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The Interaction of Memory and Attention in Novel Word Generalization:
A Computational Investigation

Erin Grant, Aida Nematzadeh, and Suzanne Stevenson
Department of Computer Science

University of Toronto
{eringrant, aida, suzanne}@cs.toronto.edu

Abstract
People exhibit a tendency to generalize a novel noun to the
basic-level of a hierarchical taxonomy – a cognitively salient
category such as “dog” – with the degree of generalization de-
pending on the number and type of exemplars. Recently, a
change in the presentation timing of exemplars has also been
shown to have an effect, surprisingly reversing the prior ob-
served pattern of basic-level generalization. We explore the
precise mechanisms that could lead to such behavior by ex-
tending a computational model of word learning and word gen-
eralization to integrate cognitive processes of memory and at-
tention. Our results show that the interaction of forgetting and
attention to novelty, as well as sensitivity to both type and to-
ken frequencies of exemplars, enables the model to replicate
the empirical results from different presentation timings. Our
results reinforce the need to incorporate general cognitive pro-
cesses within word learning models to better understand the
range of observed behaviors in vocabulary acquisition.
Keywords: novel word generalization; word learning; compu-
tational modeling

Introduction
A number of computational models have successfully mim-
icked child behaviors in learning the meaning of words from
ambiguous input (e.g., Siskind, 1996; Yu & Ballard, 2007;
Frank et al., 2007; Fazly, Alishahi, & Stevenson, 2010). How-
ever, one challenge in word-meaning acquisition that has re-
ceived less attention is that of novel word generalization: i.e.,
correctly identifying the level of a hierarchical taxonomy that
a word refers to. After hearing it only a few times, how does
the child determine, for example, that the word dog refers to
Dalmatians, all dogs of different breeds, or any kind of ani-
mal? This issue poses difficulties to the learner because the
accumulated evidence can be compatible with more than one
of these choices. In this example, all dogs are also animals,
and thus the meaning “animal” might also be consistent with
all the usages of the word dog.

Xu and Tenenbaum (2007) (henceforth XT07) studied
novel word generalization in both children and adults by ob-
serving decisions about category membership for novel ob-
jects in various experimental settings. One of their important
findings concerned how people responded having seen 1 vs.
3 labeled exemplars of a certain kind of entity within a tax-
onomy. For example, having seen a single Dalmatian labeled
as a fep, people assumed that the novel word fep could refer
to the general category of dogs. However, if people saw sev-
eral Dalmatians called fep, they apparently recognized that it
would be a suspicious coincidence if fep meant “dog”, but
only one breed of dog was observed. In such cases, people
had a lesser tendency to generalize to the higher level cate-
gory than after seeing a single exemplar.

Spencer, Perone, Smith, and Samuelson (2011) (henceforth
SPSS11) investigated the effect of presentation timing in the
same task. XT07 had presented multiple exemplars of a novel
word simultaneously. SPSS11 found that instead presenting
exemplars in sequence reverses the suspicious coincidence ef-
fect. That is, after sequentially viewing three exemplars con-
sistent with a more specific level of the taxonomy (e.g., three
dogs of a single breed), people have a greater tendency to
generalize to the higher category than after seeing one ex-
emplar. SPSS11 explained this reversal as an interaction of
word learning with the more general cognitive processes of
attention and memory, which differ in their operation across
the presentation types: People attend to and remember finer-
grained similarities among objects when viewed simultane-
ously (e.g., that they are all Dalmatians), while the sequential
presentation leads people to focus on the general commonal-
ities of the objects (e.g., that they are all dogs).

Our goal in this paper is to provide a computational model
that accounts for both the XT07 and SPSS11 findings in a
well-motivated manner, by incorporating memory and atten-
tional constraints into an incremental model of word learning
and word generalization. It is desirable to integrate together
all these pieces – novel word generalization, incremental
word learning, and memory and attention – because: (i) word
generalization is part and parcel of learning the meaning of
words, since it allows the abstraction of meaning from a se-
quence of specific experiences, and (ii) many word-learning
behaviors are influenced by the general cognitive processes
of memory and attention (e.g., Vlach et al., 2008; Samuelson
& Smith, 2000). Importantly, by explicitly specifying such
mechanisms within a computational model, we contribute to
the precise understanding of the interactions between them
that are required to account for empirical data.

