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Abstract: The current methods to generate projections for structural and angiography imaging of
Fourier-Domain optical coherence tomography (FD-OCT) are significantly slow for prediagnosis
improvement, prognosis, real-time surgery guidance, treatments, and lesion boundary definition.
This study introduced a robust ultrafast projection pipeline (RUPP) and aimed to develop and eval-
uate the efficacy of RUPP. RUPP processes raw interference signals to generate structural projections
without the need for Fourier Transform. Various angiography reconstruction algorithms were uti-
lized for efficient projections. Traditional methods were compared to RUPP using PSNR, SSIM, and
processing time as evaluation metrics. The study used 22 datasets (hand skin: 9; labial mucosa: 13)
from 8 volunteers, acquired with a swept-source optical coherence tomography system. RUPP sig-
nificantly outperformed traditional methods in processing time, requiring only 0.040 s for structural
projections, which is 27 times faster than traditional summation projections. For angiography pro-
jections, the best RUPP variation took 0.15 s, making it 7518 times faster than the windowed eigen
decomposition method. However, PSNR decreased by 41-45% and SSIM saw reductions of 25-74%.
RUPP demonstrated remarkable speed improvements over traditional methods, indicating its po-
tential for real-time structural and angiography projections in FD-OCT, thereby enhancing clinical
prediagnosis, prognosis, surgery guidance, and treatment efficacy.

Keywords: optical coherence tomography (OCT); optical coherence tomography based
angiography; OCTA; angiography projection; OCTA projection

1. Introduction

Optical coherence tomography (OCT) is a noninvasive imaging modality, utilizing
the principles of low-coherence interferometry to generate high-resolution, three-dimen-
sional visualizations of biological tissues [1-4]. The development of Fourier-domain OCT
(FD-OCT) has broadened its scope by offering enhanced resolution, sensitivity, and scan-
ning speed compared to time-domain OCT (TD-OCT) [5]. FD-OCT can be further divided
into spectral-domain OCT (SD-OCT) and swept-source OCT (SS-OCT) [3,5]. The high sen-
sitivity and stability of FD-OCT are more suitable for high-speed imaging compared to
TD-OCT [5]. OCT-based angiography (OCTA) is an extended function of OCT imaging,
which can provide detailed microvascular networks of tissue in vivo [6-10]. By utilizing
OCT imaging’s high resolution and fast acquisition, OCTA can extract OCT signals’ vari-
ations caused by moving red blood cells [7]. Current clinical applications of OCTA pre-
dominantly revolve around ophthalmology, where OCTA has improved the diagnosis
and monitoring of retinal diseases, including age-related macular degeneration, diabetic
retinopathy, and vascular occlusions [6,9,11,12]. Besides ophthalmic applications,
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specialized probe designs extended its applications to other areas, such as dermatology
and dentistry [13-17].

The fundamental scanning component of conventional OCT scans is the amplitude
scan (A-scan or A-line), which represents the back-scattered light intensity across the
depth at one location on the tissue surface [18]. While moving the scanning location along
a line on the tissue surface, one brightness scan (B-scan or B-frame) as a 2D array can be
formed by successively acquiring a number of A-lines. Hence, a cross-section or tomo-
gram of the tissue can be presented as one B-frame [18,19]. A 3D volume of the OCT da-
taset can be achieved by moving the scanning location on two axes on a line-by-line basis,
which can acquire a number of B-frames, forming a 3D volume [18,19]. OCTA datasets are
in a 4D volume format with three spatial dimensions and one temporal dimension, which
would only require an additional step of repeated scanning at the same location
[6,7,20,21].

The projections of both OCT and OCTA are 2D matrixes generated from compressing
the 3D volumes on the depth axis, which are often used in biomedical research [18,22-29].
However, generating OCT and OCTA projections from raw interference signals can be
extremely time consuming [30,31], as explained below. The current method to generate
OCT and OCTA projections for FD-OCT requires Fourier transform (FT) [32] firstly to
transform the interference signals to intensity signals [24]. After applying FT to all A-line
signals, the 3D volume data can be applied with projection algorithms, such as summation
projection, to generate the structural OCT projections [29]. For OCTA projection, firstly
the input would be 4D volumes. Then, angiography signals can be extracted from either
the repeated cross-sectional frames (B-frames) or the whole 4D dataset by using OCTA
reconstruction algorithms such as Speckle variance (SV) [33], A-scans eigen decomposi-
tion (aED) [20], B-scans eigen decomposition (bED) [21], and windowed eigen decompo-
sition (WED) [30]. Since the temporal dimension is used for OCTA reconstruction, the data
format would be in 3D volumes containing the angiography signals only. Lastly, the 3D
OCTA data can generate the 2D OCTA projections by using projection algorithms [29].

