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Abstract
The event segmentation theory (EST) postulates that humans
systematically segment the continuous sensorimotor informa-
tion flow into events and event boundaries. The basis for the
observed segmentation tendencies, however, remains largely
unknown. We introduce a computational model that grounds
EST in the interaction abilities of a system. The model learns
events and event boundaries based on actively gathered senso-
rimotor signals. It segments the signals based on principles of
probabilistic predictive coding and surprise. The implemented
model essentially simulates, anticipates, and learns event pro-
gressions and event transitions online while interacting with
the environment by means of dynamic, predictive Bayesian
models. Besides the model’s event segmentation capabilities,
we show that the learned encodings can be used for higher-
order planning. Moreover, the encodings systematically con-
ceptualize environmental interactions and they help to identify
the factors that are critical for ensuring interaction success.
Keywords: event models; object interaction; predictive encod-
ing; event segmentation; higher order planning; factorization;
conceptualization

Introduction
The embodiment turn in cognitive science has emphasized the
importance of simulating relevant aspects of the outside envi-
ronment by means of perceptual symbol systems (Barsalou,
1999). To enable motor-grounded simulations, the inclusion
of actions was emphasized (Engel, Maye, Kurthen, & König,
2013). Moreover, the importance of explicit forms of predic-
tions and anticipations has been emphasized, supporting both,
cognitive development (Barsalou, Breazeal, & Smith, 2007)
and adaptive, goal-directed behavior (M. Botvinick & We-
instein, 2014; Butz, Sigaud, & Gérard, 2003; Sigaud, Butz,
Pezzulo, & Herbort, 2013). In fact, recent treatises suggest
that predictive coding and anticipations may form the foun-
dations that bring about embodied cognition (Clark, 2013;
Friston, 2009; Hohwy, 2013). In this paper, we present an
algorithm that models an anticipatory learning system, which
develops suitable compositional structures to interact with the
environment adaptively and goal-directedly.

The event segmentation theory (EST) (Zacks & Tversky,
2001; Zacks, Speer, Swallow, Braver, & Reynolds, 2007)
suggests that humans tend to structure the stream of sensory
perceptions into events and event transitions. Events were
characterized as “a segment of time at a given location that
is conceived by an observer to have a beginning and an end”
(Zacks & Tversky, 2001, p. 3). In various studies that fo-
cused on event structure perception, it was shown that events
are characterizable as relatively uniformly unfolding interac-
tions, whereas event boundaries are characterized by sudden,

strongly non-linear changes in the unfolding events. While
some of these changes seem to be strongly related to move-
ment variables, movement variables alone could not account
for all the segmentations that humans indicated (Zacks, Ku-
mar, Abrams, & Mehta, 2009). We propose that event seg-
mentations may be grounded in, and develop from, own sen-
sorimotor experiences.

To investigate this proposition, we introduce a computa-
tional cognitive model implementation, which is based on
Zacks et al. (2007)’s schematic EST model. The implemented
system learns how it is able to manipulate objects solely by
actively processing sensorimotor interactions. The system es-
sentially develops a predictive world model, which segments
the gathered sensorimotor experiences into events and event
transitions from scratch. Events are sets of forward models
that are active over an extended period of time while inter-
acting with the environment. Event boundaries mark the be-
ginning and ending of particular events. As a result, the in-
dividual events characterize particular object manipulations
or simple hand movements, while event boundaries identify
types of contact onset and offset events. We show that the
developing structures are highly suitable (i) to predict the fu-
ture sensorimotor progression, including when the next event
boundary is probably reached and which event can be ex-
pected next, and (ii) to execute higher-order, goal-directed
planning. We particularly show that the developing hierarchi-
cally organized, event-oriented, behaviorally-grounded struc-
tures are highly suitable for executing factorized, hierarchical
reinforcement learning (RL) according to the options frame-
work (M. M. Botvinick, Niv, & Barto, 2009; Sigaud, Butz,
Kozlova, & Meyer, 2009; Sutton, Precup, & Singh, 1999).

