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Abstract 

Fuzzy-trace theory assumes that decision-makers process 
qualitative “gist” representations and quantitative “verbatim” 
representations in parallel.  Here, we develop a formal model 
of fuzzy-trace theory that explains both processes. The model 
also integrates effects of individual differences in numeracy, 
metacognitive monitoring and editing, and sensation seeking. 
Parameters of the model varied in theoretically meaningful 
ways with differences in numeracy, monitoring, and sensation 
seeking, accounting for risk preferences at multiple levels.  
Relations to current theories and potential extensions are 
discussed. 

Keywords: Decision making; need for cognition; risky 
choice; framing effect; Allais paradox 

Fuzzy-Trace Theory 
Risk preferences are fundamental to psychological and 
economic theory, and to decision neuroscience.  We propose 
a model of risk preferences that integrates theoretical 
principles relevant to mental representations with individual 
differences in metacognitive monitoring and risk-taking 
propensity.  Our model is based on fuzzy-trace theory, an 
account of decision-making under risk, which posits that 
decision-makers use qualitative, categorical, “gist” 
representations of the meaning of decision information, in 
parallel with precise, eidetic or metric, “verbatim” 
representations of the exact words and numbers in that 
information (for an overview, see Reyna, 2012).  By 
“mental representation,” we mean the manner in which a 
stimulus is encoded into a subject’s memory.  Decision 
makers operate on these representations of the stimulus 
rather than on the stimulus itself.  Specifically, a gist 
representation captures the basic meaning, or "essence," of a 
stimulus. Furthermore, fuzzy-trace theory posits a hierarchy 
of gist that is, in the domain of numbers, analogous to scales 
of measurement (Reyna, 2008; Stevens, 1946). We 
approximate this hierarchy with three levels of 
representation: categorical, ordinal, and interval, described 
below. 

The outline of this paper is as follows: first we present a 
motivating example. Next, we describe our novel 
formalization, accounting for factors that vary with 
individual-differences. Finally, we test our model’s 
parsimony and predictions. 

Example 
Fuzzy-trace theory is motivated by the insight that one’s 
representation of a decision problem can drive decision 
outcomes. For example, consider a choice between: 

1. winning $180 for sure; versus  
2. a .90 chance of winning $250 and .10 chance of no 

money.  
One might represent this decision as a simple choice 
between the following two options:  
1.  Possibility of some money  
2.  Possibility of some money and possibility of no money. 
Given this representation, most decision makers would 
favor option 1 because it promises some money without the 
chance of no money. Alternatively, one could instead 
represent the choice as follows: 

1. More chance of winning less money  
2. Less chance of winning more money and 

possibility of winning no money. 
This representation, although more precise, does not allow 
for a clear decision to be made because most people would 
prefer winning more money to winning less money, but they 
would also prefer more chance of winning to less chance of 
winning.  Finally, one may choose a precise representation 
of the problem whereby one calculates the expected value of 
each option by multiplying its respective outcomes by their 
probabilities, as follows: 

1. Expected value of $180 (i.e., $180 * 1) 
2. Expected value of $225 (i.e., $250 * 0.90 + $0 * 

0.10) 
This representation seems to favor option 2, since it 
promises more money on average. Overall, this example 
illustrates our approach to categorical gist representation.  

The Decision Space 
We represent the complements in these options as points 

in a 2-dimensional space, representing all possible 
combinations of amounts of money (or, generally, some 
outcome) and probability that a decision-maker could 
encounter: 
Categorical representation of decision space.  
The gist representation of the choice above is between:  

1. Possibility of some money 
2. Possibility of some money and possibility of no 

money. 
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These gists are represented in a 2-dimensional space.  All 
points in this space are interpreted according to the part of 
the diagram in which they are located.  These gist 
representations can overlap.  For example, a point that falls 
into the part of the space marked as “possibility of no 
money” also falls into the part marked as “possibility of 
some money.”  Thus, multiple gist representations are 
possible for some points. 
The extended fuzzy-processing preference.  

