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ABSTRACT For updating the tracking models, most existing approaches have an assumption that the
target changes smoothly over time. Despite their success in some cases, these approaches struggle in
dealing with occlusion, illumination changes and abrupt motion which may break the temporal smoothness
assumption. To tackle this problem, in this paper we propose a tree-guided visual tracking model based
on the multimodality correlation filter which could estimate the target state according to the most reliable
information in previous frames. We maintain a representative target state set in a tree model over the
whole tracking process. Ideally, the tree model is able to capture all the landmark states of the target, and
provides a confident template for the correlation filter. Therefore, we propose an optimal updating strategy to
record the most recent stable and representative states for tree updating. By utilizing stable target-states for
template training, the multi-modality correlation filter is able to output a more accurate target position than
the baseline and the SOTA (state-of-the-art) methods. Tested on the OTB50 (object tracking benchmark)
and OTB100 dataset, the proposed TGMCF has demonstrated outstanding performance on several typical
tracking difficulties and overall comparative results with the SOTA trackers are obtained on several public
tracking benchmarks.

INDEX TERMS Visual tracking, tree-guided, multimodality correlation filter.

I. INTRODUCTION
Visual tracking is a fundamental computer vision task with
a wide range of applications such as human tracking [1]
and robot perception [2]. In the process of visual tracking,
the quality of model is decisive to the tracking performance.
Most existing trackers utilize only one model from the begin-
ning to the end, assuming that the tracking methods could
continuous output accurate results [3], [4]. However, there
exist so many challenges in practical visual tracking that
such assumptions are not held true. Actually the tracker
can’t guarantee the result of every frame to b accurate in
the tracking process, drift or temporary loss is inevitable,
once they are considered the whole model would be
polluted.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shenghong Li.

Inspired by the tracker TCNN [5] which is based on mul-
tiple CNNs [6] and maintained a tree structure to well handle
the pollution problem in the training model, we introduce
this idea into the correlation filter tracking and achieved a
comparable performance with SOTA trackers.

The method of TCNN was ranked the second in the
2016 VOT challenge [7], in which a tree structure with mul-
tiple CNNs was built to estimate target states and determine
the desired path for online model updates. The target state
is estimated by sampling target candidates around the state
in the previous frame, and the best sample is identified as
the result of a weighted average score from a set of CNNs.
Although this method achieves an outstanding accuracy in
tracking, it is quite time-consuming, as each modality in
the tree structure needs to be trained by CNN. As a result,
the TCNN could only achieve 1.5fps tracking speed which is
far from real-time tracking.
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At the same time, another important branch of trackers:
CF (correlation filter) [8] has developed into one of the most
important technologies in the field of visual tracking due to
its fast speed and high accuracy. Similar to SVM (support
vector machines) [9], the correlation filter is also a super-
vised algorithm. Different from SVM that always focuses
on binary classification with label 0 or 1, CF would train
samples with continuous labels for a confidence map before
eventually determination. Finally, the positions with the max-
imum responses would be set as the center of target. The
advantage of the correlation filter is to utilize previous results
as training samples for model training, which can easily
transmit dynamic target information into subsequent frames.
However, most existing correlation filter based trackers only
consider the results of adjacent frames in training [10]. When
the training set is full, the method would discard the oldest
sample to let the new sample in. This strategy seems to make
sense as it assumes that recent samples would contributemore
to training but actually, it is illogical. Once inaccurate results
were integrated into the training set, the trained model would
easily get over-fitting on the recent frames and finally cause
a drift on the result.

