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Abstract 

The lane-change decision (LCD) is a critical aspect of driving behaviour. This study 

proposes an LCD model based on a Bayesian optimization (BO) framework and 

extreme gradient boosting (XGBoost) to predict whether a vehicle should change lanes. 

First, an LCD point extraction method is proposed to refine the exact LCD points with 

a highD dataset to increase model learning accuracy. Subsequently, an efficient 

XGBoost with BO (BO-XGB) was used to learn the LCD principles. The prediction 

accuracy on the highD dataset was 99.14% with a computation time of 66.837s. The 

accuracy on the CQSkyEyeX dataset was 99.45%. Model explanation using the shapley 

additive explanation (SHAP) method was developed to analyse the mechanism of the 

BO-XGB’s LCD prediction results, including global and sample explanations. The 

former indicates the particular contribution of each feature to the model prediction 

throughout the entire dataset. The latter denotes each feature's contribution to a single 

sample. 

Keywords: Lane change decision-making; XGBoost; Bayesian optimization; Model 

explanation; Integrated learning; SHAP. 
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1 Introduction 

The explosive growth in the number of private vehicles has caused considerable 

problems for road traffic managers, including congestion and accidents. Approximately 

539,000 traffic accidents occur annually in the United States due to risky lane changes 

(Liu, 2019). Modeling lane-change behavior is a critical aspect of microscopic traffic 

flow theory (Li et al., 2020; Wang et al., 2024, 2023). Lane-change behaviors are more 

complex and subjective than car-following behaviors (Gao et al., 2022; Jin et al., 2019; 

Zhu et al., 2022), resulting in a greater likelihood of accidents (Ji and Levinson, 2020; 

Zheng et al., 2010). Statistically, drivers driving at 90 km/h on freeways make 

approximately 50 lane changes per 100 km, especially under free-flow conditions (Liu, 

2019). U.S. National Highway Traffic Safety Administration statistics reveal that lane 

changes cause 27% of traffic accidents (Zhao et al., 2021). Highly accurate lane-change 

decision (LCD) prediction helps improve proactive driving safety and protection 

(Schomakers et al., 2023; Tang et al., 2019). Consequently, it is vital to establish an 

advanced LCD prediction model that predicts when vehicles should change lanes 

(Moridpour et al., 2010). 

However, most current studies on lane-change models use traditional rule-based 

models or artificial intelligence algorithms to portray vehicle lane-change trajectories 

(Sun and Elefteriadou, 2014). Although the LCD principle in traditional models is well-

defined; their application scenarios are too specific (Zheng, 2014). In addition, the 

factors considered in rule-based models are limited, which significantly reduces the 

applicability of these lane change models. Instead, models based on artificial 

intelligence have a more comprehensive range of applications, and more factors can be 

incorporated into them. However, the principles and interpretation of these models 

remain unclear. Therefore, it is necessary to formulate a mechanically well-defined 

LCD model that can be applied to many different scenarios by combining the 

mechanisms of traditional models with artificial intelligence methods, such as the 

supervised-learning used in this study. 

Most supervised-learning methods aim to derive a model that performs 

satisfactorily in varying conditions (Huang et al., 2024; Tang et al., 2024, 2023). 

However, this is often unsatisfactory because the interpretability of most machine 

learning methods is disappointing, and sometimes (Sun and Huang, 2024), we can only 

generate weakly supervised models with different preferences. However, integrated 
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learning combines these weakly supervised models to derive a more comprehensive 

supervised model (Galar et al., 2012). Although a weak classifier could provide an 

inaccurate classification prediction, other weak classifiers in integrated learning can 

quickly remedy the error, allowing the inaccurate classification prediction to be 

adjusted in the final prediction result (He et al., 2023; Sagi and Rokach, 2018). 

Consequently, it has excellent strength and potential for use in automated decision-

making systems (Hou et al., 2015).  

Building an accurate data-driven LCD model with integrated learning requires 

excellent model construction and optimization as well as precise inputs and outputs 

(Tajdari et al., 2019). Therefore, it is crucial to extract the exact point at which the driver 

intends to change lanes (i.e., lane change intention point). It is widely recognized that 

the vehicle environment at that point is the precise input and output required for an 

LCD model (Hornberger et al., 2018). Lateral vehicle positions and lateral velocities 

are typically used to extract lane-change intention points from the trajectory dataset (Li 

et al., 2016; Shangguan et al., 2022; Xing et al., 2020). However, this ignores the 

incidental lateral deflections of vehicles owing to drivers’ heterogeneous habits rather 

than lane-change intentions. In addition, high-speed vehicles may suddenly appear from 

the back of their target lane, forcing some lane-change vehicles to cease their lane-

change behavior temporarily. Studies have not considered the effect of these temporary 

avoidance behaviors on identifying lane-change intention points (Shangguan et al., 

2022). Many existing lane-changing studies only consider the lane-change intention 

points at which lane-changing succeeds but ignore many lane-change intention points 

at which lane-changing fails due to avoidance behavior (Ali et al., 2022). However, the 

lane-change intention point of a failed lane change is also the moment when the driver 

makes a lane-change decision in a real lane-change scenario (Ali et al., 2020). 

This study applies extreme gradient boosting (XGBoost), one of the most accurate 

integrated learning models for autonomous decision-making, with Bayesian 

Optimization (BO) to construct an innovative LCD model (BO-XGB). Moreover, the 

lane-change vehicle velocity, relative distance, and relative velocity to its surrounding 

vehicles were extracted from the highD dataset and input into XGBoost (Chen and 

Guestrin, 2016). After tuning the hyperparameters of XGBoost using BO (Shahriari et 

al., 2016; Snoek et al., 2012), the accuracy reached 99.14%. To improve the 

interpretability of the BO-XGB model, a game theory-based model explanation method, 
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i.e., the shapley additive explanation analysis (SHAP) (Shapley, 2016), is used to 

explain its prediction results and model principles. To prove that the model is widely 

applied, we further tested it on the open-source dataset CQSkyEyeX in China, which 

resulted in an accuracy of 99.45%. 

In addition, this study addresses three deficiencies frequently observed in many 

existing LCD models. 

(1) An innovative and accurate LCD model, BO-XGB, was developed using the 

XGBoost model optimized using BO in multilane scenarios. Existing studies 

(Zhang et al., 2022) have used similar principles but focused on feature 

combinations rather than accurate decision-making and in-depth model 

explanations (Ali et al., 2022). They lack precise LCD point extraction (i.e., 

ignore lane-change intention points of failed lane changes), hyperparameter 

optimization, and complete model explanation methods (i.e., some studies 

focus on the global model explanation and ignore the sample explanation). 

(2) A new approach for extracting exact LCD points considering the trajectory of 

the subject vehicle and its surrounding vehicles was designed for high-

resolution vehicle trajectory data. 

(3) A framework is proposed from a game theory perspective to explain the 

quantitative LCD prediction results of the machine learning model in a single 

sample and the entire dataset to improve model interpretability, which can aid 

researchers in analyzing the causes of abnormal samples. 

The rest of this paper is structured as follows: The literature review related to this 

study is presented in Section 2, followed by the research problem statement in Section 

3. The data processing, LCD point extraction method, and principles of XGBoost, BO, 

and SHAP are explained in detail in Section 4. Section 5 introduces the data used in 

this study, the performance of BO-XGB in LCD prediction along with a comparison to 

other methods. SHAP is used to conduct model explanation experiments. The results, 

conclusions, and future research directions are discussed in Section 6.  

