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VCP/p97-associated proteins are binders and 
debranching enzymes of K48–K63-branched 
ubiquitin chains

Sven M. Lange1,2 , Matthew R. McFarland1, Frederic Lamoliatte1, 
Thomas Carroll1, Logesvaran Krshnan1, Anna Pérez-Ràfols1, Dominika Kwasna1,3, 
Linnan Shen1, Iona Wallace1, Isobel Cole1, Lee A. Armstrong1, Axel Knebel1, 
Clare Johnson1, Virginia De Cesare    1 & Yogesh Kulathu    1 

Branched ubiquitin (Ub) chains constitute a sizable fraction of Ub polymers 
in human cells. Despite their abundance, our understanding of branched 
Ub function in cell signaling has been stunted by the absence of accessible 
methods and tools. Here we identify cellular branched-chain-specific 
binding proteins and devise approaches to probe K48–K63-branched Ub 
function. We establish a method to monitor cleavage of linkages within 
complex Ub chains and unveil ATXN3 and MINDY as debranching enzymes. 
We engineer a K48–K63 branch-specific nanobody and reveal the molecular 
basis of its specificity in crystal structures of nanobody-branched Ub 
chain complexes. Using this nanobody, we detect increased K48–K63-Ub 
branching following valosin-containing protein (VCP)/p97 inhibition  
and after DNA damage. Together with our discovery that multiple VCP/p97- 
associated proteins bind to or debranch K48–K63-linked Ub, these  
results suggest a function for K48–K63-branched chains in VCP/p97- 
related processes.

The post-translational modification of protein substrates with ubiquitin 
(Ub) has essential roles in every major signaling pathway in humans. 
Diverse Ub architectures, ranging from single Ub (monoUb) to Ub poly-
mers (polyUb) of homotypic or heterotypic nature (that is, containing a 
single or multiple linkage types within the same Ub chain, respectively) 
can be formed1. K48 and K63 linkages are the most abundant linkage 
types found in cells2. Homotypic K48-linked Ub chains primarily have 
degradative roles by marking substrates for proteasomal degradation, 
while homotypic K63-linked polyUb chains have critical roles during 
endocytosis, DNA damage repair and innate immune responses.

Branched Ub chains are formed when two or more sites on a single 
Ub molecule are modified with Ub, creating distinct bifurcated archi-
tectures (Fig. 1a). Theoretically, 28 different branched trimeric Ub 
architectures can be formed, and branched chains account for ~10% of 

all polyUb chains formed in unperturbed human cells3. Sophisticated 
mass spectrometry (MS) studies have revealed that a substantial num-
ber of K48 and K63 linkages coexist in branched heterotypic chains and 
these K48–K63-branched Ub chains have been connected to nuclear 
factor κB (NF-κB) signaling and proteasomal degradation4,5. Two other 
branched Ub chain types, K11–K48 and K29–K48, have been detected 
in cells, with roles attributed to protein degradation processes during 
the cell cycle and to endoplasmic reticulum-associated protein degra-
dation (ERAD), respectively6,7. In addition, branched Ub chains are 
formed during chemical-induced degradation of neosubstrates using 
proteolysis-targeting chimera (PROTAC) approaches8. Thus, branched 
chains may have several important, yet unappreciated, roles. A notable 
limitation to understanding the function of branched chains is the lack 
of tools and methods to study them. The roles of K11–K48-branched 
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necessitates the use of sophisticated MS-based approaches or expres-
sion of Ub mutants in cells, thereby limiting our understanding of 
branched Ub function.

Ub modifications are recognized by structurally diverse 
Ub-binding domains (UBDs), found in a wide range of proteins through-
out the Ub system, including signal transducers, ligases and deubiqui-
tinases (DUBs)10. While UBDs can recognize polyUb chains of certain 
linkage types11, specific binders to branched Ub remain to be discov-
ered. One receptor of ubiquitinated substrates is the unfoldase p97 
(also known as valosin-containing protein (VCP), transitional endoplas-
mic reticulum ATPase (TERA) and cell division protein 48 (CDC48)), a 
hexameric AAA+ ATPase, which facilitates unfolding or extraction of 
its targets from macromolecular complexes or membranes12. Over 30 
cofactors bind to p97 directly or indirectly, many of which contain UBDs 
and may function as substrate adaptors13. Intriguingly, p97 complexes 
preferentially associate with branched Ub chains9,14 and p97-mediated 
unfolding is maximally activated by branched Ub chains in vitro15.

DUBs cleave Ub linkages, thereby fine-tuning or removing Ub 
signals16. Importantly, DUBs such as the JAMM, OTU, MINDY and ZUP1 
family DUBs can cleave polyUb in a linkage-selective manner, whereas 
Ub-specific protease (USP) family enzymes are typically promiscu-
ous17–20. The Josephin family DUBs show different substrate prefer-
ences, with some of them working as esterases21, while ataxins ATXN3 
and ATXN3L prefer to cleave long polyUb chains, albeit with very low 
efficiency22. Indeed, Ub chain length, in addition to linkage type, is 
increasingly appreciated as a determinant of DUB activity19,20,23,24. Fur-
thermore, the recent identification of UCHL5/UCH37 (Ub C-terminal 
hydrolase L5) as a debranching enzyme at the proteasome suggests that 
DUBs can also cleave bifurcated polyUb architectures25,26.

In this study, we outline a multifaceted strategy to understand the 
cellular roles of K48–K63-branched Ub chains by assembling well-defined 
K48–K63-branched Ub chains to identify branched-chain-binding pro-
teins and by developing a quantitative DUB assay to delineate debranch-
ing DUBs. Lastly, we engineer a nanobody that specifically binds to 
K48–K63-branched Ub chains with picomolar affinity. Deploying this 
nanobody as a tool, we reveal the accumulation of K48–K63-branched 
chains following p97 inhibition and during the DNA damage response, 
suggesting roles for K48–K63-branched Ub in p97-related processes.

Results
Rationale for use of tetrameric branched Ub chains
The minimal branched Ub chain unit is commonly considered to be 
made up of three Ub moieties, with two distal Ub moieties linked to a 
single proximal Ub. This branching may create or disrupt interfaces for 
protein interactions compared to the unbranched chain. Nevertheless, 
we envisaged the use of branched tetrameric Ub (Ub4), wherein a single 
Ub branches off the center of a homotypic trimeric Ub (Ub3) chain 
‘trunk’ (Fig. 1a). Notably, such branched Ub4 chains potentially encode 
additional information when compared to the minimal branched Ub3. 
This is because branched Ub4 not only possesses additional unique 
interfaces but can also be differentiated by the order of linkages (for 
example, K48-Ub branching off a K63-Ub trunk or vice versa). Conse-
quently, for this study, we chose to use tetrameric branched Ub because 
crucial information may be overlooked with shorter branched Ub3.

Nomenclature to describe complex Ub chains
We incorporate various modifications such as substitutions, iso-
tope labels and affinity tags into precise positions of branched and 
unbranched Ub4 chains in this study. To accurately describe the archi-
tecture of these complex Ub chains, we adapted the nomenclature 
introduced by Nakasone et al.27 to describe tetrameric branched and 
mixed chains (detailed examples are described in Extended Data Fig. 1). 
Because investigating heterotypic Ub chains is a rapidly expanding 
field, we believe that the timely adoption of one standardized nomen-
clature will avoid future confusion.

chains were elucidated using a bispecific antibody that recognizes 
these chains, enabling their detection in cells9. However, such tools 
for facile detection do not exist for other branched chain types, which 
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Fig. 1 | Rationale for tetrameric branched Ub chains and crystal structure of 
branched K48–K63-linked Ub3. a, Schematic depicting differences in binding 
interfaces of minimal branched Ub3 (orange) chain in comparison to branched 
Ub4 (orange and purple). b, DUB assay with linkage-specific enzymes Miy2/
Ypl191c (K48) and AMSH (K63) as quality control for synthesized Avi-tagged 
branched and unbranched Ub4. c–e, Crystal structures of K48–K63-branched Ub3 
(PDB 7NPO, this study) (c), K48-Ub2 (PDB 1AAR)29 (d) and K63-Ub2 (PDB 3H7P)30(e) 
in cartoon representation with K48-linked Ub in blue, K63-linked Ub in red and 
proximal Ub in gray. In the K48–K63-branched Ub3 structure, atoms of the  
I44 interface between K48-linked Ubs and isopeptide linkages are shown as  
stick models.
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Assembly and structure of branched K48–K63 chains
We used two complementary enzymatic approaches of Ub chain 
assembly strategies that enable the assembly of well-defined, complex 
Ub chains. Previous approaches to generate branched Ub3 used a Ub 
moiety lacking the C-terminal glycine residues (UbΔC) (Extended Data 
Fig. 1a)9,25,26. As such chains lack the native C terminus on the proxi-
mal Ub, we adapted the ‘Ub-capping’ strategy to permit the assembly 
of longer and more complex chains (Extended Data Fig. 1b). Here, a 
blocking group, a ‘cap’, is installed at the C terminus of Ub and subse-
quently cleaved off by a DUB28. We used capped M1-linked Ub2 wherein 
the proximal Ub has a truncated C terminus and lysine-to-arginine 
substitutions such that only lysine residues from the distal Ub of this 
capped Ub2 are available for ligation to another Ub. This cap is removed 
using the M1-specific DUB OTULIN revealing a native C terminus  
on the now proximal Ub that is available for further ligation steps.  
Using this approach, we successfully assembled milligram quantities 
of pure K48–K63-branched Ub4 chains and confirmed their linkage 
composition using linkage-specific DUBs (Fig. 1b).

To gain insights into the structure of K48–K63-branched chains,  
we determined the crystal structure of the branched trimer 
(UbK48R, K63R)2–48,63Ub1–72 (Table 1). In this K48–K63-branched Ub3  
structure, the K48-linked Ub adopts a closed conformation with  
interactions between the two I44 patches of the distal and proximal 
moieties (Fig. 1c), while the K63-linked Ub adopts an open, extended 
conformation. These closed and open Ub configurations have been 
observed previously for K48-linked and K63-linked Ub2, respectively 
(Fig. 1d,e)29,30, and for branched and mixed K48–K63-linked Ub3  
in nuclear magnetic resonance spectroscopic analyses27.

Identifying linkage-specific binders of branched Ub chains
To discover cellular proteins that bind to specific Ub chain architec-
tures, we generated branched K48–K63-linked Ub4 and unbranched 

K48-linked or K63-linked Ub4 chains, covalently immobilized on aga-
rose beads at the C terminus of the proximal Ub (Fig. 2a and Extended 
Data Fig. 2a). Crucially, immobilization by a defined anchor ensures 
that the branched interfaces are available for protein interaction. We 
then identified binding proteins using data-independent acquisition 
(DIA) MS/MS (Fig. 2a and Extended Data Fig. 2b). Analyzing the normal-
ized binding Z scores of the 7,999 unique protein isoforms identified 
across the chain pulldown samples, we found 130 proteins with binding 
profiles that differed significantly from at least one other chain type 
(Fig. 2b and Supplementary Table 1).

These 130 significant hits could be sorted into six main clusters  
of Ub chain interactors: proteins that mainly bind unbranched K63- 
linked Ub chains (clusters 1 and 2), branched K48–K63-linked Ub chains 
(clusters 3 and 4) and unbranched K48-linked Ub chains (clusters 5 
and 6) (Fig. 2b). Gene ontology enrichment analysis revealed a strong 
association with Ub-related biological processes (Fig. 3a).

Proteins in cluster 1 preferentially associate with long K63-linked 
Ub chains (63Ub4 and (Ub)2–48,63Ub–63Ub) but not with K48-linked 
Ub or the single K63-linked Ub branching off a K48-linked Ub trunk 
(48Ub4 or (Ub)2–48,63Ub–48Ub). In contrast, the proteins in cluster 2 
show a propensity to interact with the shorter K63-linked Ub2 present 
in the branch of (Ub)2–48,63Ub–48Ub. Proteins in these two clusters are 
strongly linked to biological processes associated with K63-linked 
ubiquitination, including protein unfolding and refolding, autophagy 
and protein sorting and endosomal transport (Figs. 2b and 3a). These 
include annotated K63-binding proteins such as the BRCA1 complex 
components ABRAXAS-1, BRCC36 and UIMC1/RAP80 (refs. 31–33), 
as well as endosomal trafficking-related proteins EPS15, ANKRD13D, 
STAM, STAM2, TOM1, HGS, TOM1L2 and TOLLIP (refs. 34–38). Further-
more, we identified less-studied proteins with annotated UBDs, such 
as CUEDC1 and ASCC2 (CUE), N4BP1 (CoCUN)39,40, CCDC50 (MIU)41 and 
RBSN (UIM), to preferentially bind K63 chains.

Table 1 | Crystallographic data collection and refinement statistics

K48–K63-branched Ub3 NbSL3:K48–K63-branched Ub3 NbSL3.3Q:K48–K63-branched Ub3

Data collection

Space group C2 P1 21 1 P1

Cell dimensions

 a, b, c (Å) 59.63, 77.57, 50.61 54.389, 97.615, 74.967 57.081, 58.243, 61.662

α, β, γ (°) 90, 123.975, 90 90, 109.959, 90 78.879, 67.944, 80.161

Resolution (Å) 24.73–2.19 (2.27–2.19) 35.30–1.55 (1.61–1.55) 40.86–1.86 (1.93–1.86)

Rmerge 0.03991 (0.3488) 0.06807 (0.5728) 0.18 (1.447)

I/σI 8.80 (2.20) 8.03 (1.60) 4.96 (0.74)

Completeness (%) 99.8 (98.68) 74.33 (13.04) 60.75 (1.66)

Redundancy 2.0 (2.0) 1.9 (1.8) 3.1 (3.1)

Refinement

Resolution (Å) 2.19 1.55 1.86

No. reflections 19,628 153,451 176,160

Rwork/Rfree 0.2239/0.2839 0.1742/0.2123 0.1866/0.2453

No. atoms

Protein 1,774 5,384 5,445

Ligands or ions 6 28 25

Water 25 722 523

B factors 45.92 18.58 13.75

R.m.s.d.