Architecture
According to EST, the processing of sensory inputs is influ-
enced by a set of event models, which predict future sensory
input. Information about errors in these predictions is used
to adapt and switch between the available event models. We
implement this approach by using forward models as event
models to generate sensory predictions. Additionally, to form
representations of events as a set of forward models, our sys-
tem builds representation of event boundaries, marking the
transition from a forward model to another.

The system consists of four main components. It is
schematically shown in Figure 1. The Predictive System
consists of a set of currently active event models, which pre-
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dict the next sensory information ~st+1 based on the current
sensory input ~st and the executed motor action ~xt . The ac-
tive event models are updated while interacting with the en-
vironment using the error ~et+1 between predicted ~s ′t+1 and
actually encountered next sensory perceptions ~st+1. Error
Detection mechanisms are used to keep track of the accuracy
of the predictions. If a significant prediction error is detected,
which may be related to notions of surprise, event transitions
might be detected, leading to a change in the set of active
event models. The Event Models-component contains all
currently active event models and determines which ones are
currently applicable. Moreover, the component learns new
event models when necessary. Finally, the Event Boundary
Model-components contain models that characterize event
transitions dependent on the currently active event models,
the sensory information, and the surprise signal.

These four components essentially constitute the learning
and control architecture. The architecture encodes events in
the form of sets of temporal forward models. Event bound-
aries are characterized by event boundary models, which ad-
ditionally predict the state of the environment at particular
event transitions. While interacting with the environment,
the system internally simulates the interaction with the envi-
ronment and verifies these simulations given sensory obser-
vations. Moreover, the system can be used to actively infer
actions given desired goal states. Due to the event-based ar-
chitecture, higher-level inference-based planning is possible.

Predictive system
While simulating the current changes in the environment,
the predictive system holds N forward models M(t) =
(M1,i1(t), ...,MN,iN (t)) at a certain point in time t. Each
forward model predicts sensory changes given motor com-
mands, that is, Mn,i :~x→ ∆s. At a certain point in time t, each
active forward model Mn,in(t) receives the motor command
~xt as an input and predicts the sensory consequences ∆s′n,t+1.
The predictions of all N active forward models form the pre-
dicted sensory change vector ∆~s ′t+1. The predicted sensory
input of the next time step is thus:

~s ′t+1←~st +∆~s ′t+1. (1)

After executing ~xt the real sensory input ~st+1 is used to
update the active forward models to improve the respective
model predictions. Additionally, each forward model Mn,i
stores the moving average (over the 100 last steps) of its pre-
diction error ēMn,i and the variance of that prediction error
σ2

Mn,i
, estimating the current accuracy of the model predic-

tions.
Choosing sufficiently small step sizes, the velocity kine-

matics of any dynamic system can be approximated arbitrar-
ily well by a linear model. In the general case, the current
velocity kinematics depend on the system state. Seeing that
in our simple test scenario this was not the case, though, we
assumed non-changing, linear velocity kinematics, which we
learned by means of Recursive Least Squares.

Error Detection

Predictive System M(t)

Agent in Environment

Sensors Motor

Event Models M

Event Boundary Models

~st+1

∗
surprise

~s ′t+1 ~et+1

~st

Mn,i, Mn, j
Mn, j

∆~st+1

~xt

Figure 1: Illustration of the system. Solid arrows symbolize
the information flow during forward modeling. In this path-
way active forward models predict the next sensory input, are
improved by learning and exchanged if necessary. Dashed ar-
rows symbolize the information flow during planning. Here
the required sensory change to trigger a desired event is com-
puted and the forward models are used inversely to generate
a suitable motor command.

Error detection and switching event models
To this point our architecture uses a set of active forward
models to predict the sensory changes during the course of
one event. However, if the system is confronted with an event
boundary, marking the end of the current event and the begin-
ning of a new one, it should autonomously decide to switch
its set of forward models.