2 Literature Review 

Most traditional LCD models are rule-based, and their targets include improving 

safety (Li et al., 2020) and providing the benefit of lane changes (Ben-Akiva et al., 

2012). Gipps (1986) first proposed a fundamental LCD model that focused on 

improving road safety. In Gipps’ model, deceleration is regarded as an indicator of lane-
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change feasibility. However, it ignores the stochastic variations between the behavioral 

characteristics of different drivers, which are essential for studying LCDs (Zheng et al., 

2010). To address this issue, Yang and Koutsopoulos (1996) proposed a microscopic 

traffic simulator model by adding the lane change probability based on Gipps’ model. 

The corridor simulation model (Halati et al., 1997), developed by the Federal Highway 

Administration, combines the freeway simulation model and the network simulation 

model, which consist of motivation, benefit, and urgency. Based on previous studies, 

this model categorizes lane-change behaviors into mandatory lane change, 

discretionary lane change, and random lane change. Based on these studies, Toledo et 

al. (2003, 2007) developed a practical framework that integrated mandatory and 

discretionary lane changes. These models focus on improving lane-change safety. 

Some researchers have modeled LCD behavior to enhance lane-change benefits 

(Ben-Akiva et al., 2012; Hidas, 2005; Kesting et al., 2007; Monteil et al., 2014). A 

theory of LCD based on acceleration control was proposed to derive lane-change rules 

for various types of vehicles (Kesting et al., 2007), referred to as the minimizing overall 

braking induced by lane changes (MOBIL) model. This model incorporates game 

theory in mathematics to assess the synergy and conflict between the subject vehicle 

and its surrounding vehicles. It then determines whether to switch lanes by calculating 

the variation in the system benefits of some involved vehicles when changing lanes. 

Ben-Akiva et al. (2012) proposed a benefit-based LCD model by artificially defining a 

benefit function that calculates the benefit and then selects the behavior with the highest 

benefit. Based on Kesting’s research, Monteil et al. (2014) proposed an LCD framework 

incorporating the full velocity difference model and MOBIL model. Furthermore, some 

studies (Hidas, 2005; Monteil et al., 2014) used an innovative approach to model lane-

change behaviors by integrating several factors (e.g., velocity and acceptable clearance) 

and developing a southern integrated transportation system model.  

Although these traditional models’ accuracy and explanatory power are guaranteed 

(Cheng et al., 2024b, 2024a; Mo et al., 2024, 2023), their performance in different 

scenarios is unsatisfactory because of rigid modeling scenarios and assumptions (Tang 

et al., 2018; Zhang et al., 1998). In addition, the factors (e.g., safe clearance and 

acceptable acceleration) considered in these traditional models are somewhat limited 

(Rahman et al., 2013; Tang et al., 2018), making it challenging to incorporate potential 

elements of drivers in decision-making and expand the model’s applicability (Zheng, 
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2014).  

Most cutting-edge studies have combined lane-change models with artificial 

intelligence algorithms. Among them, three main types are classified according to their 

methodology (Das et al., 2020; Guo et al., 2021; Nie et al., 2016; Wang et al., 2021; 

Xie et al., 2019; Y. Zhang et al., 2023): traditional machine learning models, deep 

learning models, and reinforcement learning models. Nevertheless, their research 

excluded multilane scenarios and was limited to two-lane settings. Liu et al. (2019) 

established a support vector machine model using a BO. This model solves the problem 

of the multiparameter and nonlinear characteristics of the autonomous LCD process. 

However, this study is still based on a two-lane scenario. By integrating long short-term 

memory and Bayesian methods, an LCD model that can adapt to different driving 

environments was developed (Wang et al., 2021). Fei et al. (2020) combined a 

generative adversarial network and imitation learning to derive a lane-change trajectory 

model with 80% accuracy. One popular paradigm is the lateral decision-making 

schemes with the deep Q-network (DQN) or its variants (Li et al., 2022). To improve 

their superior generalization and robustness, the latest research uses reinforcement 

learning to study the robust decision-making problem of self-driving cars (He et al., 

2023). Some lane change decision-making studies based on vehicle trajectories use 

time-series data-driven deep learning methods, such as Long Short-Term Memory 

(Ashfaq et al., 2023; Gao et al., 2020; Li et al., 2022; Zhang et al., 2024a) and 

Transformer (Gao et al., 2023; Zhang et al., 2024b). They can make suggestions and 

alerts to drivers well in advance as the time window passes. However, this is where the 

problem lies. Giving advance advice on lane change decisions can provide drivers with 

more reaction time. However, it ignores the influence of surrounding vehicles on lane 

change decision-making (Ashfaq et al., 2023; Guo et al., 2022; Zhang et al., 2024a, 

2024b), especially the sudden entry of the rear vehicle in the target lane (Gao et al., 

2020). Due to this situation, the lane change decision problem needs to be considered 

as a classification problem. In the classification problem of lane-changing decisions, 

the integrated model may outperform the methods of advanced models such as 

Transformer (Zhang et al., 2024b, 2024a). Moreover, all such methods suffer from weak 

explanatory modeling principles, as seen in Table 1. Many studies have integrated deep 

and reinforcement learning models to obtain more accurate decision-making results (Li 

et al., 2022; Peng et al., 2022). However, they ignore the LCD process (which 
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acknowledges when and where the driver can change lanes) in favor of focusing on the 

trajectory learning of lane-change behaviors, that is, the process of changing lanes (such 

as the acceleration and steering angle). This study fills this gap and uses the BO-XGB 

model to predict LCD precisely with the global and sample explanations provided by 

SHAP.  

It is evident that most studies on machine learning and lane-change models have 

been conducted on learning lane-change trajectories, and fewer studies have been 

conducted on LCDs. Although traditional LCD models are concise and easy to 

understand, some limitations exist, such as numerous assumptions and application 

scenarios that are too specific. Furthermore, most LCD models based on artificial 

intelligence (AI) algorithms focus on two-lane scenarios (Li and Sun, 2017), ignoring 

the interpretability of the model and the influence of vehicles in the lane adjacent to the 

lane-change vehicle (Fei et al., 2020; Gu et al., 2020; S. Li et al., 2022; Peng et al., 

2022). Moreover, most existing studies for lane change decision-making take the point 

where the vehicle presses over the lane line as the lane change decision point (Ali et al., 

2023), which is indeed imprecise. This is one of the problems we are trying to solve. 