Suspicious Coincidence: Data and Models
XT07 and SPSS11 explored how people generalized a novel
word like fep to various levels of a taxonomy of objects (in-
cluding animals, vehicles, and vegetables). Basic-level cate-
gories (e.g., dogs or trucks) are those whose members share
a significant number of salient attributes; subordinate cate-
gories (e.g., Dalmatians or bulldozers) occur lower in the
hierarchy, and their members share many fine-grained at-
tributes; superordinate categories (e.g., animals and vehicles)
are higher than the basic-level, and their members have fewer
attributes in common (Rosch, 1973).

For the sake of space, we focus only on two of the train-
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ing conditions in XT07 and SPSS11– the “1-example” and
“3-subordinate” conditions – in which the suspicious coinci-
dence effect and its reversal are seen.1 The 1-example con-
dition has one training trial in which participants observe a
single object (e.g., a Dalmatian) that is labeled with a novel
word (such as fep). In the 3-subordinate condition, partici-
pants observe three instances from the same subordinate cat-
egory (e.g., three different Dalmatians) labeled with the novel
word. In XT07’s experiment, all three instances were pre-
sented simultaneously. SPSS11 included a condition in which
the three instances are shown and labeled sequentially. (Si-
multaneous and sequential are the same for one example.)

After training, participants select all and only objects that
they think are feps from a set of test items. Each test object is
assessed as exactly one of the following types of match:

• a subordinate match has the same subordinate category
as a training object (e.g., a Dalmatian).

• a basic-level match has the same basic-level category as a
training object (e.g., a dog, but not a Dalmatian).

• a superordinate match has the same superordinate cate-
gory as training objects (e.g., an animal other than a dog).

Since SPSS11 replicated the pattern found by XT07 in their
simultaneous presentation condition, we report only the re-
sults of SPSS11, as shown in Fig. 1.

Figure 1: SPSS11 Behavioural Data
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SPSS11 data for (1a) simultaneous and (1b) sequential presenta-
tions. Each bar is the percent of chosen test objects of each type of
match: subord(inate), basic(-level), or super(ordinate). Differences
in 1-ex. across the two experiments were not statistically significant.

In the 1-example condition people generalized the novel
word to refer to both subordinate matches (e.g., Dalmatians)
and (to a lesser extent) basic-level matches (e.g., other kinds
of dogs), but not to the superordinate matches (e.g., other an-
imals). This is in line with the idea that people tend to gen-
eralize a novel word to a basic-level category such as “dog”
because of the perceptual salience of this level of categoriza-
tion (e.g., Markman, 1991).

In the 3-subordinate condition, when objects are presented
simultaneously (Figure 1a), the generalization to the basic
level is attenuated compared to the 1-example condition.

1Our model replicates the results of XT07 and SPSS11 for all
training conditions, but we only report the results for these two here.

XT07 explained this behavior as the suspicious coincidence
effect. However, when objects are presented sequentially
(Figure 1b), there was a surprising reversal of this effect.

While SPSS11 outline possible memory and attentional
processes to explain their results, we know of no com-
putational model that can account for both sets of data.
XT07’s Bayesian model formed hypotheses over a detailed
hierarchical taxonomy to account for their own data, but
it cannot model the difference between presentation tim-
ings, as SPSS11 note. The computational word learner
of Nematzadeh, Grant, and Stevenson (2015) (henceforth
NGS15) can model the XT07 results without the need for
elaborated knowledge of the hierarchy or a built-in basic-level
bias. Instead, the results of the model arise from a general
type-token frequency interaction of the sort that commonly
arises in explanations of linguistic phenomena (e.g., Bybee,
1985; Croft & Cruse, 2004). However, the timing of presen-
tations also has no effect on the NGS15 model, and so the
reversal of the suspicious coincidence effect is not achieved.
In the next section, we explain how the NGS15 model can
be naturally extended to integrate memory and attention, and
therefore sensitivity to presentation timing.

Our Computational Model
We start with the NGS15 model because it uses an incremen-
tal word learning framework that mimics a range of behaviors
in vocabulary acquisition (e.g., Fazly, Alishahi, & Stevenson,
2010; Fazly, Ahmadi-Fakhr, et al., 2010). This framework
has recently been extended to incorporate the effects of mem-
ory and attention on word learning (Nematzadeh, Fazly, &
Stevenson, 2012), presenting a natural opportunity for inte-
grating these processes within word generalization. We de-
scribe the NGS15 model, then the novel extensions that en-
able our model to replicate the SPSS11 data.