According to EST an event boundary is accompanied by
a rising error in prediction (Zacks et al., 2007). It has been
shown that computational models can use prediction errors
to segment a stream of video sequences into separate events
(Reynolds, Zacks, & Braver, 2007) or to autonomously iden-
tify useful subgoals for higher level motor planning (Butz,
Swarup, & Goldberg, 2004). Our architecture uses the error
in prediction as a criterion to detect a possible event bound-
ary. The prediction error en,t for the sensory dimension n at
time step t is considered ‘surprising’ (Butz et al., 2004) if

en,t > ēMn,i +2σMn,i , (2)

with Mn,i being the currently active forward model of dimen-
sion n.

If a significant error signal is detected the architecture en-
ters a searching period, during which the next active event
models are determined. All existing forward models Mn of
dimension n and one newly generated forward model are con-
sidered. For a fixed number of time steps (10 time steps in
our simulations) each model predicts the next sensory input,
is updated, and the prediction error is recorded. Afterwards,
the mean prediction errors of all models during this searching
period are compared and the model Mn, j with the smallest
mean error is chosen as the new forward model for dimen-
sion n in the predictive system. If the winning model Mn, j
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already existed prior to searching, the newly generated model
is discarded. If Mn, j is new, it is added to the set of possible
models Mn for dimension n. All forward model updates on
existing models during a searching period are discarded.

Learning event boundary models
The introduced components form a mechanism to detect
event boundaries, which can be characterized by an exchange
of at least one of the active forward models in the predic-
tive system. For our architecture to be able to act goal-
directedly, a representation is necessary that describes at
which situation one event boundary occurs. Assuming that
an event boundary can be characterized by particular con-
stellations of event-boundary-relevant sensory inputs, we ap-
proximate an event boundary by the probability density of
sensory constellations that are experienced when a transition
occurred. In other words, we are modeling the conditional
probability P(~s | Mn,i → Mn, j), making the assumption that
this probability distribution can be reasonably well approxi-
mated by a multidimensional normalized Gaussian function
G~µn,i→ j ,Σn,i→ j(~st). This is equivalent to requiring that event
boundaries occur close to specific points in sensory space.
This assumption holds well in the simple scenario consid-
ered. In the general case, other densities may be used such
as Gaussian mixture models.

Planning
To be able to trigger desired events, our system can be used in
a backwards fashion to plan goal-directed behavior to reach
specific event boundaries. To do so, we approximate active
inference (Friston et al., 2013) by means of the developing
event and event boundary models. As a result, planning con-
sists of two inference stages. First, a target event boundary,
or a sequence of event boundaries, is chosen. Next, the nec-
essary motor commands are inferred to reach the next desired
event boundary.

Selection of a target event boundary We assume that
some of the event boundaries are coupled with positive re-
ward. In our model, event boundaries are characterized
by event transitions, such that a particular event transition
Mn,i → Mn, j is chosen as the goal transition. As a result,
the system strives to achieve this transition by attempting to
maximize P(Mn,i → Mn, j,~st). Higher-level, inference-based
planning is used to determine a sequence of event boundaries,
which is expected to lead from the current event to the desired
event transition.

When Mn,i to Mn, j is the only desired transition and Mn,i
is the currently active model, then the system strives to maxi-
mize P(Mn,i→Mn, j,~st). When multiple event transitions are
considered desirable, that is, when transitions from the cur-
rently active model Mn,i to a set J of potential target mod-
els (Mn, j) j∈J are rewarding, then the transition to the clos-
est mean~µn,i→ j of the associated Gaussian is chosen. When
Mn,i is currently active, but only transitions Mn,k →Mn, j are
expected to be rewarding (with k 6= i), the system chooses

a reachable intermediate transition Mn,i → Mn,k. Although
in our simulation one intermediate transition always suffices,
the principle can generally be applied for generating larger
sequences of transitions. The approach is also closely related
to model-based, hierarchical RL, where extended actions are
described as ‘options’ (Sutton et al., 1999; M. M. Botvinick
et al., 2009).

