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Abstract: Advancements in imaging, computer vision, and automation have revolutionized various
fields, including field-based high-throughput plant phenotyping (FHTPP). This integration allows for
the rapid and accurate measurement of plant traits. Deep Convolutional Neural Networks (DCNNs)
have emerged as a powerful tool in FHTPP, particularly in crop segmentation—identifying crops
from the background—crucial for trait analysis. However, the effectiveness of DCNNs often hinges
on the availability of large, labeled datasets, which poses a challenge due to the high cost of labeling.
In this study, a deep learning with bagging approach is introduced to enhance crop segmentation
using high-resolution RGB images, tested on the NU-Spidercam dataset from maize plots. The
proposed method outperforms traditional machine learning and deep learning models in prediction
accuracy and speed. Remarkably, it achieves up to 40% higher Intersection-over-Union (IoU) than the
threshold method and 11% over conventional machine learning, with significantly faster prediction
times and manageable training duration. Crucially, it demonstrates that even small labeled datasets
can yield high accuracy in semantic segmentation. This approach not only proves effective for FHTPP
but also suggests potential for broader application in remote sensing, offering a scalable solution to
semantic segmentation challenges. This paper is accompanied by publicly available source code.

Keywords: field-based high-throughput plant phenotyping (FHTPP); high-resolution RGB image;
semantic segmentation; deep learning; bagging

1. Introduction

Plant phenotyping is a crucial component of precision agriculture, as it allows crop
breeders to gather detailed information about the growth and health of their crops. By mea-
suring various traits such as plant size, height, and photosynthetic efficiency, scientists can
optimize yields, detect disease, and improve sustainability. In recent years, advancements
in imaging and sensing technologies have led to the development of non-invasive, digital
plant phenotyping methods [1,2]. Compared to manual measurement, high-throughput
plant phenotyping (HTPP) is more efficient and less labor-intensive to gather large amounts
of data quickly and easily [3]. Moreover, sophisticated image analysis algorithms and
machine learning techniques can help extract meaningful insights from the data, provid-
ing farmers with actionable information about their crops, such as identifying disease
outbreaks, monitoring growth conditions, and optimizing fertilizer and irrigation use [2].
Crop segmentation, which separates the crop pixels from background ones (e.g., soil and
weed) is often an initial and vital step in the image processing protocols of HTPP stud-
ies (e.g., estimation of canopy coverage rate, aboveground biomass, and leaf area index).
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This segmentation is typically achieved using a type of computer vision algorithm known
as semantic segmentation, which assigns every pixel in an image to a categorical class
label [4–7].

The history of semantic segmentation dates back several decades to early work in
computer vision [8]. During the early stage, researchers may use a variety of low-level
features that are extracted from the texture and color of images to perform segmenta-
tion tasks. For example, pixel color, Histogram of Oriented Gradients (HOG) [9], Scale
Invariant Feature Transform (SIFT) [10], SURF [11], Features from Accelerated Segment
Test (FAST) [12], FAST- ER [13], AGAST [14] and Multiscale AGAST [15] Detector, and
Textons [16]. The methods used include Watersheds [17], clustering [18], and threshold [19].
However, these are unsupervised methods that may not give satisfying segmentation
results for difficult tasks [20]. To overcome this, supervised machine learning models have
been applied to pixel-wise image classification, such as support vector machine (SVM) [21],
random forest (RF) [22], variations of Markov Random Field, and Conditional Random
Field (CRF) [23,24]. Recently, researchers have developed various Deep Convolutional Neu-
ral Network (DCNN) architectures for semantic segmentation. These deep learning models
yield remarkable performance improvements that often achieve the highest accuracy rates
on popular benchmarks [25]. A breakthrough in deep learning semantic segmentation was
made by proposing the Fully Convolutional Network (FCN) [26]. It adopted well-known
classification nets (AlexNet [27], the VGG Net [28], and GoogLeNet [29]) by adding skip
architecture and replacing the fully connected layers with convolutional layers, which was
followed by upsampling layers to recover the spatial resolution and produce the per-pixel
classification results. Ronneberger et al. proposed the U-Net architecture for biomedical
image segmentation [30]. They used a compression path (encoder) to extract the context
of input images and an expanding path (decoder) to restore the spatial information and
produce pixel classification results. They also added skip-connections to concatenate con-
tracting and expanding convolutional layers. Similarly, Badrinarayanan et al. developed
a DCNN structure called Segnet [31]. The decoder of Segnet requires less resource by
using max pooling indices from the encoder to perform upsampling. A sequence of DCNN
structures called Deeplab for semantic segmentation was developed [32–35]. It introduced
atrous convolution that can effectively enlarge the field of view without increasing the
number of parameters or the amount of computation, and Atrous Spatial Pyramid Pooling
(ASPP), which is capable of extracting multiscale features.

