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Generalization of within-category feature correlations
Nolan Conaway & Kenneth J. Kurtz

Department of Psychology, Binghamton University
Binghamton, NY 13905 USA

Abstract

Theoretical and empirical work in the field of classification
learning is centered on a ‘reference point’ view, where learn-
ers are thought to represent categories in terms of stored points
in psychological space (e.g., prototypes, exemplars, clusters).
Reference point representations fully specify how regions of
psychological space are associated with class labels, but they
do not contain information about how features relate to one
another (within- class or otherwise). We present a novel exper-
iment suggesting human learners acquire knowledge of within-
class feature correlations and use this knowledge during gen-
eralization. Our methods conform strictly to the traditional ar-
tificial classification learning paradigm, and our results can-
not be explained by any prominent reference point model (i.e.,
GCM, ALCOVE). An alternative to the reference point frame-
work (DIVA) provides a strong account of the observed perfor-
mance. We additionally describe preliminary work on a novel
discriminative clustering model that also explains our results.

Keywords: categorization; generalization; formal modeling

Introduction
Research on human classification learning is fundamentally
interested in questions of representation: How do people
represent categories? How does a category’s internal struc-
ture influence its subjective difficulty? How do people gen-
eralize their knowledge about categories? Current research
addressing these questions is centered around a ‘reference-
point’ framework, whereby people are thought to acquire cat-
egory knowledge associating stored perceptual referents (e.g.,
prototypes, exemplars) with individual categories. The suc-
cess of reference point models (e.g., Kruschke, 1992; Love,
Medin, & Gureckis, 2004; Nosofsky, 1984; J. D. Smith &
Minda, 2000) is unparalleled within the field, and as a result
these models are widely considered to be definitive accounts
of how categories are learned and represented (for reviews,
see Murphy, 2002; Pothos & Wills, 2011; see also Kurtz,
2015).

Although reference point models differ from one another
in a variety of ways, these models are comparable in that
they assume that categories are represented by one or more
points in a psychological space. On the extremes, prototype
models represent categories with a central tendency (i.e., the
average across known members), whereas exemplar models
use specific observations. Many successful reference point
models employ a selective attentional mechanism, enabling
them to weight the importance of each stimulus dimension
(Kruschke, 1992; Medin & Schaffer, 1978).

Importantly, however, reference point representations do
not incorporate all aspects of class structure. While points
of reference can be used to encode information about how
regions of space are associated with known categories, they
do not contain information about how features relate to one

another (either globally or within a class). By consequence,
reference point models are only sensitive to correlations be-
tween features insofar as those correlations are reflected in
the distances between stored reference points.

Although there is evidence that people make use of fea-
ture correlations in natural concepts (Malt & Smith, 1984),
research on correlation learning in a traditional artificial clas-
sification learning (TACL) setting has been mixed. Whereas
Medin, Altom, Edelson, and Freko (1982) reported evidence
that feature correlations influence classification of artificial
categories, Murphy and Wisniewski (1989) later expanded
upon that study and found little evidence of correlation learn-
ing, unless features are expected to be correlated. Finally,
Anderson and Fincham (1996) reported that participants used
correlations to infer values of missing features; though note
that traditional reference point models are unable to simulate
feature inference (Lee & Navarro, 2002).

In this paper, we report a classification learning experiment
demonstrating that people represent correlations between fea-
tures, beyond what can be explained in terms of stored refer-
ence points. In addition to providing evidence that learners
do acquire knowledge about correlations between features,
the classification performance we report demonstrates a sys-
tematic failure in the reference point framework. We bolster
our empirical results with simulations using the Generalized
Context Model (GCM; Nosofsky, 1984), an exemplar model
that embodies the central tenets of the reference point view.

We also report simulations using the DIVergent
Autoencoder model (DIVA; Kurtz, 2007, 2015), a au-
toassociative network model that stands as a similarity-based
alternative to the reference point framework. The DIVA
model is fully instantiated as a connectionist network: as
in traditional multilayer perceptron (MLP) architectures,
DIVA is initialized with a input units encoding feature
values, as well as a collection of hidden units enabling the
learning of an internal representation (Rumelhart, Hinton, &
Williams, 1986). DIVA’s primary point of departure from
these models lies in its learning objective: instead of learning
representations to predict class responses, the DIVA model
learns auto-associatively to predict feature values along
divergent, category-specific output channels. Thus, DIVA’s
category representations are acquired for the purposes of
making feature predictions rather than class predictions.
Classification decisions are made using a secondary response
rule: the probability of any given classification depends on
the relative amount of feature prediction error (reconstruction
error) across all categories, with better reconstructions
leading to increased probability.