3 Problem Statement 

This study focuses on the LCD problem encountered during a drive on an 

expressway. According to previous studies (Gipps, 1986; Hidas, 2005; Peng et al., 

2022), most LCD problems can be normalized to a function mapping problem, as 

follows:  

 :f →X Y , (1) 

where X  is the input dataset that includes factors affecting the LCD, Y  is the output 

dataset, and y  is an element of Y . 1y =  implies that the vehicle does not change lanes, 

whereas 2y =  and 0y =  denote that the vehicle changes lanes to the left and right, 

respectively. Additionally, the vehicles surrounding a lane-change vehicle are defined 

as shown in Fig. 1. This can be easily reduced to a two-lane scenario with only a left or 

right lane adjacent to the subject lane. 
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Table1. Comparison table of the latest typical studies on lane change decisions 
Research LCD point extraction 

method 
Parameter optimization 

methods 
Vehicle environment Model explanation 

Ashfaq et al. (2023)     

Gao et al. (2022)   incomplete  

Wang et al. (2022)    sensitivity analysis, lack of 
sample explanation 

Xue et al. (2022)  single parameter   

Li et al. (2022)     

Zhang et al. (2022)     

Gao et al. (2020)   incomplete  

Li et al. (2022)     

Atagoziev et al. (2023)     

Zhang et al. (2024a)  Adam+grid search   

Zhang et al. (2024b)     

Guo et al. (2022)     

Gao et al. (2023)     

Our model  Bayesian optimization  SHAP 

Note:  indicates a lack of relevant content,  indicates there is no mention of this aspect in the research. 
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Fig. 1. Illustration of lane-change factors 

The input factor X   influencing the LCD of vehicle i from Section 2 can be 

summarized into the following four aspects: the velocity 0
iv  of the lane change vehicle 

i. The safety space (expressed by the vector of relative distances 

{ | 1, 2, ,8}a
i id a= =D   between vehicle i  and its surrounding vehicles). The velocity 

gains of lane change behavior (expressed by the vector of relative velocities 

{ | 1, 2, ,8}a
i i aµ= =U   between vehicle i  and its surrounding vehicles), and the limit 

of safety acceleration. We can eliminate the limit of safety acceleration from the input 

component because it is constrained by velocity and distance derived from the 

kinematic equations (Whelan and Hodgson, 1978). Consequently, the input to the LCD 

of vehicle i  can be defined as follows:  

 0 , ,i ii iv =  X D U , (2) 

where 0
iv  denotes the velocity of vehicle i . 

It is essential to extract exact LCD points (called lane-change intention points) 

where drivers intend to change lanes from the vehicle’s input environment information 

(Venthuruthiyil and Chunchu, 2022; Wang et al., 2022). However, extracting the exact 

LCD points due to vehicles’ avoidance behaviors is difficult, as shown in Fig. 2(a). It 

shows the paths traversed by vehicle 60, which switches lanes, and vehicle 63, which 

accelerates forward from behind vehicle 60. The positions of these two vehicles in the 
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same frame are shown in the figure as points paired with dashed lines. Vehicle 60 

initially decided to change lanes before the arrival of vehicle 63. However, it is forced 

to avoid and give up lane space because high-speed vehicle 63 arrives rapidly from 

behind in its target lane. Consequently, there is a section of y-axis displacement in the 

direction opposite to the lane-change process. A lane change is only possible when the 

driver finds sufficient space. Therefore, for vehicle 60, the exact LCD point was the 

initial point (i.e., lane-change point 3 in Fig. 2(a)) of the first section in its lane-change 

trajectory. 

 
Fig. 2. Schematic of the exact LCD point extraction: (a) A real case in the highD 

dataset (trajectory points connected by dashed lines represent the trajectory points in 

the same frame), and (b) An illustration of the coordinate system construction in this 

study. 

Therefore, the primary challenges of this research are learning complex function 

mapping relationships and extracting precise LCD points from a large volume of 

trajectory data. This study proposes a novel LCD point extraction method for the highD 

dataset. The extracted data were integrated into the XGBoost model (Chen and Guestrin, 

2016) with BO for training and optimization to obtain a data-driven LCD model (BO-

XGB model). Furthermore, we explain the broad concepts of the BO-XGB model and 

the contribution of each feature to the single-sample prediction result for LCDs using 

the SHAP method. Table 2 summarizes the primary notation used in this paper.  

Table 2. Notations 

Notations Description 

X  Set of input variables 

Y  Set of output variables 

Q  Raw trajectory dataset 
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iD  Vector of relative distances between lane change vehicle 𝑖𝑖 and its 

surrounding vehicles 

iU  Vector of relative velocities between lane change vehicle 𝑖𝑖 and its 

surrounding vehicles 

xV  Velocity vector of the lane change vehicle along the x-axis 

yV  Velocity vector of the lane change vehicle along the y-axis 

T  Frame order vector of lane change vehicle trajectory data 

l  Vector of lane ids 

L  Position vector of the lane change vehicle on the x-axis 

,
env
i tq  Vector of vehicle environment of vehicle i  at frame t  

,i tV  Surrounding vehicles’ velocities related to vehicle i  along the x-axis at 

frame t  

,i t P  Surrounding vehicles’ x-axis coordinates related to vehicle i  along the 

x-axis at frame t  

0 1,b b  Frame guides for recording the point frame  

tl  Lane id of lane change vehicle at frame t  

i Vehicle id 

't  Frame of exact LCD points 
t
xv  Velocity of the vehicle along the y-axis at frame t  

t
yv  Velocity of the vehicle along the y-axis at frame t  

a  Index for vehicles around a lane change vehicle, as shown in Fig. 1, 

where 1 ~ 8a =  indicate respectively the left-preceding vehicle, 

preceding vehicle, right-preceding vehicle, left-alongside vehicle, right-

alongside vehicle, left-following vehicle, following vehicle, and right-

following vehicle 

,
a
i tVID  id of the surrounding vehicle a  for vehicle i  at frame t  

a
id  Relative distance between vehicle i  and the surrounding vehicle a  

a
iµ  Relative velocity between vehicle i  and the surrounding vehicle a  

a
ip  x-axis coordinate of the vehicle a  around vehicle i  
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a
iv  x-axis velocity of the vehicle a  around vehicle i  

0
ip  x-axis coordinate of vehicle i  in the image coordinate system 

0
iv  Velocity of vehicle i  along x-axis 

4 Methodology 

This section describes the three subsections that establish the BO-XGB model for 

LCDs. The detailed framework of the methodology is shown in Fig. 3. In Section 4.1, 

an LCD point extraction method is designed by considering the changes in the vehicle 

velocity and trajectory line segments of each lateral offset. The detailed algorithm is 

described in Appendix A. Then, in Appendix B, the ids of vehicles surrounding the lane-

changing vehicles are linked to the lane-changing vehicle to address the problem of 

insufficient information related to the environment of the raw vehicle trajectory data. 

Based on the first two parts, the driving environment of the vehicle is quantified and 

input into the model. Section 4.2 introduces the XGBoost model, the basis for learning 

the mapping relationship between input and output. Section 4.3 illustrates the BO 

method used to tune the hyperparameters in XGBoost and derive a convergent and well-

behaved model for LCD. Section 4.4 describes the SHAP method used in this study to 

explain the model (primarily the equations used for calculating the SHAP values). 

 
Fig. 3. Framework of the proposed method. 
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4.1 Lane change decision point extraction method 

The major goal of this subsection is to extract the exact frame wherein drivers 

intend to change lanes during the lane-change process after identifying lane-changing 

vehicles from a large volume of raw vehicle trajectory data Q . The closer the LCD 

model is to the frame wherein the driver intends to change lanes, the more relevant the 

decision information (Chauhan et al., 2022; Zhang et al., 2022). The point in this frame 

is considered the exact LCD point in this research where drivers originally intended to 

change lanes.  

As mentioned in Section 3, considering the avoidance behaviors of certain lane-

change vehicles, the LCD point extraction method can be divided into three steps. The 

“lane change point 1” in Fig. 2(a) is the first step to extract an inexact point based on 

the shift of the lane id. This is considered a rough LCD point because the point 

calculated by this method is the point at which the lane-change action is almost 

complete rather than the initial point at which the driver intends to change lanes. In the 

second step, we search forward along the track, from the “lane change point 1” to the 

point where the vehicle lateral velocity changes from a negative (positive) value to a 

positive (negative) value for the first time, which is the “lane change point 2” in Fig. 