Bond lengths (Å) 0.003 0.007 0.002

Bond angles (°) 0.57 0.92 0.51
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Cluster 5 comprised 18 proteins that primarily bind to K48 link-
ages in chains, regardless of whether they are within homotypic or 
branched architectures. Similarly, cluster 6 contained 17 proteins that 
bind strongly to unbranched K48-linked chains and weakly to branched 
(Ub)2–48,63Ub–48Ub, suggesting that these proteins either prefer binding 
to longer K48-linked chains (>2 Ub) or disallow binding to the single K48- 
linked Ub branching off a K63-linked Ub trunk ((Ub)2–48,63Ub–63Ub). 
Proteins predominantly binding to unbranched K48-linked Ub chains 
include the proteasomal Ub-binding component PSDM4/Rpn10, the 
segregase p97 and its substrate adaptors UBXN1, UFD1, NSFL1C/p47 
and NPLOC4 (Fig. 3b). Other identified K48 binders are the proteasome 
shuttling factors RAD23A and RAD23B and the DUBs MINDY1, OTUD5, 
USP25 and USP48 (refs. 20,42,43). We also identified several proteins 
without annotated UBDs such as MTMR14, ZFAND6 and TBC1D17 
as potential binders to K48-linked and K63-linked chains. However,  
it remains unclear whether these proteins directly bind to the Ub  
chains or whether they copurified as part of a multiprotein complex 
containing a UBD.

Remarkably, we identified seven proteins (cluster 3) that strongly 
associate with the two branched chain architectures but not with  
the unbranched K48-linked or K63-linked chains (Fig. 3b). These 
include proteins implicated in DNA replication (RFC1), histone deu-
biquitination (USP15), reading histone methylation (MORC3), ERAD 
(USP13 and DNAJB2) and peptide antigen loading (TAPBP) (Fig. 3b)44–49.  
Notably, 8 of the 15 identified proteins in clusters 3 and 4 contain  
annotated UBDs and Ub-interacting motifs (UIMs), suggesting that 
they may bind directly to the branched chains. Intriguingly, three  
of the eight proteins in cluster 4 (ATXN3, ZFAND2B and RHBDD1) also 
possess p97-binding motifs (VIM and VBM) along with UIMs (Fig. 3c). 
Interestingly, p97 is ranked between ATXN3, ZFAND2B and RHBDD1  
and the established p97 substrate adaptors NPLOC4 and UFD1, which 
were previously shown to bind K48-linked Ub chains to initiate unfold-
ing of modified client proteins50,51. Appropriately, we also detected 
additional p97-binding proteins or substrate adaptors (UBXN1 
and NSFL1C/p47) in cluster 5, which mainly contained unbranched 
K48-linked Ub chain binders52,53. These results indicate the coexistence 
of p97 complexes functionalized with different substrate adaptors 
that confer a range of Ub chain preferences from unbranched K48-Ub 
to K48–K63-branched Ub chains (Fig. 3c).

We then attempted to validate our MS data in vitro using recombi-
nant proteins for the identified branched-chain-specific binders. How-
ever, most interactors did not express as soluble full-length proteins, 
several of which are likely part of large multiprotein complexes in vivo. 
We, therefore, tested whether the specificity toward branched chain 
binding was encoded within the predicted UBDs of the proteins. Only 
the minimal UBD of RFC1 (amino acids 190–246) showed high specificity 
of binding to K48–K63-branched Ub4 chains with no detectable binding 
to the unbranched Ub4 controls (Fig. 3d and Extended Data Fig. 3a,b). 
Notably, the minimal UBD of RFC1 did not bind to K48–K63-branched 
Ub3. In contrast, the predicted UBDs from the other binders either did 
not bind to the Ub chains tested or lacked specificity (Extended Data 
Fig. 3a), suggesting that additional regions or cofactors may be required 
for branched Ub binding. In summary, these pulldown results reveal the 
existence of branched-Ub-specific binding proteins and demonstrate 
that cellular proteins can differentiate between tetrameric and trimeric 
branched chains, suggesting that the unique interfaces present in 
tetramers are being specifically recognized (Fig. 1a).

Ub linkage target identification by mass tagging (ULTIMAT) 
DUB assay monitors cleavage of individual Ub links
As we identified multiple DUBs in the pulldown with branched and 
unbranched Ub chains, we next investigated whether some DUBs can 
preferentially cleave branched Ub chains. However, conventional 
DUB assays, which monitor polyUb chain cleavage, lose information 
on which specific linkage within a Ub chain is cleaved54. Therefore, to 

overcome this limitation, we developed a precise, quantitative DUB 
assay, ULTIMAT. The principle of the ULTIMAT DUB assay relies on the 
use of substrate Ub chains in which each Ub moiety is of a discrete mass 
that can be distinguished by matrix-assisted laser desorption/ioniza-
tion time-of-flight (MALDI-TOF) MS (Fig. 4a). After incubation with 
a DUB, the released monoUb species are detected using MALDI-TOF 
MS, enabling the identification and quantification of the exact link-
age cleaved. The monoUb species were analyzed by MALDI-TOF 
MS and quantified relative to an internal standard of 15N-labeled Ub 
(Ub15N = 8,670 Da)55 (Fig. 4b). As controls, we first analyzed the activity 
of the K63-specific DUB AMSH and K48-specific DUB MINDY1, demon-
strating that they only cleave the K63-linked or K48-linked Ub moieties, 
respectively (Extended Data Fig. 4a).

Having confirmed the robustness and reproducibility of this 
method, we proceeded to analyze a panel of 53 human DUBs for their 
activity toward homotypic and branched Ub substrates in comparison 
to a positive control substrate (Fig. 4c). As anticipated, no cleavage 
of K48-linked and K63-linked substrates was detected for the highly 
M1-specific DUB OTULIN or members of the UCH DUB family that 
prefer short and disordered peptides at the C terminus of Ub56,57. To our 
surprise, we did not observe UCHL5 to debranch K48–K63-branched 
Ub chains as previously reported26,58. This discrepancy is likely because 
of differences in assay conditions (Extended Data Fig. 4b). Because 
only about ~5% of K48–K63-branched Ub3 was cleaved by UCHL5, we 
conclude that K48–K63-branched Ub chains may not be the preferred 
substrate of UCHL5.

Members of the USP family, known to be less linkage-selective, 
displayed broad cleavage activity against all tested substrates, with a 
particular tendency to cleave from the distal end of the chain (Fig. 4c). 
Notably, we observed a moderate inhibitory effect of the branched 
chain architecture on CYLD activity, as previously reported4 (Fig. 4c). 
Importantly, we identified certain DUBs, such as MINDY family mem-
bers and ATXN3, that showed a marked preference for cleaving 
branched Ub chains.

Unique Ub-binding site enables MINDY1’s debranching 
activity
In the ULTIMAT DUB assay, both MINDY1 and MINDY3 stood out for 
their high activity in cleaving K48 linkages off branched chains. The 
K48-specific DUB MINDY1 is an exo-DUB that favors long K48-linked 
chains as substrates and has five well-characterized Ub-binding sites on 
its catalytic domain59. It is, however, virtually inactive against shorter 
K48-linked Ub2; therefore, we could detect cleavage of only the distal 
Ub of 48Ub3 (Fig. 4c). Interestingly, the ULTIMAT DUB assay revealed  
that MINDY1 cleaved the distal K48-linked Ub off the branched  
chains more efficiently than the distal Ub of unbranched 48Ub3. To our 
surprise, we found that MINDY1 activity was also enhanced toward 
(Ub)2–48,63Ub–63Ub, a branched chain where a single K48-linked Ub 
branches off a K63-linked Ub3 trunk (Fig. 4c and Extended Data Fig. 4a).

We systematically analyzed the processing of K48–K63-branched 
chains by the MINDY DUB family (MINDY1–MINDY4). Comparing 
minimal catalytic domains to full-length MINDYs in an ULTIMAT DUB 
assay against branched and unbranched K48-linked and K63-linked 
substrates revealed that full-length MINDY1 cleaved 5.4-fold more 
branched chains than the distal Ub of unbranched 48Ub3 (Fig. 5a,b). This 
activity was only 2.8-fold higher for the catalytic domain, suggesting 
that the tandem MIUs have a role in effective branched-chain process-
ing. In contrast, both full-length MINDY2 and the catalytic domain alone 
processed the distal K48-linked Ub of 48Ub3 and the two branched Ub4 
chains with similar efficiency.

MINDY3 demonstrated comparable activity against the distal Ub 
of unbranched 48Ub3 and branched (Ub)2–48,63Ub–48Ub but, strikingly, 
it was 4.4 times more active at cleaving the K48-linked distal Ub off 
the K63-Ub trunk in (Ub)2–48,63Ub–63Ub (Fig. 5b). These data suggest a 
specific role of MINDY3 in removing K48-Ub chain linkages branching 
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off K63-Ub chains. In contrast, MINDY4 efficiently cleaved distal K48 
linkages in both unbranched 48Ub3 and branched [Ub]2–48,63Ub–48Ub but 
displayed reduced processing of (Ub)2–48,63Ub–63Ub (0.5-fold) (Fig. 5b). 
In summary, we found that each MINDY family member has a unique 
cleavage profile for branched K48–K63-linked Ub chains with MINDY1 
and MINDY3 demonstrating a preference for branched substrates.

MINDY1 and MINDY2 have five defined Ub-binding pockets  
for K48-linked Ub on the catalytic domains20. However, these  
previously identified Ub-binding sites (S1, S1′–S4′) would not be able 
to accommodate a K63-linked Ub of a branched K48–K63-linked Ub 
chain, as the K63 residue of the proximal Ub in the S1′ pocket is situated 
opposite to these known K48-binding sites (Fig. 5c). To understand  

how branched chains are bound, we analyzed the protein-binding  
probability of MINDY1 surface residues using ScanNet60, which pre-
dicted a high-confidence binding patch adjacent to the S1′ pocket of 
MINDY1 near the K63 residue of the proximal Ub of 48Ub2 bound to 
MINDY1 (Fig. 5c). We hypothesized that substituting the residues in 
this potential K63-linked Ub-binding site in MINDY1 should affect the 
cleavage of branched K48–K63-linked Ub chains but not unbranched 
K48-linked chains. Indeed, MINDY1 V277R or L281A substitutions abol-
ished the cleavage of (UbK48R, K63R)2–48,63Ub and K48–K63-branched 
Ub4 while processing of unbranched K48-linked Ub3 was unaffected 
(Fig. 5d), providing evidence that the catalytic domain of MINDY1 
has a sixth Ub-binding site that recognizes K63-linked branched Ub 
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Fig. 4 | Debranching activity of 53 human DUBs profiled with the ULTIMAT 
DUB assay. a, Principle and schematic workflow of the ULTIMAT DUB assay. 
b, Mass spectrum of the four released Ub moieties detected in the ULTIMAT 
DUB assay and added Ub15N internal standard with indicated masses. Asterisks 
indicate metastable ion peaks. AU, arbitrary units. c, Screen of 53 human DUBs in 
duplicate using ULTIMAT DUB assay with K48-linked and K63-linked chains. The 
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control substrate. The schematic of substrates and the location of Ub moieties 
are depicted above the heat map. Control substrates are either homotypic Ub 
chains of specific linkage type and length (for example, 632 = K63-linked Ub2), 
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(S1′br site) that is distinct from the other five previously identified 
K48-linked Ub-binding sites (Fig. 5d). Importantly, MINDY1 was unable 
to cleave mixed, unbranched Ub4 containing both K48 and K63 linkages,  
confirming that the enhanced cleavage activity is specific to K48 link-
ages present within K48–K63-branched chains and does not result 
from a combination of K48 and K63 linkages per se (Extended Data 
Fig. 5a). In addition, MINDY1 was unable to cleave other branched Ub3 
chains containing K11–K48 or K29–K48 linkages, which agrees with 
the distant positions of the other lysine residues of the proximal Ub 
in the S1′ binding site relative to the S1′br site (Extended Data Fig. 5b,c).

ATXN3 is a K63-specific debranching enzyme
The ULTIMAT DUB assay screen revealed the p97-associated  
DUB ATXN3, previously considered to cleave long K63-linked chains22, 
to have tenfold higher cleavage activity toward the distal K63- 
linked Ub in the two branched Ub4 substrates compared to the  
control Ub-Thr substrate21. However, unbranched 63Ub3 and the 
proximal K63-linked Ub were not cleaved (Fig. 4c). ATXN3, a member 
of the Josephin family of DUBs, has an N-terminal catalytic domain  
followed by a helical extension, tandem UIM (UIM1–UIM2) and a third 
C-terminal UIM (UIM3) (Fig. 5f). We generated truncated versions of 
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a, Schematic domain overview of active MINDY family members with highlighted 
catalytic cysteine residues. b, ULTIMAT DUB assay of catalytic domains and full-
length constructs of MINDY family members against branched and unbranched 
K48-linked and K63-linked substrate chains. The heat map depicts individual 
data points of duplicate measurements of released Ub moieties normalized to 
the internal Ub15N standard and to the intensity of the distal Ub of 48Ub3. c, Crystal 
structure of the catalytic domain of MINDY1 in complex with 48Ub2 (PDB 6TUV)20 
with MINDY1 residues colored by ScanNet binding probability score (blue, white 
and red) and Ub molecules in gray. Zoomed-in view of predicted K63-Ub-binding 
site, with residues shown as stick models. d, Silver-stained SDS–PAGE of DUB 
assays with catalytic domain of wild-type MINDY1 or point mutants in potential 
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chains of K63-linked 48Ub2 (63(48Ub2)2) and branched (Ub)2–48,63Ub–48Ub.
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ATXN3 to dissect the potential roles of p97 and the various UBDs in 
ATXN3 toward debranching activity. An ULTIMAT DUB assay com-
paring truncated ATXN3 versions revealed that the catalytic domain 
and the tandem UIM (ATXN31–260) are the minimal domains required 
for efficient cleavage of the branched chain architectures (Fig. 5g), 
while hydrolysis of the control substrate Ub-Thr was unaffected.  
Next, we conducted a gel-based time-course experiment comparing 
the activity of full-length ATXN3 and ATXN31–260 (Fig. 5h and Extended 
Data Fig. 5d). While unbranched 48Ub4 was a poor substrate and  
ATXN3 did not cleave 63Ub4 or branched (Ub)2–48,63Ub, we observed  
that both ATXN3 constructs remarkably cleaved about 50% of the  
tetrameric branched chains within 5 min (Fig. 5h).

