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Abstract
It is commonly believed that the central visual field (fovea and
parafovea) is important for recognizing objects and faces, and
the peripheral region is useful for scene recognition. However,
the relative importance of central versus peripheral informa-
tion for object, scene, and face recognition is unclear. Larson
and Loschky (2009) investigated this question in the context of
scene processing using experimental conditions where a cir-
cular region only reveals the central visual field and blocks
peripheral information (”Window”), and in a ”Scotoma” con-
dition, where only the peripheral region is available. They
measured the scene recognition accuracy as a function of vi-
sual angle, and demonstrated that peripheral vision was indeed
more useful in recognizing scenes than central vision in terms
of achieving maximum recognition accuracy. In this work,
we modeled and replicated the result of Larson and Loschky
(2009), using deep convolutional neural networks (CNNs).
Having fit the data for scenes, we used the model to predict
future data for large-scale scene recognition as well as for ob-
jects and faces. Our results suggest that the relative order of
importance of using central visual field information is face
recognition>object recognition>scene recognition, and vice-
versa for peripheral information. Furthermore, our results pre-
dict that central information is more efficient than peripheral
information on a per-pixel basis across all categories, which is
consistent with Larson and Loschky’s data.
Keywords: face recognition; object recognition; scene recog-
nition; central and peripheral vision; deep neural networks

Introduction
Viewing a real-world scene occupies the entire visual field,
but the visual resolution across the visual field varies. The
fovea, a small region in the center of the visual field that sub-
tends approximately 1◦ of visual angle (Polyak, 1941), per-
ceives the highest visual resolution of 20 to 45 cycles/degree
(cpd) (Loschky, McConkie, Yang, & Miller, 2005). The
parafovea has a slightly lower visual resolution and extends
to about 4-5◦ eccentricity, where the highest density of rods
is found (Wandell, 1995). Beyond the parafovea is generally
considered to be peripheral vision (Holmes, Cohen, Haith, &
Morrison, 1977), which receives the lowest visual resolution.
Due to the high density and small receptive field of retinal
receptors,the central (foveal and parafoveal) vision encodes
information of higher spatial frequency and more detail; pe-
ripheral vision, on the contrary, encodes coarser and lower
spatial frequency information.

This retinotopic representation of the visual field is mapped
to visual cortical areas through a log-polar representation.
Recent studies have shown that orderly central and periph-
eral representations can be found not only in low-level to

mid-level visual areas (V1-V4), but also in higher-level re-
gions, where perception and recognition for faces or scenes
is engaged (Malach, Levy, & Hasson, 2002; Grill-Spector &
Malach, 2004). More specifically, Malach et al. (2002) pro-
posed that the need for visual resolution is a crucial factor
in organizing object areas in higher-level visual cortex: ob-
ject recognition that depends more on fine detail is associated
with central-biased representations, such as faces and words;
object recognition that depends more on large-scale integra-
tion is associated with peripheral-biased representations, such
as buildings and scenes. This hypothesis is supported by
fMRI evidence, which shows that the brain areas that are
more activated for faces (FFA; Kanwisher, McDermott, and
Chun (1997)) and words (VWFA; McCandliss, Cohen, and
Dehaene (2003)) sit in the eccentricity band expanded by
central visual-field bias, whereas buildings and scenes (PPA;
Epstein, Harris, Stanley, and Kanwisher (1999)) are asso-
ciated with peripheral bias. More recent studies even sug-
gest that the central-biased pathway for recognizing faces and
peripheral-biased pathway for recognizing scenes are segre-
gated by mid-fusiform sulcus (MFS) to enable fast parallel
processing (Gomez et al., 2015).