Considering the advantages and disadvantages of both the
TCNN and the correlation filter, a TGMCF (tree guided
multi-modality correlation filter) based tracker is proposed
to estimate the target’s position, aiming to achieve better
results with higher tracking speed. In the proposed TGMCF
approach, the most classic correlation filter KCF (Kernel
zed Correlation Filter) [11] was selected as the baseline to
ensure the effectiveness of the tree structure, specifically each
correlationmodel is trained by a frameset with a fixed number
of frames. Since every correlation model can be regarded
as a state of the target, we add them as nodes into the tree
structure. The state of the target would keep changing during
the tracking process, hence there would be constantly nodes
that need to be added into the tree structure. We estimate
the reliability of every new node and its response with the
existing nodes in the tree structure to determine its parent
node and update the model. Whenever a new node is added,
the whole model would be updated online. Besides we also
introduced an adaptive optimization strategy for the construc-
tion of the tree, specifically the reliability of the new node is
compared with a threshold to estimate the quality of the new
node. The structured correlation model trained with the target
stages could effectively avoid the disturbance of unstable
target information to tracking and be more reliable than the
conventional correlation model trained with all the previous
results. To this end, a significant performance is achieved in
different tracking challenges with our proposed approach.

The main contributions of the paper can be summarized as
follows: i) a correlation filter model built in a tree structure,
i.e. TGMCF, is proposed for visual tracking considering the
stages of target rather than all the previous results. ii) an
adaptive optimization strategy is introduced according to the
reliability of each node in the tree structure, which could
update the model online and ensure the discrimination of the

entire model. Comprehensive experiments on the widely used
OTB50, OTB100 and VOT2015 datasets have fully demon-
strated the superior performance of the proposed TGMCF
method in comparison to a number of SOTA trackers.

The remaining part of this paper is organized as follows.
We first review the various correlation filter based visual
tracking methods and the multi-model tracking methods in
Section 2 and then introduce the baseline correlation filter
algorithmKCF in Section 3. Section 4 discusses the proposed
TGMCF algorithm in detail and the experimental results are
presented in Section 5. Finally, some concluding remarks are
drawn in Section 6.

II. RELATED WORK
In the last 2-3 decades, numerous methods have been pro-
posed for visual tracking, including deep learning based
tracker [12], [13], correlation filter based tracker [14], [15]
and some other traditional trackers [16], [17]. In this section,
a comprehensive survey about the SOTA trackers, which
relative to the method proposed would be given.

The tracker proposed in this paper is essentially a correla-
tion filter based tracking method. As we know, correlation
filters have become one of the most popular technologies
in visual tracking, which mainly attempts to minimize the
sum of squared error between the desired correlation response
and the circular correlation of the object patch. This method
considers that the obtained previous results can be helpful
for the subsequent tracking, and the model trained by using
previous results as training sample would be more reliable.
Danelljan et al. [8] first introduced the correlation filter into
visual tracking problem and proposed the MOSSE tracker
in 2010, which uses the grey-scale image to extract a sin-
gle channel feature with a high speed. Henriques et al. [11]
proposed a kernelized correlation filter (KCF) by introducing
the kernel trick into ridge regression, which could solve for
the filter taps efficiently by utilizing a circulant matrix. Since
then, the correlation filter became one of themost widely used
strategies for visual tracking. Spatially Regularized Discrim-
inative Correlation Filter (SRDCF) [4] utilizes spatial regu-
larization by introducing a spatial regularization component,
which can penalize the correlation filter coefficients during
learning and lead to not only alleviating the unwanted bound-
ary effects but also allowing the CF to be learned on larger
regions. SRDCFDecon [30] decontaminates the training set
by estimating weights of all training sample in each frame.

Despite of correlation filter, deep learning is also an
important development direction in visual tracking. Due
to the great representative ability of the CNN feature,
Danelljan et al. [13] proposed to apply deep convolutional
features in visual tracking, aiming to increase discriminative
of the tracking method. The tracker of UPDT [36] system
analyzed the effect of shallow and deep features on target
tracking. They found that the depth model should be respon-
sible for the robustness of the network, while the shallow
model should be responsible for the accuracy of location.
The TCNN [5] method proposes to construct a tree based
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multi-model with CNN to handle the change of target appear-
ance, by storing the deep features in nodes and analyzing the
scores of every nodes in tree to locate the target’s position.
The process of feature extraction in CNN is a multi-layer
progressive processing, which is an imitation of the human
brain on information processing. Usually, the more data used
for training, the more effective the model would be. Although
the CNN feature could be great helpful for improving the
tracking accuracy, compared with the traditional hand-crafted
features, such as Harr like [18], HOG (Histogram Oriented
Gradient) [19], and LBP (Local Binary Pattern) [20] which
could realize a fast tracking speed with fewer parameters,
the CNN feature need much more time for model training.