ATXN3 was previously reported to prefer cleaving long K63-linked 
Ub chains and K63 linkages in mixed, unbranched Ub chains contain-
ing K48 and K63 linkages22. It is worth noting that the ‘mixed’ chain 
used in the previous study was assembled by ligating two wild-type 
K48-linked Ub2 using the K63-specific E2 enzymes UBE2N and UBE2V1. 
Such an assembly would result in a mixture of branched and mixed 
Ub4 chains, as one 48Ub2 molecule could be ligated to the proximal or 
distal Ub moiety of the other 48Ub2 (that is, creating branched (Ub)
(Ub–48Ub)–48,63Ub or mixed Ub–48Ub–63Ub–48Ub) (Fig. 5i). To directly 
compare ATXN3 activity against mixed and branched chains, we 
compared the ability of ATXN3 to cleave the mixed chain,63(48Ub2)2  
and branched (Ub)2–48,63Ub–48Ub. While only a small fraction of the 
mixed 63(48Ub2)2 was cleaved to 48Ub2 after 2 h, the majority of branched 
(Ub)2–48,63Ub–48Ub was debranched within 30 min (Fig. 5i), demonstrat-
ing that branched rather than mixed K48–K63-linked Ub chains are  
the preferred substrates of ATXN3.

Engineering a branched K48–K63-Ub-specific nanobody
To enable the facile detection of branched chains, we set out to 
develop nanobodies61. Using a synthetic yeast surface display nano-
body library62, we devised a screening strategy to obtain nanobodies  
capable of selectively binding to K48–K63-branched Ub chains  
(Fig. 6a). In four rounds of negative and positive selection, we removed 
undesired binders to unbranched K48-linked or K63-linked Ub chains 
and enriched for binders to K48–K63-branched Ub3 ((UbK48R, K63R)2–
48,63Ub1–72-AVI*biotin), respectively. A promising candidate nanobody, 
NbSL3, had sub micromolar affinity (KD = 740 ± 140 nM) for (Ub)2–48,63Ub 
and exhibited good solubility in bacterial and mammalian cell expres-
sion (Fig. 6b,c and Extended Data Fig. 6a,b).

To improve the affinity and specificity of NbSL3, we performed  
affinity maturation using site-directed saturation mutagenesis to 
randomize individual amino acid positions in the complementarity- 
determining regions (CDRs) of the candidate nanobody, resulting in 
a diverse NbSL3-based yeast library with ~2 × 108 unique nanobody 
sequences. After four rounds of negative and positive selection, we 
identified nanobodies (NbSL3.1–NbSL3.4) exhibiting affinities in the 
low-nanomolar range (~1–100 nM) for K48–K63-branched Ub chains 
(Extended Data Fig. 6c). Next, we combined the substitutions of the 
top two nanobodies (NbSL3.3Q) (Fig. 6b). Strikingly, NbSL3.3Q dem-
onstrated picomolar affinity to K48–K63-branched chains (Fig. 6c), 
which was ~2,500 times and ~10,000 times stronger binding com-
pared to unbranched 48Ub3 and 63Ub3, respectively (Extended Data 
Fig. 6d). In addition, we conjugated NbSL3.3Q to agarose resin for pull-
down assays and tested its binding specificity to a set of unbranched 
(48Ub3 and 63Ub3) and branched chains ((Ub)2–48,63Ub, (Ub)2–1,63Ub 
and [Ub]2–29,48Ub) (Fig. 6d). Here, NbSL3.3Q bound to only branched  
K48–K63-linked Ub chains. Importantly, we did not detect any binding  
to unbranched K48-linked or K63-linked chains or to other branched 
chain types, demonstrating the specificity of the nanobody for 
branched K48–K63-linked Ub chains.

To further explore the specificity of NbSL3.3Q, we hypothe sized  
that, if NbSL3.3Q specifically recognizes the branch, then it would 
impact the recognition and cleavage of K48–K63-linked branched 

chains by the debranching DUB ATXN3. Indeed, the debranching  
activity of ATXN3 following the addition of equimolar amounts of 
NbSL3.3Q to an in vitro DUB assay with branched (Ub)2–48,63Ub–48Ub 
revealed that NbSL3.3Q exerted a strong inhibitory effect, resulting 
in greatly reduced cleavage of the branched chain by ATXN3 (Fig. 6e).

To elucidate how the nanobody can selectively recognize K48–
K63-branched Ub chains, we determined cocrystal structures of 
branched (Ub)2–48,63Ub in complex with the original NbSL3 and the  
affinity matured NbSL3.3Q, respectively (Fig. 6f, Extended Data 
Fig. 6e and Table 1). In both structures, the branched Ub chain enve-
lopes the nanobody and takes on a completely different conforma-
tion from the free K48–K63-branched Ub3 crystal structure (Fig. 1c). 
Superposition of the two nanobody complex structures revealed 
an almost identical global binding mode, with a slight rotation of 
the three Ub moieties relative to the Nb in the matured nanobody 
structure (Cα root-mean-squared deviation (r.m.s.d.)(Nb) = 0.71 Å; 
Cα-r.m.s.d.(Ub3) = 1.19 Å). PISA analysis63 of the NbSL3.3Q complex 
revealed a buried surface area of ~5,430 Å2 (26% of the total surface 
area), indicating a compact complex (Extended Data Fig. 6e). In both 
structures, the C-terminal residues V70, L71 and L73 of the two distal 
Ub moieties mediate hydrophobic interactions with the nanobody’s 
CDRs. CDR3 inserts itself within the three Ub moieties of the branched 
Ub3 and forms extensive contacts with the region near the K63 linkage 
(Fig. 6f, left). In addition, residues of the CDR1 and CDR2 loops form 
interactions with the region of the K48 linkage (Fig. 6f, right). The struc-
tures, therefore, provide a molecular basis underlying the specificity  
of NbSL3.3Q for binding to K48–K63-branched Ub. Notably, the remain-
ing lysine residues of the branched chain are solvent exposed, indicat-
ing that additional Ub linkages would not impair nanobody binding.

To our surprise, of the four substitutions of NbSL3.3Q (R35V, 
F49Q, N58V and V103E) that enhance binding affinity by nearly three  
orders of magnitude, only V103E contributed to a novel interaction, 
while the other three substitutions facilitated tighter binding by  
reducing steric hinderance and alleviating unfavorable contacts pre-
sent in the first-generation NbSL3 nanobody (Extended Data Fig. 6f).

In conclusion, extensive interactions with Ub and direct recog-
nition of both the K48 and K63 linkages by the nanobody provide a 
structural rationale for its high affinity and specificity toward K48–
K63-branched Ub chains. This direct recognition of both linkages in 
the branched chain is distinct from previously reported bifunctional 
antibodies, such as the branched K11–K48-Ub chain antibody that 
works as a coincidence detector to recognize the presence of both 
K11-linked and K48-linked Ub9.

Exploring cellular functions of branched Ub with nanobodies
Having developed a selective, high-affinity nanobody, we performed 
pulldowns using NbSL3.3Q to analyze whether K48–K63-branched Ub 
chains can be detected in unperturbed cells and to identify conditions 
that alter their abundance. Given the previous association between 
K48–K63-branched Ub chains and proteasomal degra dation5, we 
first tested whether proteasome inhibition (MG-132) would result 
in an accumulation of branched chains. While the accumulation  
of high-molecular-weight ubiquitinated species (HMW-Ub) was 
observed in total cell extracts following proteasome inhibition, we  
did not detect an enrichment of K48–K63-branched Ub chains in 
NbSL3.3Q pulldowns (Fig. 7a).

Because we identified multiple p97-associated proteins binding  
to K48–K63-branched Ub chains and because of the high activity 
of the p97-associated DUB ATXN3 at cleaving branched chains, we 
hypothe sized that K48–K63-branched Ub chains may serve as signals 
for p97-mediated processes. To test this hypothesis, we treated U2OS 
cells with an array of inhibitors: the allosteric, small-molecule p97 
inhibitor NMS-873, the ATP-competitive p97 inhibitor CB-5083, the 
proteasomal inhibitor MG-132, the HSP70 inhibitor VER-155008 and the 
N-glycosylation inhibitor tunicamycin to induce the unfolded protein 
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response64–68. Intriguingly, while both p97 and proteasomal inhibition 
led to a significant accumulation of HMW-Ub conjugates, ubiquit-
inated proteins were captured by the K48–K63-branched Ub-specific 

nanobody NbSL3.3Q only in response to p97 inhibition (Fig. 7a and 
Extended Data Fig. 7a). These findings imply that proteins modified 
with branched K48–K63-linked Ub chains may be p97 clients.
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Fig. 6 | Engineering of the K48–K63-branched Ub-specific, high-affinity 
nanobody NbSL3.3Q. a, Schematic workflow of nanobody selection and 
maturation using yeast surface display screening using biotinylated (B),  
Avi-tagged Ub chains immobilized on magnetic streptavidin beads (Strep).  
b, Sequence alignment, CDRs and secondary structure elements of NbSL3 and 
its variants. The four substitutions of the maturation from NbSL3 to NbSL3.3Q 
are indicated by red triangles. c, ITC analysis of first-generation nanobody 
NbSL3 and matured third-generation nanobody NbSL3.3Q binding to branched 
K48–K63-linked Ub3. DP, differential pressure. d, Silver-stained SDS–PAGE 
analysis of in vitro pulldown with NbSL3.3Q-immobilized agarose beads against 

a panel of branched and unbranched Ub3 chains. e, Silver-stained SDS–PAGE of 
DUB assay with full-length ATXN3 and (UbK48R, K63R)2–48,63Ub–48Ub1–72 incubated 
at 30 °C for 2 h following the addition of K48–K63-branched Ub-specific 
nanobody NbSL3.3Q. f, Cocrystal structure of NbSL3.3Q (yellow) in complex 
with (UbK48R, K63R)2–48,63Ub1–72 (blue, red and gray) in cartoon representation 
with semitransparent surface, rotated by 120°. Zoomed-in views of nanobody 
interactions in proximity to K48 (right) and K63 (left) linkages shown as stick 
models. Interatomic distances are indicated by black dashed lines with distance 
measurements in Å.
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Interestingly, pulldowns of the branched K48–K63-ubiquitinated 
proteins that accumulate upon p97 inhibition also coprecipitated 
p97 and ATXN3 (Fig. 7b). To further probe the interplay between p97 
and the debranching DUB ATXN3 in processing K48–K63-branched 
Ub chains, we performed transient small interfering RNA (siRNA) 
knockdowns of p97 or ATXN3 or codepletion of both in U2OS cells 
and assessed the formation of branched Ub (Extended Data Fig. 7b). 
While the individual knockdown of neither p97 nor ATXN3 led to an 
accumulation of HMW-Ub species, the combined depletion of p97 
and ATNX3 resulted in substantial accumulation of proteins modified 
with K48–K63-branched Ub. We observed a similar effect when ATXN3 
knockdown was paired with acute p97 inhibition through NMS-873 
treatment (Fig. 7c,d). Collectively, these results provide further evi-
dence that K48–K63-branched Ub chains may serve as signals for p97 
and are regulated by the p97-associated debranching enzyme ATXN3.

To further establish the effect of K48–K63-branched Ub chains on 
p97 processing, we examined whether K48–K63-branched Ub chains 
are formed on Ub-G76V–GFP (green fluorescent protein), a reporter 
substrate for Ub fusion degradation (UFD) that requires p97 activity 
for its unfolding and subsequent degradation69. Treatment of HEK293 
cells expressing Ub-G76V–GFP with p97 inhibitors led to marked sta-
bilization of the reporter and a pulldown with NbSL3.3Q confirmed 
that this p97 substrate was indeed modified with K48–K63-branched 
Ub chains (Extended Data Fig. 7c).