Learned Meanings in the NGS15 Model
The NGS15 model is a cross-situational learner that tracks
weighted co-occurrences of words and semantic features
across its input as in Fazly, Alishahi, and Stevenson (2010).
The input to the model is intended to reflect the naturalistic
input a child is exposed to, which consists of linguistic input
(the words a child hears) paired with nonlinguistic data (the
things a child perceives). An input pair is the set of words Ut
and the set of semantic features St observed at time t:

Ut : { look, a, fep }
St : { PERCEPTION, LOOK, . . . , DALMATIAN, DOG, ANIMAL }

The output of the model at each time t is a set of meaning
probabilities, Pt( fi|w j), for each feature fi and each word w j
observed up through time t. The set of all conditional proba-
bilities Pt( fi|w j) for w j represents the meaning of w j.

The representation of meaning in NGS15 reflects the struc-
ture of taxonomic knowledge. Meaning features are arranged
into feature groups, each corresponding to a level of the
taxonomic hierarchy, as shown in Figure 2.For each word
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w j, a meaning probability distribution, Pt(.|w j), is calculated
for each feature group; that is, Pt(.|w j) is normalized over
the features in a group, rather than over all meaning fea-
tures. The result is that features at the same level of the
hierarchy, such as DALMATIAN and POODLE, or DOG and
CAT, compete for probability mass; this ensures that such
features, which are mutually incompatible given their taxo-
nomic relationship, cannot simultaneously have high prob-
ability. Features at different levels of the hierarchy are in
different feature groups and thus do not compete for prob-
ability mass; this ensures that meaning probabilities such as
Pt(DALMATIAN|fep), Pt(DOG|fep), and Pt(ANIMAL|fep) can
all be highly activated if fep is intended to refer to a Dalmatian
(which is also both a dog and an animal). In this approach,
the meaning of a word is the set of n distributions, Pt(.|w j),
one per feature group in a taxonomy with n levels.
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Figure 2: A portion of the taxonomy used in this paper.

The NGS15 Learning Algorithm
The input to the model is processed in an incremental two-
step bootstrapping framework: Words and features that co-
occur are aligned (associated) in proportion to the current
meaning probabilities, which are then updated with the new
evidence regarding strength of association, as follows.

The Alignment Step. For an input pair at time t, the model
calculates a probabilistic strength of aligning (associating)
each word w j ∈Ut with each feature fi ∈ St :

at( fi,w j) =
Pt−1( fi|w j)

∑
w′∈Ut

Pt−1( fi|w′)
(1)

These alignment strengths are incrementally accumulated as:

assoct( fi,w j) = assoct−1( fi,w j)+at( fi,w j)

= ∑
t ′∈T

at ′( fi,w j)
(2)

where T is all times at which fi and w j have co-occurred.
In our model, if more than one instance of feature fi oc-

curs with word w j at time t, multiple instances of at( fi,w j)
are recorded. For example, in the simultaneous presentation
of three exemplars with the word fep, the alignment strength
at( f , fep) will be added three times to the association score
for each feature f in the input.

Update of Meaning Probabilities The model next uses the
association scores to update the meaning probabilities. Each
meaning probability Pt( fi|w j) represents the magnitude of the
fi–w j association relative to the association strength between
w j and other features within the same feature group G as fi:

Pt( fi|w j) =
assoct( fi,w j)+ γ t

G

∑
fm∈G

assoct( fm,w j)+ kG γ t
G

(3)

Here kG and γ t
G are smoothing terms: kG reflects the expected

number of features in G and γ t
G represents the a priori ten-

dency to observe a feature in G . While kG is a fixed param-
eter, γ t

G is a function of the number of observed types within
the feature group G , and thus changes over time (see NGS15).

The γ t
G parameters are key to the generalization behavior

of the NGS15 model because they influence how much prob-
ability mass is allocated to a feature previously unseen with a
word (cf. Eqn. 3 when the assoc score is 0). A higher value
for γ t

G leads to more probability mass allocated to previously
unseen features in group G , allowing for more generaliza-
tion to new features in that group. Because γ t

G increases with
the number of types, it captures the oft-observed tendency in
language that people more readily generalize categories for
which a greater variety of types of items has been observed.
The model matches the child data from XT07 by equating γ 0

G
across feature groups. But to match the adults, who show a
stronger basic-level bias, the model required that the γ 0

G pa-
rameters be initialized to successively higher values for fea-
ture groups successively lower in the hierarchy, entailing that,
e.g., it is easier to generalize a novel word to a new breed of
dog not seen in training (basic-level generalization), than to a
new kind of animal not seen in training (superordinate gener-
alization).