We model the relationship between categories as a 
hierarchy in which higher elements are preferred 
interpretations when compared to lower elements 
(Broniatowski & Reyna, 2014).  Each decision complement 
is a point in our space.  If we determine each complement’s 
gist representation, and then locate that gist in the associated 
hierarchy, the model stipulates how that decision 
complement is interpreted.  

Mapping problem information to categorical mental 
representation. We assume that the categorical distinction 
between “some” of a quantity and “none” of a quantity is 
primitive. Thus, our model assumes that all points are 
mapped to one of these two categories. Throughout this 
paper, we assume that stimuli map to either “some” or 
“none” in both the domains of outcomes chance for 
scientific parsimony.  

Formalizing the extended fuzzy-processing preference. 
We introduced the extended fuzzy-processing preference to 
enable us to differentiate between overlapping gists.  
According to the extended fuzzy-processing preference, 
subjects will prefer to interpret a decision option as within 
the subcategory containing the fewest points– i.e., the 
highest element within the associated hierarchy. We 
formalize the extended version of the fuzzy processing 
preference by specifying that one always prefers the 
interpretation associated with the category in the decision 
space with the lowest dimension (similar to Feldman’s, 
1997, “maximum codimension rule”).  In other words, given 
a point in our space and a set of possible gist interpretations 
for that point, a subject will always prefer the interpretation 
that is highest in the associated hierarchy. 

Importantly, a preferred interpretation, or mental 
representation, is not always the same as a preferred 
outcome. For example, a decision-maker may prefer to 
interpret of “.10 chance of no money” as “possibility of no 
money” when compared to “possibility of some money.” 
Given a choice between two options, interpreted 
respectively as “possibility that of some money” and 
“possibility of no money,” most decision-makers would 
choose the former option. Thus, once mental representations 
are chosen, we must define a preference ordering over the 
decision options with these interpretations. 

Values map mental representations to preference. 
Decision makers choose between options based on which 
has the high-valued affect.  The affect assigned to a given 
option is a function of how that option is represented.  For 
example, “no money is possible” is a preferred 
interpretation for the point ($0, .10, a .10 chance of no 

money) when compared to “some money is possible.”  
However, a prospect that is interpreted as “some money is 
possible” has a high valence when compared to one that is 
interpreted as “no money is possible.” Thus, a decision-
maker would choose the option with the high valence. In 
order to formalize this prediction, we again use a partial 
order – i.e., every pair of elements within the category 
hierarchy may be less than, greater than, equal to, or 
unrelated to one another in the domain of values. Full 
mathematical details of this partial order are presented in the 
paper by Broniatowski & Reyna (2014).   

Mapping problem information to ordinal mental 
representations. Fuzzy-trace theory predicts that decision-
makers use ordinal (e.g., “more” vs. “less”) in parallel with 
categorical and interval representations.  When mapping 
problem information to ordinal mental representation, 
“more” is always in the direction away from zero and “less” 
is always in the direction toward zero. Importantly, points 
may only be compared at the ordinal level if they exist 
within a common category. For example, one may compare 
“no money with .10 chance” to “$180 for sure” because 
both may be represented as “possibility if some money” 
(even if this is not the preferred interpretation for either 
option, it is an admissible interpretation for both). Since 0 is 
less than 180 and .10 is less than certainty, the 
corresponding ordinal representations are “less1 money with 
less2 chance” and “more1 money with more2 chance.” 

Mapping ordinal mental representations to 
preference. Ordinal decision-making assumes that each 
dimension in the decision space has a preferred direction. 
When comparing two decision options, if the ordinal 
representation of one option is preferred along all 
dimensions of the decision space, and is strictly preferred 
along at least one dimension, then that decision option is 
preferred overall.  For example, “more money with more 
chance” is preferred when compared to “less money with 
less chance.” Otherwise, a decision cannot be made and the 
ordinal representation is indifferent, such as when “more1 
money with less2 chance” is compared to “less1 money with 
more2 chance”.  