Deriving the motor commands Let us assume that the nth
coordinate prediction is based on model i and the transition
Mn,i →Mn, j is currently desired. The system is supposed to
reach a place ~s ′n in sensor space that maximizes the condi-
tional probability of the desired transition:

~s ′n := argmax
~s

P(Mn,i→Mn, j|~s). (3)

This can be reformulated and solved using the Bayes theorem,
assuming that also the prior of ~sn is a Gaussian distribution
P(~sn) = G~µn,i,Σn,i(~sn):

~s ′n = (Σn,i~µn,i→ j−Σn,i→ j~µn,i)(Σn,i−Σn,i→ j)
−1 . (4)

Under the assumption that the prior is approximately uni-
form (compared to the transition distribution), Σn,i→ j � Σn,i
this corresponds to the maximum of P(~st |Mn,i→Mn, j). We
thus are making small steps in sensory space following the
gradient of the transition model:

∆~s ′t = η W ∇P(~st |Mn,i→Mn, j). (5)

If the matrix W is the identity matrix this performs an ex-
act gradient ascend with step width constant η. However, we
found better performance when choosing W such that dimen-
sions with large variance are effectively suppressed. The sup-
pression essentially focuses system behavior on the behav-
iorally relevant input dimensions.

Finally, the desired displacement ∆~s ′t in sensory space can
be translated directly into a motor command using the inverse
of the prediction model:

~x ′t := M−1
n,i (∆~s

′
t), (6)

effectively making the system move towards an area where a
desired event boundary is believed to be situated.

Evaluation
Our system was tested in a scenario, where multiple events
occur and thus the acquisition of different forward models
is necessary to predict the sensory changes. We have there-
fore chosen a scenario in which a simulated agent interacts
with different objects in continuous space. Figure 2 shows
the hidden, conceptual structure of the environment, which
the model uncovers by the detailed principles.

The agent consists of a hand, able to move freely through a
limited workspace, and a stationary mouth area. Three types
of differently colored objects (1 type of ‘foe’ and 2 types of
‘food’) occur in the simulation. Foe objects have no friction
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stays stillmoves freely dragged

moves normally moves slowly

Object

Hand

object out of reach object consumednew object generated

pushed attached

heavy
object

attached

object consumed

Figure 2: Illustration of the different events (boxes) and event
boundaries (arrows), which the introduced system uncovers.
The system’s ‘hand’ is able to attach to objects or to push
objects, dependent on the object type. A pushed object moves
away from the hand until it is out of reach. An attached object
moves with the hand until it is consumed. Hand movements
are slower when a heavy object is attached.

and slide away without friction when pushed by the hand.
They vanish when the distance of the object to the center of
the agent’s workspace exceeds a threshold. Food objects stick
to the hand upon contact and afterwards move along with it.
They vanish when they are dragged into the mouth. We use
two types of food objects: Light food does not alter the hand
movement when attached to it, whereas heavy food slows the
hand movement down by a factor of 1

2 . If an object vanishes,
a new one is immediately generated at a different position.

In every simulation step t one elementary movement of the
hand, described by ~xt , is performed and a sensory input ~st
is received, which contains all information necessary to pre-
dict event boundary occurrences. In particular, ~st consists of
the position of the hand (s1,t ,s2,t ∈ [0,100]), the position of
the object (s3,t ,s4,t ∈ [0,100]), the position of the object in
a hand-centered frame of reference (s5,t ,s6,t ∈ [−100,100]),
the distance of the object to the center of the workspace
(s7,t ∈ [0,50]) and the object’s color (s8,t ∈ {0,100,200}). ~xt
contains the motor command, which determines the change
in hand position (with ∆s1,t ,∆s2,t ∈ [−0.5,0.5]). Since the
forward models of our architecture must be able to linearly
compute the change in sensor information based on ~xt , the
vector additionally contains sensory information describing
the velocity of the hand during the last object contact (to pre-
dict the position of the foe after pushing it) and the velocity
of the object in reference to the center of the workspace (to
predict changes in the object’s distance to the workspace cen-
ter). A small amount of Gaussian distributed motor noise was
added (σ = 0.05), such that an elementary movement was not
completely deterministic.