Among various tracking models, the multi-modality model
is a relatively effective strategy for target representation
which could well eliminate the errors caused by model
pollution [21]–[23]. Trackers based on sparse representa-
tion [24] apply multiple target templates could compute the
likelihood of each sample by minimizing its reconstruction
error while integrating multiple observation models via an
MCMC (Markov Chain Monte Carlo) framework. Besides,
ensemble classifiers applied to visual tracking problem could
also gain a good achievement. Wang et al. [25] proposed a
hybrid ensemble classifier based on two types of classifier
(LDM [26] and SVM [9]) for visual tracking and achieved a
good performance on the challenges of complex background
and occlusion. Therefore it can be concluded that in visual
tracking the jointly decision made by multi-modality could
be more reliable than single models.

In this paper, we propose to introduce the tree structure
into the correlation filter based tracking. Comparing with
existing similar work such as Ensemble_SW_Obs [37] and
AECF [35], AECF aims to extract the key CFs from the
previous frames to decrease computational burden yet it fails
to consider the topological relationship between different
CF templates. The Ensemble_SW_Obs did introduce a tree
structure into correlation filter, but the tree is a binary one
with the edge value of either 0 or 1. Different from these
two trackers, our approach takes the relationship between the
templates as the value of the edges in the tree. The detailed
of TGMCF will be discussed in the Section IV. Moreover,
the experimental results show that our method could achieve
superior performance over these methods.

III. BASELINE FRAMEWORKS
Although many correlation filter based trackers have
shown dominant and impressive results in visual tracking,
the KCF [11] method would be the classic one with milestone
significance. Actually, most correlation filter based trackers
are essentially based on KCF [11]. To illustrate the general-
ization of the proposed strategy, we take KCF as the baseline
tracker in our paper.

In KCF, the circulant matrix is introduced to collect both
positive samples and negative samples; besides the ridge,
regression is also employed to train the target detector. The
aim of this method is to learn a multi-channel correlation

filter f from a set of training sample {(xk,yk )}tk=1. Specifically
f is represented by a linear regression function as f (xk) =
ωT xk and the objective function is designed to minimize
the squared error over samples xi and each element of the
regression targets y as follows,

min
w

∑
i

(f (xi)− yi)2 + λ ‖w‖2 (1)

where ω is the weight coefficient and λ is a regularization
parameter that controls over fitting, as same as the ω in SVM.
It is worth mentioning that the circulant matrix used in KCF
successfully converted the multiplication between matrixes
into the dot product in the Fourier domain. This step not only
reduces the computational complexity but also improves the
tracking speed to a real-time level

The most important strategy in this method is the intro-
duction of kernel tricks in model training, which also forms
a significant contribution to speed improvement as detailed
below:

f (xk) = ωT xk =
n∑
i=1

αik(xk,xi) (2)

where k is the kernel function used. By applying the corre-
lation filter f trained according to the previous results on the
detection region in the current frame, a response map can be
obtained, on which the center of the target can be determined
as the position with the maximum responses.

IV. THE PROPOSED TGMCF ALGORITHM
This section introduces the construction of our TGMCF for
visual tracking, and then detail discusses the procedures of the
target estimation for the tracking algorithm, and the method
of maintaining multiple KCF models in a tree structure for
robust tracking.

The procedure of the proposed TGMCF model is illus-
trated in FIGURE. 1.

A. TREE CONSTRUCTION
In our TGMCF approach, a tree structure based on KCF is
built to describe the target appearances in different stages.
The tree structure is built and updated in the whole tracking
process, where each node is generated every M frames until
the number of the nodes in the tree reach N. When the tree is
full, we would only update the existing nodes with new nodes
in order to keep the fixed number of nodes. The details about
the correlation filter tree are discussed as follows.

In the first frame, the HOG feature of ground truth is
extracted to be the first node in the tree structure. In our
approach, what stored in every node is the correlation tem-
plate trained by recent framesets, in which every frameset
consist of M frames, except for the first node.