Formalizing How Each Representation Chooses 
Among Decision Options 

A “gist hierarchy” is a set of mental representations 
ranging in precision from a categorical gist representation to 
an interval verbatim representation, and sets of rules for 
making decisions that are unique to each of these 
representations. At the categorical level, each point is 
represented according to the extended fuzzy-processing 
preference. At the ordinal level, a point is chosen if it is 
weakly preferred along all dimensions and strongly 
preferred along at least one such dimension. Points in 
disjoint categories cannot be compared.  At the interval 
level, decisions options are evaluated according to their 
expected values (i.e., the sum of the value of each outcome 
multiplied by its probability) – the simplest interval 
representation (i.e., it assumes no decision weights).  

Combining Information Across Representations 
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We address conflicts between representations in our 
model by assuming that each representation casts a “vote” 
for its preferred decision options.  For example, given a 
choice between two decision options, each of the 
categorical, ordinal, and interval representations “votes” (-1 
for the first option, +1 for the second option, or 0 if 
indifferent) for a preferred option according to its own 
particular representational logic.  A sum across these votes 
(i.e., a weighted sum, as explained below) determines the 
final decision. We chose summation because it is the 
simplest combination rule for this sort of aggregation. 

An Error Theory for Risky Decision Problems 
We represent error using a standard multinomial logistic 

distribution.  For decisions with two options, effect size 
typically follows a standard logistic distribution. (In 
principle, our model could be extended to decisions with 
multiple options using a multinomial logistic distribution.) 
For our specific application, we model the probability, P, 
that a subject will choose a given decision outcome in a 
risky choice gamble by:  

! " = 1
1 + &-()∙+,-) . 

Here, !   is a three-element vector containing an entry for 

each representation (categorical, ordinal, and interval), !   is 
a three-element vector containing an entry for each 
corresponding decision weight.  We also introduce a factor, 
b, capturing the risk-taking propensity of a given set of 
subjects.  Thus, we account for conflict between 
representations by adding weighted votes from each 
representation.  

Factors affecting the decision weight vector. In the 
domain of decision making, two major individual difference 
factors associated with metacognitive monitoring and 
editing have been proposed – numeracy (e.g., Peters et al., 
2006; Liberali et al., 2012) and Need for Cognition (NFC; 
Cacioppo, et al.,1996; Stanovich & West, 2008).   

People who are higher in numeracy and/or NFC are more 
likely to spontaneously convert and compare alternative 
“framings” of a problem, reducing cognitive biases.  

Numeracy. Peters and colleagues (2006) defined 
numeracy as “the ability to process basic probability and 

numerical concepts” and found that more numerate subjects 
were less susceptible to attribute framing effects. In 

addition, Schley and Peters (2014) found that more 
numerate individuals treated numbers as more linear when 
making a risky decision, suggesting that they rely less on 
categorical gist and more on interval (linear) representations 
of probabilities and outcomes.  

Need for cognition. Prior work suggests that subjects 
reconcile answers to oppositely framed versions of the same 
problem when both frames are presented within-subjects, 
when subjects respond to multiple presentations of the same 
problem, or when they are exposed to obviously factorial 
design manipulations within subjects. Kahneman and 
Frederick (2002) have argued that such designs can lead 
subjects to focus on the variables that are being 
manipulated, and to compare different versions of the same 
underlying problem instead of treating each independently.  
Thus, the magnitude of framing effects varies systematically 
with experimental design (e.g., Stanovich & West, 2008).   

The tendency to reconcile responses to different versions 
(or related problems) when they are presented within-
subjects is greater for those higher in NFC.  Subjects with 
high NFC tend to edit their choices more than those with 
low NFC, presumably because they are more likely to notice 
the common structures underlying these problems (i.e., high 
NFC subjects display “analytic override;” e.g., LeBoeuf & 
Shafir, 2003; Stanovich & West, 2008). Furthermore, 
numeracy and NFC are separate sources of individual 
differences that are not correlated (Peters et al., 2006; 
Liberali et al., 2012). 