Semantic segmentation algorithms have significantly advanced over the years, pro-
viding powerful tools for image analysis. However, despite their historical significance
and continued development, accurately and timely achieving crop segmentation for im-
ages captured under field conditions remains a challenge due to varying environmental
illumination, weather and soil conditions, camera settings, complex leaf overlapping and
shadowing, etc. While classical machine learning techniques such as random forest, support
vector machines, and K-means clustering have proven effective for greenhouse imaging,
they may encounter limitations when applied to field images [36–38]. To address the chal-
lenges of data analysis, numerous studies have proposed various image analysis methods,
including traditional computer vision techniques and more advanced deep learning-based
methods. Bai et al. applied a threshold-based method on RGB images of soybean fields
to segment plants from the background and used linear discriminant analysis (LDA) and
SVM models to predict the iron deficiency chlorosis (IDC) score using features extracted
from plant pixels [39]. Yuan et al. adapted Otsu’s thresholding technique on early-season
canopy RGB images to segment soybean from the soil background and predicted soybean
end-season traits through the color and texture features [40]. Milioto et al. used a CNN
with an encoder–decoder structure to perform pixel-wise semantic segmentation of crops,
weeds and soil-based vegetation index and image channels of RGB field data [5]. Dash et al.
utilized both unmanned aerial vehicle (UAV) and manned aircraft data to perform su-
pervised pixel-based classification using random forest (RF) and logistic regression (LR)
methods for detecting invasive conifers in a grassland environment [41]. Abeysinghe et al.
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assessed the effectiveness of UAV technology to identify invasive Phragmites australis
using different machine learning and deep learning algorithms [42]. Neural network (NN),
support vector machine (SVM) classifiers, and parametric Maximum Likelihood Classifier
(MLC) on the pixel base, and K-Nearest Neighbor (kNN) on the object base were applied.
Their results identified that the pixel-based NN was the best classifier for the effective
eradication of Phragmites. Zhang et al. constructed a convolutional encoder neural net-
work (CENN) to extract vegetation in farmland and woodland from Gaofen-2 remote
sensing imagery [43]. These studies demonstrate the utilization of various techniques,
encompassing thresholding, machine learning algorithms (SVM, LDA, RF, LR), and deep
learning models (CNN, CENN), to accomplish plant segmentation for subsequent trait
prediction, vegetation classification, and invasive species identification. The diverse range
of methods employed indicates the capability of multiple approaches for agricultural and
environmental applications. Notably, deep learning-based methods, such as CNN and
CENN, are recognized as more advanced techniques in achieving accurate and efficient
results in image analysis tasks within these domains.