DIVA’s design principles offer a unique account of human
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category learning: rather than assuming people learn to pre-
dict class responses through association to stored points of
reference, DIVA proposes that people learn representations of
the observed regularities within each class. Accordingly, with
regard to learning feature correlations, DIVA’s predictions
sharply contrast from those made by reference point models.
Specifically, because DIVA is trained on feature prediction
(rather than class prediction), it strongly relies on within-class
feature correlations to aid learning. Thus, whereas reference
point models do not encode any information about feature
correlations, DIVA relies on those correlations in the service
of minimizing feature prediction error.

Finally, we conclude our report with preliminary work on
a novel discriminative clustering model that explains our re-
sults without acquiring knowledge of how features are cor-
related. Development of this model is ongoing, though our
simulations results indicate that it may succeed as an account
of human classification more generally.

A
A

A
A

B
B

B
B X X X

X X

X

Y

Y Y

Y Y Y

D = 3

D
=

3

Figure 1: The Diagonal classification. X and Y indicate crit-
ical generalization items. Annotations illustrate equal city-
block distance between the critical items and known category
members.

The Current Study
In a Diagonal classification, the two categories (‘A’ and ‘B’)
are organized along a diagonal boundary (see Figure 1).
This classification is notable for its likeness to Information-
Integration (Ashby & Maddox, 1990) and Condensation cat-
egories (Gottwald & Garner, 1972; Kruschke, 1993). The
features are perfectly correlated within each category, but the
training exemplars are isolated in one region of the stimulus
space, allowing for generalization items that follow the diag-
onal boundary (labeled X & Y in Figure 1).

Our DIVA simulations revealed that the model typically ex-
tends the diagonal boundary to these items – exemplars on the
Category A side of the extended boundary are more likely to
be classified as members of Category A than exemplars on the
other side, and vice-versa (i.e., A→ X , B→ Y ). DIVA’s per-

formance is concisely explained by its design principles: be-
cause DIVA is trained on feature prediction (rather than class
prediction), the model learns that the features can be used to
predict one another. After training, DIVA reconstructs novel
items following its knowledge of each category’s feature cor-
relations, affording an extension of the diagonal boundary.

We found that the GCM could not mimic DIVA’s perfor-
mance. Instead of extending the diagonal boundary outward,
the GCM classifies each critical item with equal probabil-
ity. A close examination of the Diagonal classification ex-
plains the GCM’s performance: each of the critical items is
equally distant (under a city-block metric) to known members
of both categories. While a Euclidean metric would enable
the GCM to extend each category to its critical items, the use
of a city-block metric reflects the separable stimulus dimen-
sions used in the behavioral experiment reported below (see
Garner, 1974). City-block distance was also supported by the
results of an independent pairwise similarity-rating study –
stimuli X & Y were not rated as more similar to items on their
own side of the diagonal boundary.

With evenly distributed selective attention, the GCM clas-
sifies each item with a probability of 0.5. Unequal allocation
of attention results in uniform changes to the classification
gradient, but not generalization of each category along the
diagonal. For example, greater allocation to the vertical di-
mension results in increased Category B probability for the
entire collection of critical items. Finally, other types of ref-
erence points (i.e., prototypes, clusters) also lead to the same
performance. The critical items area are equally close to the
category prototypes, as well as a variety of cluster configu-
rations. The GCM’s results therefore characterize a set of
predictions made by reference point models more generally.

Examining these predictions more methodically, we con-
ducted a ‘grid-search’ to evaluate DIVA and GCM perfor-
mance under a range of parameter settings. At each point in
the search, the models were tested on classification of novel
items X & Y. To quantify each parameterization’s degree of
diagonal extension, we calculated the difference score in the
Category A classification probability for the critical items on
either side of the boundary (X−Y ). Positive difference scores
indicate systematic generalization of each class, and neutral
(≈ 0) scores indicate uniform generalization. Plotting these
scores as a density curve across points in the search (Figure 2)
reveals strongly systematic behavior: whereas DIVA nearly
always generalized each class outward, the GCM produced
identical responses to X & Y under every parameter setting.

In what follows, we report a behavioral study testing the
predictions made by DIVA and the GCM on generalization of
the Diagonal classification. If human learners represent cate-
gories solely in terms of reference points, then generalization
should be uniform: participants should be no more likely to
produce a Category A response to items on the A-side of the
diagonal than on the opposite side (i.e., X ≈ Y ). However, if
participants acquire knowledge about how the features relate
to one another within each category (as predicted by DIVA),
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Figure 2: ‘Grid search’ simulations with DIVA and the GCM.
Densities in this plot reflect predictions about the classifica-
tion of critical items, across many different parameter set-
tings. Positive scores indicate that each category was gener-
alized to the items on its side of the boundary, A→ X , B→Y .

then we should observe systematic generalization of the diag-
onal boundary outward (i.e., A→ X , B→ Y ).