During the tracking process, every tracking result would
be obtained according to all the existing nodes in the tree,
and each new node is generated every M frames. In the
tree structure T = {V ,E}, a vertex v ∈ V corresponds
to a correlation filter trained by KCF, and a directed edge
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FIGURE 1. The flowchart of the proposed TGMCF model.

(u, v) ∈ ε defines the relationship between correlation filters.
The score of an edge (u, v) is the determined by its two end
vertices as follows,

S (u, v) =
1
|Fv|

∑
t∈Fv

δu→t (3)

where Fv is a set of consecutive frames for KCF model
training associated with v, and δu→t is the predicted positive
score of the node u while tracking with the t th frame, it can
be calculates as follows,

δu→t =
1
|g|

∑
i∈x

git (4)

where g is a set consists of x response maps with top x
response values while tracking the t th frame, in another word
we consider the most relevant x templates to evaluate the
node u.

With new nodes added, if the tree structure updates only
depend on tracking results, the model is also prone to devi-
ations. Once the drift result is utilized for the model update,
the discriminate ability of the tree would be decreased and the
subsequent tracking results will also be affected. Therefore,
despite of evaluating the score of edge, the reliability λv of
each node also needs to be considered, which represents the
score of every correlation filter stored in a node. Specifically,
the λv can be obtained by

λv = min
(
s (pv, v) , λpv

)
(5)

where the reliability is computed recursively, and pv repre-
sents the parent node of the node v, which should be chosen
before adding a new node.

A parent node is determined by comparing its reliability
between all the existing nodes when the new node is added,
and the node with themaximum reliability will be the decided
parent node below.

pz = argmaxv∈V+λ
v
z (6)

where V+ represents the existing nodes in the tree, and λvz
represents the reliability of node z when it is connected to
node v, we also have

λvz = min (s (v, z) , λv) (7)

Similar to Eq. 5. We believe that not every node would
contribute to tracking; hence a threshold θ is set for the
reliability, any new node with its reliability below θ would
be abandoned. Otherwise, this new node would be added into
the tree structure.

When a new node is added, the correlation filter of the
parent node would be updated according to the frameset in
both the new node and its parent node

mf = (1− η) ∗mf+ η ∗ ft (8)

where mf represents the correlation filter in the new node,
it is initialized as the correlation filter in its parent node at
first, and η is a parameter for updating, t ∈F(p,z) is the sum
of frames in the parent node and its child node, so ft consists
of the features extracted from both the parent frameset and
the child frameset,. Especially, when the number of nodes
reaches the upper limit N, wewill always keep themost recent
N nodes in the tree.

B. TARGET STATE ESTIMATION USING
MULTIMODALITY TREE MODEL
In the correlation filter based tracker, the tracking result is
estimated from the detection region determined by the result
of the previous frame. In this part, HOG feature of the detec-
tion region is extracted at first then do correlation operations
between the detection region and every template in existing
nodes V+ in the tree before determining |V+| response maps.
Because the filter templates are stored during different states,
so every template in nodes would have different effect on
target localization. In our approach, every response map is
assigned with a weight for analysis, which is estimated in

VOLUME 7, 2019 166953



Q. Liu et al.: TGMCF for Visual Tracking

two parts. One is the reliability of node λv as discussed in
Eq. 5, and the other is the correlation value between the
current target and every existing node in the tree structure,
which can be given by

γv→t = max∅v→t (9)

where ∅v→t represents the response map of node v in frame t.
Meanwhile, the correlation value can also show the impact

of each node on the tracking result. We consider the max-
imum response value of this node as the correlation value
between the current target and each existing node. With the
value of γv→t and λv, the weight can be computed by

wv→t =
min (γv→t , λv)∑
v∈V+ (γv→t , λv)

(10)

The weight is determinative to the new node associated
with frame t when it is updated from the correlation filter of
node v. Finally, the target can be localized with the weights
and multiple response maps via Eq. 11 and Eq. 12.

Lt =
∑
v∈V+

wv→t∅v (11)

xt = argmaxLt (12)

To better illustrate our approach, the overall algorithm is
also shown in Algorithm 1.

