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Stanford University

Abstract

Scalar implicatures—inferences from a weak description (“I
ate some of the cookies™) that a stronger alternative is true
(“T didn’t eat all”)—are paradigm cases of pragmatic infer-
ence. Children’s trouble with scalar implicatures is thus an
important puzzle for theories of pragmatic development, given
their communicative competence in other domains. Previous
research has suggested that access to alternatives might be key.
Here, we explore children’s reaction times in a new paradigm
for measuring scalar implicature processing. Alongside fail-
ures on scalar implicatures with “some,” we replicate previ-
ous reports of failures with “none,” and find evidence of a
speed-accuracy trade-off for both quantifiers. Motivated by
these findings, we explore the relationship between accuracy
and reaction time with a Drift Diffusion Model. We find evi-
dence consistent with the hypothesis that preschoolers lack ac-
cess to the alternatives for scalar implicature computation, al-
though this set of alternatives may be broader than previously
assumed.

Keywords: Pragmatics; development; scalar implicature; dif-
fusion models.

Introduction

Language comprehension in context is an inferential process.
Listeners are not limited to interpreting the literal meaning
of speakers’ utterances; they can also reason about what the
speaker intended, based on alternative utterances. In the case
of pragmatic implicatures (Grice, 1975), a speaker employs
a weaker literal description to imply that a stronger alterna-
tive is true. Adult listeners tend to infer from the statement “I
ate some of the cookies” that some, but not all, of the cook-
ies remain. This scalar implicature (SI) relies heavily on a
knowledge of the relevant lexical alternatives in the quanti-
fier scale <some, all>. On standard theories, a listener must
be able to contrast “some” with the stronger descriptor “all”
to compute the implicature (Grice, 1975; Levinson, 2000).

SIs are challenging for children until surprisingly late in
development (Noveck, 2001). For example, when judging a
scene in which three of three horses have jumped over a fence,
five-year-olds are likely to endorse the statement “some of the
horses jumped over the fence” as felicitous, despite the avail-
ability of a more informative alternative (“all”’; Papafragou &
Musolino, 2003). Children do seem to have some knowledge
of these scalar terms, however; for example, they differen-
tially reward speakers based on the informativeness of their
scalar descriptions (Katsos & Bishop, 2011). Given this early
sensitivity, why do children still struggle to compute scalar
implicatures until fairly late in development?

One possible cause of children’s failures is that they may
not have access to relevant lexical alternatives (Barner &
Bachrach, 2010). This idea, which we will refer to as the Al-
ternatives Hypothesis, predicts that if children cannot quickly
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and reliably bring to mind the relevant alternative quantifiers
(e.g., “all” in a situation where they hear “some”) they will
be unable to compute the implicature. The alternatives hy-
pothesis makes a number of predictions about children’s abil-
ities in reasoning about quantifiers, some of which have been
confirmed empirically. For example, consistent with the idea
of inaccessible alternatives, Barner, Brooks, & Bale (2011)
showed that four-year-olds could not compute the quantifier
expression “only some” (which should force alternatives to
be negated semantically, rather than pragmatically). In light
of this hypothesis, what are the proper alternatives for SIs?

Here, empirical evidence has been changing rapidly. Al-
though the conventional view on SI is that the primary infer-
ential alternative is “all,” a new body of evidence suggests
that more alternatives may be necessary. For example, De-
gen & Tanenhaus (2015) found that set size can change the
felicity of quantifier SIs for adults: “some” is more felici-
tous when participants could not say “one” or “two.” In a
computational reanalysis of Degen & Tanenhaus (2015) and
other data, Franke (2014) showed that a high weight on the
alternative “none” was critical for fitting these data. And in a
recent study with children, Skordos & Papafragou (in press)
found that exposing children to either “all” or “none” facil-
itated computation of subsequent SIs. Taken together, these
data suggest that the availability of alternatives—particularly
“none”—does affect scalar implicature processing.

This relationship to “none” is unexpected on classic
Gricean theories (Grice, 1975; Horn, 1972), where the only
alternatives should be those logically entailed by the original
message (i.e. “all””). But it is in fact predicted by recent prob-
abilistic models of implicature. Under these models, all the
relevant alternatives compete with one another (Franke, 2014;
Goodman & Stuhlmuller, 2013). On the other hand, all of the
evidence cited above for the claim of “none” as an alternative
is relatively indirect, and such a substantial revision to theory
requires further evidence.