Participants and Materials. 30 undergraduates from
Binghamton University participated in fulfillment of a course
requirement. Stimuli were squares varying in shading and
size (see Figure 3). The separability of these features justifies
a city-block metric (Garner, 1974). An independent scaling
study verified that the dimensions are nearly equal in percep-
tual salience. The assignment between perceptual and con-
ceptual dimensions was counterbalanced across participants.

Figure 3: Sample stimuli.

Procedure. Participants completed 96 training trials (12
blocks consisting of the 8 training examples). On each trial,
a stimulus was presented on a computer screen and learners
were prompted to make a classification decision by clicking
one of two buttons (labeled ‘Alpha’ and ‘Beta’). After select-
ing a class label, learners were given feedback on their re-
sponse. Following the training phase, participants completed
81 generalization trials consisting of items sampled at 9 po-
sitions on each dimension. All of the training examples were

included (intermixed). Feedback was not provided during the
generalization phase. Participants were informed that there
would be test trials prior to beginning the experiment.

Results. By the end of the training phase, most participants
had successfully mastered the categories. On average, partici-
pants were 89.2% (SE = 2.5) accurate during the last training
block. Only two of 30 participants failed to reach greater than
6/8 correct during the final training block. Aggregate training
data is depicted in the left panel of Figure 4.

As a test of whether learners extended the diagonal bound-
ary, we compared the average number of ‘A’ classification
responses made to critical items X & Y (Figure 4). Learners
were more likely to produce an ‘A’ response to X than to Y,
t(29) = 5.02, p < 0.001, d = 0.56. We then compared the
difference score we obtained behaviorally (X−Y ) to our ear-
lier results with DIVA and the GCM: as shown in Figure 2,
the difference score we observed cannot be produced by the
GCM, but is fully explained by DIVA. Aggregate generaliza-
tion data is depicted in Figure 5.

Summary
We provided classification training to human learners on a
Diagonal classification (Figure 1). Learners systematically
extended each category to novel items that are equidistant
to known exemplars from both categories. The generaliza-
tion we observed can be considered evidence that learners ac-
quire knowledge about feature correlations, and they apply
that knowledge during generalization. Our results are also
inconsistent with the notion that category knowledge solely
consists of exemplar, prototype, or cluster reference points.

Our results are concisely explained by the DIVA model.
Because DIVA’s is principally autoassociative, the model re-
lies on within-class internal regularities (such as feature cor-
relations) to support reconstruction learning. In our above
simulations, we found that the model frequently generalized
the diagonal boundary outward, just was we observed in the
behavioral study. However, it is customary to assess models
using a post-hoc parameter fitting process. In the next section,
we describe a more formal examination of the performance
by DIVA and the GCM.

Simulations
The overall goal of the following simulations is to formally
evaluate the performance of DIVA and the GCM in terms of
quantitative fit to our observed generalization behavior. Be-
fore proceeding, it is worth noting that DIVA and the GCM
are not fully comparable: unlike the GCM, DIVA’s category
representations are constrained via back-propagation learn-
ing (Rumelhart et al., 1986), and its performance is stochas-
tic. However, model performance on generalization testing
can still be compared to assess whether our results can be ex-
plained under a reference point scheme.

We used parameter optimization techniques to find each
model’s best fit to the observed generalization data using of
a mean-squared error (MSE) metric. We used a hill climb-
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Figure 4: Left: Behavioral training accuracy. Right: Behavioral responses to critical items X & Y. Error bars reflect ±1 SE.

ing procedure to fit the GCM over four parameters: exemplar
specificity (c), response determinism (γ; Nosofsky & Zaki,
2002), and attention strengths for features 1 and 2 (W1 and
W2). DIVA’s behavior is stochastic, however, which precludes
the use of hill-climbing. As a result, we search for DIVA’s
best fit using a ‘grid-search’ technique to generate predictions
along a range of settings for its four parameters: number of
hidden units, learning rate, initial weight range, and a focus-
ing parameter, β (Kurtz, 2015). At each point, DIVA was ini-
tialized 2000 times with random small-valued weights and a
random presentation sequence. The model used logistic hid-
den units and linear outputs.