In the domain of behavioral research, studies have shown
that object perception performance is the best around 1◦-2◦

of fixation point and drops rapidly as eccentricity increases
(Henderson & Hollingworth, 1999; Nelson & Loftus, 1980).
For scene recognition, Larson and Loschky (2009) used a
”Window” and ”Scotoma” design (see Figure 1), to test the
contributions of central versus peripheral vision to scene
recognition. The Window condition (top rows of the right-
hand columns of Figure 1) presents central information at
various visual angles to the subjects, while the Scotoma con-
dition (second row on the right) blocks it. Using images from
10 categories, subjects were required to verify the category
in each condition. The recognition accuracy as a function of
visual angle is shown in Figure 2. They found that foveal
vision is not accurate for scene perception, while peripheral
vision is, despite its much lower resolution. However, they
also found that central vision is more efficient, in the sense
that less area is needed to achieve equal accuracy. The visual
area is equal at 10.8◦, and the crossover point, where central
vision starts to perform better than peripheral, is to the left of
that point.
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Despite the common belief that central vision is important
for face and object recognition, and peripheral vision is im-
portant for scene perception shown in studies above, a careful
examination of the contribution of central versus peripheral
vision in object, scene, and face recognition is needed. In this
work, we modeled the experiment of Larson and Loschky
(2009) using deep convolutional neural networks. Further-
more, we extended the modeling work to a greater range of
stimuli, and answer the following questions: How does the
model perform as the number of scene categories is scaled
up? Besides scenes, can the model predict the importance
of central vision versus peripheral information in object and
face recognition? What is the result compared to scenes?

In the following, we show that our modeling results match
the observations of Larson and Loschky (2009), and that it
scales up to over 200 scene categories. By running a sim-
ilar analysis for large-scale object and face recognition, our
model predicts that central vision is very important for face
recognition, important for object recognition, and less impor-
tant for scene recognition. Peripheral vision, however, serves
an important role for scene recognition, but is less impor-
tant for recognizing objects and faces. Furthermore, across
all conditions we tried, central vision is more efficient than
peripheral vision on a per-pixel basis (when equal areas are
presented), which is consistent with the result of Larson and
Loschky (2009).

Method
Image Preprocessing
To create foveated images, we preprocessed the images using
the Space Variant Imaging System1. To mimic human vision,
we set the parameter that specifies the eccentricity at which
resolution drops to half of the fovea to 2.3◦. Example images
and their preprocessed retinal versions are shown in the first
and second columns of Figure 1.

As in the experiments of Larson and Loschky (2009), we
used the Window and Scotoma paradigms as specified by van
Diepen, Wampers, and dYdewalle (1998) to process the input
stimulus. The idea of both paradigms is to evaluate the value
of missing information - if the missing information is needed,
then the perception process may be disrupted and recognition
performance may drop; if the missing information is not nec-
essary, then the processing remains normal.

Input images in our experiments are 256×256 pixels, and
we assume that corresponds to 27◦ × 27◦ of visual angle,
the number in (Larson & Loschky, 2009). In (Larson &
Loschky, 2009), they used four sets of radius conditions for
Windows and Scotomas: 1◦ represents the presence or ab-
sence of foveal vision; 5◦ represents the presence or absence
of central vision; 10.8◦ presents equal viewable area inside
the Windows or outside the Scotomas; 13.6◦ presents more
viewable area in the Windows than the Scotomas. In order
make the prediction of the model more accurate, we added
five additional radius conditions in all of our experiments:

1http://svi.cps.utexas.edu/software.shtml

Figure 1: Examples of images used in our experiment. First
column: original images. Second column: foveated images.
Third to last column: images processed through ”Window”
and ”Scotoma” conditions with different radii in degrees of
visual angle.

3◦,7◦,9◦,12◦, and 16◦. The example Window and Scotoma
images are shown in Figure 1.

Deep Convolutional Neural Networks (CNNs)

Deep CNNs are neural networks with many layers that stack
computations in a hierarchical way, repeatedly performing:
1) 2-dimensional convolutions over the stimulus generated
from previous layers using learned filters, which are con-
nected locally to a small subregion of the visual field; 2) a
pooling operation on local regions of the feature maps ob-
tained from convolution operation, which is used to reduce
the dimensionality and gain translational invariance; 3) non-
linearities to the upstream response, which is used to gener-
ate more discriminative features useful for the task. As layers
go higher, the receptive fields of filters are generally larger,
and the learned features go from low-level (edges, contours)
to high-level object-related representations (object parts and
shapes) (Zeiler & Fergus, 2014). Several fully-connected lay-
ers are usually added on top of these computations to learn
more abstract and task-related features.