This paper aims to address crop segmentation, one of the fundamental tasks in image
semantic segmentation, with HTPP imaging data in the field using high-resolution RGB
images collected by a field-based high-throughput plant phenotyping (FHTPP) platform.
DCNNs have shown excellent performance in such tasks when there is a large amount of
labeled image data, which usually requires a huge amount of time and labor [25,44]. With
limited labeled data for training the deep learning algorithm, DCNNs tend to produce
less accurate segmentation results due to the overfitting issue. For a specific FHTPP
system, the images tend to be homogeneous. So, it might be sufficient to label a small
number of images to get a representative training sample. Then, the actual research
question is “In a relatively homogeneous population, how to adapt the deep learning
algorithm to do decent semantic segmentation with a small number of training data?”
Many previous researchers have focused on introducing diversification into the dataset
through the implementation of various data augmentation techniques to increase data size
and relieve the homogeneity [45]. In this paper, this problem is addressed by proposing a
deep learning with bagging approach for semantic segmentation. Bagging is a common
technique in classical machine learning, which is used to relieve the effect of overfitting and
to obtain a more robust and accurate prediction. By integrating the idea of bagging into
the deep learning model [46,47], we expect the model performance would be improved.
The proposed framework was validated by a comparison study using different machine
learning and deep learning models on an FHTTP dataset obtained from maize fields. The
model training time, prediction time, and prediction IoU of thresholding, patch-to-pixel
machine learning, and patch-to-patch deep learning and deep learning with bagging
algorithms were compared. The results showed that the proposed deep learning with
bagging algorithm has a significant improvement in segmentation accuracy. The remainder
of the paper is structured as follows: the motivating dataset and the proposed deep learning
with bagging approach are described in Section 2. The details of model implementation,
results, and discussion are given in Section 3. Section 4 presents the conclusion.

2. Materials and Methods

In this section, the dataset used and data preprocessing are described in Section 2.1,
and the proposed deep learning with bagging approach is presented in Section 2.2.

2.1. Study Area and Data Description

The maize images were taken by NU-Spidercam from June to September of 2019
and 2020. NU-Spidercam is a large-scale, integrated robotic cable-driven sensing system
developed at the University of Nebraska—Lincoln as a core research facility for FHTPP
research. The system comprises a cable-suspended remote sensing platform (Figure 1a),
a winch control system, a subsurface drip irrigation system, an on-site weather station,
and an observation building [48]. The system has been shown to be stable under windy
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conditions with fully automated data collection being feasible. The sensor and image data
captured by the system can provide information on various aspects of plant traits such as
height, ground cover, and spectral reflectance. The availability of this automated FHTPP
system is expected to benefit research in field phenotyping, remote sensing, agronomy,
and related disciplines. The sensing platform is designed to collect data from a 0.4 ha
field and has a maximum sensor payload of 30 kg, which can be customized to integrate
user-defined sensing modules. The RGB images captured by the onboard multispectral
camera (AD080GE, JAI, Akishima, Kanagawa, Japan), which was installed on the Pan-Tilt
structure of the platform, were utilized in this study (Figure 1b). An example RGB image
captured by NU-Spidercam is shown in Figure 1c.

(a) (b) (c)

(d) (e) (f) (g) (h)

(i) (j) (k) (l) (m)

Figure 1. NU-Spidercam Field Plant Phenotyping Facility and the raw images used in this study.
(a) The cable-suspended remote sensing platform (red circle). (b) The multispectral camera at the
bottom of the sensing platform (red circle). (c) An example of an RGB image of a maize plot;
(d–h) are example image patches and (i–m) are the corresponding labeled patches.

Semantic segmentation, which refers to assigning a label to each pixel, is one of the
most important steps in many application scenarios which estimate valuable plant or
canopy traits, such as leaf area index, plant density, aboveground biomass, and so on.
By quantifying these traits, researchers can gain a deeper understanding of plant growth,
development, and their response to environmental factors. In this study, only RGB images
were used for the model development because RGB cameras are the most cost-effective
and widely used ones in FHTPP. The image pixels were labeled into two classes: class 0,
the background (including weed and bare soil), and class 1, the maize crop. A total of
99 full-size images were used with a spatial dimension of 1064 × 768 pixels. Among these
images, 29 were taken in 2019 and 70 were taken in 2020. To train and validate the models,
68 images were randomly selected from the total set, while 31 images were reserved for
testing. Every full-size image was cropped to 12 patches with size 256 × 256 pixels. Those
image patches were manually examined and those with poor quality were excluded. Poor
quality in certain image patches is attributed to limitations in the human labeling process,
resulting in inaccurate ground-truth labels. In the end, the total numbers of training and
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validation patches and test patches are 750 and 328, respectively. Figure 1d–m presents
several examples of these patches and their labels.

