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The Naïve Utility Calculus unifies spatial and statistical routes to preference 
 

Julian Jara-Ettinger*, Felix Sun*, Laura Schulz, & Joshua B. Tenenbaum 
Department of Brain & Cognitive Sciences, MIT. Cambridge, MA. 02139 

* These authors made an equal contribution. 
 
 

Abstract 

Humans can seamlessly infer what other people like, based on 
what they do. Broadly, two types of accounts have been 
proposed to explain different aspects of this ability. A first 
account focuses on inferences from spatial information: 
agents choose and move towards things they like. A second 
account focuses on inferences from statistical information: 
uncommon choices reveal preferences more clearly compared 
to common choices. Here we argue that these two kinds of 
inferences can be explained by the assumption that agents 
maximize utilities. We test this idea in a task where adult 
participants infer an agent’s preferences using a combination 
of spatial and statistical information. We show that our model 
predicts human answers with higher accuracy than a set of 
plausible alternative models.  

Keywords: Computational modeling; Naïve Utility Calculus; 
Theory of mind; Social cognition. 

Introduction 
As humans, we understand that other people have minds, 

and we can infer what they know and what they want by 
watching their behavior. Imagine, for instance, that a man 
walks towards a cookie jar, opens it, peeks in, and then 
closes it again. Although we cannot see the inside of the 
man’s mind or of the cookie jar, we nevertheless suspect 
that the man likes cookies, that he planned to eat a cookie, 
that he believed there were cookies in the cookie jar, and 
that he was wrong: the cookie jar was empty. 

Our ability to infer other people’s preferences, in the 
service of interpreting their actions and predicting their 
future behavior, is at the heart of this ability. A large body 
of work suggests that preference inferences rely on spatial 
information. When we watch an agent navigate, a first focus 
is on the path’s end state: Agents navigate to complete goals 
that fulfill their desires (Woodward, 1998). A second focus 
is on the path’s directedness: We expect agents to navigate 
efficiently, and we use this expectation to attribute goals 
(Gergely & Csibra, 2003). Thus, if an agent does not take 
the shortest path towards a goal this implies there is a 
constraint in the way (Csibra, Biró, Koós, & Gergely, 2003), 
a subgoal that the agent completed within the path (Baker, 
Saxe, & Tenenbaum, 2009), or that the actions themselves 
are the goal (Schachner & Carey, 2013). 

When we infer preferences, however, we not only rely on 
what agents choose; we also take into account what they 
don’t choose. Suppose that an agent can pick a fruit from a 
bag filled with a hundred apples and one orange. If the agent 
takes an apple, she doesn’t necessarily like them better than 
oranges. But if she takes the only orange, then she probably 
likes them better than apples. Intuitively, the second 
situation reveals a stronger preference, even though the 

agent could have chosen either fruit in both cases. In other 
words, the strength of the preference inference depends on 
the statistical information of the possible choices. 

The ability to infer preferences using spatial and statistical 
information are both at work from early in life. Infants as 
young as three months old expect agents to navigate 
efficiently to some extent (Skerry, Carey, & Spelke, 2013) 
and show a robust expectation by their first birthday 
(Gergely & Csibra, 2003). Similarly, the ability to draw 
inferences from statistical information has its roots in 
infancy and it plays a role in how we learn what other 
people like (Kushnir, Xu, & Wellman, 2010; Wellman, 
Kushnir, Xu, & Brink, 2016), how we learn about the world 
(Gweon, Tenenbaum, & Schulz, 2010), and even how we 
learn the meaning of new words (Xu & Tenenbaum, 2007). 

Together, these two lines of evidence suggest a dual 
system for inferring preferences: one that relies on spatial 
information, and one that relies on statistical information. 
But real-world situations do not break down so cleanly. 
Agents usually combine both spatial and statistical 
distributions of potential rewards in their environment, and 
so should our judgments about their preferences from 
observing their actions. 

Here we propose that, rather than being supported two 
systems of knowledge, preference inferences from spatial 
and statistical information are derived from a single intuitive 
theory of agents: the naïve utility calculus (Jara-Ettinger, 
Gweon, Tenenbaum, & Schulz; 2015; Jara-Ettinger, 
Tenenbaum, & Schulz, 2015). Critically, our goal here is not 
to compare the naïve utility calculus with formal theories of 
decision-making, but with other theories of intuitive 
decision-making. Here we show how the naïve utility 
calculus (NUC) supports inferences from spatial and 
statistical information. We test our proposal by 
implementing and comparing a spatial inference model, a 
statistical inference model, and a NUC model against adult 
performance on a preference-inference task. We end by 
discussing the implications of our findings on understanding 
the development of commonsense psychology. 

