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Learning to Program Recursion

Peter L. Pirolli, John R. Anderson, and Robert Farrell
Carnegie-Mellon University

Learning to program recursive functions in languages like LISP is notaoriously difficult. Indeed,
a primary mark of expertise in such languages is the ability to plan and code recursive functions.
Recently, we have performed protocol studies of students learning to program recursion in LISP
and LOGO as well as controlled experiments on learning recursion in a simple programming
language. We have used the GRAPES production system model (Anderson, Farrell & Sauers, 1984)
to address these results. GRAPES not only models programming performance but also learning
by doing by the mechanism of knowledge compilation. Knowledge compilation summarizes
extensive problem-solving operations into new compact production rules (see Anderson, Farrell,
& Sauers, 1984; Neves & Anderson, 1981 for details).

Characteristics of Learning to Program Recursion

In Anderson, Pirolli and Farrell (1983), we hypothesized that initial performance and learning
in recursive programming is primarily driven by learning from examples, since students have
little relevant prior knowledge. We further hypothesized that such learning consists of two
components. First, students can use the solution to a given example as an outline which must
be modified in order to solve a current problem (probeim-solving by analogy). Second, learning
(knowledge compilation) mechanisms can summarize these analogy operations into new
problem-solving operators which can apply to future problems (learning from analogy).

To illustrate problem-solving by analogy and learning from analogy we present a GRAPES
simulation of a subject, SS, in her initial encounters with coding recursive LISP functions. At the
time, SS had about 15 hours of tutoring and programming experience in LISP. The first function
that SS wrote was SETDIFF, which returned all the elements of the one list not contained In a
second list. In coding SETDIFF, SS analogized from a textbook example function, INTERSECTIONT1,
which returned all elements that were common to two input lists. The primary structure of
SETDIFF and INTERSECTION1 consists of a series of if-then conditional statements (see Figure 1).

The GRAPES simulation (Figure 2) of SS when provided with a representation of the
INTERSECTION1 code at multiple levels of abstraction, a specification of the SETDIFF relation and
a goal to code SETDIFF used following analogy production:

P1: IF the goal is to write a function
and there is a previous example
THEN set as subgoals
1) to compare the example to the function
2) map the example's solution onto the current problem

P1 sets goals to first check the similarity of the specifications of INTERSECTION1 and SETDIFF
and then map the code structure of INTERSECTION1T onto the SETDIFF code. A set of
comparison productions then found that both INTERSECTION1 and SETDIFF take two input sets
and can be code recursively.

Next, structure-mapping productions map conditional clauses from INTERSECTION1 to
SETDIFF SS gave clear evidence in her protocol of performing the same mapping. For each
INTERSECTION1 conditional clause, SS (and GRAPES) mapped the condition of the clause onto
SETDIFF and determined what action should take place. Like SS, GRAPES fluctuated the level of
abstraction at which these conditional clauses were mapped. For instance, initially GRAPES
attempted to map the condition “test if an element should be added to the result” When this
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failed, it mapped a more literal translation: “test if the first element of the first list is a member
of the second list".

SETDIFF GOAL TREE
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Figure 1: Abstract code Figure 2: Part of the GRAPES solution
specifications for SETDIFF

A number of new GRAPES productions were produced by knowledge compilation in coding
SETDIFF. However of primary interest is a rule which was produced by compiling the analogy
processes:

Ci1: IF the goal is to code
a recursive relation on two sets SET!1 and SET2
THEN code a conditional and set as subgoals to
1) Refine & code a clause
to deal with the case when SET1 is empty
2) Refine & code a clause
to deal with the case when SET2 is empty
3) Refine & code a clause
to deal with the case when the first
element of SET1 is a member of SET2
4) Refine & code a clause
to deal with the else case