In our scenario the event boundaries leading to the disap-
pearance of an object and the creation of a new one are re-
warded. Therefore the system strives to drag food objects in
the agent’s mouth and ’kill’ foes by pushing them out of the
agent’s workspace. We chose to reward the event boundaries
of the sensory dimension s3, since the forward models for the
object’s position need to change at every event boundary and
is therefore considered most reliable.

hand touches object object is removed
10−8

10−5

10−2

101

t

m
ea

n
pr

ed
ic

tio
n
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r

Figure 3: Mean prediction error of all active forward mod-
els for one exemplary interaction with a food object. The x-
axis displays time with event boundaries highlighted. Dashed
lines mark the beginning and end of a searching phase

Results
In a first test we evaluated the improvement of the forward
models over time by monitoring the prediction error in ten
independent simulations. The motor command ~xt was deter-
mined by an informed, hard-coded algorithm, which made
the system touch an object with the hand, pushing it away or
subsequently dragging it into its ‘mouth’. The average pre-
diction error of all active forward models for one exemplary
object interaction is plotted in Figure 3. In this example, the
hand first moves to the food. After contact, the food sticks
to the hand and is moved alongside the hand into the mouth,
which results in ‘food consumption’ and thus food removal.
After that, a new object is generated randomly. At the event
boundaries (hand touches object, object is removed) the pre-
diction error drastically increases. This ascent is particularly
big when the object is removed, since a lot of sensory infor-
mation changes in this single time step. For the following ten
time steps, the system searches for new forward models, such
that the prediction error remains large. After that, the best
adapted set of forward models is active. The prediction error
for all forward models decreases over time. Figure 4 shows
the prediction error for some of the forward models over their
time of activation. While the prediction errors strongly fluctu-
ate, they all logarithmically converge to 0. All forward mod-
els that correctly predict no change in sensory information
immediately reach a prediction error of 0 (not shown).

In a second test we evaluated the planning capabilities of
our system to use its event and event boundary models to per-
form goal-directed behavior. The system’s goal was to trigger
events resulting in the removal of the currently present object.
We ran ten simulations, whereas one simulation run consisted
of 25 epochs, each consisting of a training and a testing phase.
During training, five objects of each type were presented con-
secutively at random positions. The system was given a time
interval of 500 simulation steps to interact with the object.
If the system failed to remove the object in the given time
period, the hard-coded algorithm used above performed the

1790



0 200 400 600 80010−10

10−7

10−4

10−1

time of activation

m
ea

n
pr

ed
ic

tio
n

er
ro

r
s1,t
s3,t for heavy food
s3,t for light food
s3,t for foe

Figure 4: Mean prediction error of one forward model over
the time this model is active. Colors indicate the type of
the present object and the sensory dimension this forward
model predicts. Only the non-trivial cases, in which the ob-
ject moves, are shown.

required movements. During testing, each object consecu-
tively appeared at four fixed positions. When removing an
object during testing the hand was reset to a starting position.
Figure 5a shows the mean number of time steps the system
needed to remove an object for the different testing epochs.
In the first two testing epochs the time required for the in-
teractions drastically decreases. After ten training epochs,
the system performs the interactions in nearly minimum time
(dashed lines indicate the optimum). Figure 5b shows the
percentage of objects removed by the system’s hierarchical,
goal-directed behavior. Already after the first epoch, the sys-
tem successfully removes nearly all foe and light food ob-
jects. From the fourth epoch onwards, the system removes all
objects reliably within the allowed time frame.

