONSET/NOCODA languages were 5.6 times eas-
ier to learn than languages defined by other constraints for the
model initialized with meta-learning, compared to 1.2 times
easier for the random model (Figure [6a), suggesting that
meta-learning has imparted an inductive bias favoring lan-
guages that are consistent with the meta-training constraints.

Has the model initialized with meta-learning simply mem-
orized the types of languages it has seen, rather than learning
the more abstract constraints of ONSET and CODA? Fig-
ure [5] suggests that meta-learning has imparted some de-

8Specifically, we selected the number of examples to be the
smallest multiple of 100 for which the model converged to at least
95% accuracy, without restricting the number of training iterations.



4
2
0 |

Initialized with Initialized
meta-learning randomly

(a) Ratios comparing
languages with an

incorrect set of
constraints to those with

ONSET and NOCODA.

Initialized with Initialized
meta-learning randomly

(b) Ratios comparing
languages with an
inconsistent constraint

1.0
0.0

Initialized with  Initialized
meta-learning randomly

(c) Ratios comparing
languages with an
inconsistent set of

ranking to those with a
consistent ranking.

constraints to those

with a consistent set.

5 0 L
+ 2 20000 Initialization
3 E‘ Method
€ @ 10000 M Meta-learning
>3 Random
z 0 — — —
Onset NoOnset Onset NoOnset
NoCoda NoCoda Coda Coda
S & 75000 S § 75000-
2 & 50000 2 & 50000-
£ G, €
£ & 25000 S £ 25000- .
z0 0 | - z® 0- . :
Consistent  Inconsistent Consistent  Inconsistent
ranking ranking constraint setconstraint set

Figure 4: The number of examples needed to learn a language to
95% accuracy (lower is better). Each bar is an average of 80 to 100
languages. Meta-learning improves performance on all conditions.

Onset NoOnset Onset NoOnset
NoCoda NoCoda Coda Coda

Number of
examples
I

au o u
g 8 &
8 8 8

=)

Figure 5: Data from the top panel of Figure@re-plotted at a different
scale: The number of examples needed by the model initialized with
meta-learning to learn languages with different sets of constraints.

gree of more abstract knowledge, because, of the types of
languages that were not present during meta-learning, the
model has an easier time learning ones that have one of the
correct constraints (i.e., NOONSET/NOCODA languages and
ONSET/CODA languages) than ones that have neither correct
constraint (i.e., NOONSET/CODA languages).

We now test whether the model has meta-learned that there
must be a consistent constraint ranking within a language.
We test our models on languages governed by the constraints
used during meta-learning (ONSET, NOCODA, NOINSER-
TION, and NODELETION), but with no consistent ranking of
constraints within the language. This is done by indepen-
dently choosing a random constraint ranking for each input
structure; e.g., we might select a ranking for VV such that
any input of the form VV maps to .CV.CV., while VVV might
receive a ranking that maps VVV inputs to the empty stringﬂ

For the model initialized with meta-learning, languages
with a consistent ranking were 97.1 times easier to learn than
languages without a consistent ranking, compared to only 3.6
times easier for the randomly initialized model (Figure [6b).
This improvement in learning relative to random initialization
suggests that meta-learning has strengthened the model’s bias
for languages generated by a consistent constraint ranking.

We next test whether our models have a bias for the fact
that within a language, a single set of constraints can con-
sistently generate all input-output mappings (the previous
test was about the constraint ranking, while this one is about
the constraint sef). We evaluate our models on languages
with a consistent set of constraints but no consistent rank-
ing across inputs, as in the previous experiment; but now we
allow the set of constraints generating a given language to
include any of the output constraint combinations discussed
above (ONSET/CODA, ONSET/NOCODA, NOONSET/CODA,

9We use C and V as shorthands for consonant and vowel; CV is
shorthand for any syllable of the form consonant-vowel.

741

Figure 6: Each subplot shows the ratio of the average number of
examples need to learn a language with a property inconsistent with
typology to the average number needed to learn a language with
the analogous consistent property; higher is better. In each case, the
model initialized with meta-learning favors the typologically consis-
tent language type more strongly than does the randomly initialized
model. The ratios derive from the results shown in FigureEl

Seen example types [l Novel example types

All new phonemes Length 5

Initialized with Initialized
meta-learning randomly

Implicational universals

Initialized with Initialized
meta-learning randomly

100% q

75% -
50% -
25%
0% - —

Initialized with Initialized
meta-learning randomly

Accuracy

Figure 7: Results on poverty-of-the-stimulus experiments. Both
models perform well on the example categories they have seen be-
fore, but the performance of the randomly-initialized model plum-
mets when it is tested on novel types of examples; the meta-trained
model exhibits less of a performance drop in these cases.

or NOONSET/NOCODA). We compare the learning of such
languages to languages with no consistent set of constraints
(and also no consistent constraint ranking), such that, for each
input template (e.g., CCVC), there is a randomly-selected set
of constraints and a random ranking for those constraints.

On average, the languages with a consistent constraint set
were 1.4 times easier to learn for the model initialized with
meta-learning than languages without a consistent constraint
set, compared to 1.1 times easier for the randomly initialized
model (Figure[6c). This result suggests that meta-learning has
moderately strengthened the model’s bias favoring languages
that can be generated by a single set of constraints. For such
constraint-set consistency to greatly increase the learnability
of a language, it appears necessary that the language also be
generated by a single constraint ranking.