In the SETDIFF example we see both problem-solving by analogy and learning by analogy.
First, the solution of SETDIFF was heavily guided by the INTERSECTION1 example and second we
see the acquisition of a new production, C1, summarizing this analogy process. This operator
can only be successfully applied to a small domain of recursive functions. Both GRAPES and SS
successfully used this production on the next function attempted, SUBSET, which determines
whether one list is a subset of another by recursion. However, both SS and GRAPES had great
difficulty in solving the next recursive function in the instructional series, POWERSET, which
computes the set of all subsets of a set This difficulty results from the inapplicability of
production C1 in the POWERSET case. The analogy processes executed in SETDYFF were at a
sufficiently abstract level that they generalized to SUBSET when compiled into C1. However
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they were not abstract enough to generalize to POWERSET. This leads to the conjecture that
transfer of learning from analogy is limited by the level of abstraction at which the analogy is
initially carried out.

TO TUNNEL :X TO CIRCLES :X

SQUARE :X RCIRCLE :X

IF :X = 50 THEN STOP IF :X = 50 THEN STOP
TUNNEL :X + 10 ] CIRCLES :X + 10

Figure 3: The TUNNEL function Figure 4: CIRCLES function

A further illustration of how the level of abstraction of an analogy impacts on generalization
comes from a protocol of an eight year old student (J) coding her first recursive program in
LOGO. The student’s background consisted of a semester and a half of weekly LOGO lessons.
J's first problem was a function, TUNNEL, which drew concentric squares on the computer
screen (Figure 3). Her coding was guided by an example function CIRCLES which drew
concentric circles (Figure 4). Unlike subject SS who basically mapped the conditional structure
of INTERSECTION1 onto SETDIFF, subject J basically mapped the actual code of CIRCLES onto
TUNNEL. The only portions of the CIRCLES code that J did not map at the literal level was the
name of the function (CIRCLES changed to TUNNEL) and a subfunction called by the program
(CIRCLES calls a circle drawing program while TUNNEL calls a square drawing program. The
production rule produced by GRAPES by compilation of the CIRCLES - TUNNEL analogy is:

C2: IF the goal is to code a figure
and the function for figure is called <NAME>
and a repeated subfigure of the figure is coded by <SUBFUNCTION>
THEN write

TO <NAME> :X
<SUBFUNCTION> :X
IF :X = 42 THEN STOP
<NAME> :X + 10

In contrast to production C1, the condition of production C2 matches to relatively spurious
program specifications and its actions largely specify literal code rather than an abstract plan
The fact that subject J had great difficulty writing subsequent recursive programs seems to
corroborate the view that she had failed to learn any operators of even limited generality for
coding recursion from this analogy episode.

The GRAPES simulations of programming recursion also suggest that learning to program
recursion occurs by a process of piecemeal approximation. For example, the operator producing
code for a tail-recursive call is compiled when coding SETDIFF, while an operator for combining
the result of a recursive call with another result is not learned until GRAPES codes POWERSET
The protocols of subject SS support this analysis: after coding SETDIFF, SS has no problem
coding a tail-recursive call in SUBSET, but does not initially know how to combine results of
recursive calls with other results in POWERSET. However, after coding POWERSET, SS
successfully wrote code combining recursive results with other results.

Conceptual Models of Recursion

Our protocols of LISP subjects suggest that novices typically view recursive functions with a
“flow of control” mental model (see also Kahney, 1982). In attempting to plan code for a
recursive function, subjects will frequently simulate or trace the flow of control of the function
and its recursive calls. Using such a model generally leads to errors because such tracing is
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often complicated and involves keeping track of many partial results. In addition, such a modsl
does not readily map onto program generation since it is not specifically a model of how to
write a recursive function: the flow of control model describes how already written functions are
evaluated.

We have modelled in GRAPES what is arguably an ideal strategy for coding recursive
functions. This strategy has the following “formal model” of code generation for recursive
programs: “A recursive function consists of (a) one or more terminating cases in which a simple
answer is returned and (b) one or more recursive cases in which the answer to the current
problem is solved by assuming that the answer to a simpler version of the same problem (a
recursive call) has been solved.”