The Naïve Utility Calculus 
A growing set of studies suggests that humans reason 

about agents in terms of utility maximization (Jara-Ettinger 
et al., 20215; Jern et al, 2011; Johnson & Rips, 2015; Lucas 
et al, 2014). Specifically, humans have an intuitive theory of 
how utilities are comprised of costs and rewards, and how, 
together, they guide what others do. According to this Naïve 
Utility Calculus, agents act by estimating the costs and 
rewards associated with each possible plan, and by selecting 
the plan with the highest utility (the difference between 
rewards and costs). That is, when people watch an agent, 
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they assume that her behavior yielded high utilities, and 
they use this assumption to infer the agent’s competence 
(her costs) and her motivation (her rewards). To illustrate 
inferences through the NUC, consider an agent who chooses 
an apple over an orange. This implies that the utility for the 
apple, U(a), is higher or equal than the utility for the orange, 
U(o). By decomposing each utility into its costs (C(a) and 
C(o), respectively) and rewards (R(a) and R(o), 
respectively), the agent’s choice implies that R(a)-C(a) ≥ 
R(o)-C(o). If both fruits were equally easy to get, then 
C(a)=C(o) and, therefore, R(a) ≥ R(o). That is, when two 
options are matched for costs, agents choose what they like 
best. Suppose instead that the apple, the agent’s choice, was 
more costly to get than the orange. Because R(a)-C(a) ≥ 
R(o)-C(o) and C(a)>C(o), then R(a)>R(o). That is, agents 
unambiguously reveal their preferences when they choose 
the more costly option. Last, if the apple was easier to get, 
then R(a)-C(a) ≥ R(o)-C(o), and C(a)<C(o). Under these 
circumstances, U(a) (R(a)-C(a)) may be higher than U(o) 
(R(o)-C(o)) because the apple’s reward (R(a)) was high, or 
because the orange’s cost (C(o)) was high. Thus, when 
agents choose low cost options their preferences are not 
revealed. 

Although its developmental origins are unclear, the NUC 
is at work from early childhood, supporting fundamental 
inferences by age five and with some aspects already at 
work by age two (Jara-Ettinger, et al. 2015). 
Inferences from spatial information 

The NUC explains why humans are sensitive to spatial 
information. Suppose an agent takes a sequence of actions 
to complete a goal. If the agent maximized utilities, then two 
things must be true. First, the reward must outweigh the 
costs. Otherwise, the plan’s utility would be negative and 
the agent could obtain a final higher utility by not acting at 
all. Second, the agent must be minimizing costs: the smaller 
the costs the agent incurs, the higher the utility she obtains. 
In spatial contexts, cost minimization reduces to efficient 
navigation. Thus, expecting agents to maximize utilities 
implies that a path’s directedness and end state can help 
reveal preferences. If, however, humans do so through a 
naïve utility calculus, then, as the example above reveals 
(see apple-orange example), humans should also be 
sensitive to a third feature of spatial navigation: its cost. 
Inferences from statistical information 
Inferences from statistical information ultimately rely on the 
assumption that rare choices reveal stronger preferences. 
Although intuitive, the causes underlying this assumption 
are unclear. The NUC, however, naturally produces this 
expectation. Suppose that an agent can take any object from 
a box. If she doesn’t have a preference, then taking 
whichever object is easiest to get maximizes her utilities (if 
all objects have the same reward, the option with the lowest 
cost yields the highest utility). In contrast, if the agent 
prefers one type of object to the others, then she will have to 
incur a higher cost in terms of time, effort, attention, and 
distance to locate the object of the desired category and to 
retrieve it. The less common an object’s category is, the 

higher the cost the agent must incur to locate it and obtain it. 
Thus, retrieving rare objects suggests that the agent incurred 
a higher cost, and, if agents maximize utilities, this cost is 
only warranted if the reward associated with the rare object 
is higher than the reward associated with more common 
objects. 