We used deep CNNs in our experiments for two reasons.
First, deep CNNs are the best models in computer vision:
they achieve the state-of-the-art performance on many large-
scale computer vision tasks, such as image classification
(Krizhevsky, Sutskever, & Hinton, 2012; He, Zhang, Ren,
& Sun, 2015), object detection (Ren, He, Girshick, & Sun,
2015), and scene recognition (Zhou, Lapedriza, Xiao, Tor-
ralba, & Oliva, 2014). Thus, the models should achieve de-
cent performance in our experiments. Smaller networks or
other algorithms are not competent for our tasks. Second,
deep CNNs have been shown to be the best models of the vi-
sual cortex: they are able to explain a variety of neural data
in human and monkey IT (Yamins et al., 2014; Güçlü & van
Gerven, 2015; Wang, Malave, & Cipollini, 2015). As a result,
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it is natural to use them in our work modeling a behavioral
study related to human vision.

Experiments
In this section, we first describe our model of the behavioral
study of Larson and Loschky (2009). We then introduce the
experiment for measuring the contribution of central versus
peripheral vision for large-scale scene, object, and face recog-
nition tasks.

Modeling Larson and Loschky (2009)
In Larson and Loschky (2009), scene recognition accuracy
was measured across 100 human subjects on 10 categories:
Beach, Desert, Forest, Mountain, River, Farm, Home, Mar-
ket, Pool, and Street. For each trial in the Windows and Sco-
tomas conditions, subjects were first presented a scene im-
age, and then were asked to press ”yes” or ”no” for the cue
(category name) presented on the screen. Their experimental
result is summarized in Figure 2. They showed that central
vision (5◦ window condition) performs less well than periph-
eral vision in terms of getting maximum recognition perfor-
mance. They further demonstrated the peripheral advantage
is due to more viewing areas in the Scotomas conditions, and
central vision is more privileged when given equal viewable
areas (10.8◦).

We obtained the stimuli of the above 10 categories from
the Places205 database (Zhou et al., 2014), which contains
205 scene categories and 2.5 million images. All input stim-
uli were preprocessed using the retina model described in the
above section. As 10 categories is small and can easily lead
to overfitting problems in training deep CNNs, we trained
our recognition model by performing fine-tuning (or transfer
learning) based on pretrained models. The model pretrained
on the Places205 database can be treated as a mature scene
recognition pathway, and fine-tuning can be thought as addi-
tional training for the task. To investigate whether different
network architectures, especially depth, have different impact
on the modeling result, we applied three different pre-trained
models, namely:

1. AlexNet (Krizhevsky et al., 2012): A network with 5 con-
volutional layers and 3 fully connected layers, about 60
million trainable parameters. Achieved 81.10% top-5 ac-
curacy on the Places205 validation set.

2. VGG-16 (Simonyan & Zisserman, 2014): A network with
13 convolutional layers and 3 fully connected layers, about
138 million trainable parameters. Achieved 85.41% top-5
accuracy on the Places205 validation set.

3. GoogLeNet (Szegedy et al., 2015): A network with 21
convolutional layers and 1 fully connected layer, about 6.8
million trainable parameters. Achieved 87.70% top-5 ac-
curacy on the Places205 validation set.

For all models, the fine-tuning process starts by keeping the
weights except for the last fully connected layer intact, and

Figure 2: Results for scene recognition accuracy as a func-
tion of viewing condition (Windows (w) and Scotomas (s))
and visual angle. Left: result of Larson and Loschky (2009).
Right: our modeling result.

initializing the weights of the last layer to be random with
zero mean and unit variance. To be compatible with the ”yes”
or ”no” condition in the behavioral experiment, we replaced
the last layer in the networks with a single logistic unit, and
trained the networks for each of the 10 object categories sep-
arately, using half of the training images from the target cat-
egory and half randomly selected from all other 9 categories.
As the last layer needs more learning, we set the learning rate
of the last layer to 0.001, and all previous layers to 1e−4. The
training set of the 10 scene categories contains a total num-
ber of 129,210 full resolution images, and we trained all net-
works using minibatch stochastic gradient descent with batch
size from 32 to 256, using the Caffe deep learning framework
(Jia et al., 2014) on NVIDIA Titan Black 6GB GPUs. All
networks were trained for a maximum number of 24,000 it-
erations to ensure convergence. Each test set contains 200
images (100 from target category and 100 from all other cat-
egories), and the label distribution is the same as the training
set.. Test images were preprocessed to meet each of the Win-
dows and Scotomas condition. We tested the performance of
the fine-tuned models on all conditions by reporting the mean
classification accuracy, which is shown in Figure 2.