The observation that p97 inhibition is required to stabilize K48–
K63-branched Ub chains in cells suggests that K48–K63-branched Ub 
signals are transient and swiftly processed. The ability of NbSL3.3Q to 
inhibit ATXN3 in vitro (Fig. 6e) implies that the expression of NbSL3.3Q 
in cells would likely stabilize branched K48–K63-linked signals and 
enrich cellular proteins modified with this chain type. Accordingly, we 
engineered cell lines for inducible expression of C-terminally GFP-tagged 
NbSL3.3Q or an unrelated nanobody, NbSL18, which only differs in the 
CDR loops70. Anti-GFP immunoprecipitation demonstrated enrichment 
of branched chains in both untreated and p97-inhibitor-treated cells 
following NbSL3.3Q expression (Extended Data Fig. 7d). To determine 
the linkage types present within the captured polyUb chains, we eluted 
the captured HMW-Ub chains and subsequently treated them with the 
K48-specific DUB Miy2, the K63-specific DUB AMSH, the nonspecific 

DUB USP2 or the K63-specific debranching enzyme ATXN3 (Fig. 7e). 
After Miy2 treatment, a reduction in intensity of the total Ub smear, a shift 
toward lower-molecular-weight (LMW) ubiquitinated bands and a loss of 
anti-K48-linked Ub signal was observed, suggesting complete removal of 
K48 linkages. Conversely, AMSH treatment led to a reduction in total Ub 
signal intensity but did not induce a shift of the HMW-Ub smear to LMW 
species. In addition, K48 linkages remained unaffected, as expected for 
this K63-specific DUB. ATXN3 treatment also led to a substantial decrease 
in total Ub intensity, without shifting the HMW-Ub signal to LMW spe-
cies or affecting the intensity of K48-linked Ub. This result matches our 
observation that ATXN3 specifically cleaves off K63 linkages from K48–
K63-branched Ub (Fig. 5h). Furthermore, ATXN3 outperformed AMSH 
in processing the NbSL3.3Q-captured Ub chains, consistent with the 
superior activity of ATXN3 toward branched substrates in the ULTIMAT 
assay (Fig. 4c). These experiments demonstrate that the cleaved K63 
linkages likely existed within K48–K63-branched chains. We conclude 
that the remaining faint Ub signal following Miy2, AMSH and ATXN3 
treatment corresponded to the priming Ubs on substrates that were 
not removed by these enzymes. As a positive control, treatment with the 
nonspecific DUB USP2 eliminated all Ub modifications (Fig. 7e). Collec-
tively, these findings imply that the architecture of K48–K63-branched 
Ub chains formed in response to p97 inhibition predominantly consists 
of K48-linked Ub chain trunks with short branches of K63-linked Ub.

A key function of p97 is the extraction of proteins from chromatin 
at sites of DNA damage, such as RNF8 during repair of double-stranded 
breaks, various nucleotide excision repair factors including DDB2, XPC 
and CSB and stalled RNA polymerases71–76. Because NbSL3.3Q-GFP is 
expressed uniformly in cells with distribution in both cytoplasmic and 
nuclear compartments (Fig. 7f), we used it to track branched-chain 
formation and localization in live cells (Fig. 7f and Extended Data 
Fig. 7e–k). To explore whether K48–K63-branched Ub is induced by and 
forms at DNA damage sites, we induced localized DNA damage with an 
ultraviolet (UV) laser. Live-cell imaging of the irradiated cells revealed 
rapid recruitment of NbSL3.3Q-GFP to sites of DNA damage within 
1–2 min, with maximal recruitment reached after ~10 min (Fig. 7f,g). 
The positive control GFP-DDB2 also demonstrated recruitment to DNA 
damage sites, while the unrelated GFP-tagged nanobody NbSL18 did 
not show recruitment to UV laser spots.

Fig. 7 | K48–K63-branched Ub chains increase in response to p97 inhibition 
and at sites of DNA damage. a–c, Pulldowns from U2OS cell lysates using 
agarose-immobilized NbSL3.3Q and subsequent western blot analysis of input 
and elution fractions with indicated antibodies. Cells were treated with DMSO, 
MG-132, NMS-873 or CB-5083 for 4 h. The quantification shows the total Ub 
enrichment in eluted protein relative to DMSO-treated samples (n = 4 technical 
replicates; n = 3 for CB-5083; error bars denote the s.d. and the bar denotes the 
mean) (a). Cells were treated with NMS-873, CB-5083 or MG-132 for indicated 
time. Western blot analysis of total Ub, p97 and ATXN3 (b). Cells were treated 
with nonspecific siRNA or siRNA targeting ATXN3 for 48 h, supplemented with 
DMSO or NMS-873 (5 µM) treatment for 4 h before harvest (c). d, Quantification 
of c and additional replicates showing the total Ub in input and eluted protein 
fractions relative to control siRNA + DMSO samples (n = 6 individual data points 
with the line showing the mean value ± s.d.). Indicated P values were determined 
by two-way ANOVA with Dunnett’s test. e, DUB assay using Miy2 (K48-specific) 
or AMSH (K63-specific), USP2 (unspecific) and ATXN3 (K63-specific, preference 
for K48–K63 branches) incubated for 1 h at 37 °C with Ub chains captured by 
anti-GFP pulldown from NbSL3.3Q-GFP-expressing U2OS Flp-In Trex cells 
(lanes 1–12) following treatment with DMSO (lanes 1–6) or NMS-873 (lanes 
7–12) or recombinant K48–K63-branched Ub3 chains (lanes 13–18). Samples 
were analyzed by western blotting for total Ub and K48-linked Ub and with 
Ponceau S for total protein. f, Representative live-cell images of recruitment 
UV microirradiation assay with U2OS cells stably expressing NbSL3.3Q-GFP, 
NbSL18-GFP (negative control) or GFP-DDB2 (positive control). NbSL3.3Q-GFP 
cells were treated either with control siRNA or UBE2N siRNA. Cells were imaged 
before damage and over a time course of 10 min following insult by 405-nm UV 
laser microirradiation at 9 J m−2. Nuclei are indicated in white and laser-targeted 

subnuclear locations are indicated in purple (GFP-DDB2, n = 79 cells; NbSl18-
GFP, n = 76 cells; NbSL3.3Q-GFP, control siRNA, n = 144 cells; NbSL3.3Q-GFP, 
siUBE2N, n = 128 cells). Scale bars, 5 µm. g, Quantification of recruitment assay 
f represented as the average mean GFP intensity ± s.e.m. within the targeted 
subnuclear spot per nucleus. h, Representative live-cell images of retention 
UV microirradiation assay with U2OS cells stably expressing NbSL3.3Q-GFP 
treated with NMS-873 and either control or ATXN3 siRNA. Cells were subjected 
to localized laser microirradiation and subsequently followed for 1 h. Nuclei 
are indicated in white and laser-targeted subnuclear locations are indicated in 
purple (untreated, control siRNA, n = 29 cells; untreated, siATXN3, n = 20 cells; 
p97i, control siRNA, n = 52 cells; p97i, siATXN3, n = 26 cells). Scale bars, 5 µm. 
i, Kinetics of the half-times of recruitment and removal of NbSL3.3Q-GFP from 
sites of localized laser microirradiation were calculated from the time courses 
of individual cells of the retention assay (h). Data are shown as bars representing 
the mean GFP intensity half-times ± s.e.m. (***P < 0.001 and ****P < 0.0001, 
determined by a Welch’s unpaired t-test). White circles indicate individual data 
points (two outliers are excluded from visualization for clarity). j, Quantification 
of maximum cumulative recruitment of NbSL3.3Q-GFP in retention assay (h). 
Data points represent the mean GFP intensity of individual cells ± s.e.m.  
k, Speculative mechanistic model for the role of K63 branches on K48-Ub chains 
during substrate processing by p97. K48–K63-branched chains may act as a 
priority signal for p97 through p97-associated branched-chain-binding adaptors. 
The presence of Ub branches on the distal end of the Ub chain favors threading 
of the proximal Ub and substrate through p97 for unfolding, while the distal 
Ub escapes the central pore. The K63-specific debranching activity of p97-
associated DUB ATXN3 subsequently edits the branched chain of the processed 
substrate to a K48-linked Ub chain for proteasomal degradation.
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The E2 UBE2N attaches K63-linked Ub to various substrate proteins 
following DNA damage77,78 and was recently implicated in the formation 
of K48–K63-branched Ub in the context of neosubstrates during tar-
geted degradation8. To determine whether UBE2N activity is involved 
in K48–K63-branched chain formation in response to DNA damage, 
NbSL3.3Q-GFP-expressing cells were depleted of UBE2N and subjected 
to UV microirradiation (Fig. 7f,g). The recruitment of NbSL3.3Q-GFP 
to damage sites was similar to that of control siRNA-treated cells, sug-
gesting that other E2s and E3s are likely involved in K48–K63-branched 
Ub formation.

In line with an increase in the amount of K48–K63-branched Ub 
following p97 inhibition (Fig. 7a), treating cells with a p97 inhibitor 
before UV laser irradiation resulted not only in increased recruitment 
but also prolonged retention of the nanobody at sites of laser-induced 
damage (Fig. 7f–j and Extended Data Fig. 7h–k). Similarly, cells depleted 
of ATXN3 also showed enhanced damage site recruitment of NbSL3.3Q.

In summary, using the K48–K63-branched-chain-specific nanobody  
as a cellular sensor revealed the formation of branched K48–K63-linked 
Ub chains at sites of DNA damage and their roles in p97-related 
processes.
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Discussion
The role of branched Ub chains as unique signals for information  
transfer in cells is increasingly appreciated by their implicated roles in 
NF-κB signaling, cell-cycle control, ERAD and protein quality control 
pathways. In this study, we developed versatile approaches, innova-
tive tools and a blueprint to study branched Ub that can reveal how a 
particular branched chain transmits information within the cell.

Decoding K48–K63-branched Ub signals
Compared to homotypic (unbranched) chains, branching creates 
unique interfaces that can be exploited by UBDs and DUBs to achieve 
selective recognition. We further demonstrate that Ub binders and 
DUBs can distinguish not only unbranched and branched chains  
but also the order of branching (that is, K48-linked Ub branching  
off a K63-linked Ub chain trunk and vice versa) (Figs. 2b, 4c and 5d,h). 
This finding implies that, for each type of branched chain, it is impor-
tant to consider the linkage composition of the trunk of the chain,  
as it encodes additional unique interaction interfaces. Although  
this fact increases the complexity of branched chains, the methods 
showcased here make this analysis feasible.

A long-standing question in the field is whether there are cellular  
proteins capable of specifically binding branched Ub chains and  
distinguishing these from unbranched chains. We developed an 
approach to generate and immobilize Ub chains of defined branched 
architectures to reveal the existence of branched-chain-specific bind-
ers. Interestingly, many of the branched-chain-specific binders iden-
tified here have not been thoroughly explored, thus opening new 
research avenues to study cellular processes regulated by branched 
chains. The identification of proteins such as RFC1 and MORC3 suggests 
roles in regulating chromosome replication, replication stress, anti-
viral responses and interferon signaling. The identification of several  
kinases such as PRKCZ, ROCK2 and RIOK3 as K48–K63-branched 
Ub chain-associated proteins raises the possibility of Ub-mediated 
activation analogous to the TAK1 kinase79. Notably, the identifica-
tion of p97-related proteins, the HSP70 cochaperone DNAJB2 and the 
ERAD-associated protein RHBDD1 (ref. 80) also indicates roles for 
branched K48–K63 chains in protein quality control. Importantly, 
our work suggests roles for branched K48–K63 chains as signals for 
p97, identifying the p97-associated proteins ZFAND2B, RHBDD1 and 
ATXN3 to associate with K48–K63-branched Ub chains in pulldowns 
from cell lysates (Fig. 2b). However, we were unable to detect specific 
binding with most of the recombinantly expressed proteins. Therefore, 
investigating how these proteins achieve branched Ub recognition is 
critical and could reveal novel Ub-binding mechanisms. Nevertheless, 
our discovery of specific readers to branched chains underscores  
both the complexity and the high precision within the Ub system.

K48–K63-branched Ub chains are signals for p97
Recent structural and biochemical studies show that p97 first unfolds 
the second-most proximal Ub on a substrate, the initiator Ub, followed 
by threading of the proximal Ub and substrate through the central 
pore for unfolding81–83. The current data also suggest that the unfolded 
substrate remains ubiquitinated following processing by p97 and that 
the distal part of the Ub chain may not unfold as it bypasses the cen-
tral pore. Interestingly, a recent study also reported the ability of the 
p97-associated adaptor UBXD1 to facilitate restructuring and ring 
opening of p97 (ref. 84). We speculate that the function of branched 
chains on p97 substrates may, therefore, be twofold: firstly, to enhance 
recruitment to p97 for translocation or unfolding by binding to p97 
adaptors; secondly, to shift the unfolding equilibrium toward the 
substrate, as branching of the distal Ub chain may hinder threading 
through the central pore and simultaneously aid bypassing of the dis-
tal Ub chain. Our data also suggest that most K48–K63-branched Ub 
chains that are stabilized following p97 inhibition consist of K63-linked 
short or monoUb species on longer K48-linked chains. Debranching of 

K63-linked Ub by ATXN3 would, therefore, convert the branched chain 
to a homotypic K48-linked chain to direct the unfolded substrate for 
degradation to the proteasome (Fig. 7k).

The widespread distribution of p97 and its associated adap-
tors across pulldowns with branched K48–K63-Ub and unbranched 
K48-linked Ub chains indicates that these adaptors can provide spe-
cialization to a variety of p97 complexes to recognize and process 
substrates modified with distinct Ub signals85,86. Branched K11–K48-Ub 
chains were found to be efficient signals for triggering proteasomal 
degradation, partly because of their increased affinity for the protea-
some receptor RPN1 over unbranched chains14,87. Although branched 
K11–K48 chains were associated with p97 through the adaptors FAF1, 
p47 and UBXD7 (ref. 9), we here identified a different set of p97 adap-
tors to bind branched K48–K63 chains, suggesting specific roles for 
different branch types.

Contrary to previous observations4, we observed that the abun-
dance of branched K48–K63 chains does not significantly increase 
following proteasome inhibition but only following p97 inhibition 
(Fig. 7a,b and Extended Data Fig. 7a). One explanation for this discrep-
ancy could be the high sensitivity of MS that detects small changes  
in branched Ub levels. Ohtake et al. reported a twofold increase in  
K48–K63 branches following proteasome inhibition (changed by 
4 fmol, from ~3 fmol base level to ~7 fmol) and unbranched K48 link-
ages were reported to increase threefold following MG-132 treatment 
(by 90 fmol, from ~40 fmol base level to ~130 fmol). These results also 
showed that unbranched K48 chains had 13-fold higher base levels 
compared to branched K48–K63 chains. Therefore, we conclude that 
the absolute change in K48–K63-branched chains following protea-
some inhibition was likely too small to be detected by immunoblotting.