The structural OCT projections can provide a comprehensive perspective on tissue
microarchitecture with many applications including diagnostics, surgical guidance, data
segmentation, and therapeutic monitoring [22-26]. The OCTA projection is an intuitive,
commonly used method to present the 3D OCTA dataset although the projection process
is a reduction in dimensionality [20,21,29-31,34]. The vasculature network can be quanti-
tatively analyzed from the OCTA projections, including the vessel diameter, the vessel
density, the vessel tortuosity, and other metrics that can be used for clinical research
[27,28]. Therefore, OCTA projections can be used for many clinical applications including
disease assessment, diagnosis, and image-guided surgery.

The current projection methods for FD-OCT as described above are often processed
as one of the postprocessing steps, due to the long processing time [30,31]. Specifically, FT
and the 3D angiography reconstruction are the main reasons for the slow processing. In
addition, varied reconstruction algorithms can involve iterations on different levels. The
clinical use of OCT or OCTA pursues a high efficiency from the start of the data acquisition
to the output of results, which would not align with the slow projection methods. A real-
time structural projection technique was developed, which would require modifications
in the hardware setup, e.g., the laser source [35]. Wei et al. implemented a GPU-acceler-
ated system to provide real-time OCTA projections [36]. However, the frame rate was only
mentioned as 250 Hz at maximum, without mentioning the dataset size at this frame rate
[36]. Although utilizing high-end computational hardware can reduce the processing
time, an easy-to-deploy, robust, ultrafast projection pipeline can benefit clinical applica-
tions such as real-time diagnosis, image-guided surgeries, or treatments. Additionally, it
can also serve as a guide for high-quality data acquisition.

This study proposes a novel, robust ultrafast projection pipeline (RUPP) for FD-
OCT's structural and angiography imaging. The RUPP does not require the FT process
and only requires OCTA reconstruction on 2D arrays, which can reduce the processing
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time significantly. Therefore, the proposed pipeline can be used in many potential appli-
cations, such as real-time diagnosis, image-guided surgeries, and image-guided treat-
ments.

2. Materials and Methods
2.1. Mathematics Explanations

The flow diagram for the proposed RUPP and the traditional projection methods is
shown in Figure 1. A number of raw interference signals would be acquired by the FD-
OCT systems. These signals are all of the A-lines in one acquisition, which can be allocated
into K-X-Y-N dimensions, where K is the axis of wavenumbers, X and Y are the two lateral
axes, and N is the repeated number in the temporal axis. The traditional pipelines to gen-
erate projections are shown in Figure 1 as well, in which the FT, 3D OCTA reconstruction
and summation projection would be required.

Data
Acquisition

Raw Interference Signals (K-XYN)

Fourier
Transform

Summation
Projection

Structural
Projection

Structural
B-Frames
(XZ-YN)

Structural
Projections
(XY-N)

2D OCTA
Reconstruction

3D OCTA
Reconstruction

OCTA
Projection

RUPP

1
1
1
I
1
1
I
1
I
1
1
1
1
-

Figure 1. The processing flow diagram of the proposed RUPP (red solid box) and the traditional
projection methods (blue dashed box) for FD-OCT structural and angiography imaging.
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On the other hand, the RUPP directly uses the electromagnetic interference signal
from OCT acquisition without Fourier transform to generate structural projections first.
For each A-line, the electromagnetic interference signal can be represented as E(k), where
k is the index of the interference wavenumbers. And the intensity signal of each A-line
1(z) can be calculated by:

I(z) = F{E(k)}, ey

where z is the index of the intensity signal and F is the symbol for Fourier transform.
According to the Poisson summation formula, the summations of a signal before and after
the Fourier transform are equal [37]. Although the Poisson summation formula can only
be applied to the discrete digital signals that are periodic [37,38], the electromagnetic in-
terference signals E (k) consist of multiple periodic sine/cosine signals with different fre-
quency components, which would be transferred into different depths in the intensity sig-
nals I(z). Therefore, the interference signals in FD-OCT can be considered periodic sig-
nals, and, as a result, the summations of the interference and intensity signals are equal.
Since the summation of the intensity signals can be used to generate the structural projec-
tions, the summations of the interference signals, E(k), can also generate structural pro-
jections, Proj, which is shown as:

Projx,y = Z§=1 Ix,y(z) = Z£=1 Ex,y(k)/ )

where x and y are the coordinates of each A-line and Z and K are the total numbers of
intensity depth index and interference wavenumbers in one A-line, respectively. There-
fore, a simple summation of the interference signals can generate structural projections.