From Figure 2, we can clearly see our result for all
three models qualitatively matches the result of Larson and
Loschky (2009). First, for Window and Scotoma conditions,
an increasing radius of visual angle (x axis) yields a mono-
tonic increase or decrease in classification accuracy (y axis).
The sharper increase from 1◦ to 5◦ in the behavioral study
may be due to the higher efficiency of human central vision.
Second, we replicated the fact that central vision (less than
5◦) is less useful than peripheral vision in terms achieving the
best scene recognition performance. Third, however, when
using equal viewable areas (10.8◦), central vision performs
better than peripheral, exhibiting higher efficiency. Fourth,
the critical radius (the crossover point where the two con-
ditions produce equal performance, see Figure 2b) is 8.26◦

(averaged across all models), which is within the 8.22◦-9.24◦

range reported by Larson and Loschky (2009). This suggests
our models are quite plausible.
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Figure 3: Results for large-scale scene recognition accuracy
as a function of viewing condition (Windows (w) and Sco-
tomas (s)) and visual angle. Softmax output is used instead
of logistic unit, so chance is 0.005. Left: experiment using
original images. Right: experiment using foveated images.

When comparing the performance across the three models
we use, we cannot find a notable difference in terms of perfor-
mance, though GoogLeNet usually performs slightly better,
indicating that depth of processing might be the key factor in
obtaining better performance.

Large-Scale Scene, Object, and Face Recognition
The above modeling work is based on a scene recognition
task using 10 categories. In real life, however, there are a
much larger number of scene categories. Beyond scenes, gen-
eral object recognition and face recognition are the two most
important recognition tasks that are performed regularly. The
relative importance of central versus peripheral vision among
the three categories needs to be examined carefully. Using a
similar modeling approach, we describe our findings in large-
scale scene, object, and face recognition in the sections below.

Scene Recognition We used all 205 categories in the
Places205 dataset. The trained models of AlexNet, VGG-16,
and GoogLeNet are deployed to examine the recognition ac-
curacy on the Place205 validation set, which contains 20,500
images, in all Windows and Scotoma conditions. In addition,
we tested the models using images both processed and un-
processed by the retina model to examine the generalization
power of the learned features. The result is shown in Figure 3.

From Figure 3, we can see the general trend that we ob-
served in Figure 2 still holds: peripheral vision is more im-
portant than central vision, but central vision is more efficient.
All models behave similarly. However, we can see the perfor-
mance on images preprocessed through the retina model is
inferior. Apparently, since there are many more categories in
this experiment, the foveation has more of an effect. Recall
that the models are trained using images with full resolution;
missing the peripheral information may the cause learned fea-
tures to imperfectly generalize.

Object Recognition We ran our object recognition experi-
ment on the ILSVRC 2012 dataset (Russakovsky et al., 2015),

Figure 4: Results for large-scale object recognition accuracy
as a function of viewing condition (Windows (w) and Sco-
tomas (s)) and visual angle. Softmax output is used instead
of logistic unit, so chance is 0.001. Left: experiment with
original images. Right: experiment with foveated images.

which contains 1000 object categories and over 1.2 million
training images. We used the pretrained models of AlexNet,
VGG-16, and GoogLeNet, which achieve top-5 accuracy of
80.13%, 88.44%, and 89.00%, respectively, on the ILSVRC
2012 validation set. Similar to scene recognition, we tested
all models under all Windows and Scotoma conditions, us-
ing original and foveated images. The results are shown in
Figure 4.