Debranching enzymes
The ULTIMAT DUB assay we pioneered here enabled our discovery of 
the p97-associated DUB ATXN3 as a debranching enzyme. Compared 
to previous studies that suggested ATXN3 to cleave long polyUb22,  
our analyses revealed that ATXN3 preferentially cleaves K48–K63- 
branched Ub. Intriguingly, we found that ATXN3 debranched longer 
K48–K63-branched Ub4 but not the branched Ub3 (Fig. 5h). Further 
structural studies are needed to understand how the branched chain 
architecture is recognized by ATXN3 and how the branch point is  
positioned across the catalytic site. Furthermore, it remains to be  
determined whether ATXN3 is specific for K63-linked branches 
only within K48–K63-branched Ub4 or whether it can also recognize 
branched chains containing other linkage types.

Interestingly, the only other known debranching enzyme known to 
date is the proteasome-associated DUB UCHL5 (ref. 25). The association 
of the two main molecular machines responsible for protein unfolding 
and degradation, p97 and the proteasome, with debranching enzymes 
suggests that debranching may be an essential prerequisite for further 
substrate processing. This is further emphasized by the substitutions  
in p97 found in the proteinopathy disorder inclusion body myopathy 
with Paget disease of bone and frontotemporal dementia (IBMPFD). 
These degenerative disease-causing substitutions in p97 stabilize and 
greatly enhance its interaction with ATXN3, suggesting an inhibitory 
role88–90. Conversely, loss of ATXN3 also impairs ERAD and protein 
degradation91. Taken together, we propose that, while branched chains 
are effective signals for substrate recognition by p97, ATXN3 has an 
important role at p97 to debranch the bifurcated architectures.

The ULTIMAT DUB assay offers a quantitative, high-throughput 
technique to monitor the cleavage of complex Ub substrates. This 
marks an important improvement over existing methods that either 
provide only qualitative information or use fluorescent tags covering 
a large surface area of Ub, potentially influencing cleavage activity. 
Despite identifying DUBs with debranching activity, one limitation of 
the ULTIMAT DUB assay is that it uses Ub with lysine-to-arginine sub-
stitutions on the distal Ub moieties that may, in rare cases, affect DUB 
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activity. We attempted to mitigate the impact of these substitutions 
on our results by including the same lysine-to-arginine substitutions in 
the unbranched control substrates. For instance, USP5 did not exhibit 
activity against K63-linked chains bearing lysine-to-arginine substi-
tutions in the ULTIMAT DUB assay but was active against K63-linked 
chains assembled from wild-type Ub (Fig. 4c and Extended Data Fig. 4c). 
Indeed, in an existing USP5–Ub structure (Protein Data Bank (PDB) 
3HIP), both K48 and K63 residues of the distal Ub are tightly engaged in 
the S1 pocket of USP5, providing a structural rationale for the inhibitory 
effect of the lysine-to-arginine substitutions (Extended Data Fig. 4d).

Using the ULTIMAT assay to screen DUBs for debranching activ-
ity, we found that DUBs previously thought to cleave long, homotypic 
chains prefer cleaving branched chains19,22,59. This observation under-
scores the need to examine DUB cleavage specificity and activity using 
a range of heterotypic chains. It also brings to light the possibility that 
certain DUBs deemed inactive on the basis of assays with homotypic 
chains could have evolved to efficiently cleave branched Ub.

Several studies observed concurrent increases in K48-linked and 
K63-linked polyUb chains in processes including DNA repair, NF-κB 
signaling and proteotoxic stress4,92,93. For example, the findings that 
both K48-linked and K63-linked chains are formed in response to DNA 
damage71,74,93,94 led us to identify that these linkages coexist within 
branched chains (Fig. 7f). Hence, we propose that reevaluating previ-
ous findings using the tools and methods introduced here is likely to 
unveil previously unacknowledged roles for branched K48–K63 chains 
in the regulation of cellular homeostasis.
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Methods
Reagents used in this study
A list of oligonucleotides, plasmids, recombinant proteins and  
commercially available reagents used in this study can be found in 
Supplementary Table 1. Further information and requests for reagents 
should be directed to Y.K. All complementary DNA (DNA) constructs  
in this study were generated by S.M.L., L.K., M.R.M. and the clon-
ing team at the Medical Research Council Protein Phosphorylation  
and Ubiquitylation Unit (MRC PPU) Reagents and Services. All  
plasmids were deposited with the MRC PPU Reagents and Services and 
are available upon request at https://mrcppureagents.dundee.ac.uk/.

Protein expression
Recombinant proteins were expressed in Escherichia coli BL21(DE3) in 
autoinduction medium containing 100 µg ml−1 ampicillin or 50 µg ml−1 
kanamycin, as appropriate, at 18–25 °C for 24 h at 180 r.p.m. shaking 
speed. Cells were harvested by centrifugation at 4,000g for 20 min at 
4 °C. To prepare isotope-labeled Ub15N, E. coli were grown in 15N-minimal 
medium (8 g l−1 glucose, 2 g l−1 15NH4Cl2, 1× M9 salts, 2 mM MgSO4, 
0.2× Studier trace metals and 1× MEM vitamins) supplemented with 
50 µg ml−1 kanamycin to an optical density at 600 nm (OD600) of 1.5 at 
37 °C and expression was induced with 1 mM IPTG for 20 h at 20 °C.

For wild-type and mutant Ub and mutant M1-Ub2 chains, cells were 
resuspended in 20 ml of Ub lysis buffer (1 mM EDTA, 1 mM AEBSF and 
1 mM benzamidine) and lysed by sonication. The pH of the lysate was 
adjusted by addition of 100 mM sodium acetate pH 4.5 and incubated 
for 3–16 h at 20 °C. The lysate was adjusted to 50 mM sodium acetate 
through the addition of water before clarification by centrifugation at 
30,000g and 4 °C for 20 min. Ub was purified by ion-exchange chroma-
tography on a Resource S column (6 ml) in 50 mM sodium acetate pH 
4.5 using a NaCl salt gradient. The pH of elution fractions was adjusted 
by addition of 100 mM Tris-HCl pH 8.5 before concentration in 3-kDa 
molecular weight cutoff (MWCO) centrifugal filter units (Amicon) and 
finally buffer-exchanged into 50 mM Tris-HCl pH 7.5.

For purification of cytoplasmic proteins, pellets from 1 L of expres-
sion culture were resuspended in 20 ml of bacterial lysis buffer (50 mM 
Tris-HCl pH 7.5, 300 mM NaCl, 0.5 mM TCEP, 1 mM benzamidine and 
1 mM AEBSF) and lysed by sonication. Lysates were clarified by centrifu-
gation at 30,000g and 4 °C for 30 min and applied to affinity resin for 
subsequent purification. Glutathione S-transferase (GST) tags were 
removed by overnight incubation with 3C-protease at 4 °C. For crystal-
lization, protein complexes were purified by gel filtration (Superdex 
200 pg 16/600) equilibrated in 20 mM HEPES pH 7.5 and 150 mM NaCl.

For periplasmic proteins, cells from 1 L of expression culture were 
resuspended in 20 ml of high-osmotic lysis buffer (50 mM Tris-HCl pH 
7.5, 150 mM NaCl, 20% sucrose, 1 mM EDTA, 1 mM benzamidine, 1 mM 
AEBSF and 5 mg hen egg lysozyme) and incubated for 20 min at 20 °C. 
The cell suspension was centrifuged at 15,000g and 4 °C for 10 min and 
the pellet and supernatant were separated. The pellet was resuspended 
in low-osmotic lysis buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 1 mM 
benzamidine and 1 mM AEBSF) and incubated on a roller at 4 °C for 
40 min. The high-osmotic supernatant and 5 mM MgCl2 were added 
to the low-osmotic cell suspension and the mixture was centrifuged 
at 30,000g at 4 °C for 20 min. The supernatant containing released 
periplasmic proteins was subjected to affinity purification.

Ub chain ligation, purification and modification
Ub chains were assembled from 1.5 mM Ub in 40 mM Tris-HCl pH 7.5, 
10 mM MgCl and 10 mM ATP at 30 °C for 2–16 h. The formation of 
linkages was catalyzed as follows: K48 linkages, 1 µM UBE1 and 25 µM 
UBE2R1; K63 linkages, 1 µM UBE1, 20 µM UBE2N and 20 µM UBE2V1; 
branched K48–K63 linkages, 1 µM UBE1, 25 µM UBER1, 20 µM UBE2N 
and 20 µM UBE2V1 using UbK48R, K63R; branched K6–K48 linkages, 1 µM 
UBE1, 2 µM UBE2L3 and 5 µM NleL using UbK6R, K48R; branched K29–K48 
linkages, 1 µM UBE1, 9.5 µM UBE2D3, 3 µM UBE3C, 2 µM AMSH and 

0.07 µM Cezanne using UbK29R, K48R; branched K11–K48 linkages, 1 µM 
UBE1, 8.96 µM UBE2D1, 6.24 µM AREL1, 25 µM UBE2R1 and 5 µM TRABID 
using UbK11R, K48R; wild-type M1-Ub2, 1 µM UBE1, 10 µM UBE2L3 and 10 µM 
HOIP. Ub chains were separated by length using ion-exchange chro-
matography on a Resource S column (6 ml) in 50 mM sodium acetate 
pH 4.5 using NaCl salt step gradients. The pH of elution fractions was 
adjusted by the addition of 100 mM Tris-HCl pH 8.5 before concentra-
tion in 10-kDa MWCO centrifugal filter units (Amicon) and chains were 
buffer-exchanged into 50 mM Tris-HCl pH 7.5. Biotinylation of 200 µM 
Avi-tagged Ub chains was catalyzed by the addition of 1 µM BirA in 
50 mM Tris-HCl pH 7.5, 5 mM MgCl2, 2 mM ATP and 600 µM biotin for 2 h 
at 25 °C. Subsequently, the protein was buffer-exchanged into 50 mM 
Tris-HCl pH 7.5 to remove free biotin. Successful biotinylation was 
assessed through a streptavidin-shift assay by incubating biotinylated 
protein with fivefold excess streptavidin for 5 min at 20 °C, addition 
of 1× LDS sample buffer and subsequent SDS–PAGE analysis, where 
the stable streptavidin–biotin complex induces a ~60-kDa molecular 
mass shift.

Immobilization of proteins on agarose beads
Proteins were coupled to amine-reactive NHS-activated agarose resin 
(Abcam, ab270546) according to the manufacturer’s protocol. Briefly, 
the protein was buffer-exchanged into coupling buffer (50 mM HEPES 
pH 7.5 and 500 mM NaCl). Per 1 mg of protein, 1 ml of NHS-activated 
resin was activated by washing with 50 ml of ice-cold acid buffer (1 mM 
HCl), then quickly equilibrated by washing with 50 ml of ice-cold  
coupling buffer and mixed with the protein. The coupling reaction 
was allowed to proceed on an end-over-end roller at 4 °C for 16 h. After 
coupling, the resin was washed six times in total, alternating between 
50 ml of high-pH buffer (0.1 M Tris-HCl pH 8.5) and 50 ml of low-pH 
buffer (0.1 M sodium acetate pH 4.5 and 0.5 M NaCl), to remove any 
noncovalently bound protein. Lastly, the resin was equilibrated with 
storage buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl and 0.02% sodium 
azide) as a 50% slurry and stored at 4 °C.

Nanobody selection and maturation
Specific nanobodies against K48–K63-branched Ub3 were selected 
from a naive yeast display library, generously shared by the Kruse lab62, 
and yeast culture and magnetic cell sorting (MACS) were performed 
as previously described70. Briefly, yeast was cultivated in YGLC-glu 
medium (80 mM sodium citrate pH 4.5 (Sigma), 6.7 g l−1 yeast nitrogen 
base without amino acids (BD Biosciences), 2% glucose and 3.8 g l−1 
Do mix-trp) at 30 °C and 200 r.p.m. shaking speed for 16 h. Nanobody 
expression was induced by growth in YGLC-gal (same as YGLC-glu but 
glucose replaced with galactose) at 20 °C and 200 r.p.m. for 48–72 h. 
Nanobodies were selected in four rounds of MACS by negative selection 
against 400 nM biotinylated, homotypic K48-linked and K63-linked 
polyUb chains and positive selection with decreasing concentrations 
(2,000 nM to 400 nM) of biotinylated K48–K63-branched Ub3. Fol-
lowing MACS, the total DNA of yeast colonies grown on YGLC-glu agar 
plates was isolated by resuspending single colonies in 100 µl of 200 mM 
lithium acetate and 1% SDS, followed by incubation at 70 °C for 5 min 
and brief vortexing after adding 300 µl of ethanol. The mixture was 
centrifuged at 15,000g for 3 min and the pellet was washed once with 
70% ethanol before resuspension in 100 µl of H2O. Following additional 
centrifugation at 15,000g for 1 min to remove cell debris, the superna-
tant was transferred to a fresh microtube and 1 µl was used as template 
DNA for a 25-µl PCR reaction (KOD HotStart, Millipore) to amplify the 
nanobody insert using primers NbLib-fwd-I (CAGCTGCAGGAAAGCG 
GCGG) and NbLib-rev-I (GCTGCTCACGGTCACCTGG). Nanobodies were 
subcloned into pET28a vectors for periplasmic expression in bacteria 
with an N-terminal pelB signal sequence and C-terminal 6xHis-tag.