2(a). The third step is a forward search based on the second step to judge whether there 

is a section of significant and continuous trajectory in the same direction as the lane 

change between “lane change point 2” and the track’s starting point. The exact LCD 

point is “lane change point 2” if there is no such trajectory. If not, the exact LCD point 

is the starting point of such a trajectory (“lane change point 3” in Fig. 2(a)). The 

proposed LCD point extraction algorithm is illustrated in Appendix A. 

We can then obtain the output of this model using Equation (3) and Fig. 2(b). 

 

1 1

1 1

if 0 means the vehicle turns right
if  the vehicle does not change the lane 

if 0 means the vehicle turns left 

' '

' '

t + t +
x y

t + t +
x y

v v
y

v v

 ⋅ <  
= 


⋅ >  

0，  
1，

2，  

, (3) 

where t′   denotes the exact frame of the LCD point, and 1't +
xv   and 1't +

yv   indicate 

respectively the velocity of the vehicle along the x-axis and y-axis at frame 1t′ + . 

Subsequent data processing, such as data matching and quantification of the 

vehicle-driving environment, is presented in Appendix B. 
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4.2 XGBoost model 

This study used XGBoost, one of the most frequently used integrated learning 

algorithms (Cai et al., 2022; Mohammadi et al., 2019; Shi et al., 2019; Wang et al., 

2022), to learn the relationship between the input information X  and output decision 

Y . This section introduces XGBoost so that readers can understand the proposed LCD 

model. XGBoost efficiently implements gradient boosting decision trees, which are 

structured similarly to trees with root nodes, internal nodes, and leaves. Decision tree 

algorithms (Parsa et al., 2020) typically use simple rules that start at the root node, 

branch out, pass through the internal nodes, and finally reach the leaf nodes. In contrast, 

gradient-boosting decision trees are integrated learning techniques that utilize a series 

of decision trees. In this method, each decision tree learns from the previous decision 

tree and influences the next tree to improve the model and build a robust learning 

framework. Next, the principle of XGBoost is introduced; interested readers can refer 

to Chen and Guestrin (2016) for further details. 

Given a dataset with a sample size of n , there are the independent variables ix  

( [1, ]i n∈ ) with m  environmental features and n m
ix ×∈ X . For each LCD environment 

variable ix  , there is a true LCD variable iy  . Its tree models predict the value of iy  

through ix , which can be formulated as 

 ( ) 1

1

)= , + (
K

K K
i k i i K i k

k

y Ffy xf x f−

=

= ∈∑ , (4) 

where kf  represents an independent tree structure, k  is the tree index, K  indicates the 

total number of trees used for addition, F   denotes the space of the trees, and K
iy  

indicates the prediction result after K   iterations. This additive procedure is called 

“boosting.” Each unit of the model is described as a tree. The objective was to obtain 

the learning parameters by minimizing the loss function, as shown in Equation (5). 

 [ ]1
1 1

){ } arg min , ( )( i

n K
K

i k k
i k

l y f fx
ϕ

ϕ
= =

 = + Ω 
 

∑ ∑ , (5) 

where ϕ   depicts the learning parameters of tree k  , [ ]
1 1

, ( )( )i

n K

i k k
i k

l fxy f
= =

 + Ω 
 

∑ ∑  

indicates the loss function of the model wherein split cross-entropy is used as the loss 
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value to quantify the error and the penalty term 
1

( )
K

k
k

f
=

Ω∑   for model complexity to 

reduce the risk of overfitting. 

The model complexity of a single-base tree is defined by Equation (6). 

 2

1

1( )
2

R

k j
j

f Rγ λ ω
=

Ω = + ∑ , (6) 

where R  represents the number of leaves, jω  is the score of the leaf j ; γ  and λ  are 

model parameters, and the optimal solution jω∗  is derived by solving Equations (4)–(6): 

The corresponding solution values are as follows: 
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where jI   represents the sample dataset of the leaf j  . It is difficult to compute this 

optimal solution jω∗  for all possible trees in practical situations; therefore, Equation (9) 

is frequently used (Parsa et al., 2020). 
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where L R=X X X , LX , and RX  indicate the sample sets of the left and right nodes 

after splitting, respectively. One advantage of XGBoost over the other algorithms is that 

it is not affected by multicollinearity (Liu et al., 2019). Thus, although the two variables 

yielded the same results in the system, they should be retained. This is necessary for the 

vehicle lane-change decision because there may be a linear relationship between the 

factors influencing the decision (e.g., there may be a positive relationship between 

relative distance and relative velocity). 

Based on the concept of integrated learning, XGBoost synthesizes the decision 
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classification results of a series of classification and regression trees (CARTs) with 

deficiencies in learning ability. After all iterations, these classification results are input 

into the model with specific weights, i.e., the base learner iterates until the training is 

complete or the model residuals are below a predefined threshold. The specific process 

of model construction is illustrated in Fig. 4.  

 
Fig. 4. XGBoost model construction diagram. 

Finally, according to Equation (2), the data after processing with the fields listed 

in Table 9 were selected as the model input features. The LCD results extracted by the 

method described in Section 4.1 are chosen as the output. The input and output can then 

be input into the XGBoost model for training purposes. 

Table 3. Description of XGBoost hyperparameters 

Hyperparameter Description 

n_estimators ( K ) Number of base learners (early stop iteration) 

learning rate (ε ) Learning rate (eta) 

max_depth Maximum tree depth 

min_child_weight Sum of the minimum leaf sample weights 

gamma (γ ) Node split gain threshold 

alpha L1 regularization parameter 

lambda ( λ ) L2 regularization parameter 

subsample Sampling ratio 
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colsample Column sampling ratio 

seed Number of random seeds 

XGBoost has several hyperparameters that can be tuned and optimized (as 

summarized in Table 3), such as the learning rate, maximum depth, and minimum child 

weight. The hyperparameters of trees can control model complexity and prevent model 

overfitting efficiently, for example K  , max_depth, and min_child_weight. The 

hyperparameter K  represents the number of base learners in XGBoost, i.e., the number 

of trees built. The larger the value, the better the learning ability of the model. However, 

the model is more likely to be overfitted. The learning rate controlled the iteration rate. 

The larger the value, the faster the iteration speed. However, there is a risk that it will 

not converge to the true optimum and will become overfitted. An appropriate subsample 

enables the model to focus more on critical samples. The node split gain threshold (γ ), 

L1 regularization parameter (alpha), and L2 regularization parameter ( λ ) were used to 

prevent overfitting.  

4.3 Bayesian optimization 

However, the objective function for the hyperparameter tuning of XGBoost is 

unknown. BO (Jones, 2001) is acknowledged as one of the most famous extensible 

applications of the Bayesian network because of the following listed advantages 

(Fakhrmoosavi et al., 2022; Liu et al., 2019; Liu et al., 2022; Wu et al., 2020; Yin et al., 

2022): (1) BO can find a better combination of hyperparameters in a small number of 

steps, and (2) BO is a gradient-free global optimization method (therefore, it is 

extremely suitable for problems where the gradient is inaccessible). Prior knowledge 

was used to approximate the posterior distribution of the unknown objective function, 

and the hyperparameter combination was then selected for subsequent sampling 

according to the distribution. Thus, in this study, BO was used to optimize the 

hyperparameters in XGBoost to derive an accurate and well-fitted model, resulting in 

the BO-XGB model. 

