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Abstract

Humans demonstrate remarkable abilities to predict physical
events in complex scenes. Two classes of models for physical
scene understanding have recently been proposed: “Intuitive
Physics Engines”, or IPEs, which posit that people make pre-
dictions by running approximate probabilistic simulations in
causal mental models similar in nature to video-game physics
engines, and memory-based models, which make judgments
based on analogies to stored experiences of previously en-
countered scenes and physical outcomes. Versions of the lat-
ter have recently been instantiated in convolutional neural net-
work (CNN) architectures. Here we report four experiments
that, to our knowledge, are the first rigorous comparisons
of simulation-based and CNN-based models, where both ap-
proaches are concretely instantiated in algorithms that can run
on raw image inputs and produce as outputs physical judg-
ments such as whether a stack of blocks will fall. Both ap-
proaches can achieve super-human accuracy levels and can
quantitatively predict human judgments to a similar degree,
but only the simulation-based models generalize to novel sit-
uations in ways that people do, and are qualitatively consis-
tent with systematic perceptual illusions and judgment asym-
metries that people show.
Keywords: physical scene understanding; neural network;
analysis by synthesis; simulation engine; blocks world

Introduction
The outputs of vision include not only the objects in a scene
and their spatial relations, but also their physical properties
and relations: What is heavy or light? What is balanced or at-
tached, and what isn’t? What is likely to fall? What will hap-
pen next? When objects move, their motion can be predicted
from these physical inferences; motion can also affect our
physical judgments when objects move in unexpected ways.

These capacities for physical scene understanding are ba-
sic to how we see the world. Precursors to them can be
found in infants as young as 3-5 months old, even before chil-
dren acquire their first words labeling kinds of objects (Carey,
2009; Baillargeon, 2004). Building computational models of
these abilities has been a target for recent work in both cog-
nitive science and computational vision (Battaglia, Hamrick,
& Tenenbaum, 2013; Gupta, Efros, & Hebert, 2010; Mot-
taghi, Bagherinezhad, Rastegari, & Farhadi, 2015; Fragki-
adaki, Agrawal, Levine, & Malik, 2015; Zheng, Zhao, Yu,
Ikeuchi, & Zhu, 2015; Li, Azimi, Leonardis, & Fritz, 2016).
In contrast to earlier work on intuitive physics that empha-
sized explicit reasoning about textbook-style physics prob-
lems (McCloskey, 1983), with models focused on people’s
qualitative judgments (Forbus, 1984; Siegler, 1976), recent
studies of physical scene understanding have looked at more
rapid, perceptual inferences, which can be parametrically ma-
nipulated and modeled quantitatively, and which could serve

∗ indicates equal contributions.

as the basis for grounded action planning. Several studies
have argued that rapid perceptual inferences about the physics
of scenes can be explained by positing an “intuitive physics
engine” (IPE), a mental system for approximate probabilis-
tic simulation analogous to those used in video-game physics
engines (Sanborn, Mansinghka, & Griffiths, 2013; Gersten-
berg, Goodman, Lagnado, & Tenenbaum, 2012; K. A. Smith
& Vul, 2013). These simulation engines approximate object
dynamics interacting under Newtonian or other forms of clas-
sical mechanics over short time scales, in ways that are per-
ceptually reasonable (if not necessarily physically accurate)
and efficient enough to run in real time for complex scenes.

Other authors have suggested that the simulation-based
IPE scheme might be prohibitively expensive for brains to
implement (Davis & Marcus, 2016). An alternative class of
models has been proposed based on stored memories of expe-
rienced scenes and physical outcomes, together with pattern
recognition algorithms (such as neural networks) for access-
ing appropriate memory items to predict outcomes in a new
scene context (Sanborn et al., 2013; Sanborn, 2014).