Computational modeling 
If humans infer preferences using their NUC, then a 

formal implementation should quantitatively predict adult 
preference judgments. Alternatively, if humans infer 
preferences through simpler ways, then simpler models 
should predict human inferences with equal or better 
accuracy. To test if participants integrate spatial and 
statistical information through the assumption of utility 
maximization we ran a preference-inference task with adult 
participants and we compared their performance to five 
computational models: our full Naïve utility calculus model 
and two NUC lesioned models, as well as two alternative 
models. These models are based on the proposals of how 
infants infer preferences from spatial information (spatial 
model) and from statistical information (statistical model). 
Next, to test if participants infer these preferences in a 
Bayesian way, we compared participants’ self-reported 
confidence judgments with estimates from each model. 
Alternative models 
Spatial model The spatial model formalizes the proposal 
that goals directly reveal preferences. As, such, it uses a 
limited source of spatial information: the end state. This 
model assumes that the distribution of choices an agent 
makes matches her underlying preferences. For instance, if 
an agent collects two red objects and one blue object, then 
the reward for collecting a red object is Rred = 2R/3 and the 
reward for collecting a blue object is Rblue = R/3, where R 
is a constant set to 1 (changing the value of R does not 
change our results as model comparison was done by z-
scoring model predictions. See Results). 
Statistical model The statistical model is based on 
proposals for how people infer preferences by relying on 
statistical information (Gweon, et al, 2010; Xu et al, 2007). 
These models were formulated in simpler domains than the 
one we test in our experiment so we extended them to fit our 
experimental design. Our model assumes that, before taking 
any actions, the agent goes through a decision making 
process to find objects that will give her high rewards. 
Specifically, the statistical model assumes that the agent 
considers one object at a time (at random) and decides 
whether to collect it or not based on its reward. That is, 
when the agent considers taking an object from category k, 
she selects it with a probability proportional to its reward. 
These assumptions imply that more common object 
categories are more likely to be considered and that more 
rewarding kinds of objects are more likely to be collected, 
once the agent considers them. As such, selecting an object 
from a rare category suggests that the agent prefers it to 
more common objects that the agent likely considered 
collecting first. In this model, the observer assumes that the 
agent considers each object with uniform probability (if 
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there are n objects, the agent considers each object with 
probability 1/n). 

Given the theory of how an agent chooses what to collect, 
we use Bayesian inference to recover the agent’s 
preferences given her choices. Specifically, because in our 
experiment we use two types of objects (see Stimuli), we 
use Bayes’ rule to estimate the relative magnitude of one 
reward type over the other (with 0 indicating that the first 
category contains all the rewards, 0.5 indicating that both 
categories are equally rewarding, and 1 indicating that the 
second category contains all the rewards), using a uniform 
prior. 
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Figure 1. Stimuli examples along with participant judgments and 
model predictions. Because judgments are z-scored, positive and 
negative values are relative to the average preference inference and 
do not correspond to preferring red or green minerals, respectively. 
The negative-valued prediction in this plot indicates a weaker 
preference for red minerals compared to the average inference. 
Naïve Utility Calculus models 
The last three models are implementations of the naïve 
utility calculus (NUC), but they integrate costs in different 
ways, enabling us to understand how humans may reason 
about costs, rewards, and utility maximization. All models 
are formulated as generative models that predict agent 
choices given their preferences, and the inference from 

choices to preferences is done through Bayes’ rule with a 
uniform prior over the possible distribution of rewards over 
the object categories. 
Full Naïve Utility Calculus The full NUC model assumes 
that agents maximize utilities. Costs are function of the 
number of actions the agent takes (set to be a constant cost 
per action = 0.01; our conclusions are robust to parameter 
changes) and rewards are exponentially discounted over 
time. Intuitively, the future discount corresponds to the 
assumption that the longer an agent takes to reach a reward, 
the less likely the reward will still be there. Thus, this model 
relies on spatial information in three ways: first, it expects 
agents to navigate efficiently because smaller sequences of 
actions incur fewer costs (minimizing costs), and because 
collecting objects faster results in higher rewards 
(maximizing exponentially discounted rewards); second it 
assumes that the agent’s goals have sources of rewards; and 
last, and in contrast to the alternative models, it assumes that 
longer distances reveal stronger preferences. More formally, 
the cost of actions and rewards in objects are integrated into 
a utility function (U=R-C) and the utility-maximizing 
actions are derived through a Markov Decision Process. 
Further details about the computational implementations of 
the naïve utility calculus can be found in Jara-Ettinger et al 
(2015). 
Future-discount lesion The future-discount lesion is 
identical to the NUC model but rewards aren’t discounted 
over time. Thus, this model integrates statistical information 
in a full manner, and spatial information in a simplified 
manner. The model expects agents to navigate efficiently 
only because lower costs lead to higher utilities, but not 
because longer distances increases the chance of losing the 
target reward.  
Action cost lesion Conversely, the action cost lesion model 
is identical to the NUC but it ignores action costs. 
Nevertheless, the model assumes that the agent’s rewards 
are discounted over time. This model therefore integrates 
spatial information through the expectation that agents act 
efficiently because the longer it takes them to reach a 
reward, the less likely it will still be there when they arrive. 