We model the effects of numeracy and NFC using the 

decision weight vector !  . Furthermore, if we make the 
simplifying assumption that all of these decision weights are 

equal, we may replace !   by a scalar factor, a, which 
captures the “strength” of a given set of votes. When a is 
high, subjects will strongly favor one option over another, 
unless different representations conflict with one another.  
When a is low, subjects will tend towards indifference.  

Risk-taking propensity. In addition, our model 
incorporates personality differences associated with risk-
taking (e.g., Caspi et al., 1997), including factors related to 
cross-cultural differences (e.g., Du et al., 2002) and 
sensation seeking or reward-related approach (e.g., 
Zuckerman, 2007).  We represent this in our model by a 
linear additive risk preference, b, which, when positive, is 
used to indicate a predisposition toward the higher rewards  
available in the more risky option in a gamble.  The linear 
additive nature of this factor is based on evidence presented 
by Reyna and colleagues (2011) who found evidence 
supporting additive effects (i.e., additive beyond verbatim 
and gist processing) of subjects’ sensation seeking on risk 
taking.     

A worked example. Consider the decision between a 
certain gain of $180 and a 0.90 chance of winning $250 and 
a 0.10 chance of no money discussed above.  Recall that the 
categorical representation prefers the certain option (-1), the 
ordinal representation is indifferent (0), and the interval 
representation prefers the risky gamble (1).  

 

Table 1: Evaluation of Model Fit. 
Model Like- 

lihood 
AIC BIC 

Null -7491 14982 14987 
Saturated -6570 13491 14049 
Analytic 
Categories 

-6672 13409 13510 

Single average 
value for a and b 

-6826 13676 13715 

Note. AIC = Akaike Information Criterion; BIC = 
Bayesian Information Criterion 
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Thus, 	"   = [-1,0,1] in our model. For an experiment that is 
conducted with frame manipulated between subjects, !   = 

[1,1,1]. Thus, ! ∙ #   = -1 + 0 + 1 = 0 (indicating that the 
categorical and interval representations compete). Finally, 
suppose we estimate our sample’s risk propensity from prior 
data to be b = 0.25, indicating a slight preference for risk. 
Then, the probability that a randomly chosen subject from 
our sample will choose the risky gamble option is P= 
1/(1+e-0.25) = 56%, and the probability that a randomly 
chosen subject will choose the certain option is 44%.  

 Assessing The Goodness of Fit of our Model 
To demonstrate the scientific parsimony of this model, we 
have adapted a technique used by Busemeyer, Wang, & 
Shiffrin (2015), wherein we compare our model’s fit to a 
“null” model (in which each decision option is equally 
likely), a “saturated” model (in which maximum-likelihood 
parameter values are separately estimated for each 
replication in our sample), and a model that estimates 
parameters based upon theoretically-motivated categories: 
namely mathematical ability (PISA scores) and 
experimental design (for the a parameter), and stimulus 
type, nationality, and age (for the b parameter), with 
parameter values estimated separately within each category 
using a jackknife estimator. Specifically, given a model, y, 
the log likelihood function for each experimental replication 
in our sample of 88 is: 
ln # $% = '(,(ln	(,(,() + '(,/ln	(,(,/)+'/,(ln	(,/,() + '/,/ln	(,/,/)  
where n1,1 is the number of people choosing the first 
decision option in the first problem, p1,1 is the predicted 
proportion of subjects choosing the first decision option in 
the first problem, given model y, etc., and  

ln # $ = ln # $&
&

 
 

is the total log-likelihood of model y. Given ln[L(y)], we 
may calculate the Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) as follows: 

!"# = 2&-2ln	[, - ]  

where k is the total number of distinct values for a, b, and x 
in a given model (e.g., the total number of analytic 
categories). Similarly,  

!"# = %	ln	(*) − 2ln	[/ 0 ]  
where n is the total number of data points in our sample 
(i.e., 176 data points for 88 pairs of problems, listed in the 
paper by Broniatowski & Reyna, 2015).  Table 1 shows the 
log-likelihood, AIC, and BIC values for the models that we 
tested (we tested other models as well, but none surpassed 
the model with analytic categories).  The model containing 
analytic categories for a and b has the lowest values of both 
AIC and BIC, and only the saturated (i.e., overfit) model has 
a higher log likelihood. 