Although cognitive scientists have yet to seriously test
memory-based alternatives to simulation in physical scene
understanding tasks, AI researchers at Facebook recently
demonstrated such a possibility in a working system. Lerer,
Gross, and Fergus (2016) trained deep convolutional neu-
ral networks (CNNs) to make physical predictions directly
from visual images, judging for instance whether a stack of
blocks will fall, as Battaglia et al. (2013) studied empirically
and modeled using approximate probabilistic simulation. The
FAIR neural network, named PhysNet, was partly pretrained
on ImageNet (Krizhevsky, Sutskever, & Hinton, 2012) and
then trained on after a large dataset of synthetic scenes and
outcomes. It achieved a high accuracy (89%) on the stability
prediction task, generalized to real images reasonably well
(67%), and exhibited positive correlations with human re-
sponses. This suggests that memory-based systems for visual
intuitive physics may be promising at least in AI applications,
and perhaps also as cognitive models.

Motivated by the success of CNNs in machine vision ob-
ject recognition tasks (Krizhevsky et al., 2012), neurosci-
entists have proposed analogous architectures as accounts of
the fast feedforward aspects of human visual object recogni-
tion (Yamins et al., 2014; Serre, Oliva, & Poggio, 2007). If
CNNs can be successfully applied to physical scene under-
standing tasks as well, they could offer a compelling alter-
native to simulation as an account of how people can predict
physical outcomes so well, so quickly.

Our goal in this paper is to conduct the first rigorous em-
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pirical comparisons of simulation-based (IPE) and neural-
network-based (CNN) models for physical scene understand-
ing. Although CNNs have many appealing features as models
of visual cortex, they also have features that are less appealing
– and arguably less human-like. They typically require large
amounts of training data, which a human might not have ac-
cess to. Large training sets may be required for any new sce-
nario, even if it is just a simple variation on previously seen
cases. For instance, in order to predict whether a pile of four
blocks is stable, a CNN may have to see at least thousands of
cases that either do or do not fall under gravity. In contrast,
an IPE model, just like humans, is able to make many predic-
tions with reasonable accuracies without training, as the sim-
ulation engine within encodes abstract physical knowledge
that applies to a very wide range of scenes.

Even with a large amount of training data, it is unclear
whether the knowledge learned by CNNs may be transfer-
able to some similar cases. Lerer et al. (2016) showed that
a network trained on images of two and four blocks could
generalize to images of three blocks to some extent, but there
is no clear way for a neural network to answer a different
but related question to those it is trained for, e.g., in which
direction the blocks would fall, unless explicit labels are pro-
vided during training. One of the main points in favor of IPE
models is their ability to explain how people can easily make
many different judgments about very different configurations
of blocks, without specific training (Battaglia et al., 2013).

Perhaps most interestingly, people are prone to systematic
“physics illusions” that IPE models naturally capture. For in-
stance, stacks of blocks often look to people as if they are sure
to fall when they are actually carefully balanced. People do
not, however, make the opposite error: They do not system-
atically mistake unstable stacks for stable ones. Probabilistic
simulation-based models are similarly tempted to make this
asymmetric pattern of errors (Battaglia et al., 2013): Small
amounts of uncertainty in the simulation can make a sta-
ble configuration appear unstable, but are unlikely to make
an unstable one appear stable. It is unclear whether neural-
network-based models can capture these perceptual illusions.

In this paper, we report four experiments comparing the
behavior of discriminatively trained neural networks and gen-
erative simulation-based models with human judgments on
blocks-world physics tasks, addressing the questions above.
Exp. 1 evaluates the performance of the IPE model and
performance-optimized neural networks in predicting block
stability. Exp. 2 explores the role of limiting CNN train-
ing data, to see if performance on smaller training sets looks
more human-like. Exp. 3 evaluates both model classes for
asymmetries in the stability illusions described above. Exp. 4
tests CNNs and IPE models’ ability to generalize to situations
slightly different from those the CNN was trained on.

The Blocks World
For our experiments, we study a set of seemingly simple but
physically rich scenarios: a pile of blocks with one on top of

Stimuli in
Battaglia et al. (2013)

Stimuli in
Lerer et al. (2016)

Figure 1: Sample stimuli used by Battaglia et al. (2013),
Facebook AI Research (Lerer et al., 2016), and us. Our stim-
uli are ordered by increasing visual instability (defined in Ex-
periment 3)

another. Our goal is to study how humans and computational
models behave on various tasks given these stimuli, and to
reveal possible correlations between them. We now illustrate
our stimuli in detail.