Experiment 
To test our models, we designed a simple task where 
participants watched a miner collect minerals in mines with 
variable distributions of minerals. 
Stimuli 
Figure 1 shows examples of the stimuli. Each stimulus 
consisted of an animated display of an agent (the miner) 
entering a mine (a 12x12 grid world) and collecting green 
and/or red minerals. Each map contained 24 minerals in the 
same locations (which were chosen at random and kept 
constant across stimuli), but the proportion and the 
distribution of these minerals varied. The proportion varied 
according to three levels: more green than red (20 green and 
4 red), more red than green (4 green and 20 red), or an equal 
number of each (12 of each). The distributions of these 
minerals varied according to three levels: red minerals 
closer, green minerals closer, or all minerals intermixed. 

2035



This generated a total of nine different maps. By varying the 
proportion of the objects, we can test how statistical 
information influences preference inferences; by varying the 
location of the objects we can test how spatial information 
influences preference inferences. 

The miner’s paths were obtained by computing the 
shortest path an agent would need to take to collect all 
minerals of one kind, or to collect the closest minerals 
(which could be a combination of red and green minerals). 
These paths were generated in accordance to three 
conditions. In the first condition, the miner collected one 
mineral and exited the mine. In the second condition, the 
miner collected three minerals in a single trip and then 
exited the mine. And in the last condition the miner 
collected three minerals, but had to return to the mine’s exit 
after collecting each object. Thus, the first and second 
conditions test how the amount of data an observer receives 
influences observers’ inferences, and the second and third 
conditions together test how the costs of collecting the 
minerals influence observers’ inferences. The combination 
of the two agent types (strong preference or no preference) 
with the nine maps produced a total of 18 test paths per 
condition. 
Participants 
90 U.S. residents (as determined by their IP address) were 
recruited and tested through Amazon’s Mechanical Turk 
platform (Mean age = 33 years. Range = 20 - 59 years). 
Procedure 
Participants were randomly assigned to the one mineral 
condition, to the three minerals in one trip condition, or to 
the three minerals in three trips condition (N = 30 
participants per condition). Thus, each participant only 
completed one-third of the trials. Participants first 
completed a brief tutorial that explained the task. Next, 
participants completed a questionnaire with three questions 
to ensure they understood the task. Participants who 
responded all questions correctly were given access to the 
experiment, and participants who made at least one error 
were redirected to the beginning of the tutorial. 

In the test stage, participants saw an animated display of 
the miner collecting the minerals and had to respond four 
questions. The first two questions were multiple choice 
control questions asking about the proportion and 
distribution of the minerals. Participants who answered 
these questions incorrectly were asked to re-examine the 
stimulus. The third question asked participants to rate the 
miner’s preference using a slider that ranged from “Red is 
much more valuable” (coded as a 0) to “Green is much more 
valuable” (coded as a 1). The last question asked 
participants to rate their confidence in the preference 
judgment using a slider that ranged from “Not at all” (coded 
as a 0) to “Extremely confident” (coded as a 1). 

Results 
Figure 2 shows the results from the experiment. As 
expected, the formalizations of spatial and statistical 
accounts matched the qualitative pattern of participant 

judgments: they predicted strong and weak preferences 
accurately. However, as Figure 2 shows, the NUC model 
captured human judgments with higher precision. To 
evaluate model performance more precisely we computed 
each model’s correlation with average human judgments (z-
scored within each participant and averaged; see Table 1. 
 
Model Correlation (95% CI) 
Spatial .84 (0.79,0.92) 
Statistical .81 (0.74,0.90) 
Naïve Utility Calculus .97 (0.96,0.98) 
Future-discount lesion .93 (0.90,0.96) 
Action cost lesion .96 (0.92,0.97) 
Table 1. Model correlations with participant responses along with 
95% bootstrapped confidence intervals. 

Comparison with alternative models 
Overall, the NUC model had the highest correlation (r=0.97) 
between its predictions and participant responses. To 
evaluate this correlation we bootstrapped the correlation 
difference between the NUC and the alternative models. The 
NUC reliably outperformed the spatial model (correlation 
difference=0.12; 95% CI=(0.03,0.18)) and the statistical 
model (correlation difference=0.16; 95% CI=(0.05,0.22)). 
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Figure 2. Experiment results. In each plot, each black dot 
represents a stimulus. The x-axis shows the model’s prediction (z-
scored) and the y-axis shows average participant judgments (z-
scored within each participant and averaged). 