2.2. Methods

DCNNs are most commonly applied to process and analyze visual data, such as
images or videos. They have been widely used for computer vision tasks, such as object
recognition, image classification, and semantic segmentation [26,49,50]. DCNNs have
shown remarkable performance in various computer vision applications, outperforming
traditional machine learning algorithms and often achieving the highest accuracy rates
on popular benchmarks [25]. Deeplabv3+ was adopted due to its proven effectiveness in
various domains within the deep learning community [35].

This model is further combined with bagging to have more stable and accurate pre-
dictions [51–53]. Specifically, by training multiple deep learning estimators with different
train/validation splits in parallel to capture different aspects of the data, the final predic-
tion can be made by considering the majority vote for each pixel prediction from every
estimator. This approach leverages the stochastic nature of neural network training, which
can result in different local minimums of the validation loss across runs. By aggregating
the predictions from multiple estimators, bagging captures this variability and reduces
overfitting, and can thus generate more accurate predictions.

The following is a brief description of the Deeplabv3+ architecture. The architecture
contains an encoder–decoder structure. The encoder down-samples the input images and
extracts the essential information by passing images to a backbone model, a typical DCNN,
and an Atrous Spatial Pyramid Pooling (ASPP) layer; whereas the decoder reconstructs
the output of appropriate dimensions and makes predictions based on the information
obtained from the encoder phase.

MobileNetV2 [54] was adapted as the backbone for Deeplabv3+. MobileNetV2 is
a lightweight model that can run very efficiently on mobile devices without sacrificing
much prediction performance. Its advantage lies in having fewer parameters compared
to other architectures, resulting in efficient memory usage and faster inference, making it
well-suited for resource-constrained environments, such as edge computing in domains
like agricultural Internet of Things. In this specific application, characterized by relatively
homogeneous image sources, limited labeled images, and limited computational resources,
the lightweight nature and efficient performance of MobileNetV2 make it an ideal choice.
Moreover, transfer learning was employed by leveraging pre-trained MobileNetV2 weights
from the ImageNet dataset to enhance the model performance.

The loss function is a categorical cross-entropy function, which computes the cross-
entropy loss between the labels and predictions. Assume the total number of label classes
is K and each pixel is labeled as 0, 1, . . . , or K − 1. Let yi = (yi,0, yi,1, . . . , yi,K−1) be the
one-hot representation of the label of the ith pixel; that is, if the true label class for this pixel
is k, then yi,k is set to 1 and all other elements in yi are set to 0. The loss for one image patch
is defined as

J(w) = −
H×W

∑
i=1

K−1

∑
k=0

yi,k log ŷi,k, (1)

where w is the model parameters, H, W are the height and width of the image patch, and
ŷi is the Softmax probability vector associated with yi. The final loss is the average across
all training image patches. The optimizer was Adam [55].

The flowchart of the full algorithm with the bagging approach is shown in Figure 2.
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Figure 2. Flowchart of the proposed algorithm with the bagging approach.

3. Results and Discussion

The proposed framework was applied to the dataset described in Section 2.1. Two
other semantic segmentation methods, thresholding and random forest, were implemented
to evaluate the model’s performance; these are described in Section 3.1. In Section 3.2,
details of the model implementation are introduced, and Section 3.3 presents the model
evaluation. Additionally, the effect of the sample size used during the training stage was
investigated by conducting a sequence of studies on various training and validation sizes
to evaluate the trend in test performance.