For each stimulus, there are four blocks with side length 1
meter piled on the ground, each supporting another on top of
it. There is only one block at the same height level. Because
laying blocks at uniform random is likely (p = 75%) to re-
sult in an unstable system, we draw the horizontal position of
a block from a normal distribution with variance 0.292 cen-
tered at the horizontal position of the block under it, to ensure
that there are half stable and half unstable piles in the dataset.
Later, we study cases where the number of blocks varies, and
for them we update the variance accordingly.

Whether blocks are stable, i.e., groundtruth labels, can be
derived from the coordinates of blocks. A block will fall if
and only if the center of mass of all blocks above it, including
itself, does not fall on top of the block under it.

For rendering, we generate images of resolution 256×
256.We place a pile of blocks in a virtual experiment field
with a size of 30× 30 meters and a height of 4 meters. We
have one light source, 16 meters high, to simulate real-life
lightening. We also vary the position, focal point, and tilt an-
gle of the camera. We represent its coordinates in cylindrical
coordinates (r,θ,z), with origin on the ground right beneath
the center of the bottommost block. The camera positions
are sampled from r ∼ N(11,0.32), θ∼ Uniform(0,π/2), and
z ∼ N(3,0.012). We choose these parameters to ensure all
blocks are within the view of the camera. The focal point of
the camera is set at the center of the pile plus a Gaussian noise
with variance 0.22. We also tilt the camera; its angle from the
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Figure 2: The Intuitive Physics Engine (IPE) model

direction of projection is sampled from N(0,22). We incor-
porate these variances for evaluating the generalization ability
of the models.

Computational Models
We study two classes of computational models. One is the
Intuitive Physics Engine (IPE) Model (Battaglia et al., 2013),
which aims to simulate humans’ reasoning on physical scenes
by an approximate probabilistic simulation engine. The other
is convolutional neural networks (CNNs), a class of discrim-
inative recognition models that have gained much popularity
in AI fields like computer vision in recent years.

The Intuitive Physics Engine Model
The Intuitive Physics Engine (IPE) consists of two compo-
nents: a Bayesian vision system, which infers the configura-
tions of blocks from given images, and a physical inference
system, which calculates the Bayesian posterior probability
distribution of physical properties (i.e., stability) by running
a number of simulations under perturbation forces and geo-
metric noises. Figure 2 illustrates the IPE model. For more
details, please see Battaglia et al. (2013).

For each scene, we render images of the initial state under
perspective projection from three fixed viewpoints rotated by
45◦. These triplets of images are then fed into the Bayesian
vision system, which uses a Metropolis-Hasting (MH) sam-
pling algorithm to infer a Bayesian posterior distribution of
the scene’s initial state (position, height, and the number of
blocks presented). We run the MH sampling for 5,000 steps,
with a 2D Gaussian blurring kernel of width 2 on the observed
images, as suggested by Battaglia et al. (2013).

With the inferred initial geometry, we run 20 simula-
tions for each scene using the Open Dynamics Engine
(ODE) (R. Smith, 2006). We set the friction coefficient to 0.2,
the bounce coefficient to 0.2, and the side-length and density
of each block to 1m and 500kg/m3, respectively. Gravity is
set to 9.81m/s2 pointing downwards. Before each simulation
starts, a horizontal zero mean Gaussian noise σ is added to
the positions of blocks. Then the simulation runs at a step
size of 10ms for 2 seconds. During the first second, a hori-
zontal force with magnitude φ is exerted at the center of the
bottom face of the bottommost block. The direction of the

Figure 3: The structure of LeNet

force is uniformly sampled from (0,2π) and changes at a fre-
quency of 50Hz. We consider a pile unstable if the vertical
coordinate of the top block changes by more than 0.2 meters
when the simulation ends.

Convolutional Neural Networks
CNNs have gained much popularity in computer vi-
sion (Krizhevsky et al., 2012). Here we consider two popu-
lar CNN frameworks: the small but powerful LeNet (LeCun,
Bottou, Bengio, & Haffner, 1998), and the widely used
AlexNet (Krizhevsky et al., 2012).