Individual Differences Analysis 
Estes and Maddox (2005) point out that aggregate data 
analyses may lead to different conclusions from those 
reached through individual-level analyses.  This concern 
does not apply to data derived from between-subjects 
designs, on the other hand, we may use the results of within-
subjects designs to perform process level tests of our model.  
Specifically, we examined three replications of a framing 
problem for which framing was manipulated within-subjects 
and individual level frequency data were reported (Frisch, 
1993; Stanovich & West, 1998; LeBoeuf & Shafir, 2003). 
We extracted the number of subjects that were consistent 
between frames (either choosing the certain gamble or the 
risk option in both frames), the number of subjects who 
displayed a framing effect (choosing the certain option in 
the gain frame and the risky gamble in the loss frame), and 
the number of subjects who displayed reverse framing (the 
risky gamble in the gain frame and the certain option in the 
loss frame. These data were used to test the following 
process-level accounts of our model. 
Between-subjects framing. Figure 1 shows a process-level 
account of a framing problem for which frame was 
manipulated between subjects with a single presentation.  
Here, a subject is exposed to a stimulus containing a given 
frame. If they are not numerate, they choose the decision 
option consistent with that frame. If they are numerate, and 
they are not sensation seeking, they choose the certain 
option.  Otherwise, they choose the risky option.  Thus, an 
individual who chooses the risky option in the gain frame 
would be numerate and sensation seeking according to our 
model.  Furthermore, we may perform aggregate-level 
analysis of between-subjects data, which enables us to 
replace individual choices with probabilities.  Specifically, 
the probability that a subject randomly chosen from our 
sample would pick the risky option in the gain frame is 
.!"#$% = !%'()*#+)*!-- . Similarly, the probability that a 
subject would pick the certain option in the loss frame is 
!"#$$ = (1 − !)*+,-./,) + !)*+,-./,*!$$ . Furthermore, our 

model stipulates that 
!"#$% =

1
1 + )-(-#,-)  and  

 
Figure 1: Process Flowchart for Between-Subjects 
Condition, No Replications, Individual Representation 
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!"#$$ =

1
1 + (-(+,-) . Finally, we may estimate the values of 

a and b using the by averaging across the maximum  
 likelihood estimates of a and b for all problems with the  
exception of the problem whose parameters we are trying to 
estimate. Thus, we have a system of two equations with two  
unknowns, such that  

!"#$%&'(% = 1 + 1
1 + ,-(-'/0) -

1
1 + ,-('/0)   & 

!"" = !$%&'()*'*(1 + /0-))  
Within-subjects framing.   Figure 2 shows a process-level 
account of a framing problem for which frame was 
manipulated within subjects.  

 
Figure 2: Process Flowchart for Within-Subjects Condition, 
Individual Representation 

Here, subjects are exposed to a stimulus containing a 
given frame in a manner analogous to a between-subjects 
framing problem: If they are not numerate, they choose the 
decision option consistent with that frame. If they are 
numerate, and they are not sensation seeking, they choose 
the certain option.  Otherwise, they choose the risky option. 
The individual then makes a second choice on an 
oppositely-framed version of the same framing problem (if 
they first saw the loss frame, they now see the gain frame 
and vice versa).  Individuals with high NFC will recognize 

the similarity of the two problems and remain consistent 
across frames (LeBoeuf & Shafir, 2003) whereas 
individuals with low NFC will treat the second problem as if 
it were independent of the first.  As in the between-subjects 
case, we may replace individual choices with probabilities.  
This formulation enables us to estimate the proportions of 
subjects that will be consistent, exhibit framing, or exhibit 
reverse framing for a given sample where frame is 
manipulated within-subjects. Specifically, the proportion of 
subjects in a given sample that is consistent across frames is 
given by !"#$ + !&&' 1 − !"#$ !*+,-./0- , the proportion 
of subjects that exhibiting framing behavior is given by 