NbSL3 was matured through directed evolution of the 
nanobody-binding properties by construction of an NbSL3-based matu-
ration library using saturation mutagenesis. Two-step multiple-overlap 
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extension PCR (MOE-PCR) was performed according to the procedure 
described by McMahon et al.62 to generate a DNA library encoding 
~1.97 × 108 NbSL3 variants, each harboring up to four substitutions 
in one of the variable positions of CDR1, CDR2 and CDR3 loops or 
additional two residues of NbSL3, T75 and Y77, in a fourth loop located 
between β-sheets β7 and β8 that we refer to as CDR2.5. The codons of 
the variable amino acid positions in these four regions were replaced 
with degenerate NNK codons, which encode all 20 natural amino acids 
and a single stop codon (Supplementary Table 1). For MOE-PCR with 
KOD HotStart polymerase, equimolar primer pools encoding each CDR 
region (NbSL3_P3, NbSL3_P5, NbSL3_P7 and NbSL3_P9) were used to 
prepare a 10 µM NbSL3 primer mix combining all ten NbSL3-encoding 
primers (NbSL3_P1–NbSL3_P10). A fivefold dilution series of 2 µl of 
primer mix was used in 25-µl MOE-PCR assembly reactions in 15 cycles 
of denaturation (20 s, 95 °C), annealing (20 s, 60 °C) and elongation 
(10 s, 70 °C), followed by 15 cycles of amplification after addition of 
0.3 µM flanking primers pYDS_fwd_1 and pYDS_rev_1 with an increased 
annealing temperature of 68 °C. The Nb insert DNA band of 462 bp 
size was purified from a 2% agarose gel and served as a template for 
two subsequent PCR amplification rounds using the primer pairs 
pYDS_fwd_2 + pYDS_rev_2 and pYDS_fwd_3 + pYDS_rev_2 to generate 
matching overhangs for homologous recombination with the yeast 
surface display vector pYDS649. Electroporation of yeast with the 
NbSL3 DNA library was performed following the protocol developed 
by Benatuil et al.95, Briefly, a 100-ml culture of the yeast strain BJ5465 
was grown to an OD600 of 1.4 and cotransformed by electroporation 
with 24 µg of the amplified NbSL3 DNA library and 8 µg of linearized 
pYDS digested with BamHI and NheI. Highly efficient electroporation 
was achieved on a BTX 630 Exponential Decay Wave Electroporation 
System (Harvard Bioscience) set at 2,500 V, 200 Ω and 25 µF, resulting 
in time constants of 3–4 ms. A dilution series of transformed yeast was 
streaked out on YGLC-glu agarose plates to estimate a transforma-
tion efficiency of >95%. The transformed yeast library was recovered 
in 500 ml of YGLC-glu selection medium and used in four rounds of 
MACS as described above but with K48–K63-branched Ub3 concen-
trations decreasing from 400 nM to 100 nM. Following maturation, 
Nb sequences in individual yeast colonies were sequenced and sub-
cloned into pET28a vector for bacterial expression and subsequent 
characterization.

Isothermal titration calorimetry (ITC)
ITC measurements were executed at 25 °C on a MicroCal PEAQ-ITC 
instrument (Malvern, version 1.29.32). Immediately before analysis, 
proteins were dialyzed into degassed ITC buffer (20 mM HEPES pH 7.5 
and 150 mM NaCl) at 4 °C for 16 h. The data were analyzed with Micro-
Cal Analysis Software (Malvern, version 1.22.1293.0) and fitted using a 
one-sided binding model to calculate binding constants.

Protein crystallization, data collection and processing
All protein crystals were obtained by the sitting-drop vapor diffusion 
method mixing 200 nl of protein in 20 mM HEPES pH 7.5 and 150 mM 
NaCl with 100 nl of mother liquor. All crystals were harvested and 
cryo-protected with mother liquor supplemented with 30% glycerol. 
K48–K63-branched Ub3 crystals were obtained at 22 mg ml−1 in 0.2 M 
ammonium acetate, 20 mM Tris pH 7.5, 50 mM NaCl, 0.1 M sodium 
citrate tribasic dihydrate pH 5.6 and 30% w/v PEG4000 at 20 °C. The 
complex of NbSL3 and K48–K63-branched Ub3 was crystallized at 
12 mg ml−1 in 0.1 M Bis-Tris pH 7.2, 0.28 M MgCl2, 21% PEG3350, 0.15 M 
NaCl and 0.05 M Tris-HCl pH 7.5 at 4 °C. The complex of the matured 
NbSL3.3Q and K48–K63-branched Ub3 was concentrated to 14.5 mg ml−1 
and mixed with 0.1 M HEPES pH 7.5, 10% 2-propanol and 20% PEG4000. 
All datasets were collected at the European Synchrotron Radiation 
Facility beamline ID23-2 and solved by molecular replacement with Ub 
(PDB 1UBQ) or the nanobody scaffold of Nb.b201 (PDB 5VNW). Detailed 
data collection and refinement statistics are documented in Table 1.

Gel-based deubiquitination assays
DUBs were incubated in DUB buffer (50 mM Tris-HCl pH 7.5, 50 mM 
NaCl and 10 mM DTT) at 20 °C for 10 min to fully reduce the catalytic 
cysteine. Deubiquitination assays were typically performed with  
1 µM DUB and 2.5 µM substrate Ub chain in DUB buffer at 30 °C, unless 
stated otherwise. Reactions were stopped by the addition of 1× LDS 
sample buffer and cleavage of Ub chains analyzed by SDS–PAGE and 
silver staining using the Pierce Silver stain kit (Thermo Fisher) or Oriole 
staining (BioRad) according to the manufacturer’s instructions but 
skipping the initial wash step in water to avoid washout of monoUb.

ULTIMAT DUB assay
Sample preparation, spotting on the MALDI target and MALDI-TOF MS 
analysis were performed as previously described21,55. Briefly, DUBs and 
substrates were diluted in the reaction buffer (40 mM Tris-HCl pH 7.5, 
1 mM TCEP and 0.01% BSA). Then, 3 µl of recombinantly expressed 
DUBs were aliquoted in 384 Eppendorf Lowbind well plates. Control 
Ub chains (M1, K11, K48, K63 dimers, Ub-Thr, Ub-Lys, Ub-Trp, K63 trimer 
and K48 tetramer), ULTIMAT Ub substrates (unbranched Ub3 and 
branched Ub4 chains) were separately added to each reaction at the 
final concentration of 1.2 µM. Reaction buffer was used to bring the 
total volume reaction to 10 µl. Samples were incubated at 30 °C for 
30 min. The reaction was stopped with 2.5 µl of 6% TFA supplemented 
with 4 µM Ub15N (to be used as the internal standard). A total of 384 
plates were centrifuged at 3,200g for 3 min. Spotting on the 1536 
AnchorChip MALDI-TOF target was performed in a technical duplicate 
using a five-deck mosquito nanoliter pipetting system. Samples were 
analyzed using a Rapiflex MALDI-TOF instrument equipped with Com-
pass for FlexSeries 2.0 and flexControl version 4.0 Build 48 software 
version in reflectron-positive mode. The detection window was set 
between 7,820 and 9,200 m/z. Movement on the sample spot was set 
on Smart complete sample, allowing 4,000 shots at a raster spot within 
an 800-µm diameter. Acquired spectra were automatically integrated 
using the FAMS FlexAnalysis method (version 4.0, build 14), SNAP  
peak detection algorithm, SNAP average composition Averagine,  
a signal-to-noise threshold of 5 and baseline subtraction TopHat. The 
Savitzky–Golay algorithm was used for smoothing processing. The 
Ub15N signal (‘heavy’ Ub, 8,669.470 m/z) was used to internally cali-
brate each data point. Spectra were further manually verified to  
ensure mass accuracy throughout the automated run. Peak areas  
of interest were exported to a csv file and manually analyzed using  
Microsoft Excel. Average peak areas of released monoUb result-
ing from the cleavage of substrates, that is, Ub control chains 
(8,565.7 m/z) or ULTIMAT branched chains (8,181.3, 8,622.2, 8,729.9 
and 8,565.7 m/z), were independently normalized to the internal Ub15N 
standard (8,670 m/z) and quantified using the following equation:  
Peak areamonoUb substrate

Peak areaUb
15N standard

×
[Ub15N standard]

[substrate]
× 100 . Datasets were normalized to the 

individual control substrates of each DUB (DUB panel; Fig. 3b) or to the 
intensity of the distal K48-Ub of the 48Ub3 substrate (MINDY panel; 
Fig. 4b). Data were visualized in Python using the Plotly graphing 
library96.

Cell culture
U2OS, U2OS Flp-In Trex and HEK293 Flp-In Trex cell lines were main-
tained in DMEM (Gibco) supplemented with 10% FBS (Gibco), 2 mM 
l-glutamine (Gibco) and 100 U per ml penicillin–streptomycin (Gibco) 
and incubated at 37 °C with 5% CO2 unless otherwise stated. Trypsin 
(0.05%)-EDTA (Gibco) was used to dissociate cells for passage. All cell 
lines were routinely tested for Mycoplasma.

Generation of stable cell lines
For the generation of cell lines stably expressing tetracycline-inducible 
GFP-tagged constructs, Flp-In Trex cells were cotransfected with a 1:9 
ratio (w/w) of GFP vector to pOG44 Flp recombinase vector using PEI 
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Max 40k (Polysciences). To select for integrant cells, 24 h after trans-
fection, the medium was switched out for fresh DMEM supplemented 
with 200 µg ml−1 hygromycin B. The selection medium was periodically 
refreshed and cultures were monitored until all mock-transfected  
control cells were dead. Tet-inducible expression of the proteins  
of interest was subsequently confirmed by western blotting with  
an anti-GFP antibody, following overnight incubation with 1 µg ml−1 
tetracycline (Extended Data Fig. 7e). In experimental use, the 
NbSL3.3Q-GFP construct was induced with 0.1 µg ml−1 tetracycline, 
whereas 1 µg ml−1 tetracycline was used for all others.

Chemicals and compounds
Cell culture treatments were carried out using the following chemicals 
at the indicated concentrations: DMSO (Sigma) and MG-132 (Sigma), 
10 µM; NMS-873 (Sigma), 5 µM; tunicamycin (Abcam), 5 µg ml−1;  
VER-155008 (Sigma), 10 µM; CB-5083 (Generon), 5 µM; tetracycline 
hydrochloride (Sigma), 0.1–1 µg ml−1; BrdU (Sigma), 10 µM.

RNA interference (RNAi)
RNAi was carried out using Lipofectamine RNAiMAX (Thermo  
Scientific) according to the manufacturer’s protocol. Briefly, cells were 
seeded into six-well plates (or 35-mm glass-bottomed fluorodishes for 
imaging experiments) at 1–2 × 105 cells per well. The following day, cells 
were transfected with 25 mol of siRNA duplexes prepared in RNAiMAX 
reagent. Cells were then incubated at 37 °C for 48 h before harvest  
and subsequent analysis. The RNA sequences used are presented in 
Supplementary Table 1.

Pulldown with HALO-tagged UBDs and recombinant Ub chains
HALO-tag fusion constructs of UBDs were used for pulldown with 
recombinant Ub chains as previously described97. Briefly, 10 nmol of 
HALO-tagged UBDs were immobilized on 100 µl of HALOLink resin (Pro-
mega) in 500 µl of HALO-coupling buffer (50 mM Tris pH 7.5, 150 mM 
NaCl, 0.05% NP-40 substitute and 0.5 mM TCEP) rolling at 4 °C for 2 h. 
Beads were spun at 800g for 2 min to remove supernatant, washed 
three times with HALO-wash buffer (50 mM Tris pH 7.5, 250 mM NaCl, 
0.2% NP-40 and 0.5 mM TCEP) and resuspended in 100 µl of ice-cold 
HALO-pulldown buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.1% NP-40, 
0.5 mM TCEP and 0.5 mg ml−1 BSA). Per pulldown, 20 µl of coupled 
HALO-resin (50% slurry) was added to 30-pmol chains in 480 µl of 
HALO-pulldown buffer and incubated at 4 °C turning end-over-end 
for 1 h. Beads were spun at 800g and 4 °C for 2 min, washed twice with 
500 µl of HALO-wash buffer and transferred to a fresh 1.5-ml microtube 
for the final wash with 500 µl of HALO-coupling buffer. Each pulldown 
was resuspended in 20 µl of 1.33× LDS sample buffer and analyzed by 
SDS–PAGE and silver stain.

Pulldown with NbSL3.3Q–agarose and recombinant Ub chains
Recombinant Ub chains were diluted to 1 µM in NbSL3.3Q-pulldown 
buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM EDTA and 0.5% 
NP-40) and 2.5 µg of each chain was used per pulldown. Then, 20 µl of 
agarose beads coupled with 1 mg ml−1 NbSL3.3Q and pre-equilibrated 
in NbSL3.3Q-pulldown buffer were incubated with Ub chains on a roller 
at 4 °C for 1 h. Beads were pelleted by spinning at 500g and 4 °C for 
2 min and washed five times with ice-cold NbSL3.3Q-pulldown buffer. 
Washed beads were resuspended in 20 µl of 2× LDS sample buffer and 
analyzed by SDS–PAGE and silver stain.

Pulldown with nanobody-coupled agarose beads and  
cell lysate
Cells were lysed in coimmunoprecipitation (50 mM Tris-HCl pH 
7.5, 150 mM NaCl, 0.5 mM EDTA and 0.5% NP-40) or radioimmuno-
precipitation assay (Thermo Scientific) lysis buffers supplemented 
with 1× complete protease inhibitor (Roche), 1 mM AEBSF (Apollo  
Scientific), 20 mM chloroacetamide (Sigma) and 0.02% benzonase 

(Sigma). Following clarification, the protein content of lysates was 
assessed using a Bradford assay (Thermo Scientific) and samples  
were diluted to 0.5–2 mg ml−1 in coimmunoprecipitation lysis  
buffer. Samples were mixed with 20 µl of NbSL3.3Q-coupled agarose 
beads (for branched Ub pulldown) or 20 µl of GFP-binder agarose 
beads (MRC PPU Reagents and Services) per 500 µg of cell lysate and 
incubated on a roller at 4 °C for 1 h. Beads were washed four times with 
coimmunoprecipitation lysis buffer (containing 300 mM NaCl) and 
proteins were eluted in 2× LDS sample buffer. Elution fractions were 
separated from beads by applying to SpinX filter columns and spinning 
at 2,500g for 2 min. Input and elution fractions were subsequently 
analyzed by SDS–PAGE followed by immunoblotting.