V. EXPERIMENT
For performance evaluation, both quantitative and qualitative
assessments are adopted using the OTB50, OTB100 and VOT
benchmark dataset [27], [31], [32]. In addition, a comprehen-
sive comparison with the representative SOTA trackers is also
provided in this part.

A. PARAMETER SETTINGS
All our experiments are tested on MATLAB2016 using an
Intel(R) Core(TM) 2.30GHz CPU with 8GB RAM.

We compared the effect of some key parameters includ-
ing target padding, the parameter σ in Gaussian, number of
nodes, threshold to evaluate the coming node, and the number
of frames in each node, which are shown in FIGURE. 2.
Different parameters are used for tracking the same video
sequence ‘‘Tiger2’’, and the optimal values of the parameters
are determined by the criterion. While the ACLE is the aver-
age Euclidean distance between the centers of the predicted
and ground truth bounding boxes. Smaller ACLE represents
better performance of the tracker. The AOR is the average
overlap ratio. Larger AOR represents better performance of
the tracker. Both the ACLE and AOR are the metrics to
measure the tracking performance frame by frame.

The parameter of target padding is a scale expansion based
on original target frame. If this parameter were too large,
too much background would be considered which might
distract the overall model, on another hand, if this parameter
is too small, it would be difficult for the tracker to adapt
for complex tracking conditions. It can be concluded from
FIGURE. 2 that when target padding is 1.8, the ACLE is the

Algorithm 1 Framework of the Proposed TGMCF Tracking
Method

Input: Video frames I1, I2, . . . It . Target state x0 at
the first frame; Number of vertex n in the tree. Number
of frames m used to generate a new node. Threshold θ for
adding the current node.

Output: Target states x1, x2,. . . ,xt ;
Initialization: Initialize target state x0 according to

the ground-truth data; Extract the feature from x0 as the
first node of the tree using KCF;

For all time step t do
i. Determine the detection region according to the

result of previous frame xt−1, and extract HOG features
to do correlation with all the filter templates stored in the
tree, then multiple response maps ∅ could be obtained;

ii. Calculate the correlation value γ between each
node and the current frame using Eq. 9;

iii. Calculate the weightw of each node for the current
frame with γ and the reliability λ according to the Eq. 10,
when there is only one node in the tree, the reliability value
is set as null by default;

iv. Use Eq. 11 to process the final response maps, and
ensure the target state xt according to Eq.12.

v. Every m frames tracked, one new node and its
parent node could be obtained according to Eqs. 5-7. when
the reliability of the new node is less than the threshold θ ,
this node will be discarded; otherwise use Eq. 8 to update
the new node and store it in the tree;

vi. If the tree structure has reached N nodes, just keep
the latest n nodes and discard the older ones;
End for

smallest and AOR is the largest. At this time, better result can
be obtained for tracking.

It is easy to know that if too many nodes stored in the tree
structure, the long-term target states will inevitable have an
impact on the current state analysis, conversely if too few
states were considered; the model would easily get over fit-
ting to the neighboring frames. By analyzing the data shown
in FIGURE. 2, it can be decided that it is optimal to set seven
nodes in the tree structure which would help to gain the best
tracking performance.

The threshold measures the quality of the coming nodes,
if the threshold is too small, the training samples in the tree
structure would be insufficient to reflect the overall change
of the target, which would lead to an inaccurate tracking.
On the other hand, if the threshold is too large, the qualities of
the nodes in tree would be decreased, which will also affect
the model’s discriminative ability. By analyzing the data
shown in FIGURE. 2, it is best to set the threshold for adding
the current nodes and updating the entire model to 0.27.

Similarly, if there are too many frames in a frame set,
a node may contain not only one state, which may lead to
error analysis. If the number of frames in the frame set is too
small, it is possible that the next node will still contain the
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FIGURE 2. ACLE and AOR performance under different parameter settings.

previous target state, resulting in repeated computation that
will be no difference from frame-basedmodel updating. After
experimental testing as shown in FIGURE 2, it is found that
set the frame number in the frame set as 4would be reasonable
to obtain a better performance.

For a fair comparison, we run all trackers using default
parameters without manual adjustment.