For OCTA projection, the same processes of structural projection generation are
needed. By repeatedly scanning the same location, a stack of the structural projections can
be provided as:

[Projly = [Proj,, Projs,, ..., Projy], 3)

where N is the number of repeated scans. An ensemble of samples from the same scan-
ning location can be modeled as the sum of three components, a clutter component Proj,
mainly consisting of static tissue signal, an angiography component Proj,, and noise
P10j,0ise, Which can be shown as:

[Projly = Proj. + Proj, + Projsise- 4)

To extract Proj,, several OCTA reconstruction algorithms can be used. The proposed
pipeline utilized two algorithms, speckle variance (SV) [33] and ED [39]. As ED was re-
ported as a superior algorithm to achieve theoretical maximum clutter suppression [6],
ED was used firstly to extract the angiography component from the repeated projections.
Because the clutter component is the dominant component, the signal correlation matrix
Cproy can be estimated by:

Cpro) = 1/N - Proj - Proj", (5)

where H is the Hermitian transpose operation. The eigenvectors and eigenvalues can be
estimated through decomposition:

Cproy = MAM" = 3L, A(De(D)e(®", (6)

where M is the unitary matrix of eigenvectors [e(1),e(2), ...,e(N)] and 4 isthe diagonal
matrix of eigenvalues [A(1),A(2),...,A(N)] that are sorted decreasingly. Then, the angi-
ography component can be extracted by:

Proj, = [Ig — ¥i=1 e(e"] - [Projly, ()

where I; is the identity matrix and r is the number of removed eigenvectors. The num-
ber of eigenvectors that are removed can be set manually or automatically. In this study,
r was set automatically to be the number of eigenvalues that were larger than the average
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of all eigenvalues, as those removed eigenvalues and corresponding eigenvectors repre-
sented the dominant component, which was the clutter component contributed by static
tissue.

On the other side, as an efficient intensity-based OCTA reconstruction algorithm, SV
was also utilized to extract the angiography component, Proj,. SV [33] has a simplified
process, which compares frames to the average image, as shown below:

Proj, =1/N - er\{:l(Projn - Projmean)zr (3)

where Projmeqn is the average of all stacked structural projections [Proj]y and Proj, is
the nth structural projection in the stack.

To further improve efficiency, an optional down-sampling procedure can be added
at the data acquisition stage when the targeted information of the acquisition is within the
superficial depths. Specifically, the imaging depth of an OCT system is limited by the pen-
etration depth of light, not the theoretical imaging depth of the system setup [40]. Shown
in Figure 2 are examples of cross-sectional OCT (a) and OCTA (b) images. The deeper half
of the imaging depth was highlighted with yellow dashed boxes. The useful information
was often attenuated significantly at the deeper half of imaging depth due to the penetra-
tion depth of light in dermatological and oral tissue, regardless of the high imaging depth
in air provided by the light source manufacturer.

Figure 2. An example of cross-sectional OCT (a) and OCTA (b) images. The deeper half of the im-
aging depth was highlighted with yellow dashed boxes.

Therefore, the deep region of the intensity signals consists of low-intensity signals or
even just background noise, while the deep-intensity signals come from the high-fre-
quency components of the interference signal [40,4]. As a result, the high-frequency com-
ponents in the electromagnetic interference signal can be ignored during the projection
generation step. For the Fourier transform in FD-OCT, the Nyquist-Shannon sampling
theorem limits the highest frequency of the electromagnetic interference signal that can be
converted [41,42]. Therefore, the down-sampling procedure on OCT interference signals
can decrease the Nyquist frequency, which would act as a cut-off threshold for the OCT
intensity signals. As a result, the theoretical imaging depth of OCT is reduced. In addition,
down-sampling the interference signals would not require additional processing costs, as
it can be applied during the data acquisition stage. When acquiring the interference signal,
the data points can be saved into RAM, VAM, or other storage devices selectively, e.g.,
only odd-numbered data points being saved, which was applied in this study. As a result,
the saved acquisition data would be already down-sampled, which can increase the com-
putational efficiency in Equation (2).