3.1. Methods for Comparison

Thresholding is the simplest method of segmenting images. It segments images by
selecting pixels with intensities within some fixed range [a, b]. To perform thresholding, the
raw RGB images of maize plots were converted from RGB to Hue Saturation Value (HSV)
color space; and a Hue value range covering green, yellow, and orange color spaces was
used to carry out the segmentation. Certain green indices were not adopted as the threshold
criteria [56] because the images were taken during the whole maize growing period and
maize leaves turned substantially yellow or brown during the late stage. Focusing on just
the green pixels could not segment all maize plants.

The random forest algorithm (RF) is an ensemble method that combines multiple
decision tree predictors that each tree split depends on a random subset of the given input
features [57]. It is a popular extension of bagging for decision tree models. The RF method is
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used for pixel-level classification in this study. The output variable represents the true label
of a pixel. To incorporate the local spatial feature, R, G, B values and five texture features,
contrast, dissimilarity, homogeneity, correlation, and ASM, derived on a gray-level co-
occurrence matrix (GLCM) [58] of the 7× 7 neighborhood pixels centered at the target pixel
were utilized as the input features. For those target pixels near the border, border pixels
were replicated to create 7 × 7 patches (Figure A1). To train the RF model, importing all the
pixels from the 750 images was not feasible due to the memory restriction of the algorithm.
Rather, 3000 pixels were randomly selected from each image and 2,250,000 obtained pixels
as model input. Note that our experiment with fewer data showed that increasing the
number of sampled pixels will not lead to a significant improvement in the model’s
performance, given the diminishing returns associated with additional data (Figure A2).
This suggests that the current dataset provides a representative and sufficient amount of
information for training the RF model.

3.2. Model Implementation

All the algorithms described above were implemented at the Holland Computing
Center (HCC) at the University of Nebraska—Lincoln. The configurations of the HCC
cluster used in this study were RAM of 32 GB and two GPUs of NVIDIA Tesla V100 with
32 GB memory (Santa Clara, CA, USA). The same training, validation, and test datasets
were used to gain fair comparisons.

The algorithms were fine-tuned with different hyperparameter settings to achieve
the highest performance. For the thresholding, a grid search of the hue range [a, b] was
implemented to segment plant pixels, with a ranging from 0 to 40 and b ranging from
80 to 130 with both intervals of 10; all the a, b combinations were tested. The total sum of
squared error (SSE) was calculated for each combination, and the one with the least SSE
was selected. The final range used was [10, 110].

For the random forest algorithm, two hyperparameters were fine-tuned in five-fold
cross-validation based on mean cross-validated accuracy. They are the maximum number
of depths in each decision tree (ranging from 10 to 50 with an interval of 10) and the number
of trees in the forest (ranging from 50 to 200 with an interval of 50). Other hyperparameters
keep the default value of the random forest classifier from the sklearn library in Python 3.6.
The final choices of hyperparameters are 50 depths and 200 trees.

For the deep learning algorithm, batch sizes (4, 8, 16, 32), learning rates (0.01, 0.001,
0.0001) and dropout rates (ranging from 0.1 to 0.9 with an interval of 0.1) were fine-tuned
based on validation loss. All 750 image patches were used, among which 600 were training
patches and 150 were validation patches. Deep learning models ran 50 epochs with a
total of 4000 training images per epoch from image augmentation on the training set. The
augmentation methods included random rotation, shifting, flipping, shearing, and zooming.
The chosen learning rate, batch size, and dropout rate were 0.001, 8, and 0.5, respectively,
and the default recommended values β1 = 0.9, the exponential decay rate for the first
moment estimates, and β2 = 0.999, the exponential decay rate for the second moment
estimates for the Adam optimizer were used. The best weights that led to the smallest
validation errors were saved for predicting and calculating the IoU on the test dataset.

Finally, because of the homogeneity of the field and plant species, as well as a relatively
small dataset for deep learning, the model was repeated 60 times in parallel on the HCC
cluster to explore the effect of bagging by taking the majority vote for each pixel given the
predicted image patches.