B. EVALUATION CRITERIA
While testing on the OTB datasets, all the trackers are quan-
titatively evaluated using two measures: precision plot and
success plot.

Precision is defined as the average Euclidean distance
between the estimated center location of the target center_t
and the center of its corresponding ground-truth center_a,
which can be computed by

P =
√
|center_t − center_a|2 (13)

The precision plot is defined as the average number of
frames per video that are at most 20 pixels away from the
ground truth. The success rate measures the IoU (Intersec-
tion over Union) between the bounding box of the tracking
result rt and ground truth bounding box ra, which can be
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FIGURE 3. Success and precision plot comparisons between our approach and the six SOTA trackers on OTB50 and
OTB100, in which our approach is named TGMCF in plots and the AUC values are reported in brackets.

given by

S =
rt ∩ ra
rt ∪ ra

(14)

where ∩ and ∪ represent the intersection and union of two
regions respectively, and | · | denotes the number of pixels in
the region. Specifically, the success plot shows the percentage
of bounding boxes whose IoU score is larger than a given
threshold. We use the Area under the Curve (AUC) of the
success plots to rank the trackers. For a full treatment of these
metrics, readers are encouraged to read [27].

While testing on the VOT dataset, all the trackers are
also quantitatively evaluated using the average accuracy and
failure score. The detailed analysis on accuracy and failure
score can be found in [33]. For a predicted object region and
its ground truth at frame t , accuracy is defined as same as
the success rate in OTB. Average accuracy per sequence is
calculated by averaging these accuracy scores over the total
time. If a tracker fails, i.e., accuracy score decreases to zero,
it will be re-initialized (c.f. [34] for further details).

C. QUANTITATIVE ANALYSIS
FIGURE. 3 compares our approach with six SOTA trackers
including ECO_HC [28], SRDCFdecon [30], Staple [29],
LCT [14], TCNN [5], and KCF [11] on the OTB50 [31] and

OTB100 [27]. It can be observed that our approach achieved
an outstanding performance among these trackers.

In detail, we present the success plots and precision
plots for SRE (spatial robustness evaluation) on the whole
OTB2013 and OTB2015. In the plot of precision rate, our
tracker ranks the second, closely follows the most represen-
tative tracker ECO_HC, whilst achieves 1.6% higher than
the method of Staple in OTB50 and achieves 2% higher
than Staple in OTB100. In the plot of success, our tracker
ranks the second in OTB50 and the fourth in OTB100, but
achieves a great achievement than the baseline tracker KCF
and TCNN.

The reason why our tracker’s performance in success rate
is not as comparable as the precision is due mainly to the
baseline tracker KCF used in our method. To this end, KCF’s
drawbacks still exist in dealingwith scale changes. Theremay
be some situations that the tracker has already located the
center of target correctly, but with an incorrect scale, a low
success rate is produced. Despite of this, compared to the
baseline tracker KCF, our tracker gains a great increase in
both the precision rate and the success rate. For the precision
rate, we achieved 13.7% higher than the baseline tracker on
OTB50 and achieved 15.2% higher than on OTB100. Mean-
while, we also gain 15.9% and 13.9% in terms of success rate
on OTB50 and OTB100, respectively.
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TABLE 1. The OP over 0.5(in %) and the mean OP (in %) results of the trackers on OTB50. The best two results are shown in red and blue fonts,
respectively.

TABLE 2. Experimental results in VOT2015 [32] for the proposed TGMCF tracker and the seven SOTA trackers.

TABLE 3. VOT2015 [32] accuracy results for the proposed TGMCF and the compared trackers. Red, blue and green indicate the first, second and third
rankings, respectively.

Table 1 shows the overall performance of trackers by giv-
ing the results of the success rate of overlap precision over
0.5 in the sequences (OP over 0.5) and the mean overlap
success of all 11 fixed thresholds (Mean OS). Especially,
the tracker of AECF [35] is additionally compared due to
the lack of source code. As a result, we only compare its
performance according to the data provided in its paper
in Table 1 rather than Fig. 3. As seen from the experimental
results in Table 1, our method performs better than the AECF
method proposed in 2019 and can respectively perform the
third in OP and the second in OS, closely follows the most
representative trackers. However we can achieve a rather
improvement than the baseline tracker KCF and TCNN.