The Bayesian optimization method consists of two principal components: the prior 

and acquisition functions (Frazier, 2018). This method uses the Gaussian process 

(Seeger, 2004) as the prior distribution function. The acquisition function combines the 

estimated value and error to determine the point in the definition domain that maximizes 

its function value as the next evaluation point. The acquisition function (Yin et al., 2022) 

actively selects the most “promising” sampling points for evaluation based on the 
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Gaussian process and efficiently uses complete historical information to improve search 

efficiency.  

4.4 SHAP 

A fundamental challenge in the application of AI in transportation is the 

interpretability of machine learning models, which can improve trust in the model’s 

predictions (Ayoub et al., 2021a, 2021b). In this study, some limitations exist even 

though the constructed BO-XGB model can predict LCD accurately. For example, two 

major difficulties are the manner in wherein drivers typically make LCDs based on their 

surrounding environment and the method to be used to quantify the impact of each 

factor in a specific sample. Furthermore, analyzing the causes of the abnormal decision 

results of the model is a key issue. To address these issues, SHAP was introduced to 

explain the model. SHAP explains model decisions using the Shapley value in game 

theory (Shapley, 2016), which is the most popular method for improving the 

interpretability of machine-learning models and has been applied to transportation 

problems (Ali et al., 2022; Ayoub et al., 2022; Guimaraes et al., 2022; Kong et al., 2022; 

Oseni et al., 2022; Song et al., 2022; Yan et al., 2022; Zhou et al., 2022). SHAP values 

indicate the contribution of each input feature to the model decision process (Equation 

(10)). For XGBoost, the total number of feature splits, representing its contribution to 

the final prediction, quantifies the importance of each input feature. 
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where ( )j valφ   represents the Shapley value of feature j  of a sample under the 

condition that the value function is val ; M  is the number of the input features; S  is a 

subset of the features used in this model; | |S  denotes the number of elements in subset 

S ; ( )val S  is the contribution of combination S  in predicting lane change decision in 

this study; ( )jF val  means the global Shapley value of feature j in the sample set; n  

represents the number of the sample set, and i   denotes the sample index; ( )if x  
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represents the model’s output as the input is ix ; and ( ( ))E f x  is the mean prediction 

value (base value) in the whole dataset. 

To interpret the prediction of the BO-XGB model, SHAP was utilized in two ways: 

i.e., a global explanation (Equation (11)) and a sample explanation (Equation (10)). In 

the global explanation, the importance ranking of the input factors and interaction 

effects between the input factors on the output variable can be obtained (the interaction 

SHAP value can be calculated using Equation (13)). Furthermore, the sample 

explanation clarifies the individual predictions by showing the contribution of each 

factor to the output in a specific sample. 
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In particular, for complex models with many variables, SHAP is more suitable than 

other popular methods such as sensitivity analysis for analyzing the influence of input 

variables on output variables. SHAP can provide a comprehensive analysis and 

explanation of the contribution of all input features, from both a macroscopic 

perspective (using the entire dataset) and a microscopic perspective (analyzing different 

features in a single sample). Inspired by this research (Simon Zhou et al., 2022), we 

also want to use SHAP to improve the interpretability of the lane-change model from 

both macroscopic and microscopic perspectives. 

5 Case Study 

5.1 Data description 

The dataset used in this study is derived from the highD trajectory dataset. 

According to the Institute of Automotive Engineering at RWTH Aachen University, 

Germany, the extraction method for this dataset (Fig. 5) is an excellent technique 

(Krajewski et al., 2018) for measuring vehicle data from an aerial perspective. The 

dataset has 11.5 h of recording acquired across 45,000 Km and 110,000 vehicle track 

data points from six different sections of German freeways 4, 41, and 61. Using 

sophisticated computer vision algorithms, researchers can localize a dataset with a 

typical error of less than 10 cm. In this study, we first classified vehicles in the highD 

dataset into three classes (lane-keeping, left lane change, and right lane change) using 

the exact LCD extraction method. For the lane-keeping vehicle, the driving 
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environment in the first frame was considered a group of lane-keeping data. As for the 

left (right) lane change vehicle, the exact LCD point is selected as a group of the left 

(right) LCD data (e.g., “lane change point 3” of vehicle 60 in Fig. 2(a), is a group of 

LCD data). There were 97,184 groups of lane-keeping data, 7,213 groups of right lane-

change data, and 6,119 groups of left lane-change data in the highD dataset, resulting 

in imbalanced sampling. To address this issue of imbalanced classification affecting the 

fitting of the BO-XGB model, a Synthetic Minority Oversampling Technique (SMOTE) 

is applied to resample the lane-change data (Chen et al., 2019). Following this 

resampling process, there were 97,184 groups of lane-keeping data, left-lane-change 

data, and right-lane-change data for processing and model learning. 

 
Fig. 5. Illustration of an example image coordinate system. 

5.2 Lane change decision point extraction 

Using the method described in Section 4.1, we extracted the LCD points for the 

highD trajectory dataset and obtained the green points shown in Fig. 6, which are the 

results of one of the highD dataset files named 01_tracks. The example figure 

demonstrates the extraction of a two-lane scenario; our data extraction and model 

training processes include both two- and three-lane scenarios. In Fig. 6, the red points 

obtained using the lane id shift methods are the vehicle trajectory intersection points 

and lane lines in the image coordinate system. These red points are mostly the points in 

the intermediate process of lane-change after the driver decides to change lanes and are 

not the initial points where the driver decides to change lanes. The green dots are the 

exact LCD points extracted by our proposed method, considering vehicle avoidance 

behavior and lateral velocity. Owing to data recording limitations, many vehicles tended 

to change lanes at the start of their trajectory, as recorded by the UAV, resulting in 

numerous green data points being clustered at the beginning of the recording period. 
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The difference in the extracted decision points between the two methods is shown in 

Fig. 6. The average time between the LCD points extracted in some previous study (i.e., 

points at which the subject vehicle presses over the lane line, represented by red dots) 

(Ali et al., 2023) and the LCD points extracted in this study (represented by green dots) 

in Fig. 6 is 8.9s. 

 
Fig. 6. LCD point extraction results in one of the highD dataset files named 01_tracks 

(red dots represent the points obtained by the lane id shift method, and green dots 

denote the points extracted by our proposed method). 

5.3 Model optimization and performance 

The typical process of model construction using highD datasets is as follows: 

Based on the proposed LCD point extraction method, 97,184 groups of lane-keeping 

data, 97,184 groups of right-lane-change data, and 97,184 groups of left-lane-change 

data were selected. 75% of these data were randomly input as training data for the 

XGBoost model, and the remaining 25% were used as the test dataset. The 

hyperparameters of the XGBoost-based LCD model were auto-tuned using BO.  

The detailed optimization process is shown in Figs. 7–9. The LCD prediction 

model was trained and optimized based on the exact extracted LCD points. The 

modeling of LCD prediction is improved in two ways: model training with more 

insightful data and hyperparameters auto-tuned by BO.  

Herein, the objective function was to minimize the opposite of the classification 

accuracy of the XGBoost model using specific hyperparameters via 5-fold stratified 

cross-validation. One hundred iterations were selected. The optimization process for 

each step is shown in Fig. 7, and it can be observed that the eventual accuracy can reach 
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99.14%. The specific points at which the BO evaluated the objective are shown in Fig. 