3.3. Model Performance

The prediction results were quantified by Intersection-over-Union (IoU), also known
as the Jaccard index, which is defined as the area of overlap divided by the area of the union
of the predicted region and the ground-truth region. It is a good metric for measuring the
similarity between the two regions and can take into account the class imbalance issue [59].
The IoU value ranges from 0 to 1, where 0 indicates no overlap between the predicted and
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ground-truth regions, and 1 indicates a perfect match between the two regions. IoUi was
defined as the IoU for class i, where i = 0, 1, and mean IoU (mIoU) as the arithmetic mean
over the two classes. Figure 3a–c show the predicted IoU increases when the number of
estimators, which refers to individual CNN models, increases from 1 to 60. The steepest
ascent occurs at the interval [1, 10], then the performance becomes stable after 45 estimators.
Overall, bagging performs universally better and it brings another 7.7% improvement in
mIoU, from 0.65 to 0.70, which demonstrates the effectiveness of bagging.

(a) (b) (c)

(d) (e) (f)

Figure 3. (a–c) IoU curves for the plant class, background class, and the mean IoU across both classes
in the test data set. These curves are generated from the bagging models with varying numbers of
estimators. (d–f) Mean curves and their 95% confidence bands (mean ± t× standard deviation) of
IoUs for the plant class, background class, and the mean IoU across both classes in the test data set.

Table 1 summarizes the training time (t1), the prediction time for one image patch (t2),
the IoUs for class 0 and class 1, and the mean IoU on the test patch set for each method.

Table 1. The performance evaluation of different models.

Model t1 t2 IoU0 IoU1 mIoU

Threshold NA 0.02 s 0.46 0.54 0.50
RF 15 h 7 s 0.58 0.68 0.63
Deeplabv3+ <2 h 0.06 s 0.62 0.68 0.65
Deeplabv3+
(bagging) *

<2 h per
estimator

0.06 s per
estimator 0.67 0.72 0.70

* Forty-five estimators were used for the bagging Deeplabv3+ result.

As shown in Table 1, the threshold model does not require training and sets a fixed
threshold to classify objects, resulting in an mIoU of 0.50. The RF model achieves an
improved mIoU of 0.63 after 13.5 h of training with a relatively fast detection speed of 8.5 s
per prediction image. The Deeplabv3+ model achieves an even higher mIoU of 0.65 with a
faster training time of less than 2 h, but with a slightly slower detection speed of 0.06 s per
prediction. However, it is worth noting that the Deeplabv3+ model did not show improved
performance compared with RF on IoU1. They both achieved a 0.68 IoU1 score.
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Moreover, to further improve the Deeplabv3+ model’s performance, the Deeplabv3+
model with bagging is trained with multiple estimators, each taking less than 2 h to train.
As a result, it achieves the highest mIoU of 0.70 among all models with 45 estimators, at the
cost of computational resources.

Overall, CNN-based deep learning algorithms achieved higher IoU than RF and
thresholding, especially in the background class (class 0). This is because the convolution
operations in CNN are performed on the 2D neighboring pixels that can effectively extract
local spatial features. These local spatial features are then combined to form higher-
level features by going through multiple convolutional layers. Yet, RF only includes
neighborhood pixels to account for spatial dependence among image pixels, which leads to
poor predictions. Thresholding has the lowest performance. Note that traditional methods
are still accurate for simple images such as greenhouse images. However, when more
complex segmentation tasks are needed, e.g., plant segmentation of natural field images,
the deep learning-based algorithms are much more useful. The complexity of field images
is not only from the variation in plants (growing stages, color, size) and the background
(soil, green weed, crop residue), but also from the variation in natural illumination (sunny
vs. cloudy days, sun-lit vs. shaded parts of an image), etc.