LeNet, originally proposed for digit recognition, has been
widely used as a recognition model in vision because of its
effectiveness and simplicity (LeCun et al., 1998). LeNet con-
sists of two convolutional layers, each followed by a pooling
layer and an activation layer. There are then two fully con-
nected linear layers at the end. We modify the final layer so
that instead of ten outputs for digit classification, the model
now has two output units — its confidences on whether the
blocks will fall or not. Figure 3 shows the structure of LeNet.

The second is the popular AlexNet (Krizhevsky et al.,
2012), which achieves impressive performance on ImageNet
classification. AlexNet consists of five convolutional, pool-
ing, and activation layers, and three linear layers at the end.
We evaluate both AlexNet pretrained on ImageNet, as well as
AlexNet trained from scratch.

We use Torch (Collobert, Kavukcuoglu, & Farabet, 2011)
for implementation. We set the learning rate to 0.01 for LeNet
and for fine-tuning AlexNet, and to 0.2 for training AlexNet
from scratch. We use stochastic gradient descent for training.

Behavioral Experiments
To collect human responses, we first randomly divide all test
images into groups, each consisting of 10 images. We then
add four easy cases (two stable, two unstable), whose sta-
bility is visually apparent, into the group. For each group,
we collect 80 responses on Amazon Mechanical Turk. We
only allow workers with an approval rate > 90% to submit
responses, and we only accept responses from workers that
answered all four easy cases correctly.

Experiment 1: Predicting Falling Blocks
In our first experiment, we test the performance of the IPE
model and neural networks on images with four blocks, and
compare the results with human responses.

Experimental Setup For the IPE model, we consider cases
with various levels of geometric Gaussian noises σ and exter-
nal forces φ during physical simulations. We then compare
their performance with LeNet, AlexNet, and humans.
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φ

0 35 40 45 50

σ

0 94.2 87.2 79.5 71.3 63.8
0.05 91.3 83.4 76.1 69.1 61.8
0.1 83.2 75.7 70.3 62.6 56.4
0.15 72.2 66.8 59.4 54.2 51.2
0.2 58.5 53.8 52.1 51.0 50.9

Corr ≥ 0.45 ≥ 0.54 ≥ 0.56 ≥ 0.58 ≥ 0.60

Table 1: Accuracies (%) of the IPE model with different σ

and φ, and their correlations with human responses. We use
(σ,φ) = (0.1,40) for following experiments.

We use 1,000 test images, each with a pile of four blocks.
For neural networks, we build a training set of 200,000 im-
ages (disjoint from the test set) with groundtruth labels.

Results and Discussions As shown in Table 1, when no
geometric error or external force is added to the IPE model
(σ = 0,φ = 0), its results almost always match ground-truths
(94.2% accuracy). Accuracy decreases as noises increase;
however, as previously described in Battaglia et al. (2013),
we also observe that correlation between IPE responses and
human predictions goes up. For the following experiments,
we use an IPE model with (φ,σ) = (0.1,40) as it matches hu-
man performance in terms of both accuracy and correlation.

We compare results for stable and unstable cases sepa-
rately, and list them in Table 2. We observe that human pre-
dictions and the IPE model responses have an asymmetric
pattern: they perform well on unstable cases, but for images
with a stable pile of blocks, their accuracies are much worse.
On the contrary, neural networks do not exhibit a similar pat-
tern; they have roughly the same accuracies for both cases.
We will revisit this asymmetry more in Experiment 3.

Experiment 2: Limited Training Data
In our second experiment, we inspect the behaviors of neural
networks with different sizes of training sets. As our the IPE
model requires only one or a few examples for simulation, its
performance does not change with the availability of training
data. The same applies to humans.

Experimental Setup Instead of using training sets of
200,000 images, we now only provide the networks with
training sets of 100 to 20,000 images. For each scale, we
sample five training sets independently, train one network on
each set, and compute the average of their performance. The
other setup is same as that in Experiment 1.