Western blotting
Protein samples were mixed with 4× LDS sample buffer and 10× reduc-
ing agent (both Thermo Scientific) and incubated at 70 °C for 10 min. 
Following SDS–PAGE and protein transfer, membranes were stained 
with Ponceau S (Sigma) to assess loading and transfer efficiency. If 
intended for Ub blotting, membranes were boiled in milliQ water  
for 10 min before blocking to ensure denaturation of Ub chains.  
Chemiluminescent blots were subsequently visualized by a ChemiDoc 
MP (BioRad) using Clarity or ClarityMAX ECL reagents (BioRad) and  
fluorescent blots were subsequently visualized by an Odyssey Clx  
(LiCor Biosciences). Quantification of blots was carried out using 
ImageLab (BioRad) and ImageStudio (LiCor Biosciences), respec-
tively. Two-way analysis of variance (ANOVA) with Dunnett’s multiple- 
comparison test was conducted using Prism 9 for MacOS (Graphpad).

Antibodies
Antibodies were sourced from the indicated manufacturers and 
used at 1:2,000 dilution unless otherwise stated: anti-GFP (Abcam, 
ab290), anti-GFP (Proteintech, 50430-2-AP; 1:5,000), anti-VCP/p97 
(Proteintech, 10736-1-AP; 1:4,000), anti-ATXN3 (Proteintech, 13505-
1-AP), anti-Ub (Biolegend, P4D1), anti-Ub K48-specific (Sigma, Apu2), 
anti-UBE2N (Invitrogen, 37-1100), anti-α-tubulin (CST, 3837; 1:5,000) 
and anti-GAPDH (Proteintech, 10494-1-AP; 1:5,000). Secondary detec-
tion was carried out using anti-rabbit or anti-mouse HRP-conjugated 
(CST, 7074 and 7076; both 1:5,000) or IRDye800CW/680RD-conjugated 
(LiCor Biosciences, 926-32211, 926-32210, 926-68073 and 926-68070; 
all 1:15,000) antibodies.

MS pulldown with immobilized SpyTag-Ub chains
For each pulldown, 25 µg of SpyTag-Ub chains were immobilized on 
50 µl of SpyCatcher agarose beads (1 mg of SpyCatcher cross-linked 
per 1 ml of NHS-activated agarose) by incubation in a total volume of 
150 µl in 50 mM HEPES pH 7.0 at 22 °C for 16 h while gently rotating 
end-over-end. The beads were spun down at 500g for 2 min and washed 
three times with SpyTtag-Wash buffer (10 mM Tris pH 7.5, 150 mM NaCl, 
0.1 mM EDTA and 1× complete protease inhibitor (Roche)) and resus-
pended as a 50% slurry in wash buffer. Sixteen 15-cm dishes of U2OS cells 
were grown to ~90% confluency in DMEM + 2 mM l-glutamine + 100 U 
per ml penicillin–streptomycin + 1 mM Na pyruvate + 10% FBS at 37 °C 
in 5% CO2 atmosphere and each dish was washed with 5 ml of PBS before 
harvesting by scraping cells into 1 ml of ice-cold lysis buffer (10 mM 
Tris pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 50 mM NaF, 1 mM NaVO4, 0.5% 
NP-40, 1× complete protease inhibitor, 0.02% benzonase, 1 mM AEBSF 
and 1 mM NEM) per dish. Lysates were flash-frozen in liquid nitrogen 
and stored at −80 °C until further use. Per pulldown, 1 mg of lysate was 
incubated with 25 µg of immobilized Ub chains for 2 h at 4 °C gently 
rotating end-over-end. The resin was pelleted at 500g and 4 °C for 2 min 
and washed four times with SpyTag-Wash buffer. Bound proteins were 
eluted by the addition of 50 µl of 10% SDS in 100 mM TEAB and incuba-
tion for 10 min on ice followed by centrifugation in SpinX centrifuge 
tube filters at 8,000g for 1 min. Samples were reduced by addition of 
10 mM TCEP pH 7.0 and incubation at 60 °C for 30 min with shaking 
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at 1,000 r.p.m. Samples were cooled to 23 °C before alkylation with 
40 mM iodoacetamide for 30 min with shaking at 1,000 r.p.m. in the 
dark. Samples were acidified with 1.2% phosphoric acid and diluted 
with seven volumes of S-trap buffer (90% methanol and 100 mM TEAB). 
Samples were loaded on S-trap mini columns and centrifuged at 1,000g 
and 23 °C for 1 min. The columns were washed four times with 400 µl 
of S-trap buffer and transferred to a clean 2-ml tube. Per column, 10 µg 
of trypsin (Pierce Trypsin Protease, MS Grade; Thermo Fisher) freshly 
dissolved in 100 µl of 100 mM TEAB was added and columns were 
briefly centrifuged at 200g and 23 °C for 1 min. The flowthrough was 
reapplied to the column and the columns were capped and incubated 
at 37 °C for 16 h without shaking. Peptides were eluted from columns 
by sequential addition of 80 µl of 50 mM TEAB, 80 µl of 0.15% formic 
acid and 80 µl of 50% acetonitrile + 0.2 % formic acid, with centrifuging 
at 1,000g for 1 min between steps.

Combined elutions were frozen at −80 °C and freeze-dried in a 
SpeedVac vacuum concentrator.

Liquid chromatography (LC)−MS/MS data collection
The peptides were resuspended in 0.1% formic acid in water and 2 µg 
of the peptides were loaded onto an UltiMate 3000 RSLCnano Sys-
tem attached to an Orbitrap Exploris 480 (Thermo Fisher). Peptides 
were injected onto an Acclaim Pepmap trap column (Thermo Fisher, 
164564-CMD) before analysis on a PepMap RSLC C18 analytical column 
(Thermo Fisher, ES903) and eluted using a 125-min stepped gradient 
from 3% to 37% buffer B (buffer A, 0.1% formic acid in water; buffer 
B, 0.08% formic acid in 80:20 acetonitrile and water (v/v)). Eluted 
peptides were analyzed by the MS instrument operating in DIA mode.

MS data analysis
Peptides were searched against a human database containing isoforms 
(UniProtKB Swiss-Prot, version downloaded October 5, 2021) using DiaNN 
(version 1.8.0)98 in library free mode. Statistical analysis was performed 
in Perseus (version 1.16.15.0)99. Identified proteins with fewer than two 
unique peptides were excluded. Imputation of missing values was per-
formed using a Gaussian distribution centered on the median with a 
downshift of 1.8 and width of 0.3, relative to the standard deviation, and 
intensities of proteins were nromalized to the median. Significant changes 
between quadruplicate pulldowns of each chain type were assessed 
using ANOVA and P values were adjusted using Benjamini–Hochberg 
multiple-hypothesis correction using a corrected P-value cutoff of <0.05. 
The list of 130 chain-type-specific binders was clustered using spatial hier-
archical Euclidean clustering with the SciPy Python library scipy.spatial.
distance.pdist function100 and visualized using the Plotly Python library96.

Gene Ontology enrichment analysis
The Database for Annotation, Visualization and Integrated Discov-
ery (DAVID) web server101 was used for functional annotation and  
enrichment analyses. Enrichment of significant hits from the  
ANOVA of DIA MS pulldown with Ub chains was analyzed against a 
background of all identified proteins. Annotation clusters linked to 
the six chain pulldown clusters were visualized using the Plotly Python 
graphing library96 and colored by DAVID enrichment score.

UV laser microirradiation
U2OS Flp-In Trex cells stably expressing GFP-tagged fusions of 
NbSL3.3Q, NbSL18, DDB2 or GFP only under control of a tetracycline 
promoter were seeded at approximately 105 cells in 3.5-cm glass-bottom 
dishes containing DMEM without phenol red supplemented with 10% 
FBS, 10 µM BrdU (Sigma) and 1 µg m−1 tetracycline (Sigma). UV laser 
microirradiation assays were performed at 37 °C and 5% CO2.

Localized stripe and spot microirradiation was performed using 
a single-point scanning device (UGA-42 Firefly, Rapp OptoElectronic) 
attached to an Axio Observer Z1 spinning disk confocal microscope 
(Zeiss). Manually defined spots targeting a subnuclear region of interest 

(ROI) were defined for each cell in the field or a predefined stripe ROI 
across the entire field was used. Irradiation was performed using 100% 
405-nm laser power. For images shown in Fig. 7 and Extended Data 
Fig. 7, irradiation was performed for 200 iterations, corresponding to 
an estimated power of 9 J m−2. ROI coordinates were recorded for later 
image analysis. Experiments were performed using a predefined imag-
ing template in the Zen Blue acquisition software. After a preirradiation 
image was recorded and after 405-nm irradiation, cells were followed 
every 5 s or 30 s for up to 1 h. Hardware autofocus (Definite focus, 
Zeiss) was used to ensure focus was maintained through the time lapse.  
A 3.5-s delay was taken before the postirradiation time lapse to avoid 
image acquisition during laser microirradiation. Images were acquired 
with a C13440 camera (Hamamatsu) using a C Plan APO ×64/1.40  
oil objective, acquiring four 0.5-µm optical sections per image with 
4 × 4 binning.

Image processing and analysis
Images were stitched using an ImageJ macro and figures were gener-
ated and visualized using the Open Microscopy Environment Remote 
Objects (OMERO) server102. Image analysis was performed as previ-
ously described103,104 using CellTool105. Briefly, maximum intensity 
projections of the stitched timelapses were taken. Individual cells were 
manually cropped and a 5 × 5 Gaussian blur was applied. Microirradia-
tion spots were tracked using the spot detector/track module within 
CellTool. Recruitment was calculated as the difference between the 
average intensity in the recruitment region and in a nearby region 
multiplied by the total area of recruitment. Where there was no recruit-
ment, irradiation ROI coordinates were imported to CellTool and the 
recruitment was determined within the static ROI as described above. 
Statistical significance was determined by a Welch’s unpaired t-test.

Statistics and reproducibility
A minimum of two independent replicates were used for each experi-
ment. Sample sizes were determined on the basis of the availability of 
samples and the feasibility of data collection. We aimed to include as 
many samples as possible to increase the robustness of our findings.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Crystal structures were deposited to the PDB with the following acces-
sion numbers: K48–K63-branched Ub3 (PDB 7NPO), K48–K63-branched 
Ub3 in complex with NbSL3 (PDB 7NBB) and K48–K63-branched Ub3 in 
complex with NbSL3.3Q (PDB 8A67). MS data generated in this study 
were deposited to the PRIDE database (PXD046025). Raw micro-
scopy images were deposited to Zenodo (https://doi.org/10.5281/
zenodo.11204922)106. The UniProtKB Swiss-Prot tool used for peptide 
searches was downloaded from https://www.uniprot.org/ (accessed 
on October 5, 2021). Source data are provided with this paper.

Code availability
Python and R scripts used for data processing were deposited to Zenodo 
(https://doi.org/10.5281/zenodo.11204922)106. Protein sequence align-
ments were generated using the EBI MAFFT server (https://www.ebi.
ac.uk/Tools/msa/mafft/)107 and secondary structures were mapped 
with ENDscript 2 (http://endscript.ibcp.fr)108. Binding-site probabilities 
were predicted using the ScanNet web server (http://bioinfo3d.cs.tau.
ac.il/ScanNet/).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Detailed ligation of complex branched Ub chains.  
a) Ub∆C ligation approach for generation of K48-K63 branched Ub3 chains.  
b) Detailed ‘Ub-capping’ workflow with full chain descriptions and ligation 
enzymes for generation of complex Ub chains. In the adapted nomenclature, Ub 
building blocks from the distal to the proximal end of a chain are written from left 
to right and connected by en dashes (—). The linked residues of a proximal Ub (for 
example, M1 or K48) are indicated by a preceding superscripted residue number 
(for example, 1Ub or 48Ub), while modifications of Ub units are in parentheses or 
as superscript behind the Ub (for example a K63-linked homotypic, 15N-isotope 
labeled Ub with K48R mutation is 63Ub15N, K48R). The distal Ub units of a multiply 
linked proximal Ub are indicated by square brackets and can be further nested 
to describe the branch architecture as needed (for example a trimeric K48-K63-
branched Ub chain with 15N-isotope labeling of the K48-linked Ub is denoted 

as Ub15N[Ub]—48,63Ub). Identical distal Ub can be condensed into a single square 
bracket followed by a subscript number indicating the quantity (for example 
a tetrameric Ub chain where a K63-linked Ub branches off the central Ub of a 
K48-linked Ub3 would be [Ub]2—48,63Ub—48Ub). Homotypic Ub chains of a single 
linkage type can be condensed as well, for example 63Ub4 describes a K63-linked 
Ub tetramer. c) Silver-stained SDS-PAGE of OTULIN DUB assay against M1-Ub2 
demonstrating requirement for K33 on proximal Ub for cleavage. When testing 
the applicability of such capped Ub2 for the assembly of other branched chain 
types, we found that the K33 residue of the proximal moiety of M1-Ub2 is essential 
for efficient OTULIN cleavage. d) Silver-stained SDS-PAGE analysis of [Ub]2-29,48Ub 
chain assembly, showcasing the successful use of Ub—1UbΔC, K-all-R but K33 as an 
advanced cap to exemplify that other branched chains can be assembled using 
this approach.
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Extended Data Fig. 2 | Quality control of Ub chain pulldown. a) Quality control DUB assay with linkage-specific enzymes Miy2/Ypl191c (K48) and AMSH (K63) of Spy-
tagged branched and unbranched Ub4 chains. b) Silver-stained SDS-PAGE analysis of Ub chain pulldown samples.
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Extended Data Fig. 3 | Specific binders of K48-K63-branched Ub chains. a) Silver-stained SDS-PAGE analysis of HALO pulldown with recombinant HALO-tagged 
UBDs and branched/unbranched Ub4 containing K48- and K63-linkages. b) Silver-stained SDS-PAGE of HALO-RFC1 [190-246] pulldown with a panel of branched and 
unbranched, K48- and K63-linked ubiquitin chains.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Establishing the ULTIMAT DUB assay and detailed 
analysis of UCHL5 and USP5. a) Initial quality control of ULTIMAT DUB assay 
with linkage-specific DUBs AMSH (K63) and MINDY1 (K48). Integrated mass 
peaks of released Ub moieties were normalized by 15NUb internal standard  
(n = 2 technical replicates, mean values +/- SD). b) Silver-stained SDS-PAGE  
of DUB assay with UCHL5 ± RPN13DEU against [Ub]2-48,63Ub and [Ub]2-6,48Ub chains.  