To sum up, the proposed RUPP utilized the Poisson summation formula to skip the
Fourier transform and to directly generate the structural projection images. Then, the re-
peated scans with OCTA reconstruction can provide the angiography projection results.
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2.2. Experiment Setup and Participants

The suggested RUPP was assessed by applying the mentioned processing techniques
to the data gathered from a swept-source OCT system. The light source of this system
operated at a sweeping rate of 400 kHz, featuring a central wavelength of 1300 nm and a
bandwidth of 100 nm. In total, 22 raw datasets were collected from the hand skin (9 da-
tasets, 6 participants) and oral lip skin (13 datasets, 2 participants) of 8 healthy partici-
pants, which was reviewed and approved by the Research Ethics Committee of the Uni-
versity of Dundee (UOD-SSREC-RPG-BioEng-2022-001 and UOD-SSREC-RPG-BioEng-
2022-003). All participants had to give their informed consent before entering the lab for
the data collection and the informed consent of the participants was obtained for the data
collected in this article. The collected data was anonymized and the participants’ identifi-
cation was removed. The dimensions of each raw interference dataset for assessed tech-
niques were 768 x 400 x 400 x 4 (K x X x Y x N in pixels). The RUPP and other traditional
methods (aED [20], bED [21], wED [30], and traditional SV [33]) were applied to the da-
tasets. Particularly, the RUPP was optimized by comparing between the RUPP using ED
(RUPP-ED) and SV (RUPP-5V), additionally with or without the optional down-sampling.
The software used for processing was MATLAB R2022b (The MathWorks, Inc., Natick,
Massachusetts, USA), and the computational hardware consisted of a 12th Gen Intel®
Core™ i9-12900K CPU (Intel Corporation, Santa Clara, California, USA), an NVIDIA Ge-
Force RTX 3060 GPU (NVIDIA Corporation, Santa Clara, California, USA), 32 GB of DDR5
RAM (Samsung Electronics Co., Ltd., Suwon, Gyeonggi Province, South Korea), and a
Western Digital PC SN810 Solid-State Drive (Western Digital Corporation, San Jose, Cali-
fornia, USA).

2.3. Evaluation Methods

For the above comparisons, the peak signal-to-noise ratio (PSNR), structural similar-
ity (SS5IM) index, and processing time were used as the metrics. In the PSNR and SSIM
computation, the input image is mathematically compared with the ground truth. How-
ever, for in-vivo studies, the ground-truth image is often hard to acquire. Therefore, the
en-face projections generated from the high-repeated acquisitions were considered as the
ground truth. Specifically, for structural projection generation, each A-line signal in the
ground truth, I;r was calculated from the average value of multiple repeats, as in

Ior(2) = average([1(2)]Y), )

where [I]V is a set of the N-repeated A-line signals, and average() is to calculate the
average value of the input. In this study, N is 12 for the ground truth datasets. Using the
average values from repeated acquisition at the same location was shown to have a better
performance on noise reduction of structural OCT projections [43]. After calculating all
ground-truth A-lines, the structural projection ground truth can be generated using the
same method, which was shown in Equation (2). On the other side, the ground-truth
OCTA projection was generated from 12-repeated traditional wED pipeline [30] due to
two reasons: (a) the traditional wED pipeline was proved to have outstanding imaging
quality, especially when countering motion artifacts [30]; (b) 12 repeated acquisitions at
the same locations with the ED algorithm can provide results with high performance on
angiography extraction [44,45].

With the ground-truth OCT and OCTA projections generated, PSNR values can be
derived from:

PSNR = 10log,o(PT0j2 gximum/MSE), (10)

where Projmaximum represents the inputimage's maximum value and MSE indicates the
mean square error (MSE) between the input and ground-truth images [46,47]. The MSE
[48] is determined by:
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(a) Ground Truth
(PSNR: in_f; SSIM: 1.00; t:

L/

2
MSE = ( 51 s (Projiy — Projer,,) ) /X -Y), (11)

where X and Y are the total numbers of data points on X-axis and Y-axis of projections,
respectively, and Projgr is the ground-truth projection. Then, the SSIM index can be cal-
culated by:

SSIM(Proj, Projgr) = C,(Proj, Projsr)*C.(Proj, Projsr)? Cs(Proj, Projer)?, (12)

where C;, C. and Cj, respectively, are the comparison measurements of luminance, con-
trast, and structure between the two input images, and a >0, § > 0, y > 0, which are
three weighted parameters of C;, C., and Cj, respectively [49].