Our Extensions to Integrate Memory and Attention
To render the model sensitive to presentation timing, we
adopt the general approach of Nematzadeh et al. (2012),
which integrates memory and attention seamlessly into the
cross-situational word-learning mechanism. The approach
was shown to account for spacing effects in word learning,
which are closely related to the presentation timing factors
considered by SPSS11. However, the methods must be ex-
tended to adequately meet the needs of word generalization
in the NGS15 model; we describe those extensions here.

Modeling the Effects of Forgetting. To model the effect
of memory, we use the association score formulation of
Nematzadeh et al. (2012), which implements “forgetting”
by applying a decay factor to each alignment probability
(cf. Eqn. 2 above):

assoct( fi,w j) = ∑
t ′∈T

at ′( fi,w j)

(t− t ′+1)dat′
(4)

Each alignment in the sum is scaled by the temporal distance
between the current time t and the time t ′ that the alignment
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was made, exponentiated to a decay function dat′ that is in-
versely proportional to the strength of alignment.

However, we must extend this decay formulation to accom-
modate our hierarchical knowledge of feature groups.2 In
particular, we find that using the same decay rate across all
feature groups is not sufficient. As noted above, appropriate
word generalization in the NGS15 model requires that lower
levels in the taxonomy be more “open” to generalizing to new
features than higher levels in the taxonomy. It is important to
note that the decay of alignments also influences “openness”
to generalization because it shifts probably mass away from
observed word–feature pairs onto unseen events. Thus, to
appropriately reflect the nature of the hierarchy – that open-
ness increases with greater depth in the taxonomy – we must
parameterize decay by feature group. Just as feature groups
lower in the taxonomy must have successively higher γ values
to indicate more “openness” to generalization, lower feature
groups also require higher decay rate parameters.

We thus use the following formulation of decay:

dat =
dG

at( fi,w j)
(5)

where dG controls the rate of decay for features in feature
group G , and is set successively higher for lower-level feature
groups in the taxonomy.

Modeling Attention to Novelty. Building on research
showing that people attend more to novel stimuli in learn-
ing (e.g., Snyder et al., 2008; MacPherson & Moore, 2010;
Horst et al., 2011), we use the general idea of Nematzadeh et
al. (2012) in allocating more strength to alignments that are
more novel (cf. Eqn. 1):

at( fi,w j) =
Pt−1( fi|w j)

∑
w′∈U

Pt−1( fi|w′)
·noveltyt( fi,w j) (6)

In this model, noveltyt( fi,w j) was inversely proportional to
how recently w j had been observed, and thus focused solely
on novelty of words; the novelty of the feature fi was not
considered. We must broaden this approach because the ex-
periments here are focused on a single novel word.

Here instead we consider the novelty of the observed
word–feature pairing, and again draw on considerations of
type–token frequencies, as in other aspects of the NGS15
model. Specifically, we scale the alignment strength by the
ratio of the token frequency of fi–w j observations at time t to
the total frequency of all such observations, by formulating
noveltyt( fi,w j) as:

noveltyt( fi,w j) =
tokent ( fi,w j)

∑t ′∈T tokent ′ ( fi,w j)
(7)

where tokent ( fi,w j) is the number of tokens of feature fi that
occurred at time t with word w j.

2Nematzadeh et al. (2012) used a single meaning probability dis-
tribution over all features – i.e., there are no feature groups.

This formulation achieves attention to novelty as follows.
Generally, earlier observations of feature fi with word w j will
have a stronger alignment than later observations, where the
increased number of observations will increase the denomi-
nator of noveltyt( fi,w j), and lead to attenuation of the align-
ment strength. Note that when the co-occurrence of fi with
word w j is truly novel – i.e., the first time they are observed
together – the strength of alignment is undiminished, since
the numerator and denominator of the novelty factor are equal
in the initial observation of fi with w j.

Summary of Novel Extensions to the NGS15 Model In
summary, we have extended both the model of NGS15, and
the memory and attention mechanisms of Nematzadeh et al.
(2012), by: (i) incorporating a forgetting mechanism that is
sensitive to the taxonomic level of a feature group, which
reflects the needs of taxonomic structure and the process of
novel word generalization; and (ii) formulating a mechanism
for attention to novelty of word–feature pairings, rather than
just to recency of words, consistent with the key role of word–
feature association statistics in the model.