Overall, DIVA was able to provide a stronger fit to the full
behavioral gradient than the GCM. DIVA’s best fit (MSE =
0.006) was achieved with 3 hidden units, learning rate =
0.55, weight range ±0.5, and β = 3. The GCM’s best fit
(MSE = 0.0075) was achieved with c = 5.304, γ = 1.055,
W1 = 0.507, W2 = 0.493. Model performance was further
differentiated the responses to the critical items (rather than
the entire gradient): DIVA achieved MSE = 0.0037, and the
GCM achieved MSE = 0.02. Beyond quantitative fitting,
however, it is important to acknowledge that DIVA’s predic-
tions match the qualitative patterns of observed performance
– the model extends each category to novel items along the
diagonal boundary. Conversely, the GCM’s generalization is
completely neutral for these items. Each model’s best perfor-
mance is depicted in Figure 5.

A discriminative clustering account.
Although traditional reference point models are unable to ex-
plain our results, we have recently implemented a novel dis-
criminative clustering account that successfully captures the
observed generalization performance. The advance made by
this account lies in the realization that the reference points
associated with each category need not be localized as the

exemplars, the category’s central tendency, or the central ten-
dency of select clusters of exemplars. Instead, the location
of reference points may discriminatively reflect the proxim-
ity of opposite-category members. In doing so, this model
may provide a account of the effects of contrast categories on
conceptual representation (Davis & Love, 2010; Levering &
Kurtz, 2006; Palmeri & Nosofsky, 2001).

Overall, the design of the discriminative clustering model
is similar to SUSTAIN (Love et al., 2004): the model’s refer-
ence point representation consists of a collection of clusters,
and classification is based on each category’s association the
clusters. The model begins training with no internal repre-
sentation, and recruits clusters in when it makes a poor clas-
sification decision. The primary departure from SUSTAIN
concerns the localization of the clusters: on each trial, clus-
ters belonging to the correct category are moved toward the
presented exemplar, and clusters belonging to incorrect cate-
gories are move away from the presented exemplar. By allow-
ing the clusters to move discriminatively from members of the
opposite category, they become more similar to critical items
on the category’s side of the diagonal boundary, producing
the observed pattern of generalization. Sample performance
from this model is depicted in Figure 6.

Discussion
The reference point framework has dominated research and
theory in category learning for the past 30 years. Reference
point representations are useful in that they specify how re-
gions of space are associated with class labels, but they do
not encode information about global or within-class regulari-
ties, such as feature correlations.

We reported an experiment suggesting that human learn-
ers acquire knowledge of within-class feature correlations.
Specifically, after training on a Diagonal classification, par-
ticipants systematically generalized in accord with each cat-
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Figure 5: Left: Behavioral generalization. Center & Right: Best-fit predictions from DIVA and the GCM.

egory’s internal structure to exemplars that are equally sim-
ilar to members of both categories. The observed perfor-
mance is inconsistent with prominent reference point models
(e.g., Kruschke, 1992; Love et al., 2004; Nosofsky, 1984;
J. D. Smith & Minda, 2000), and indicates that learners
may acquire knowledge about categories that cannot be rep-
resented under a reference point scheme. The Divergent
Autoencoder model (DIVA; Kurtz, 2007, 2015) succinctly ex-
plains the observed performance: because DIVA is chiefly an
autoassociator, the model depends on within-class regulari-
ties (such as feature correlations) to aid in feature prediction.
Accordingly, DIVA’s generalization shows strong sensitivity
to the within-category feature correlations.

Although existing reference point models fail to match
our results, we introduced a novel discriminative clustering
model capable of producing the observed generalization. De-
velopment of this model is ongoing, though its results here
show promise. Unlike existing cluster-based approaches (i.e.,
Love et al., 2004), the cluster locations in our model are op-
timized both for similarity to same-category exemplars, and
for dissimilarity to opposite-category exemplars. Thus, the
model’s clusters are gradually moved outward in the stimulus
space, taking on the value of a category ideal. From this loca-
tion, clusters are more similar to novel items on their side of
the diagonal boundary, affording generalization of each class.
Future work will attempt to dissociate the predictions made
by DIVA and the discriminative clustering model.

This report adds to an accumulating body of evidence
against the idea that category learners solely acquire knowl-
edge in the form of reference points. Research in function
learning (DeLosh, Busemeyer, & McDaniel, 1997) has, for
example, demonstrated key flaws in the account of extrap-
olation put forward by reference point similarity – studies
on on rule-based generalization have revealed similar flaws
in a category learning context (e.g., Erickson & Kruschke,
2002). Traditional reference point approaches are also unable
to explain the effects of category variability on generaliza-

tion (Cohen, Nosofsky, & Zaki, 2001; E. E. Smith & Sloman,
1994). Finally, our recent work (Conaway & Kurtz, 2015) has
uncovered unique generalization behavior that cannot be ex-
plained via similarity to reference points. Taken as a whole,
these findings raise a substantive challenge to theories of hu-
man category learning based on similarity to reference points.
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