We hypothesized that subjects instructed with the formal model would learn to code
recursive functions faster than those using the flow of control model. We conducted an
experiment in which subjects initially learned the basic functions, predicates, conditionals, and
definitional forms of a simple programming language modelled after LISP. One group of subjects
was then introduced to recursive functions using the formal model, another group’s instructions
for recursion emphasized the flow of control model. All subjects were then presented with four
recursive program specifications (one at a time) for which they had to write code. Subjects
were re-presented with specifications until they had written a correct program for each
specification. The formal model group took significantly less time (M = 3444 seconds) than the
flow of control group (M = 5116 seconds) to code all functions correctly.

Implications for Intelligent Tutoring Systems

Our efforts to design intelligent computer-aided instruction (ICAl) system for programming
(and especially recursion) has been influenced by the current results. First, our ICAl system
avoids examples since our GRAPES model suggests that although problem-solving by analogy
can facilitate initial performance it may not necessarily facilitate learning. Second, our model
suggests that students learn recursion in a piecemeal fashion. The ICAl system thus presents a
wide variety of recursion problems to expose students to a large range of coding patterns.
Finally, our GRAPES ideal model and experimental results indicate that a formal mental model of
recursive programs facilitates learning because it reduces working memory load and more
directly maps onto program generation than the flow of control model typically used by novices.
This conceptual model and the ideal programming model are employed by the ICAI system in
teaching recursion.
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A MODEL OF KNOWLEDGE REPRESENTATION BASED ON DEONTIC MNDAL LOGIC

Anthony Rifkin
Developmental Psychology Program
City University of New York Graduate Center
33 West 42nd Street
New York, NY 10036

In this paper a model of knowledge representation is presented along with
psychological research supporting this model. This is followed by a general discussion

of the model and its possible application to the construction of computer knowledge
bases.

Psychological research has demonstrated that people do not use necessary and
sufficient features to determine the membership of instances in natural categories
(Hampton, 1979; Rosch and Mervis, 1975). In place of necessary features, or a set of
features, that are common to all members of a category, Rosch and Mervis (1975)
proposed that category instances bear a ''family resemblance' to each other. In support
of this proposal they found that the degree of membership (or "typicality") of instances
is related to the number of features instances share with other members of that category,
and conversely, that instances that are more typical of a category share few features
with (bear less "family resemblance" to) members of other categories.

An alternative model was constructed for the present research, using a deontic
modal logic (Wright, 1963). While this model can deal with the phenomena of typicality
gradients of membership and the family resemblance structuring of category features, it
at the same time shows how features can be taken to be common to all members of a
category and defining of these memberships. This is done within the framework of
extensive cross-classifications and greater taxonomic depth than has commonly been
examined in category research. It is also proposed that this hierarchical and cross-
classified organization of categories and featural information is accessed in terms of
least~upper-bound shared memberships, when retrieving information relevant to the
comparison of instances.

In the proposed model, the deontic features are taken as "Obligatory'", "Permissible',
or "Impermissible” in defining the membership of instances (see Figure 1 for examples
for the category Clothing). The relations of these features to the categories can be
expressed in terms of quantification and the "ideal' worlds they represent. Obligatory
features may be taken as defining the membership of "all" instances, Permissible
features as defining the membership of '"'some' instances, and Impermissible features as
defining the membership of "none" of the instances. In contrast to necessary features,
Obligatory features are generic norms that can be taken as common to all members, but
are not invalidated by individual cases. For example, the feature "Worn" can be applied
to all instances of Clothing, including a least typical instance like purse (see Figure
1). Or, this feature may not be applied to the instance purse, when purse is being used
as an instance of the category Bag in contrast to the category Clothing and the feature
"Holds Items" is being applied to it. In this way the sense of deontic features can be
shifted (delimited or extended) to handle the '"fuzzy" boundaries of natural categories
and to adjust to the comparisons being made of categories and/or instances.

Clothing Bag Clothing Bag
*
"hbrn |
"Used to ™ |
Keep Warm" ! |
~ | I
: coat ' purse l
|
Permissible Obligatory Impermissible Subset Superordinate Contrasting
Feature Feature Feature Category

-Figure 1- -Figute 2-
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