Figure 1 shows four example trials that reveal how the 
NUC outperforms the alternative models. The spatial model 
fails to capture differences between trials A, B, and C, as it 
is not sensitive to the amount of evidence. The statistical 
model roughly captures human responses, but it attributes a 
stronger preference to the miner in trial B, as it neglects the 
spatial distribution. In contrast, the NUC models show 
sensitivity to the amount of data, the spatial information, 
and the statistical information. 
Comparison with model lesions 

Both model lesions had a lower correlation with 
participant judgments compared to the full NUC model (see 
Table 1). Removing the future-discount parameter led to a 
significant decrease in the model’s correlation with human 
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judgments (correlation difference = .042; 95% CI = 
(0.004,0.072)). This suggests that participants are sensitive 
to an exponential discounting of the mineral rewards over 
the length of the miner’s trajectory. Similarly, removing the 
cost of travelling decreased the model’s correlation with 
human judgments (difference = .022; 95% CI = (-
0.007,0.047)). However, 13% of the mass of the 95% 
confidence interval was on the negative region. This 
suggests that integrating a linear cost over the future-
discount may better fit human judgments, but the results are 
inconclusive. 
Confidence judgments 
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Figure 3. Confidence judgments. The models’ confidence ratings 
were obtained by computing the standard deviation of the posterior 
distribution of each stimulus, multiplying them by -1 (so as to 
match the qualitative order in participant judgments), and then z-
scoring the values. Participant confidence judgments were z-scored 
within participant and averaged. 

Our evidence so far suggests that humans infer 
preferences through the assumption of utility-maximization. 
Nevertheless, this inference is not necessarily Bayesian. 
Participants may, for instance, approximate the responses 
from a Bayesian models through simpler heuristics. To 
explore this possibility, we asked participants to report 
confidence judgments on each trial (see Methods section) 
and we compared them with a rough measure of each 
model’s uncertainty: the posterior distribution’s standard 
deviation. If participants are inferring preferences in a 
probabilistic manner, then the NUC’s standard deviation 
should correlate with participant confidence judgments. 
However, if participants infer preferences through some 
heuristics that approximate Bayesian inference, then their 
confidence should not necessarily be related to the one in 
our model. Moreover, the statistical model, being Bayesian, 
also produces confidence judgments (the spatial model 
generates a single inferred estimate with full confidence), 
enabling us to further test its validity. 

Figure 3 shows each model’s negative standard deviation 
along with participants’ confidence judgments. Although the 
alternative models all captured preference inferences in a 
coarse way (see Figure 2), their measures of confidence did 
not resemble participant’s confidence judgments (see Figure 
3). In contrast, the NUC model and its lesions predicted 
with far higher accuracy participants’ confidence judgments. 
Table 2 shows the correlations and confidence intervals. 
Although the NUC’s correlations were reliably greater than 
0, Figure 3 reveals that it failed to capture the variation in a 

small set of stimuli (the results were qualitatively identical 
for the NUC model lesions). Post-hoc inspection of these 
outliers revealed that they were all cases where the miner 
had selected a combination of red and green minerals 
(because of the way we generated the stimuli, the miner 
only took a combination of red and green minerals 
whenever these were the closest and the agent had no 
preference; see Stimuli section). Consistent with this, we 
found that when we decomposed the stimuli into trials 
where the agent collected only one type of mineral (Single 
category), the NUC model and its lesions showed high 
correlations and performed roughly as well. In contrast, in 
the stimuli where the agent collected various kinds of 
minerals (Both categories), none of the models predicted 
human confidence judgments (see Table 2). Nevertheless, it 
is important to note that this subset of stimuli consists of 
seven data points, making it difficult to draw conclusions 
from the correlations. 
Model Correlation 

(95% CI) 
Single 
category 
correlation 

Both 
categories 
correlation 

Statistical 0.28 
(0.04,0.56) 

0.29 
(0.05,0.57) 

-0.43 
(-1,0.01) 

Naïve Utility 
Calculus 

0.65 
(0.49,0.83) 

0.91 
(0.88,0.95) 

-0.45 
(-1,-0.04) 

Future-
discount 
lesion 

0.33 
(0.12,0.51) 

0.84 
(0.79,0.89) 

-0.45 
(-1,-0.04) 

Action cost 
lesion 

0.68 
(0.53,0.86) 

0.91 
(0.88,0.96) 

-0.32 
(-0.98,0.18) 

Table 2. Correlation between the standard deviation of the model’s 
posterior distribution and participant confidence judgments, along 
with 95% bootstrapped confidence intervals. The first column 
shows the overall correlations, and the last two columns show the 
correlations after splitting the stimuli into the group where the 
miner only collected one type of mineral (single category) and 
when the miner collected a combination of red and green minerals 
(both categories). The spatial model is not presented as it only 
produces a point estimate rather than a probability distribution. 