Results and Discussions As shown in Figure 4, the per-
formance of CNNs decreases as there are fewer training
data. Although AlexNet (not pretrained) performs better with
200,000 training images, it also suffers more from the lack
of data, while pretrained AlexNet is able to learn better from
a small amount of training images. For our task, both mod-
els require around 1,000 images for their performance to be
comparable to the IPE model and humans. We then evaluate

Method Stable Unstable All

Human 38.0 92.9 65.5
IPE 40.7 99.0 70.3

LeNet (200K) 91.3 89.0 90.1
AlexNet (200K) 91.5 92.3 91.9
AlexNet (Pretrained, 200K) 94.5 94.7 94.6

LeNet (1,000) 68.0 69.3 68.7
AlexNet (1,000) 71.8 70.1 70.9
AlexNet (Pretrained, 1,000) 72.5 74.2 73.4

Table 2: Accuracies (%) of humans, IPE, LeNet, and AlexNet
(pretrained and not pretrained), on 200K or 1,000 images.
The results on 1,000 images are averaged over five models
trained on independently sampled sets.

Figure 4: CNN models with different sizes of training sets

the networks trained with 1,000 images. As shown in Ta-
ble 2, there is still no asymmetric pattern in the responses of
the less-trained networks.

We now look into how each model correlates with human
responses in more detail. Figure 5 (a) and (b) demonstrate
that the IPE model has a stronger correlation with humans,
compared to LeNet trained on the full training set. Another
interesting finding is that the less-trained LeNet (c) is more
human-like. We will discuss this more in the final section.

Experiment 3: Boundary Cases
We now systematically study the asymmetry we observed in
Experiment 1. In particular, we focus on a few groups with
visually unstable piles, i.e., piles that are carefully balanced
and therefore stable, but illusory to humans so that they be-
lieve these blocks will fall.

Experimental Setup We define visual instability, scaling
from 0 to 5, to describe how unstable a pile of blocks looks
like. A pile with instability value x means there exists at least
one block so that the center of mass of the blocks above it lies
x/10 meters away from its center on x-y plane. As the side-
length of blocks is 1 meter, a pile with a visual instability
value 4 looks very unstable to humans, significantly different
from one with value 1. Figure 6 shows examples with various
visual instability values.

For this experiment, we restrict possible camera positions
so that the deviations of blocks can be clearly perceived. We
generate four datasets of stable blocks with visual instabilities
of 1,2,3, and 4 respectively, each with 100 images.
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(a) Human (Y -axis) vs IPE (X-axis) (b) Human (Y) vs LeNet 200K (X) (c) Human (Y) vs LeNet 1,000 (X)

Figure 5: From left to right: human responses vs (a) responses of IPE (normalized numbers of moving blocks), (b) LeNet
trained on the full training set (200,000 images), and (c) LeNet trained on 1,000 images. Results for AlexNet are similar. We
list Pearson’s correlation coefficients at the bottom-right corner.

Figure 6: Upper: stable blocks with increasing visual insta-
bilities; Lower: performance of LeNet, AlexNet, pretrained
AlexNet, IPE, and humans on the four datasets. Neural net-
works are trained on 200K images. Behaviors of networks
trained on a smaller set (1,000 images) are similar.

Results and Discussions As shown in Figure 6, the perfor-
mance of neural networks are, in general, better than their per-
formance in Experiment 1, probably because images here are
easier as the camera positions are restricted. Also, their per-
formance barely changes for groups with different visual in-
stabilities. Even for the most deceptive group (visual instabil-
ity 4), a LeNet has an accuracy of 93%. We also test AlexNet
(both pretrained and not pretrained) on cases where blocks
are unstable but visually stable, and the network, again, gives
highly accurate results (≥ 93%).

The performance of IPE and humans, on the other hand,
changes drastically across groups. Corresponding to results
in Experiment 1, both IPE and humans consistently predict
that blocks with visual instability 4 will fall. Their accuracies
are higher when visual instability is smaller, but still not close
to those of neural networks. This confirms our observation of
the asymmetry. More discussions follow in the final section.

Experiment 4: Knowledge Transfer
A possible explanation to humans’ one-shot learning ability
is based on the concept of transfer learning. In our fourth ex-
periment, we evaluate the behaviors of computational models
on tasks involving knowledge transfer.

Experimental Setup For this experiment, we generate 200
test images with three and five blocks, respectively. Examples
are shown in Figure 7. We modify the variance of block po-
sitions to ensure there are half stable and half unstable cases.