On the other hand, Deeplabv3+ needs less training and prediction time than RF. This is
because the RF method here is a patch-to-pixel prediction algorithm. To predict the whole
image patch with resolution 256 × 256, the prediction needs to run 2562 = 65,536 times.
For instance, the RF method takes 2.5 h to predict 1000 image patches while the proposed
patch-to-patch deep learning models just need around 1 min. Thus, RF is not practical in
real-world applications where the prediction time is one of the major concerns. Though
thresholding seems the most efficient, the low prediction IoU would be an issue.

Figure 4a–f illustrate example RGB image patches, labeled patches, and the corre-
sponding prediction patches for various growing stages and conditions. The patches are
arranged in temporal order from the plant emergence stage to the maturity stage. Groups
(e) and (f) represent results from deep learning-based algorithms. These two groups are
more closely aligned to group (b), the ground truth, compared with groups (c) and (d),
which are obtained from conventional machine learning algorithms. Specifically, the top-
most image patch shows visible weeds in the background as maize plants are small during
their early stage. Deeplabv3+ is the only algorithm capable of classifying weed pixels into
the background class. The second and third patches were captured on sunny days with
ideal illumination, showing some parts that are sun-lit and some parts that are shaded.
The fourth and fifth patches were taken on cloudy days with most parts covered by shade.
Deep learning models perform better under both conditions. Lastly, in the bottom image
patch, maize leaves are yellowing, making it harder to distinguish them from the soil.
Neither thresholding nor RF produces a satisfactory classification, whereas the Deeplabv3+
models capture the yellow leaf feature and make an ideal prediction. While comparing
the standalone Deeplabv3+ model to the Deeplabv3+ with bagging model, the latter ap-
proach exhibits even higher accuracy and robustness in plant semantic segmentations.
This improvement can be attributed to the utilization of ensemble learning, which allows
the model to leverage the collective knowledge of multiple individual models. Based on
these findings, it is recommended to prioritize the deep learning with bagging method
over the standalone deep learning algorithms for plant semantic segmentation, provided
that sufficient computational resources are available during the training stage. In con-
clusion, the results demonstrate that the deep learning algorithms perform successful
segmentation for all field images across environments, and they operate efficiently in a
patch-to-patch manner.
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(a) (b) (c) (d) (e) (f)

Figure 4. A visualization model prediction performance. (a) RGB patches; (b) labeled patches
of (a); (c) thresholding prediction of (a); (d) RF prediction of (a); (e) Deeplabv3+ prediction of (a);
(f) Deeplabv3+ with bagging prediction of (a).

Additionally, to evaluate the number of labeled images required for having decent
prediction accuracy in semantic segmentation, a sequence of standalone Deeplabv3+ models
were trained on increasing sample sizes. In each case, 80% of the samples were used for
training and the remaining 20% for validation. This process was repeated 30 times for each
sample size, with different random seeds for image selection and train–validation splits, to
obtain the mean IoU curve and confidence band. As shown in Figure 3d–f, the prediction
mIoU increases by only around 8% when the training sample size increases from 10 to the
maximum 750, due to the binary segmentation objective and relatively homogeneous field.
The steepest increase occurs in the interval of [10, 100], and the performance becomes stable
after 400. Thus, deep learning algorithms require a much smaller labeled sample set during



Sensors 2024, 24, 3420 11 of 15

the training stage to achieve satisfactory test performance, which efficiently reduces the
labeling time, effort, and budget.

Given the strong performance of this methodology and the significance of crop seg-
mentation, we believe it could be applied to various crop types with a limited number of
available labels. Furthermore, integrating this model into a stacked processing pipeline can
enhance the delivery of more parameters for precise field management. These parameters
may include weed and insect detection and localization, growth stage estimation, and
yield prediction.

4. Conclusions

In this paper, a deep learning and bagging algorithm was proposed on high-resolution
RGB images collected in various illumination and field conditions by an HTPP system
for semantic segmentation due to its relative homogeneity and scarce resources for pixel-
wise labeling. Thresholding, random forest, a standalone deep learning model, and the
deep learning model with bagging were evaluated using the NU-Spidercam dataset. The
evaluation compares their model training time, prediction time, and prediction IoUs.