c) Silver-stained SDS-PAGE analysis of DUB assay with USP5 and K63-specific DUB 
AMSH against 63Ub2 and 63Ub3 assembled from wild-type Ub. d) Crystal structure 
of catalytic domain of USP5 (blue) in complex with Ub (yellow) in cartoon 
representation (PDB 3IHP). Zoomed-in views of K48 and K63 residues of Ub and 
interacting USP5 residues as stick models with atomic distances indicated by 
dotted lines.
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Extended Data Fig. 5 | MINDY1 does not cleave mixed K48-K63 and branched 
K11-K48 and K29-K48 chains in vitro, and K63-specific debranching activity 
of ATXN3. a) Silver-stained SDS-PAGE analysis of MINDY1 DUB assay against 
mixed heterotypic, and [Ub]2-48,63Ub-48Ub substrates. b) Oriole-stained SDS-PAGE 
analysis of DUB assay with MINDY1 and Miy2 against K48-K63-, K11-K48- and K29-
K48-branched Ub3. c) Cartoon representation of the proximal Ub (grey) and the 
predicted K63-branch binding site (S1’br) of MINDY1 (blue/red colored according 

to ScanNet prediction probability in Main Fig. 5) based on the crystal structure 
of MINDY1 in complex with 48Ub2 (PDB 6Z7V) with lysine residues shown as pink 
stick atom models. Only K63 of the proximal Ub is in proximity to the predicted 
binding site while the other lysine residues are on the opposing side. d) Full 
silver-stained SDS-PAGE of silver-stained SDS-PAGE analyses of DUB assays shown 
in Fig. 5h.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Selection and maturation of NbSL3.3Q. a) Silver-
stained SDS-PAGE of DUB assay with AVI-tagged Ub chains used for nanobody 
selection and linkage-specific DUBs Miy2/Ypl191c (K48) and AMSH (K63). 
b) Live cell imaging of U2OS Flp-In cells transiently expressing NbSL3-GFP 
recorded using green channel of ZOE fluorescent cell imager. c) ITC analysis of 
second-generation NbSL3.1-4 binding to K48-K63-branched Ub3. d) ITC analysis 
of NbSL3.3Q binding to unbranched 48Ub3 and 63Ub3. e) Superimposed crystal 

structures of NbSL3 (green) and NbSL3.3Q (yellow) each in complex with K48-
K63-branched Ub3 in cartoon representation. K48-linked Ub in blue, K63-linked 
Ub in red and proximal Ub in grey. Isopeptide linkages are shown as stick models. 
f ) Comparison of the residues affected by maturation mutations in the crystal 
structures of NbSL3 (green) and NbSL3.3Q (yellow) each in complex with K48-
K63-branched Ub3 (K48-linked Ub in blue, K63-linked Ub in red, proximal Ub in 
grey). Distance measurements in Å indicated by black dotted lines.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | NbSL3.3Q pulldown and UV micro irradiation assay. 
a) Pulldowns using NbSL3.3Q-immobilized agarose from U2OS cells treated 
with indicated inhibitors (NMS-873 − 5 µM, MG-132 − 10 µM, VER-155008 − 5 µM, 
tunicamycin − 5 µg/ml). Western blot analysis of total ubiquitin in input lysate 
and eluted proteins. b) U2OS cells treated with NMS-873, CB-5083 or MG132 and 
non-specific siRNA or siRNA targeting p97 or ATXN3 or both in combination. 
c) HEK293 Flp-In Trex cells were treated with tetracycline to induce expression 
of UbG76V-GFP followed by p97-inhibition using NMS-873 (5 µM) for 4 hours. 
Subsequent pulldowns with NbSL3.3Q-immoblised agarose were analyzed by 
western blotting for total Ub and GFP. Note: The abcam anti-GFP antibody used 
here produces a non-specific band at approximately the same size as native  
GFP. d) Anti-GFP pulldown from U2OS cells expressing either NbSL3.3Q-GFP  
or NbSL18-GFP following p97-inhibition with NMS-873 analyzed by western 
blotting for total Ub and GFP. e) Western blot analysis of anti-GFP pulldowns  
from U2OS Flp-In Trex following tetracycline-induced expression of GFP, 
NbSL3.3Q-GFP, NbSL18-GFP or GFP-DDB2 visualized with anti-GFP antibody.  
f, g) Western blot analyses of U2OS Flp-In Trex used in UV micro-irradiation 
assays (Main Fig. 7f–k) following tetracycline-induced expression of NbSL3.3Q-
GFP, NbSL18-GFP or GFP-DDB2 and treatment with NMS-873 or siRNA (non-
targeting control, UBE2N or ATXN3). h) Representative images from timelapses 

of U2OS cells stably expressing NbSL3.3Q-GFP, pre-damage and 10 minutes after 
local 405 nm laser micro-irradiation at indicated laser intensities. Positions of 
damage events (purple) and nuclei (white) are highlighted. White scale bar is 
5 µm. i) Quantification of NbSL3.3Q-GFP recruitment over 10 minutes at various 
laser intensities (assay in Fig. 7f). NbSL3.3Q-GFP recruitment is represented as 
the average mean GFP intensity within the targeted subnuclear spot (+/- SEM) 
(N cells: 1.125 J/m2 = 16; 2.25 J/m2 = 14; 4.5 J/m2 = 19, 9 J/m2 = 18; 18 J/m2 = 18; 27 J/
m2 = 18). j) The average maximum cumulative NbSL3.3Q-GFP intensity after 
10 minutes at various laser intensities (assay in Fig. 7f). k) Average mean GFP 
intensity +/− SEM of subnuclear spots of cells from retention experiment (Fig. 7h).  
Untreated siCtrl vs siATXN3, P97i siCtrl vs siATXN3. p-values (determined with 
Welch’s unpaired t-test) are indicated as ns (non-significant, p ≥ 0.05) * (p < 0.05) 
and **** (p < 0.0001). The lines inside the box of the box-and-whisker plots (Tukey 
style) in panel j and k indicate the median and the box itself encapsulates the 
interquartile range (IQR), with its lower and upper boundaries representing the 
first and third quartiles respectively. The whiskers extend from the box to cover 
the range within 1.5 times the IQR from the lower and upper quartiles, indicating 
the dispersion of the data. The lower whisker marks the minimum value, while the 
upper whisker denotes the maximum value, both excluding any outliers.
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Reporting Summary
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Crystallography data were collected using the software listed in the methods. ITC data were collected using Malvern software: MicroCal ITC 
Analysis Software (v1.22.1293.0) and MicroCal ITC (v1.29.32). Microscopy data were collected using Zen Blue software (v2.6.76)

Data analysis Western blot images were quantified using LiCor ImageStudio Lite v5.2.5 or BioRad ImageLab v6.1.0, and subsequently analysed using 
Microsoft Excel for Mac (Office 365, various versions) and Prism 9 (v9.5.1) for macOS. 
Custom python scripts were used to analyse the DIA mass spec and ULTIMAT DUB assay data and have been deposited to Zenodo (10.5281/
zenodo.11204921). Peptide searches were conducted using DiaNN (v1.8.0). Statistical analysis for DIA mass spec was carried out in Perseus 
(v1.16.15.0). 
Microscopy images were stitched using an ImageJ macro (ImageJ v1.54b). Image analysis was conducted using CellTool (v1.6.0.4). R scripts 
used for image data processing have been deposited to Zenodo (10.5281/zenodo.11204921).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Crystal structures are deposited to the PDB: K48-K63-branched Ub3 (PDB ID 7NPO), K48-K63-branched Ub3 in complex with NbSL3 (PDB ID 7NBB), or in complex 
with NbSL3.3Q (PDB ID 8A67). Peptide searches for mass spectrometry data analysis were conducted using Uniprot Swiss-prot (version release 05/10/2021). Mass-
spectrometry data generated in this study are deposited to the PRIDE database (PXD046025). Raw microscopy images have been deposited to Zenodo (10.5281/
zenodo.11204921).

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This study did not involve human participants. All cell lines used are reported as female in origin.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

This study did not involve human participants. 

Population characteristics This study did not involve human participants. 

Recruitment This study did not involve human participants. 

Ethics oversight This study did not involve human participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our study did not perform a formal sample size calculation. For mass spectrometry experiments, four replicate samples were used per 
condition. The sample sizes were determined based on the availability of samples and the feasibility of data collection. We aimed to include as 
many samples as possible to increase the robustness of our findings.

Data exclusions No data were excluded from analysis.

Replication A minimum of two biological replicates were used for all experiments and all were found to be consistent.

Randomization No grouping was involved in these experiments - no randomisation was conducted as a result.

Blinding There were no groups, or human or animal participants involved in these experiment - no blinding was required.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Antibodies used in this study listed below with manufacturer, catalogue numbers, and dilutions used at: 

Anti-GFP - abcam ab290, 1:2000 
Anti-GFP - ProteinTech 50430-2-AP, 1:5000 
Anti-VCP/p97 - ProteinTech 10736-1-AP, 1:4000 
Anti-ATXN3 - ProteinTech 13505-1-AP, 1:2000 
Anti-Ubiquitin (P4D1) - Biolegend 646302, 1:2000 
Anti-Ubiquitin K48-specific (Apu2) - Sigma Aldrich ZRB2150, 1:2000 
Anti-UBE2N - Invitrogen 37-1100, 1:2000 
Anti-GAPDH - ProteinTech 10494-1-AP, 1:5000 
Anti-α-tubulin (DM1A) - CST 3837, 1:5000 
Anti-Rabbit IgG HRP-conjugated - CST 7074, 1:5000 
Anti-Mouse IgG HRP-conjugated - CST 7076, 1:5000 
Anti-Rabbit IgG IRDye800CW-conjugated - LiCor Biosciences 926-32211, 1:15000 
Anti-Mouse IgG IRDye800CW-conjugated - LiCor Biosciences 926-32210, 1:15000 
Anti-Rabbit IgG IRDye680RD-conjugated - LiCor Biosciences 926-68073, 1:15000 
Anti-Mouse IgG IRDye680RD-conjugated - LiCor Biosciences 926-68070, 1:15000

Validation Anti-ATXN3, anti-UBE2N and anti-p97 antibodies were validated using siRNA knockdown of their respective targets followed by 
western blotting (anti-ATXN3 - fig 7B, anti-p97 - fig 7B, anti-UBE2N - figE7e) 
The anti-GFP antibodies were validated using a parental cell line not expressing GFP, and/or a related cell line expressing native-size 
GFP. In our hands, when used for Western blotting, the abcam antibody gives a non-specific band at the approximate size of native 
GFP (~27kDa) across both wild-type cell lines used. (anti-GFP ProteinTech - data not shown, anti-GFP abcam -fig E7e) 
Anti-ubiquitin antibody (P4D1) was validated by comparing untreated and MG132-treated cells in order to detect an increase in 
ubiquitin levels as suggested by the manufacturer (https://www.biolegend.com/en-gb/products/purified-anti-ubiquitin-
antibody-6021 and fig 7a). 
Anti-ubiquitin K48-specific antibody (Apu2) was validated by western blotting against purified ubiquitin chains incubated ± linkage 
specific deubiquitinating enzymes (fig 7e). 
Anti-GAPDH antibody was validated based on size information and supporting western blot images provided on manufacturer's 
datasheet (https://www.ptglab.com/products/GAPDH-Antibody-81640-5-RR.htm). 
Anti-α-tubulin antibody was validated based on size information and supporting western blot images provided on manufacturer's 
datasheet (https://www.cellsignal.com/products/primary-antibodies/a-tubulin-dm1a-mouse-mab/3873)

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) U2OS - human osteosarcoma, female - Source: ATCC 
U2OS Flp In Trex - human osteosarcoma, female - Source: MRC PPU 
U2OS Flp In Trex FRT/TO NbSL18-GFP - human osteosarcoma, female - Source: This study 
U2OS Flp In Trex FRT/TO NbSL3.3Q-GFP - human osteosarcoma, female - Source: This study 
HEK293 Flp In Trex - human embryonic kidney, female - Source: ThermoFisher 
HEK293 Flp In Trex FRT/TO Ub(G76V)-GFP - human embryonic kidney, female - Source: MRC PPU

Authentication Cell line morphology was visually compared with available images on ATCC website to confirm identity. GFP-tagged cell lines 
used in this study were validated via a GFP western blot and visually using a Bio-Rad ZOE fluorescent cell imager. No formal 
authentication was conducted on the parental cell lines used.

Mycoplasma contamination All cell lines used in this study were routinely tested for mycoplasma by the MRC PPU Unit tissue culture team. No positive 
tests were recorded for any of the cell lines used in this study.

Commonly misidentified lines
(See ICLAC register)

No cell lines from the ICLAC register have been used in this study
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