8. The histograms display the sample distribution of each hyperparameter. The two-

dimensional scatter plots demonstrate the order of the evaluated points. The figure 

illustrates the development of the search process. The order in which the points were 

evaluated was encoded by the color of each point. Darker colors (purple) correspond to 

sampling points for the earlier search process, and lighter colors (yellow) correspond to 

sampling points for the later search process. Red pentagons indicate the positions of the 

optimal values determined by the optimization process. The partial dependency figure 

(Fig. 9) shows an input variable value (model hyperparameter) mapping to the objective 

function after averaging all other variables. Eventually, several critical hyperparameters 

that affect the XGBoost model were obtained, including K  , ε  , max_depth, γ  , 

subsamples, and colsample_bytree. The optimal parameter settings obtained using this 

method are listed in Table 4. 

Table 4. Optimized XGBoost hyperparameters with BO 

Hyperparameter Values Hyperparameter Values 

n_iterations ( K ) 165 alpha 0.3096 

learning rate (ε ) 0.0918 lambda ( λ ) 0.2465 

max_depth 27 subsample 0.4633 

min_child_weight 5 colsample 0.2203 

gamma (γ ) 0.6105 seed 666 

 
Fig. 7. Convergence plot of BO process for 100 iterations. 
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Fig. 8. Sampling point order diagram for Bayesian optimization process. 

The performance of the model can be observed in Figs. 10 and 11, and Tables 5 

and 6. Fig. 10 shows that the model with BO eventually fits the decision-making 

behavior satisfactorily and does not overfit. In addition, Figs. 7 and 10 indicate that for 

LCD in the test set with the hyperparameters optimized by the BO method, a prediction 

accuracy of 99.14% can be achieved. The detailed results of the BO-XGB model for 

LCD on the highD dataset are shown in Fig. 11. In the right lane-change, keep straight, 

and left lane-change test data of the highD dataset, 24,039, 23,741, and 24,482 groups 

of vehicles made correct decisions with accuracies of 99.98%, 97.45%, and 100.00%, 

respectively. In conclusion, after training and hyperparameter tuning, this model 

exhibited excellent performance, with an accuracy of 99.14%. 
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Fig. 9. Hyperparameters auto-tuning and corresponding performance. 

 

 

 
Fig. 10. Learning curve of the BO-XGB model based on the classification error rate 

and log loss (merror denotes the error rate of this multiclassification problem and 

mlogloss represents the multiclass log loss in model metrics). 
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Fig. 11. Lane change decision results on the highD dataset. 

Table 5. Evaluation metrics of the proposed method on the highD dataset 

Evaluation metrics Precision Recall F1 score Accuracy 

Right lane change 0.9863 0.9998 0.9930 

0.9914 Keep straight 0.9998 0.9745 0.9869 

Left lane change 0.9884 1.0000 0.9942 

 

Table 6. Performance of different methods on the highD dataset 

Algorithms 
Left lane change Right lane change Lane keeping 

Accuracy 
Computation 

time (s) Accuracy AUC Accuracy AUC Accuracy AUC 

SVM 0.432 0.573 0.588 0.706 0.746 0.780 0.591 87.357 

Random forest 0.600 0.755 0.805 0.811 0.892 0.772 0.756 79.825 

AdaBoost 0.588 0.688 0.724 0.779 0.802 0.856 0.711 65.923 

Gradient boost 0.941 0.950 0.931 0.950 0.932 0.955 0.935 417.312 

XGBoost 1.000 0.997 0.999 0.996 0.975 0.987 0.991 66.837 

Notes: Area under curve (AUC) is defined as the area enclosed by the coordinate axis 

under the receiver operating characteristic curve. 

The performance of various machine learning techniques for LCD was 

investigated using the same training and test data. Accuracy was chosen as the 

evaluation metric. Table 6 lists the results of the test sets for SVM, random forest (RF), 
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adaptive boosting (AdaBoost), gradient boosting tree, and XGBoost with BO. Evidently, 

the SVM model performs much weaker than tree-based models, and XGBoost achieves 

the best performance, with an overall accuracy of 99.14%. Gradient boosting was the 

second-best method, whereas RF and AdaBoost had comparable decision abilities. 

The computation times for all models with the same dataset and parameter 

optimization methods are listed in Table 6. Evidently, AdaBoost was the fastest on the 

LCD (65.923 s computation time), but its overall performance was not the best 

considering its accuracy. However, the gradient boost requires the longest time to train 

a model and only achieves the second-highest accuracy. In contrast, XGBoost, owing 

to its optimization design, only requires 66.837 s to find the model with the highest 

LCD decision accuracy. Owing to its powerful prediction ability with an accuracy of 

99.14%, a small additional computation time is acceptable.  

5.4 Model explanation of XGBoost-based LCD model based on SHAP  

5.4.1 Global explanation 

SHAP was used to explain the BO-XGB model for LCD. To acknowledge the 

importance of these factors in the LCD model, we examined the SHAP summary plot 

shown in Fig. 12(a). The SHAP value in Fig. 12(a) denotes the factors contributing to 

LCD prediction. The variables are ranked according to their global feature importance. 

The classes “right,” “left,” and “straight” indicate that the vehicle changes lanes to the 

right, left, or stays straight ahead, respectively. The first and third most important 

features of the BO-XGB model, “precedingXVelocity” and “precedingD” respectively, 

are shown in this figure as the relative velocity and distance between the subject vehicle 

and its preceding vehicle. The velocity and distance between the subject vehicle and the 

preceding vehicle on its target lane, represented by “rightPrecedingD” and 

“rightPrecedingV” or “leftPrecedingV” and “leftPrecedingD” (depending on whether 

its target lane is right or left), are crucial in the LCD model.  
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Fig. 12. SHAP analysis of BO-XGB model: (a) Summary plot, (b) right lane change 

vehicles, (c) left lane change vehicles, (d) straight keeping vehicles (Fig. 12(b), (c), 

and (d) can be understood from the following: (1) the vertical positions of these input 

features indicate their feature importance, (2) the horizontal position of one dot 

represents its influence on LCD in this instance, (3) the color of one dot denotes the 

value of that input feature ranging from high (red) to low (blue), and (4) the density of 

dots expresses the distribution of inputs in the dataset). 

Figs. 12(b), (c), and (d) show the contribution of each feature to the LCD model 

in the classes “right,” “left,” and “straight,” respectively. Each dot in these figures 

represents a SHAP value for its instance of one input feature. Based on the information 

in Fig. 12, we can observe a rough correlation between the input features and the output 

decisions. There is no more important feature for a right-lane-change vehicle than the 

velocity difference from its preceding vehicle. The faster it is than the preceding vehicle, 

the stronger its desire to change lanes. Next are the relative distances between it and the 

left-preceding vehicle, and between it and the preceding vehicle. The smaller these 
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distances, the greater the probability that the subject vehicle will change lanes to the 

right. The fourth important feature is the relative velocities of the right and left 

preceding vehicles. The greater the speed of the right-preceding vehicle compared to 

the subject vehicle and the smaller the speed difference between the left-preceding 

vehicle and the subject vehicle, the greater the possibility of the subject vehicle shifting 

to the right. For left-lane-change vehicles, a smaller right-preceding vehicle velocity 

and relative distance and a larger left-side lane-change gap are essential factors for the 

subject vehicle to switch left. The velocity of a straight vehicle is far lower than its 

preceding vehicle’s, and larger distances between it and its preceding and following 

vehicles have a larger impact on its decision to stay straight. 