In many real-world applications of machine learning, the primary objective is often to
make accurate predictions to segment objects, predict future trends or identify classes. The
end-users rely on the prediction results to make data-driven decisions often prioritizing
the prediction accuracy over aspects related to the model training process, such as training
accuracy and time. Our findings demonstrate the effectiveness of deep learning models,
as they outperform the other algorithms with a prediction mIoU of 0.65 and require less
training and prediction time compared to the random forest model. Additionally, the
deep learning model with bagging further improves prediction performance by 7.7% to
a mIoU of 0.70, leveraging the power of ensemble learning. However, it is worth noting
that this improvement comes at the cost of increased computational resources during the
training stage. While thresholding stands out as the most efficient algorithm, its lower
prediction performance, which is 29% lower than the proposed bagging approach, renders it
impractical for real-world applications. Therefore, deep learning with bagging is identified
as the most suitable choice among the three types of algorithms, considering that prediction
performance is of utmost importance in practical scenarios. Furthermore, the deep learning
with bagging model showcases its capability of handling the complexities of Spidercam
data, such as variations in lighting and background conditions, which significantly impact
segmentation accuracy. By leveraging the power of deep learning and bagging, this
approach overcomes the limitations of conventional segmentation methods and achieves
superior performance in challenging scenarios.

Computer vision tasks are expected to increasingly rely on deep learning models in
the near future. One unique issue preventing the applications of AI in similar studies is the
small set of labeled images as the labeling costs can be particularly high. In this study, the
effect of sample size on the deep learning model was also investigated. The results revealed
that a smaller labeled sample set, specifically 400 out of 750 training patches, would be
adequate for the segmentation tasks examined here, as the mean prediction IoU curves
reached a plateau shortly after the sample size increased. This study demonstrates this label
anxiety can be mitigated to a certain degree. Such findings can help guide the design and
implementation of future phenotyping studies using high-resolution RGB images, enabling
researchers to achieve satisfactory prediction performance with a smaller labeled sample
set. Additionally, given the strong performance of this methodology and the significance
of crop segmentation, we believe it could be applied to various crop types with a limited
number of available labels. Furthermore, with the continuous improvement of the spatial
resolution of remote sensing images, the proposed data processing pipeline for efficient
semantic segmentation, encompassing the deep learning and bagging approach, has the
potential to become a valuable approach in a more general scenario to enhance the delivery
of more parameters for precise field management such as weed and insect detection, and
localization, growth stage estimation, and yield prediction.



Sensors 2024, 24, 3420 12 of 15

Author Contributions: Conceptualization and supervision, Y.Z. (Yuzhen Zhou); methodology and
writing—original draft, Y.Z. (Yinglun Zhan) and Y.Z. (Yuzhen Zhou); formal analysis, software, and
visualization, Y.Z. (Yinglun Zhan); resources, data curation, and writing—review and editing, G.B.
and Y.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a competitive grant (Award 2020-68013-32371 to Y.G. and
G.B.) and the Nebraska Agricultural Experiment Station through the Hatch Act capacity funding
program (Accession Number 7000908 to Y.G.), from the US Department of Agriculture—National
Institute of Food and Agriculture.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The paper is accompanied by publicly available source code at https:
//github.com/yzasdfg/Deep-Learning-and-Bagging-for-Efficient-Semantic-Segmentation-in-Spi
dercam-Plant-Phenotyping-Studies accessed on 13 April 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Figure A1. The target pixel and 7 × 7 neighbors centered on the target pixel.

(a) (b) (c)

Figure A2. IoU curves representing the test performance of the random forest model with a
7 × 7 neighborhood pixel configuration across varying input numbers of pixels per image. (a) IoU for
the plant class, (b) IoU for the background class, and (c) mean IoU across the two classes.
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