3. Results
3.1. Structural Projections

The structural OCT projections among the traditional summation projection, RUPP
without and with down-sampling were compared with the generated ground-truth struc-
tural OCT projections. Figure 3 shows an exemplary dataset, which includes the results
generated by all three structural projection techniques.

(b) Traditional Summation (c) RUPP w/o DS (d) RUPP w/ DS

A

7:‘5.32‘9‘ : ) PSNR: 15.64; SSIM: 0.72; t: 0.0 .38; SSIM: 0.72; t: 0.033 s)
- OLIE , s | WY TR {11 p : % p :

i3

Figure 3. An example (fingertip) of structural OCT projections: (a) the ground truth generated from
12-repeat dataset; (b) traditional summation projection; (c) RUPP without down-sampling; (d)
RUPP with down-sampling. (t: processing time in seconds; the processing time of RUPP variations
are highlighted in red fonts; all red scale bars indicate 500 pm).

To further evaluate the RUPP methods, the average PSNR and SSIM values were cal-
culated from a total of 22 datasets. Figure 4 shows the relationship between PSNR (a),
SSIM (b), and the processing time of the three aforementioned processing techniques.

(a) PSNR over Processing Time ) (b) SSIM over Processing Time

© 0]

¥ RUPPW/DS 02t % RUPPW/DS
X RUPPwio DS - L& RUPPwioDS
O Traditional Summation Projectior O Traditional Summation Projectior

-1

1 0

0 R
10 10
Processing Time (seconds) Processing Time (seconds)

10

Figure 4. Two plot figures of evaluation metrics over processing time: (a) PSNR and (b) SSIM over
processing time. Note that the horizontal axes (processing time) are all in log scale.

Additionally, for accurate demonstration with standard deviations, Table 1 shows
the PSNR and SSIM values compared to the processing time.
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Table 1. Comparison among various structural OCT projection techniques.

Evaluation Metrics

Projection Generation Methods Processing Time

PSNR SSIM )
Traditional summation projection = 31.45 + 4.45 0.85+0.08 1.76 £ 0.02
RUPP w/o DS 2 18.63 +4.03 0.64 +0.09 0.066 + 0.0025
RUPP w/DS® 18.49 +4.11 0.63 +0.09 0.040 + 0.0054

a RUPP without down-sampling; ® RUPP with down-sampling.

3.2. Angiography Projections

For OCTA projections, an extensive evaluation of RUPP angiography projection
methods was conducted using a comprehensive approach that involved the application
of the aforementioned various methods, namely wED, aED, bED, SV, RUPP-ED with and
without down-sampling, and RUPP-SV with and without down-sampling to generate
OCTA projections for comparison. The outcomes of these OCTA projection techniques
were compared against the high-repeated ground truth, with three evaluation metrics,
PSNR, SSIM, and processing time. Figure 5 shows an exemplary dataset of an oral ulcer
lesion that was used by various OCTA projection generation techniques.

(a) Ground Truth (b) wED (c) aED
(PSNR: inf; SSIM:1.00; t: : (PSNR: 22.42; SSIM :0.76;
2o e xgs . T - . »

b o
Bt o0

¢ , A B &,
P % 7 1 S :

(d) bED (e) Traditional SV (f) RUPP-SV w/o DS

(PSNR: 21.36; SSIM:0.75: t: 5. 7.28; SSIM:0.13; t: 0.27 s)

o

3 v%‘.

o

2 i w 2 = o
(g) RUI DS (h) RUPP-ED w/ DS (i) RUPP-SV w/ DS
> SSIM :0.09: t: 5 (PSNR: 7.13; SSIM :0.09; t: 0.21 s (PSNR: 7.29; SSIM :0.13;
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Figure 5. An example of OCTA projections imaging an oral ulcer lesion using various techniques:
(a) the ground truth generated from 12-repeat dataset, (b) wED, (c) aED, (d) bED, (e) traditional SV,
(f) RUPP-SV without down-sampling, (g) RUPP-ED without down-sampling, (h) RUPP-ED with
down-sampling, and (i) RUPP-SV with down-sampling. (t: processing time in seconds; the pro-
cessing time of RUPP variations are highlighted in red fonts; all red scale bars indicate 500 um).