To investigate the effects of the different features and their combinations on the 

decision output, the SHAP interaction values for the different features were examined, 

as shown in Fig. 13. Figs. 13(a), (b), and (c) correspond to Figs. 12(b), (c), and (d), 

which indicate they relate to the classes “right,” “left,” and “straight,” respectively. 

Taking Fig. 13(a) (class “right”) as an example, the figure reveals the contribution of 

the interaction combination between features to the model output. The graphs in the 

dashed box in Fig. 13 were enlarged in Fig. 14 to show the five most influential features 

results of Fig. 13. The subgraphs in Fig. 14 on the diagonal reveal the primary influence 

of the feature, whereas the subgraphs on the non-diagonal line indicate the two-by-two 

interaction of the feature with other features. Each dot represents a sample. The redder 

(bluer) dot represents the larger (smaller) feature value for this sample. The lateral 

position of the dot indicates its effect on the output. We focused on diagonal subplots 

to reveal the influence of a single feature on the predicted output. As shown in Fig. 14, 

features such as the velocity difference between the subject vehicle and its preceding 

vehicle, as well as the velocity difference between it and its left-preceding vehicle, can 

positively affect the model’s decision to predict a left LCD. In contrast, the distance 

difference between the subject vehicle and its left-preceding vehicle, as well as the 

distance difference between it and its preceding vehicle can harm the model’s prediction 

of a left LCD. In Figs. 13(a), (b), and (c), the sum of all the SHAP interaction values 

for a given feature row is the SHAP value for that feature, as shown in Figs. 12(b), (c), 

and (d). 
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Fig. 13. SHAP interaction value analysis of features in BO-XGBoost model for the 

LCD: (a) right lane change vehicles, (b) left lane change vehicles, (c) straight keeping 

vehicles. (These figures are similar in form and principle to Fig. 12.) 
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Fig. 14. Dashed box in Fig. 13. 
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Fig. 15. Model prediction explanation for a specific sample (sample index is 370). 

5.4.2 Sample explanation 
Fig. 15 shows the BO-XGB model prediction for LCD with a specific sample by 

SHAP (here, the sample index is 370). In this figure, the horizontal and vertical axes 

represent the SHAP values and features, respectively. Blue indicates that the feature 

weakens the prediction (arrow to the left, SHAP value decreases), and red indicates that 

the feature positively enhances the prediction (arrow over the right, SHAP value 

increases). [ ( )]E f x   represents the baseline value of SHAP (i.e., the base value in 

Equation (12)), which is the mean value of the model prediction as well. In this sample, 

the relative distance (87.13 m) between the subject vehicle and the right-preceding 

vehicle contributed the maximum to the LCD prediction results (0.79). The second 

highest positive contribution variable was the relative distance (247.19 m) between the 

subject vehicle and its preceding vehicle (0.58 m). Using the above method, the specific 

feature contribution to each LCD was obtained using the BO-XGB model. Based on 
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this, we can understand the model’s predictions and practically assess the validity of 

the predicted results. 

5.5 Additional test 
To validate the effectiveness of our experimental results, we further tested the 

proposed method on the CQSkyEyeX dataset (http://www.cqskyeyex.com/index.html) 

in Chongqing, China. The CQSkyEyeX dataset comprises high-resolution highway 

traffic operation videos captured by drones, employing advanced computer vision 

techniques to extract vehicle trajectories. It overcomes challenges such as image 

shaking, vehicle misclassification, and missing road information (Zhang et al., 2023). 

This dataset includes 650 minutes of measurement data from eight locations on Chinese 

highways. After data preprocessing and class balancing, the data of location 3, as shown 

in Fig. 16, in this dataset were input into the model for testing, with the results depicted 

in Fig. 17. As shown in Fig. 17, in the right lane-change, keep straight, and left lane-

change test data of the CQSkyEyeX dataset, 2,660, 2,660, and 2,660 groups of vehicles 

made correct decisions with accuracies of 99.85%, 98.50%, and 100.00%, respectively. 

Similar to Figs. 7-9 and 12, the convergence process, the sampling point order diagram, 

the hyperparameters auto-tuning and corresponding performance, and the SHAP 

analysis of BO-XGB model on the CQSkyEyeX dataset are summarized in Figs. 18-21. 

The results show that our method can also achieve superior performance for the 

CQSkyEyeX dataset.  

 
Fig. 16. Top view of location 3 
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Fig. 17. Lane change decision results on the CQSkyEyeX dataset. 

 

Fig. 18. Convergence plot of BO process for 30 iterations on the CQSkyEyeX dataset. 
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Fig. 19. Sampling point order diagram for Bayesian optimization process on the 

CQSkyEyeX dataset. 

6 Conclusion 

In this study, a BO-XGB model for LCD prediction using an exact LCD point 

extraction method and the SHAP method was proposed to assist drivers in making 

accurate LCDs. XGBoost was the core model used to learn the relationship between 

input and output. BO was used to tune the various hyperparameters of XGBoost. The 

exact LCD point extraction method was used to extract the precise LCD point by 

considering the changes in the vehicle’s velocity and the trajectory trend. If only the 

change in vehicle velocity is considered, ignoring some avoidance behaviors, the 
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extraction of the initial LCD points may extract some delayed LCD points. In this study, 

the precise input of LCDs and hyperparameter optimization is probably the reasons for 

the high accuracy of the model (the proposed model achieved an accuracy of 99.14%  

and 99.45% when it was applied to LCD samples extracted from the highD dataset and 

CQSkyEyeX dataset, respectively). 

Furthermore, the SHAP value method was used to explain the model prediction 

results for the whole sample set and a specific sample, respectively. It improved the 

model’s interpretability, validated the model’s credibility, and enhanced our 

understanding of the prediction results. A corresponding visual analysis provided extra  

 

Fig. 20. Hyperparameters auto-tuning and corresponding performance on the 

CQSkyEyeX dataset. 



 
 

36 

information regarding the contribution of the features. In the highD dataset, the model 

explanation results show that vehicles in front of a subject vehicle have a greater 

influence on the LCD than vehicles behind or on the side. In addition, we can 

quantitatively determine the contribution of the features to a specific sample. This 

indicates which features significantly affect the LCD output in this sample and provides 

a way to analyze the causes of anomalous samples. 

 

Fig. 21. SHAP analysis of BO-XGB model on the CQSkyEyeX dataset: (a) 

Summary plot, (b) right lane change vehicles, (c) left lane change vehicles, (d) 

straight keeping vehicles (Figs. 21(b), (c), and (d) can be understood from the 

following: (1) the vertical positions of these input features indicate their feature 

importance, (2) the horizontal position of one dot represents its influence on LCD in 

this instance, (3) the color of one dot denotes the value of that input feature ranging 

from high (red) to low (blue), and (4) the density of dots expresses the distribution of 

inputs in the dataset). 
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In summary, the contributions of this study can be summarized as follows: 

 An accurate lane-changing decision point extraction method is designed to 

consider vehicle avoidance behavior, which has been neglected in existing 

studies. 

 Bayesian parameter optimization is used to optimize multiple parameters of 

XGBoost model (BO-XGB). 

 SHAP is used to analyze the principles of our proposed LCD decision model 

at both global and local levels. The method can be specifically refined to 

determine the effect of the features of a sample on the lane change decision. 