These mechanisms have a direct impact on the process-
ing of stimuli in simultaneous vs. sequential presentations
in a novel word generalization task. The forgetting mech-
anism ensures that more general features, such as the kind
of animal observed (e.g., dog or cat), are remembered better
than more detailed features, such as particular breeds of dogs.
The attention-to-novelty mechanism has the consequence that
successive observations of word–feature pairings in a sequen-
tial presentation scenario are “discounted” with respect to ear-
lier presentations. We demonstrate in our experiments below
that, together, these mechanisms interact to enable the model
to account for both the suspicious coincidence effect in a si-
multaneous presentation as found by XT07, and its reversal
in a sequential presentation as found by SPSS11.

Methodology
We follow the methods of NGS15, adapted where needed for
our extended model on the SPSS11 data.3

Training the Model. We use a taxonomy with three lev-
els, corresponding to the subordinate, basic, and superordi-
nate categories of animals. This yields four feature groups,
one per category level plus an “instance” group to distinguish
multiple objects of the same subordinate category. See Fig-
ure 2. In each Ut–St input pair, Ut consists of the novel word,
and St is a set of four features (one per feature group) rep-
resenting a unique instance of the same subordinate category
across all training trials; for example:4

Ut : { fep }
St : { INSTANCE1, DALMATIAN, DOG, ANIMAL }

3Our code and data are available at
https://github.com/eringrant/novel word generalization.

4Each FEATURENAME stands for all features of an object at that
level of the hierarchy. Such features could be replaced with an ap-
propriate set of features without changing the model results.
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In the 1-example condition, training consists of just one such
Ut–St pair. In the 3-subordinate condition, training has three
such Ut–St pairs, differing only in the unique instance feature
(i.e., INSTANCE1, INSTANCE2, INSTANCE3) in each St . In the
simultaneous condition, the three Ut–St pairs are all presented
at the same time t. In the sequential condition, the three Ut–St
pairs are presented one at a time, at t, t +1, and t +2.

Testing the Model. After training, the level of generaliza-
tion of the novel word is assessed against test objects, each of
which is a subordinate match, a basic-level match, or a super-
ordinate match; for example:

subord. match: { INSTANCE4, DALMATIAN, DOG, ANIMAL }

basic match: { INSTANCE5, POODLE, DOG, ANIMAL }

super. match: { INSTANCE6, TOUCAN, BIRD, ANIMAL }

We adapt the Pgen formula of NGS15 to test whether the
model generalizes the learned meaning of the novel word w
to the various levels of match at test time T (after training):

Pgen(m|w) =
avgY∈m PT (Y |w)

avgY ′∈ {sub.} PT (Y ′|w)

Here PT (Y |w) is the probability of a test object Y given w,
and m is the set of test objects at a certain level of match. The
measure in the numerator of Pgen is the average such proba-
bility across test matches at that level, avgY∈m PT (Y |w). This
is not directly comparable to the empirical data, which are the
percentages of test objects selected from each type of match.
To obtain a comparable measure, we scale each probability
(for each level of match) by the probability of the subordinate
matches in that condition, avgY ′∈ {sub.} PT (Y ′|w) (the denom-
inator of Pgen). Thus Pgen(m|w) is the relative average pref-
erence for test items at level m. This renders the subordinate
match probability as 1.0 (reflecting that people generally pick
close to 100% of the subordinate test items), and shows the
other type of matches relative to that amount.

Model Parameters. Since the SPSS11 participants are
adults, we use the adult parameter settings of NGS15 for
the four γ 0

G parameters and the four kG (one each per fea-
ture group), which are tuned to achieve a match to adult data
of XT07. For our decay parameters, we use:

d inst = 0.8 dsubord = 0.5 d basic = 0.05 dsuper = 0.01

Model Results and Discussion
Figure 3 shows the results of our model in the simultaneous
and sequential conditions; cf. Figure 1 for the human behav-
ioral data in SPSS11. Following simultaneous presentation of
training input (Figure 3a), our model shows the suspicious co-
incidence effect: Generalization to the basic level is inhibited
in the 3-subordinate condition as compared to the 1-example
condition. In contrast, sequential presentation reverses the
suspicious coincidence effect (Figure 3b): the model exhibits
greater basic-level generalization in the 3-subordinate condi-
tion. Thus, these results replicate the qualitative pattern evi-
dent in the behavioural data of SPSS11.