Therefore, it can be concluded that the strategy proposed
who considers diverse models is effective to the visual track-
ing problem.

We also provide an attribute based evaluation between our
tracker and the six representative trackers on OTB50. Specif-
ically, for performance evaluation, nine most representative
tracking challenges are chosen to analyze the tracking per-
formance, which are scale variation, out of view, occlusion,
motion blur, illumination, out-of-plane rotation, deformation,
fast motion and in-plane rotation. According to the exper-
imental results shown in FIGURE 4, our tracker presents
almost the best among the six SOTA trackers, except some-
times only second to ECO_HC. Despite of the significant

improvement on the baseline tracker KCF, our tracker can
also achieve 5.9% higher than ECO_HC in scale variation,
17.6% higher than TCNN in out of view, 7.6% better than
ECO_HC in occlusion, 4.8% better than ECO_HC in motion
blur, performs the same as ECO_HC in illumination problem,
1.7% better than Staple secondly to ECO_HC in out-of-plane
rotation and 5.7% better than TCNN secondly to ECO_HC in
fast motion. This empirically demonstrates the effectiveness
of considering multiple KCF models in the tree structure in
improving the stability of such trackers against challenging
photo-metric and geometric variations.

Apart from this, we also compared our tracker on
the VOT dataset with seven SOTA trackers, includ-
ing UPDT [36], Ensemble_SW_Obs [37], ECO_HC [28],
KCF [11], SRDCFdecon [30], Staple [29] and TCNN [5].
Table 2 shows the average results of VOT2015. Among the
compared correlation filter based trackers, the trackers of
UPDT proposed in 2018 analyses the effect of deep and
shallow features on target tracking, using a feature fusion
strategy for tracking. The tracker of Ensemble_SW_Obs [37]
also introduces a tree structure into the correlation filter
based tracking. Different from our TGMCF, only binary
tree structure was employed. According to these results,
TGMCF has the first ranking in terms of the sum of average
accuracy, and the second ranking in terms of the failures
score.
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FIGURE 4. Attribute based evaluation. Precision plots compare our method with six SOTA trackers on OTB50. Our method outperformed almost all the
trackers especially the baseline method KCF. The precision values are reported in brackets, and the number of videos for each attribute is shown in
parenthesis.

Table 3 also compares the trackers in terms of the average
accuracy. In detail, the last six columns represent different
tracking challenges. Mean and Weighted mean are averaged
attributes in an equal or weightedmanner, while Pooled corre-
sponds to averaging per-frame results of the super-sequence
obtained by concatenating all of the sequences. Among the
compared trackers, our TGMCF can perform consistently
better among the compared trackers, and shares the first
ranking in terms of overlap.

D. QUALITATIVE ANALYSIS
For qualitative comparison, our tracker is also compared with
the six SOTA trackers mentioned above on six challeng-
ing sequences including Coke, basketball, singer2, soccer,
Skating1 and football1. The tracking results are shown in
FIGURE. 5 and FIGURE. 6.

In the Coke video sequence, the object experienced sev-
eral tracking difficulties, such as illumination change, out-
of-plane rotation, partial occlusion and complete occlusion.
In this paper, we show the experimental results of frame #32,

#41, #58, #187, #256 and #267 in FIGURE. 5(a). After the
illumination change in frame #58, major of trackers begin
to get a drift, however our tracker can still locate the tar-
get accurately. At frames #187, #256 and #267, the coke
was completely occluded by green leaves, leading to failure
feature detection of the coke. All the methods fluctuated
greatly, at this frame, where the target position would have to
be estimated via prediction. Our method trains a correlation
filter template every 4 frames and stores it in the nodes of
a tree structure. The reliability of nodes and the correlation
between nodes are calculated and compared continuously.
For example, in the tracking process, the reliability of nodes
corresponding to frames #32, #41 and #58 would be rela-
tively high, while the reliability of nodes corresponding to
frames #187, #256 and #267 would be relatively too low
to be stored in the tree structure. When occlusion happens,
our method would predict the target position by considering
the most effective information provided in previous frames.
Due to our method is based on KCF, only HOG features are
extracted and no boundary effect alleviation is added in the
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FIGURE 5. Comparison of tracking results as a bounding box in different colors for several tested videos on some key frames,
where the sequence names for (a-c) are Coke, Basketball, Singer2.

whole process. However, accurate tracking and prediction can
also be achieved, which fully illustrates the effectiveness of
the joint correlation filter based on the tree structure.