Our Bayesian vision system is extended to include the
number of blocks as one parameter in sampling. Because the
number of blocks directly determines the total mass, we also
vary the magnitude of the perturbation force according to the
inferred number of blocks to keep its effect consistent. For
neural networks, we simply test the models previously trained
on the 200,000 images with four blocks.

Results and Discussions Table 3 shows that while CNNs
achieve ∼ 90% accuracies on four-block cases, their perfor-
mance is much worse on cases where the number of blocks
is smaller than that in training examples. Specifically, the
predictions of models trained on 200K images are at chance.
For cases with more blocks, CNNs, especially pretrained
AlexNet, can learn to generalize to some extent. However,
their behaviors are different from human responses. In com-
parison, humans and the IPE model have relatively consistent
performance, with slight decreases in accuracies as the num-
ber of blocks goes up and the task becomes more difficult.

These experiments demonstrate that the knowledge learned
by neural networks cannot be transferred, at least in a straight-
forward way, to scenarios outside the training set. The IPE
model and humans enjoy more flexibility in reasoning in the
complex world and solving more general problems.

General Discussion
Following Facebook AI’s reported results, we found that con-
volutional neural networks can be trained to achieve super-
human accuracy levels on stability judgment tasks from raw
images (Exps. 1 and 2). CNNs also correlate reasonably well
with human intuitions about how likely a stack of blocks is
to fall, and once trained, they can respond to new images ex-
tremely quickly. However, these features do not automati-
cally make CNNs a good model of people’s physical intu-
itions. They do not capture systematic judgment asymmetries
that humans make, which simulation-based IPE models do
capture (Exps. 1-3). CNNs also have limited generalization
ability across even small scene variations, such as changing
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Figure 7: Images with three or five blocks

Model Training Test Set

3 4 5 Avg

LeNet (200K) 4 50.5 88.5 64.0 67.7
AlexNet (200K) 4 52.5 89.5 65.5 69.2
AlexNet (P, 200K) 4 51.0 95.0 78.5 74.8

LeNet (1,000) 4 57.0 64.0 66.0 62.3
AlexNet (1,000) 4 54.0 62.0 64.5 60.2
AlexNet (P, 1,000) 4 55.0 71.0 72.0 66.0

IPE (0.1,10x) N/A 72.0 64.0 56.0 64.0
Human N/A 76.5 68.5 59.0 68.0

Table 3: Results on the task of transfer learning

the number of blocks. In contrast, IPE models naturally gen-
eralize and capture the ways that human judgment accuracy
decreases with the number of blocks in a stack (Exp. 4).

Taken together, these results point to something fundamen-
tal about human cognition that neural networks (or at least
CNNs) are not currently capturing: the existence of a mental
model of the world’s causal processes. Causal mental mod-
els can be simulated to predict what will happen in qualita-
tively novel situations, and they do not require vast and di-
verse training data to generalize broadly, but they are inher-
ently subject to certain kinds of errors (e.g., propagation of
uncertainty due to state and dynamics noise) just in virtue of
operating by simulation.

Despite the success of CNNs in accounting for other high-
level human perceptual capacities, such as rapid object classi-
fication (Yamins et al., 2014), our results suggest that at least
some perceptual judgments which people can make in a quick
glance are not well explained by current feedforward neural
networks. We should not conclude however, that neural net-
works cannot help to explain how people make intuitive phys-
ical judgments. If people do indeed have a “physics engine
in the head”, somehow this simulator must be implemented in
neural circuits. Recurrent neural networks (RNNs) could pro-
vide one model for this (Fragkiadaki et al., 2015). It is also
possible that CNNs, if trained on more diverse scenes and
physical judgments than those studied here and/or pretrained
on large-scale image classification tasks (as in Lerer et al.,
2016), could capture more of the qualitative inference behav-
ior people show in our tasks. Lastly, CNNs could be useful
for visual intuitive physics by quickly estimating the relevant
object properties in images needed to represent the world’s
state in a physics engine, which would then support more
sophisticated reasoning and prediction by simulation (Wu,
Yildirim, Lim, Freeman, & Tenenbaum, 2015). Going for-
ward we are eager to explore these and other productive lines
of exchange between simulation-based generative models and
memory-based neural network models.
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