In total, 22 datasets were used to produce the average PSNR, SSIM, and processing
time values for a robust and objective assessment, which is shown in Figure 6.

(a) PSNR over Processing Time (b) SSIM over Processing Time

* 0.9
20 - 1
08
©
XA 07 % 1
15
06
g [gessiesess , ©
H . % 05F
2 [ | 8 A
¥¢  RUPP-SVw/DS 04 Y¢ RUPP-SVW/DS |-
%X RUPP-SVwl/o DS X RUPP-SVw/o DS
00 RUPP-EDw/DS 03 O RUPP-EDW/DS |
{)> RUPP-ED w/o DS FISTIIIII T QO RUPP-EDwloDS
51 O aED 1 02} H O  aED
A bED : i\fmg : A bED
*  wED 0.11}s H * WwED
X sV Lessanann H X sV
o b L I I o b I L I I
10! 10° 10° 102 103 107! 10° 10° 102 103
Processing Time (seconds) Processing Time (seconds)
(¢) Zoom-in of the dashed box in Figure (a) (d) Zoom-in of the dashed box in Figure (b)
0.19 |
12,5
0.18 | w
*
12+ 0.17
0.16
i
Z 15 * %
o @015
o %
“ 0.14
0.13
Y RUPP-SVw/DS Y% RUPP-SVw/DS
105 | %X RUPP-SVwio DS | £ RUPP-SVWOoDS | [1] <>
OJ RUPP-EDw/DS 0121 O RUPP-EDw/DS
(> RUPP-ED wio DS (> RUPP-ED wio DS
L L L L L L L L L L L 0.11 b L L L L L L L L L L
0.14 016 018 02 022 024 0.26 0.28 0.3 0.320.34 0.14 0.16 018 02 022 024 026 0.28 0.3 0.320.34

Processing Time (seconds)

Processing Time (seconds)

Figure 6. Plot figures of evaluation metrics, (a) PSNR and (b) SSIM over processing time. (c) and (d)
are the zoom-in plots of the dashed boxes in (a) and (b), respectively. Note that the horizontal axes
(processing time) are all in log scale.

Additionally, for accurate demonstration with standard deviations, Table 2 shows
the PSNR and SSIM values compared to the processing time.

Table 2. Comparison among various OCTA projection techniques.

Evaluation Metrics

Projection Generation Methods Processing Time

PSNR SSIM

(seconds)

wED 20.98 +1.34 0.67 +0.059 1139 +5.10

aED 17.64 +2.25 0.57 +0.076 11.59 +0.23

bED 16.44 +1.29 0.47 +0.085 7.01+0.22

SV 15.55+1.72 0.46 +0.095 497 +0.19
RUPP-SV w/o DS = 11.61 +1.52 0.18 +0.036 0.29 +0.0060
RUPP-ED w/o DS ® 11.23+1.53 0.12 +0.021 0.29 +0.0098
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RUPP-ED w DS ¢ 11.23+1.51 0.12 £0.020 0.21 £0.0098
RUPP-SV w/DS 4 11.58 £ 1.51 0.17 £ 0.036 0.15+0.011

a RUPP-SV without down-sampling; ® RUPP-ED without down-sampling; < RUPP-ED with down-
sampling; ¢ RUPP-SV with down-sampling.

4. Discussion

This study proposed a novel pipeline, RUPP, with variations for both OCT and OCTA
projection generation applications. In addition, RUPP is easy to deploy and robust and
can be applied to all FD-OCT systems. The RUPP can avoid the Fourier transform process,
which would be required in FD-OCT systems. Therefore, the RUPP can significantly re-
duce the computational cost, which can enable the projection generation as a real-time
process. With real-time OCT and OCTA projections, it would be possible to realize real-
time diagnosis and surgeries and to improve data acquisition quality by accurate locali-
zation and avoiding artifacts. Although SD-OCT systems were not used in this study, the-
oretically RUPP would also apply to SD-OCT systems because RUPP directly processes
the raw interference signals of FD-OCT.