Figure 3: Our Model Data
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Our model data for (3a) simultaneous and (3b) sequential presen-
tations. Each bar is the probability of a type of test match: i.e.,
subord(inate), basic(-level), or super(ordinate), scaled by the subor-
dinate match probability (see text).

The interaction (between presentation type and amount
of training) seen in the human data arises as a result of a
corresponding interaction in the model. Consider each 3-
subordinate condition (simultaneous and sequential) com-
pared to the 1-example condition. In the simultaneous 3-
subordinate case, the attentional mechanism yields higher
alignment strengths between the word and features because
their three co-occurrences are all novel at the single presen-
tation time; in addition there is little forgetting because the
items are all seen at time t and test is at time t+1. This yields
stronger subordinate alignments compared to the 1-example
case, and therefore somewhat less basic-level generalization.

By contrast, in the sequential 3-subordinate case, the
word–feature co-occurrences are less salient because they de-
crease in novelty over the three presentation times. In addi-
tion, greater forgetting occurs because there is more time be-
tween the (first two) presentation times and test time (t + 4).
In this case, because subordinate features decay faster than
basic features, the interaction yields weaker subordinate fea-
tures compared to the 1-example case, and more basic-level
generalization is achieved.

The interaction of memory and attention effects are re-
quired to obtain this pattern of results in the model. If the
model includes only the decay mechanism, differentiated by
taxonomic level, this enables it to focus more on abstract than
specific features, and consequently raises the basic general-
ization closer to the level of the subordinate generalization in
all conditions. On the other hand, using the attention mech-
anism alone enables the model to distinguish the sequential
and simultaneous conditions, but it cannot on its own raise
the basic generalization high enough. Only when the two are
used together does the model produce the reversal of the sus-
picious coincidence effect in the sequential presentation.

The necessity of both memory and attention is suggestive
of how word learning occurs in people. In particular, the
attention mechanism in the model focuses more probability
onto word–feature co-occurrences in their earlier presenta-
tions, simulating the general tendency for people to attend
more to less-familiar things. In addition, the mechanism that
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increases the decay rate for lower-level features in the taxon-
omy simulates the tendency in people to remember abstract
features of objects over very specific features. SPSS11 con-
tended that people are able to attend to specific features in
the simultaneous condition due to the close spatial and tem-
poral proximity of the items, and correspondingly attend only
to the abstract commonalities of items in sequential presenta-
tions. Our model explains this effect as the result of general
memory and attention mechanisms that have been shown to
play a role in word learning more widely (cf. Nematzadeh et
al. (2012); Nematzadeh, Fazly, and Stevenson (2013)). In-
terestingly, attention in our model is a function of the token
frequency of word–feature co-occurrences (as opposed to a
fixed parameter) and is therefore a response to the statistics of
the data, as are other components of our word generalization
formulation. All this further supports that attention, memory
and statistical learning interact to produce the suspicious co-
incidence effect and its reversal across presentations.

Conclusions and Future Work
Novel word generalization – understanding how a word maps
to the appropriate level of a taxonomic hierarchy – is an
important aspect of novel word learning, but one that has
not received much attention in the word-learning commu-
nity. We propose a unified model of word learning that ac-
counts for the various observed patterns of novel word gen-
eralization – in particular, the suspicious coincidence effect
(Xu & Tenenbaum, 2007) and its reversal under differing pre-
sentation conditions (Spencer et al., 2011). We extend the
model of Nematzadeh et al. (2015) with a novel integration of
the general cognitive mechanisms of memory and attention,
and show that our model’s success is a result of the inter-
action of forgetting and attention to novelty of word–feature
co-occurrences. Our approach builds on the earlier NGS15
model in highlighting the importance of type and token fre-
quency patterns in the input to capturing interesting gener-
alization effects, but here these patterns are manifest in our
formulation of memory and attention mechanisms.

In incorporating these cognitive processes into our model,
we drew on the approach of Nematzadeh et al. (2012), whose
model had been shown to account for various spacing effects
in word learning (see also Nematzadeh et al., 2013). Much
further work is needed to explore whether our model can ex-
plain other such effects. For example, Vong, Perfors, and
Navarro (2014) showed that people’s categorization of novel
object instances depends on the distribution of training exam-
ples both that are labelled with a word as well as those that
are unlabelled. Currently, our model only takes into account
word–feature co-occurrences, and is therefore insensitive to
features that occur without a word label. We will need to con-
sider how to integrate learning from unlabelled data in order
to better model how statistical word learning interacts with
object categorization, as it does in people.
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