At the first glance of looking at Figure 4, we may draw the
conclusion that the result is the same as scene recognition:
central vision is still more important than peripheral vision.
However, when we compare the scene and object recogni-
tion results (shown in Figure 5), we can clearly see that cen-
tral information in object recognition is more important than
that in scene recognition: the accuracy of the Scotoma con-
ditions drops much faster for object recognition than scene
recognition as visual angle increases from 1◦ to 7◦, suggest-
ing that losing central vision causes a greater impairment for
object recognition performance. This is consistent with our
knowledge that central vision plays a more important role in
object recognition than scenes, as there are more high spa-
tial frequency details in objects than scenes. Another find-
ing from this experiment is that AlexNet (8 layers) performs
much worse than VGG-16 (16 layers) and GoogLeNet (23
layers), suggesting that depth is important to produce good
performance.
Face Recognition We performed the face recognition ex-
periment on the Labeled Faces in the Wild (LFW) dataset
(Huang, Ramesh, Berg, & Learned-Miller, 2007), which con-
tains 13,233 labeled images from 5,749 individuals. As there
is only 1 image for some identities, researchers usually pre-
train their network on larger datasets (not publicly available)
and test their models on the LFW dataset. In this experiment,
we tested three pretrained models, namely Lighten-A (10 lay-
ers; (Wu, He, & Sun, 2015)), Lighten-B (16 layers), and
VGG-Face (16 layers;(Parkhi, Vedaldi, & Zisserman, 2015)),
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Figure 5: Comparison results for scene and object recognition
using the VGG-16 model. Losing central vision decreases
performance for object recognition more quickly than scene
recognition. Left: original images. Right: foveated images.

on the face verification task for the LFW dataset, where they
achieve accuracy of 90.33%, 92.37%, and 96.23%, respec-
tively. Face images were preprocessed so that they occupy
the entire visual field (Figure 1). Same as the previous ex-
periments, we tested all models using Windows and Scotoma
conditions, with original and foveated images. Results are
shown in Figure 6.

We see very different performance in Figure 6 compared
to object and scene recognition. First, central information
is obviously much more important than peripheral informa-
tion for face recognition, given the accuracy at 5◦ is much
higher for the Window condition than the Scotoma condition
for Lighten models, and very similar with each other for the
VGG model. This is consistent with our intuition that face
recognition is a fine-grained discrimination process. Second,
the Window performance grows much more slowly after 7◦,
suggesting the more peripheral region provides little addi-
tional information for recognizing faces, unlike objects and
scenes, which needs lots of peripheral information to obtain
the maximal accuracy. Third, the foveated images produce
nearly identical results as the original image, demonstrating
that face recognition only involves central vision, and the
blurred peripheral vision is not needed.

Finally, as central vision appears to be more efficient (on a
per-pixel basis) than peripheral vision in all experiments we
tried, we tested the relative efficiency of the central vision
over peripheral vision by measuring the recognition accuracy
as a function of viewable area. The result is shown in Fig-
ure 7.

From Figure 7, we can clearly see that the recognition ac-
curacy of central vision is always superior than peripheral
vision for all tasks. However, central vision is even more
efficient when recognizing faces than recognizing objects or
scenes, as viewable areas over 50% of the whole image can
only provide a limited boost for face recognition, while sig-
nificantly improving the accuracy of object and scene recog-
nition. Contrarywise, peripheral information provides little to
no help for face recognition, unless over 90% of the image is

Figure 6: Results for large-scale face recognition accuracy
as a function of viewing condition (Windows (w) and Sco-
tomas (s)) and visual angle. Left: experiment with origi-
nal images. Right: experiment with foveated images. For
Lighten-A and Lighten-B models, the visual angle only ex-
pands to 9.5◦, as the input image is smaller (144×144) than
for the VGG model (256×256). The accuracy for face verifi-
cation task is measured as the true positive rate at Equal Error
Rate (EER) point on the ROC curve. Chance is 0.5.

presented, but the accuracy still suffers due to the loss of cen-
tral vision. However, peripheral information is important for
object and scene recognition (and more important for scene
recognition, as shown in Figure 5).

These large-scale scene, object, and face recognition mod-
eling results suggest there is an order of relative importance
of central versus peripheral vision in those tasks: peripheral
vision is most important for scene recognition, less impor-
tant for object recognition, and basically not helpful for face
recognition. Central vision, however, plays a crucial role in
face recognition, is important for object recognition, and is
less important for scene recognition.

Conclusion
In this paper, we modeled the contribution of central ver-
sus peripheral visual information for scene, object, and face
recognition, using deep CNNs. We first modeled the behav-
ioral study of Larson and Loschky (2009), and replicated their
findings of the importance of peripheral vision in scene recog-
nition. In addition, by running a large-scale scene, object, and
face recognition simulation, our models make testable predic-
tions for the relative order of importance for central versus
peripheral vision for those tasks.
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