Firstly, RUPP can generate structural OCT projections with extremely low computational
costs. With 22 datasets on average, RUPP only took 0.076 s while the traditional summation
projection method needed 1.76 s. RUPP reduced the processing time on the same datasets and
hardware by 27 times. With the optional down-sampling technique, RUPP can almost halve
the processing time, reducing it to 0.040 s, which is 44 times faster compared to the traditional
method. For OCTA projections, this study compared eight methods including both traditional
techniques and RUPP variations. The SV and ED algorithms were applied to the RUPP to
generate OCTA projections. RUPP-SV with down-sampling achieved the fastest processing
(reduced the processing time by 7518, 77, 46, and 33 times compared to the traditional wED,
aED, bED, and SV techniques, respectively) while RUPP-SV without down-sampling pre-
served a higher imaging quality than RUPP-ED in terms of PSNR and SSIM values. With a
realistic and practical data acquisition size, 768 x 400 x 400 x 4 (K x X x Y x N in pixels) without
resorting to an artificially small data size to exaggerate performance benefits, RUPP-SV with
down-sampling only required 0.15 s. With this low processing time, the real-time OCTA pro-
jection can be achieved or improved significantly. In addition, higher-end computing equip-
ment and parallel processing can potentially further decrease the processing time. However,
when not applying the optional down-sampling process, RUPP-ED would require less pro-
cessing time than RUPP-SV, while RUPP-SV can achieve better imaging quality. Although ED
was reported as a superior OCTA reconstruction algorithm in several studies [20,21,30], SV
had better performance in terms of PSNR and SSIM values for the RUPP. The reason for ED’s
low performance in imaging quality could be that ED is an OCTA reconstruction algorithm
based on both the magnitude and phase of the input signals, yet there would be no phase
information for the RUPP as the FT process is avoided.

The tradeoff between processing time and imaging quality can also be found for
RUPP. The PSNR and SSIM values of RUPP had some decreases in general compared to
the traditional projection methods. For structural projections, although the PSNR and
SSIM values were, respectively, 41% and 25% lower than the traditional method, the pro-
jection results are visually acceptable for feature assessments, especially for the fingerprint
on the fingertip in Figure 3. For the angiography projections, the most efficient variant,
RUPP-SV with down-sampling, had a 45% and 74% lower PSNR and SSIM values com-
pared to the best-performing traditional projection method, wED. However, the proposed
RUPP, as an ultrafast algorithm, is designed for quick identification and localization of
the region of interest or real-time diagnosis and treatment monitoring. From visual obser-
vation in Figure 5, the vessel structure and the boundary between the normal tissue and
the oral ulcer lesion were still well preserved, meaning that RUPP still fits with the above
purposes. The reason for low PSNR and SSIM values could be that the blood vessels in
RUPP results were not fully solid (i.e., there were some small black “holes” inside vessels
in Figure 5), which may preserve good vessel structures for visual observation but would
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not be friendly for pixel-wise evaluation methods like PSNR and SSIM. In addition, some
processing methods like thresholding, erosion, and dilation [50] can potentially improve
the RUPP’s imaging quality. Besides, an artificial neural network could be a method to
enhance the quality of the vasculature image from the RUPP while maintaining a short
processing time [44,51]. With RUPP’s compression on the raw interference signal, the
depth information of the vasculature network would be lost. Although the traditional pro-
jections do not contain depth information either, the depth information can be extracted
during the processing. However, RUPP results can serve as a guide and boundary detec-
tion during data acquisition. For example, alignment, registration, or operator-guided sur-
vey scans can benefit from RUPP’s fast processing. With only 0.040 and 0.15 s for structural
and angiography imaging, RUPP has great potential for real-time projection imaging for
FD-OCT. On the other hand, it is possible that the RUPP can be limited by the FD-OCT
system’s hardware setup. The RUPP is purely on the software side, while OCT systems
would require efficient integration between the software and hardware. For example, the
optional down-sampling process may not be possible to deploy depending on the data
acquisition device. However, this study provides a few variations of the RUPP, which can
be deployed easily. This study can also serve as a guide for utilizing the RUPP in the most
efficient way.

5. Conclusions

We proposed a novel RUPP for both structural and angiography projection genera-
tion, including a few variations for OCTA projections. This RUPP can be easily deployed
to all FD-OCT systems. The key advantage of the RUPP is the extremely low processing
time. For the structural projections, the RUPP required 27 times less processing time than
the traditional projection method. For OCTA projections, RUPP-SV with down-sampling
was the most efficient variation of the RUPP, which required up to 7518 times less pro-
cessing time compared to traditional methods. Although the imaging quality was also de-
creased, the low processing time makes the RUPP have the significant potential to con-
tribute to real-time structural and angiography projections, which in turn can be useful
for real-time surgeries or treatments, quick prognosis, and data acquisition guidance.
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