However, the limitations of this study are as follows: First, specific traffic contexts 

may influence LCD, such as vehicle type, abnormal weather, and geometric road 

conditions. These factors can be included in our modeling framework when additional 

trajectory data are available. Second, the prediction of LCDs was insufficient for 

assisted driving. The prediction of lane-change trajectories and the analysis of lane-

change risks have not been considered. Third, this model considers only the effect of 

vehicle-to-vehicle interactions on LCDs, ignoring the effect of the driver’s features and 

habits. The accuracy and applicability of this model may be enhanced when used in 

conjunction with computer vision techniques for gathering and evaluating the driver’s 

facial information. Further research in this area could be conducted. 
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Appendix A. Algorithm 1 for extracting the exact LCD point 

Algorithm 1: A novel method for extracting the exact LCD point  
Input: Vehicle x-axis speeds xV   and y-axis speeds yV  , the vector of frames T  , 

probes 0b  and 1b , lane ids l , x-axis positions P  of a lane change vehicle 
Output: Frame of the exact lane change decision point t′  

1. Initialize 0t , 1t  to store the frame of the real lane change decision point; 

2. ( )1 2, , , kt t t= T ; 

3. For probe 0 Tb ∈  do                         # iterate overall frame 

4.      If 
0 0 1

l l 0b b +
− =  then 

5.           0 0 1b b= + ; 
6.      Else 
7.           Break; 
8. End For 
9. For probe ( )1 1 2 0, , ,b t t b∈   do             # iterate overall ( )1 2 0, , ,t t b  

10.      If 0 1 0b b
y yv v⋅ >  then 

11.           1 1 1b b= − ; 
12.      Else 
13.           Break; 
14. End For 
15. ( )1 2, , , kp p p= P  

16. For probe ( )0 1 2 1, , ,b t t b∈   do          # iterate overall ( )1 2 1, , ,t t b  

17.      For ( )0 1, ,t b b∈   do 

18.            Find max 
0t bp p−  

19.       End For 
20. End For 
21. If 

0
min{max{ },50}t b yp p V t− > ⋅∆  

22.       0t b′ = ; 
23. Else 
24.       1t b′ = ; 
25. Return t′  

Note: Probes 0b   and 1b   have no specific practical meaning, but are simply ever-

changing timestamps used for loop traversal in the algorithm. 
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Appendix B. Data matching and Quantification of vehicle driving environment 

Data matching 

Most existing vehicle trajectory datasets (such as NGSIM and highD) do not 

contain detailed and important information (such as velocity, position, and acceleration) 

of surrounding vehicles (Sun et al., 2021). However, we require the trajectory data of 

surrounding vehicles during the lane change process. 

Table 7. Selected fields from the highD dataset before data matching in the present 

model 

No. Required raw field name No. Required raw field name 

1 frame 7 leftPrecedingId 

2 id 8 leftAlongsideId 

3 xVelocity 9 leftFollowingId 

4 x 10 rightPrecedingId 

5 precedingId 11 rightAlongsideId 

6 followingId 12 rightFollowingId 

For the vehicle driving environment shown in Table 7, the vehicle id was 

considered as the search object, and the frame rate was used as the time axis for data 

matching. Then, we retrieve the driving environment information of the lane-change 

vehicle through the id of the vehicles around the lane-change vehicle and the same 

frame. The matching process can be expressed by the following equation: 

 , , ,
env
i t i t i t =  q V ,P , (14) 

 ( ){ }, , ,| 1,2, ,8a
i t t i tv VID a = = =sV s 

, (15) 

 ( ){ }, , ,t| 1,2, ,8a
i t t ip VID a = = =sP s 

, (16) 

where ,
env
i tq  denotes the environment vector of vehicle i  at frame t ; ,i tV  and ,i t P  are the 

velocities along the x-axis and the coordinates of the x-axis of vehicles s  at frame t  

around vehicle i   as shown in Fig. 1, respectively; ,t
a
iVID   represents the id of its 

surrounding vehicle related to the subject vehicle i  at frame t marked with a , where

1,2, ,8a =   means the surrounding vehicles shown in Fig. 1. The field results obtained 

after data matching are presented in Table 8. 
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Table 8. Fields after data matching 

No. Name of the matched data field No. Name of the matched data field 

1 frame 11 leftAlongsideV 

2 id 12 rightAlongsideV 

3 xVelocity 13 precedingX 

4 x 14 leftPrecedingX 

5 precedingXVelocity 15 rightPrecedingX 

6 leftPrecedingV 16 leftFollowingX 

7 rightPrecedingV 17 rightFollowingX 

8 leftFollowingV 18 followingX 

9 rightFollowingV 19 leftAlongsideX 

10 followingV 20 rightAlongsideX 

Quantification of vehicle driving environment 

This section quantifies the vehicle driving environment from the trajectory dataset 

Q , and introduces the detailed source of the model input information iX  in Equation 

(2). 

In the data matching process, vehicles may not exist in the subject vehicle’s left, 

front, right, or other directions. The matching result in this situation corresponds to the 

null value of NaN. To solve this problem, we discussed the situation separately; 

particularly, it was set to zero if it was a velocity variable and to positive infinity if it 

was a distance variable. As indicated in Equation (2), the inputs to the LCD model can 

be summarized as follows: 

1. Velocity of the subject (lane change) vehicle, 

2. Relative distances between the subject vehicle and its surrounding vehicles, and 

3. Relative velocities between the subject vehicle and its surrounding vehicles. 

Thus, for vehicle i , the position is transformed into relative distance, as shown in 

Equation (17). 

 
0  if   0 there is vehicle  arround vehicle

          if 0 there is no vehicle arround vehic  le

a a
i i ia

i a
i

p p VID a i
d

VID a i

 −       ≠  ,  = 
∞ =  ,    

, (17) 

 1 2 8, , ,i i i id d d =  D 
, (18) 

where 1 ~ 8a =  represents its surrounding vehicles; a
id  indicates the relative distance 
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between the subject vehicle and its surrounding vehicles; a
iVID   is the id of subject 

vehicle i’s surrounding vehicle a, with a value of NaN meaning there is no vehicle 

around the subject vehicle i ; 
i

ap  refers to its x-coordinate in this frame; 0
ip  is the x-

coordinate of vehicle i ; and iD  denotes the vector of relative distances between vehicle 

𝑖𝑖 and its surrounding vehicles. 

The transformation of relative velocity is similar to Equation (17): 

 

0 0

0 0

, if 0 and  0
, if 0 and  0

0    ,        if 0

a a
i i i i

a a a
i i i i i

a
i

v v VID v
v v VID v

VID
µ

 − ≠
= − ≠
 =

<



> , (19) 

 1 2 8, , ,i i iµ µ µ =  iU 
, (20) 

where a
iµ   indicates the relative velocity of the subject vehicle i   and its surrounding 

vehicle a, a
iv  denotes the velocity of the surrounding vehicle a along the x-axis in this 

frame, and 0
iv  represents the velocity of the subject vehicle i  along the x-axis. The data 

fields obtained after the data processing are listed in Table 9. 

Table 9. Final input feature fields of the model after data processing 

No. Processed fields No. Processed fields 

1 frame 11 leftAlongsideV 

2 id 12 rightAlongsideV 

3 xVelocity 13 precedingD 

4 x 14 leftPrecedingD 

5 precedingXVelocity 15 rightPrecedingD 

6 leftPrecedingV 16 leftFollowingD 

7 rightPrecedingV 17 rightFollowingD 

8 leftFollowingV 18 followingD 

9 rightFollowingV 19 leftAlongsideD 

10 followingV 20 rightAlongsideD 
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