1 − #$%& (1 − #()*+,-.+)  +
	 1 − $%% $%% 1 − $&'( $)*+,-./,   

and the proportion of subjects exhibiting reverse framing is: 
! − #$$ #$$ ! − #%&' #()*+,-.+  

Process-level tests of our model.   We compare our 
model’s predictions to individual level behavior (i.e., 
sequential choices) by estimating values of pnumeracy, pNFC 
and pss for a given experimental sample using the equations 
above. Specifically, we compare our model’s predictions to 
three replications of a framing problem presented within-
subjects that are reported in the literature (Frisch, 1993; 
LeBoeuf & Shafir, 2003; Stanovich & West, 1998). 
Specifically, we estimated the baseline proportion of 
subjects who are numerate from the problems in our sample 
for which framing was manipulated between-subjects. 
Specifically, we estimated the value of !   as the average of 
maximum-likelihood a values for low-PISA between-
subjects framing problems (since all within-subjects 
problems are also from low-PISA countries) weighted by 
the total number of subjects (recall that the first choice made 
in a within-subjects design is analogous to a between-
subjects framing problem), excluding the data from 
Stanovich and West (1998) and LeBoeuf and Shafir (2003) 
from our average in order to avoid post hoc estimation 
(Busemeyer & Wang, 2000), yielding a value of !   = 0.89.  
Similarly, we estimate the value of !   as the weighted 
average of all MLE b values of the ADP when presented to 
comparable (i.e., non-Chinese, who are known to be more 

Table 2: 3 Sampled Experimental Replications of Individuals’ Decisions When Frame is Manipulated Within-Subjects 
 % High NFC  Empirical  Predicted   
Reference N MLE JK  C F RF  C F RF χ2 p 

!   = [±1,0,0], a=0.89, b=0.22 
Frisch 

(1993) 
99 48 59  63 29 7  71 23 6 2 0.29 

Stanovich 
& West 
(1998) 

29
2 

56 57  202 73 17  205 69 18 0.
3 

0.87 

LeBoeuf & 
Shafir (2003) 

28
7 

61 54  206 60 21  194 74 19 4 0.16 

Note. C = Consistent – same decision in both frames; F = Framing – certain option in gain frame & risky gamble in loss 
frame; RF = Reverse Framing –  certain option in loss frame & risky gamble in gain frame; MLE = Maximum 
Likelihood Estimate; JK = Jackknife estimator generated by averaging across all MLE values except the one 
corresponding to a given problem 
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risk-taking; Du et al, 2002) college student samples, again 
excluding the data from Stanovich and West (1998) and 
LeBoeuf and Shafir (2003), yielding a value of !  =0.22. By 
extension, pnumeracy=59% and pss=58%.  Finally, we 
calculated pNFC to compare the number of subjects choosing 
consistency, framing, or reverse framing with our model’s 
predictions.  The value of pNFC was chosen to minimize the 
sum of squares between the predicted and actual numbers of 
subjects within each category.  Finally, we averaged across 
all values of pNFC excluding the value associated with that 
particular problem (i.e., using a jackknife estimator).  Table 
2 shows that the data do not differ significantly from our 
model’s predictions in any of these three experiments. 

 Conclusions 
This model is the first to explicitly formalize the key 

concepts of gist, the gist hierarchy, and qualitative decision-
making.  Previously, (Broniatowski & Reyna, 2014; 2015) 
we introduced the mathematical underpinning and error 
theories underlying our model.  Here, we demonstrated that 
this model is both scientifically parsimonious and robust. 
The structure of our model also enables it to outperform 
leading theoretical alternatives, such as Cumulative 
Prospect Theory (CPT; Tversky & Kahneman, 1992), which 
make modal, and not precise, predictions. Thus, our 
formalized theory explains a wide variety of phenomena, 
integrating known effects and novel predictions. 
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