During tracking the sequence of basketball, the player
would run in a high speed with similar appearance per-
son around, which could confused the trackers easily.
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FIGURE 6. Comparison of tracking results as a bounding box in different colors for several tested videos on some key frames,
where the sequence names for (d-f) are Soccer, Skating1, and football1.

Additionally, the target would be occluded many times in
the whole tracking process, and the trajectory of the target
is irregular. These have make the tracking quite challenge

hence the high robustness of tracking is required. As can be
seen from FIGURE. 5(b), there are many occlusions occurred
in the frame of #10 and #489, where most trackers had a
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TABLE 4. TGMCF’s tracking speed in both OTB50 and OTB100.

large fluctuation. However, our proposed method can still be
able to track the target stably, and the fluctuation is quite small
after the first occlusion.

The Singer2 video sequence as shown in FIGURE. 5(c)
is a video with more challenges. The target in most frames
can be stored into the nodes in the tree structure, but there
are differences in terms of reliability and correlation between
nodes. Our method stores every stable state into one node,
and the six key frames shown in FIGURE. 5(c) can be stored
into six different states with different reliability values. For
frames #5, #23 and #110 the target is clearer; hence, their
reliability will be relatively stronger. Our method decides the
location of nodes according to the correlation between nodes,
so the correlation filtering templates trained in frames #5,

#15, #23 and #338 are possibly on the same branch, and the
frames #12 and #110 are more likely to appear on the same
branch. Therefore, the filter templates on the branch of frames
#5 and #23 will contribution more in making decision on
the target in frames #338, rather than the branch of frames
#12 and #110. The final target position would be determined
by all the information in the tree structure. As shown in the
results, only our method, LCT and SRDCFdecon can keep a
stable tracking from the beginning to the end, yet the tracking
results of our method are more accurate than the other two
trackers. The same situation also exists in the sequence of
soccer, skating1 and football1, where our tracker can always
outperform the methods in peers as clearly illustrated in
FIGURE.6(d-f).
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In tracking speed, due to selection of the CF tracker as
the baseline, the proposed TGMCF can achieve a real-time
tracking. Relative to the 1.5fps of TCNN our TGMCF can
achieve 44fps tracking speed which greatly improved the
tracking speed. The detail of the tracking speed is shown
in Table 4.

The success of our tracker can be summed up into two
points: One is the stored multiple correlation filter models
in a tree structure, which can save the stable and reliable
states in the tracking process to provide an effective reference
for subsequent tracking more smoothly. The second is the
adaptive strategy in managing and updating the entire tree
structure according to the reliability of each correlation filter
to improve the model, which can effectively avoid the model
pollution caused by the sudden change of target during track-
ing and finally make the tracker more robust.

VI. CONCLUSION
In this paper, we present a novel tree structure based
correlation filter for visual tracking to avoid model pol-
lution and enhance tracking performance. The proposed
TGMCF approach stores target states in different stages
as nodes in the tree structure, and comprehensively con-
sider the multi-modality model according to the reliability
of each node during the tracking process. Besides, by adap-
tive adjusting the nodes in the tree structure and updating
the model, the tracker becomes more effective and robust.
Finally, our tracker demonstrates a comparative performance
against many representative trackers on the OTB50 and
OTB100 benchmark datasets. Although there is still a gap
between our approach and the deep learning trackers, there
is a great improvement compared with the baseline tracker
KCF. To illustrate the effectiveness of the strategy proposed,
we just take the most classic correlation filter KCF as an
example. In the future, more types of correlation filters with
better performance would also be applied to the tree structure,
and it is believed that better results could be achieved.
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