Poverty of the stimulus As a second way to study biases,
we use a poverty-of-the-stimulus approach: for a given lan-
guage, we train on a dataset lacking a certain class of exam-
ples, and test generalization to the withheld class.

We performed three such experiments. In the all new
phonemes setting, the training set for each language only
contained 2 to 4 unique consonants and 2 to 4 unique vow-
els, as before, but now every example in the test set consisted
entirely of consonants and vowels that were not present in the
language’s training set. The randomly initialized model has
no hope of succeeding in this case, as it has no way to know
whether each novel character is a consonant or vowel, but
the model initialized with meta-learning could have learned
these distinctions during meta-learning because the division
between consonants and vowels is consistent across the meta-
training languages. The model initialized with meta-learning



performs strongly here (Figure[/] left), suggesting that meta-
learning has imparted universal consonant/vowel classes.

In the length 5 setting, each language’s training set only
contained examples with an input length of at most 4, but its
test set examples were all of length 5. The model initialized
with meta-learning also performed strongly here (Figure
middle). Note that, during meta-learning, inputs with lengths
up to 5 appeared; thus, the length 5 setting only requires gen-
eralization within the bounds seen during meta-learning. We
also tested how models generalized from lengths at most 5
to length 6; in this case, the model initialized with meta-
learning only achieved 59% accuracy. This suggests that
meta-learning imparts a bias favoring languages in which the
types of mappings that apply to short strings also apply to
longer strings, but that this bias is restricted to the lengths
present during meta-learning.

Last is the implicational universals setting. The space of
languages that we have defined is restricted such that the pres-
ence of certain input-output mappings implies the presence of
certain other input-output mappings. For example, the pres-
ence of the mapping VC — .CVC. indicates that the language
will insert a consonant at the start of any syllable that does not
start with one, which means that the language will also have
the mapping V — .CV. To test whether a model has an induc-
tive bias for this association, we can train it solely on exam-
ples of the form VC — .CVC. and then see how it handles
V inputs; a naive model is unlikely to know how to handle
this input, while a model that knows the implication would
know to transform V to .CV. Our space of languages (Fig-
ure[3) predicts 24 dependencies of this form; when we test all
of these dependencies, we find that the randomly-initialized
model performs poorly while the model initialized with meta-
learning performs well (Figure [/} right). This suggests that
the model has meta-learned these implicational universals.

Conclusion

We have demonstrated how meta-learning can impart univer-
sal inductive biases specified by the modeler. This example-
based approach to imparting inductive biases does not require
an explicit theory of the biases in question; rather, imparting
the biases only requires these biases to be translated into a
distribution of possible languages. While the meta-learned
biases are not as transparent as those encoded in probabilistic
symbolic models, analysis of the model’s learning behavior
can be used to evaluate whether meta-learning has produced
the desired biases, as we have shown. In our case study, we
found evidence that meta-learning had successfully imparted
all of our target inductive biases (or strengthened them, in
cases where the biases were already present), including both
some abstract biases (e.g., a bias for languages with a consis-
tent constraint ranking) and some more concrete biases (e.g.,
a bias for treating certain phonemes as vowels). These re-
sults show that linguistic inductive biases that have previously
been framed in symbolic terms can be reformulated in the
context of neural networks, facilitating cognitive modeling
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Figure 8: Meta-learning from natural-language data.

that combines the power of neural networks with the con-
trolled inductive biases of symbolic approaches.

One important feature of the proposed approach is that
it imparts soft biases rather than hard constraints. For ex-
ample, after meta-learning, the model could learn attested
language types more readily than unattested types—but it
still could learn the unattested ones. This capability is at
odds with some theories that predict that unattested language
types should be unlearnable, but there are reasons to be-
lieve that the consistent patterns seen in language typology
and language acquisition may be best viewed as biases rather
than constraints: almost all linguistic universals have excep-
tions (Evans and Levinson, 2009} though see Smolensky and!
Dupoux| 2009); for example, the Arrernte language has been
argued to be an exception to the syllable structure typology
we have adopted (Breen & Pensalfini, {1999). Further, hu-
mans in artificial language learning experiments are capable
of learning “unnatural” languages (Moreton & Pater, [2012).

Several other works have discussed meta-learning from a
cognitive perspective (Lake et al.|[2017; |Griffiths et al.l | 2019;
Lake, [2019; (Grant et al.}2019), and in applied settings meta-
learning has been applied to language to create technology in
low-resource languages (Gu et al., [2018} [Ponti et al.l 2019;
Kann et al.,[2020). Our novel contribution is the use of meta-
learning to analyze the interplay between data and linguistic
inductive biases.

Our approach can be used to test the behavioral effects of
a particular inductive bias (e.g., to test if the bias has the ex-
planatory power hypothesized in a cognitive theory): All that
is required to create a model with a specific inductive bias is
a way to translate the bias into a distribution of meta-training
languages, as we have demonstrated with Optimality The-
ory. In our experiments, we knew what factors defined the
space of languages, and we showed that the inductive biases
found through meta-learning reflected these factors; alterna-
tively, this technique could be applied to naturally-occurring
linguistic data for which we do not know the underlying data-
generating process, to lend insight into the inductive biases
that shaped this data (Figure [8). Finally, this framework is
general enough that it can be straightforwardly applied to
cognitive domains other than language (e.g., vision).
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