Discussion 
Here we reviewed evidence that, from early in life, 

humans can infer preferences using statistical and spatial 
information, and we proposed that these two types of 
inferences are driven by the naïve utility calculus (NUC) –
our intuitive theory of how agents select their goals by 
estimating and maximizing utilities. We tested our proposal 
by implementing a formal model of the naïve utility calculus 
and comparing it to other accounts that rely on spatial and 
statistical information separately. Our results show that 
adults were both sensitive to the spatial and statistical 
information of an agent’s behavior, and that this variation 
was best captured by the NUC model. 

Critically, all accounts fit participant judgments 
qualitatively. Thus, implementing formal computational 
models was critical for generating precise predictions and 
assessing whether they explained variation in human 
judgments in a fine-grained manner. Our results show that 
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the NUC model significantly outperformed the alternative 
models at a detailed level. 

In order to better understand the NUC’s performance we 
implemented two model lesions. In one model lesion we 
removed the future discount parameter (future-discount 
lesion) and in the second model lesion we removed the cost 
for traveling (action cost lesion). Critically, both model 
lesions were still sensitive to the statistical information, and 
they both expected the agent to navigate efficiently. The 
NUC correlated with human responses better than both of 
the model lesions, but this difference was only reliable when 
comparing the NUC model with the cost sensitive lesion and 
not when comparing it with the action cost lesion. Our 
results suggest that a non-linear reward discount is critical 
for how humans reason about efficiency. However, once a 
model integrates a future-discount parameter, adding a cost 
of traveling only produces a modest improvement. 

Although the alternative models roughly predicted human 
responses, a comparison of the models’ posterior standard 
deviation (a measure of the model’s uncertainty) against 
participant confidence judgments revealed strong 
discrepancies. In contrast, the NUC and its lesions predicted 
our participant’s confidence judgments for a large set of 
stimuli (see Figure 3 and Table 2, columns 1 and 2). 
Nevertheless, all models failed to capture human confidence 
judgments in the trials where the miner collected a 
combination of red and green minerals closest to the mine’s 
entrance (see last column of Table 2). In these situations, the 
NUC models were confident that the miner liked both 
minerals roughly as much, and that she was therefore 
collecting the closest ones. Participants made similar 
judgments, but they were less confident. One possible 
explanation for this discrepancy is that our model assumes 
that the cost for traveling is fixed and observable, whereas 
participants may not. Instead, participants may be uncertain 
about how exhausting it is to travel the mine, and this may 
lead to a confound in the miner’s behavior: she might be 
taking the closest minerals because she likes all minerals 
just as much, or because she finds traveling deep into the 
mine to be very costly. A richer version of the NUC that 
integrates uncertainty over the costs and rewards is needed 
to evaluate this possibility. 

Altogether, our results show that the NUC explains why 
and how humans rely on spatial and statistical information 
when inferring preferences. Empirical results show that the 
ability to infer preferences from spatial information and 
from statistical information arises in early childhood 
(Gweon et al., 2010; Gergely & Csibra, 2003). However, 
these sources of information have been studied separately, 
and different accounts have been proposed to explain how 
we draw these inferences. Our finding that inferences from 
statistical and spatial inferences are unified in adults raises 
two hypotheses about the development of this reasoning. A 
first possibility is that the NUC is already at work in 
infancy. If so, infants may use it to solve tasks involving 
spatial information (e.g., Gergely & Csibra, 2003), and tasks 
involving statistical information (e.g., Kushnir, et al, 2010). 

A second possibility, however, is that the NUC emerges 
later in life. Under this account, infants must rely on simpler 
expectations about agents to reason about spatial and 
statistical information (perhaps driven by two separate 
systems of understanding; a spatial one and a statistical 
one). If this is true, then the proposed explanations for how 
infants use spatial and statistical information (formalized in 
the spatial and the statistical models), may be correct and 
serve as the bedrock for a richer unifying intuitive theory: 
the naïve utility calculus. 
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