To analyze if the system was able to differentiate between
relevant and irrelevant sensory dimensions for the prediction
of an event boundary, we analyzed the variances of the co-
variance matrices of each event boundary model after one ex-
emplary run. The mean difference over all Gaussian distribu-
tions between biggest and smallest variance in between each
Gaussian distribution is 697 – implying that there are dras-
tic differences in relevance for the different sensory dimen-
sions. A more detailed analysis shows that the largest and
smallest variance indeed depended on the event boundary.
For example, a model describing the event boundary ‘hand
touches foe’ contains the biggest variances for the global po-
sition of the object (x-wise 296, y-wise 249) and small vari-
ances for the object’s color (0.007) and the position of the
object in the hand-centered frame of reference (x-wise 19.9,
y-wise 21.6). This implies that the object’s type and the dis-
tance between hand and object are considered relevant for this
event boundary, while the exact position of the object is not.
In contrast the event boundary ‘object is consumed’ has the
biggest variance for object color (3095) and small variances
for the object’s position in the hand-centered frame (x-wise

0 10 20
0

200

400

# training epochs

Heavy food
Light food
Foe

(a) Mean number of time steps

0 2 4 6 8
0

50

100

# training epochs

(b) % successful

Figure 5: Goal-directed behavior during testing epochs; solid
lines show system performance; dotted lines show optimal
performance; a) mean and standard deviation of time steps
required to successfully interact with an object; b) mean per-
centage of successfully completed object interactions.

22.9, y-wise 19.3) and for global object position (x-wise 48.7,
y-wise 36.5). Here the color of the object is irrelevant because
both food objects can be consumed and they differ strongly in
color (color difference = 100 in our simulation). Instead, the
exact object position is relevant.

Conclusion
Inspired by the event segmentation theory and its schematic
model put forward in Zacks et al. (2007), we have developed
a computational, motor-grounded event segmentation model.
Previous work has shown that statistical analyses of visual
changes can be used to categorize segments of video se-
quences into distinct events (Buchsbaum, Canini, & Griffiths,
2011; Shi, Wang, Cheng, & Smola, 2008; Niebles, Wang,
& Fei-Fei, 2008). Additionally and partially in contrast,
our model has analyzed spatial, motor-dependent changes by
learning predictive forward models and by using the learned
forward models to detect event transitions based on a rigorous
statistical measure of ‘surprise’. Moreover, our system has
shown that the learned predictive model cannot only be used
to segment sensorimotor time series, but also to plan hierar-
chically goal-directedly. In the still rather restricted but con-
tinuous noisy environmental simulation, our system was able
to identify events, which characterized particular object ma-
nipulations including ‘moving without object contact’, ‘drag-
ging a light object’, ‘dragging a heavy object’, and ‘moving
while an object is moving’. Identified event transitions char-
acterized boundary conditions including ‘attaching to an ob-
ject’, ‘kicking an object’, and ‘consuming an object’. Event
boundary encodings identified those environmental factors
that were critical for causing particular event transitions, such
that the encodings can be thought of as conceptualizations of
environmental interaction options, yielding object concepts,
such as ‘kickable’, ‘attachable’, or ‘draggable’.
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Our model is closely related to advances in artificial intel-
ligence and cognitive robotics. Calinon, Guenter, and Billard
(2007) have put forward a system that learns a temporal Gaus-
sian Mixture Model from behavioral demonstrations. Imita-
tions of observed environmental interactions were executed
using Gaussian mixture regression, focusing control on the
relevant interaction aspects. Segmentation and higher level
planning, however, were not addressed. Other work has pre-
defined partitions over continuous subspaces during which
a particular motor skill could be activated (Konidaris, Kael-
bling, & Lozano-Perez, 2014). Partitions were computed by
a global clustering algorithm. In contrast, our system learns
to partition its environment by means of local measures of
surprise based on developing forward models. Moreover, our
system factorizes its developing model such that is becomes
able to identify those environmental properties that are criti-
cal to bring a particular event about.

In sum, the proposed computational model offers an algo-
rithm that can develop suitable event segmentations online
from sensorimotor experiences with the environment. The
model suggests that EST may be applied to structure own mo-
tor behavior and to identify those sensorimotor signals that
are critical to accomplish particular environmental manipula-
tions. We are currently working on extending the framework
to be able to also solve non-linear control challenges in more
complex scenarios in virtual realities.
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