One other recent developmental study further supports the
importance of “none” in SIs and provides the starting point
for our current experiment. Horowitz & Frank (2015) de-
signed a referent selection paradigm that could be used across
a broad age range (3-5 years) to explore both scalar and ad-
hoc (context-dependent) implicatures. In this task, children
saw three book covers, each featuring four familiar objects
(Figure [I). On target trials, the experimenter described a
book using a semantically ambiguous description (e.g., “On
the cover of my book, some of the pictures are cats” [scalar]
or “On the cover of my book are cats” [ad hoc]). Children
succeeded on ad-hoc trials but largely failed to make SIs, sug-
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gesting they had the pragmatic competence necessary to com-
pute the implicature, but failed to do so for scalar descriptors.

Interestingly, in Horowitz & Frank (2015), the same chil-
dren who failed on SI also failed on unambiguous “none”
control trials (e.g., “On the cover of my book, none of the pic-
tures are cats”*)—and in several samples, performance was
highly correlated between’none” and “some” trials. This re-
sult would be predicted if “none” were in fact an inferential
alternative to “some.” If children were not computing its se-
mantics appropriately in an online fashion, they would fail in
the “some” SI computation as well, leading to a correlation.

One further prediction of the alternatives hypothesis re-
lates to processing time. Perhaps children who have a
fully-established quantifier scale—and hence can make cor-
rect SIs—take additional time in using this information, due
to competition between alternatives. Congruent with this
prediction, our intuition in Horowitz & Frank (2015) and
Horowitz, Schneider & Frank (in prep.) was that when chil-
dren made correct SIs they appeared to be taking longer than
when they failed. Motivated by this observation, we adapted
our SI task for the iPad to collect detailed and accurate de-
velopmental reaction time data. Although reaction time mea-
sures have been commonplace in studies of adults’ SI pro-
cessing, they have been almost entirely absent in the develop-
mental literature (with the exception of Huang & Snedeker,
2009, whose data showed little evidence of SI computation).

Thus, in our current study, we explore children’s response
latencies in an iPad adaptation of the Horowitz & Frank
(2015) SI task. In our analyses, we examine overall accu-
racy and patterns of performance, as in Horowitz & Frank
(2015), and find that children not only struggle in making
SIs, but replicate the finding that they have difficulty with
“none” until fairly late in development. Congruent with our
predictions, in reaction time analyses we find evidence of a
speed-accuracy trade-off for both quantifiers, such that chil-
dren who succeed exhibit longer response latencies. Finally,
we use a Drift Diffusion Model (Ratcliff, 1978; Ratcliff &
Rouder, 1998) to explore the source of this increased reaction
time. Overall, our findings are consistent with a version of the
Alternatives Hypothesis under which “none” is an important
inferential alternative in SI and its availability causes slower
processing times but correct Sls.

3
1 3

Figure 1: Example trial stimuli used in Horowitz and Frank
(2015).
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Agegroup N Mean Median SD
3-3.5years 24 3.27 3.28 0.15
3.5-4years 35 3.78 3.73 0.15
4-4.5years 25 427 4.28 0.15
4.5-5years 30 4.76 476  0.15
5-6.5years 24 5.55 559 037

Table 1: Age information for all participants.

Method

We adapted the scalar implicature paradigm developed by
Horowitz & Frank (2015) for the iPad. In addition to cap-
turing reaction time (RT) data, this version included more tri-
als, and standardized prosody across all trials, as well as a
randomized designF_-]

Participants

Table [T] shows the breakdown of participant age information.
Included are 138 children out of a planned sample of 120 par-
ticipants, recruited from both a local daycare and children’s
museum. 39 additional children were excluded from analysis
based on planned exclusion criteria of low English language
exposure (< 75%) or < 50% of trials completed. Included in
our sample were 79 females and 59 malesE]

Stimuli and design

The general format of the task was identical to Horowitz &
Frank (2015), with the exception of added items for addi-
tional trials. The study was programmed in HTML, CSS,
and JavaScript, and displayed to children on a full-sized iPad.
Each trial displayed three book covers, each containing a set
of four familiar objects (Figure [T). Each session involved
30 trials, with 10 trials per quantifier (“all”, “some”, and
“none”). Each audio clip used the same three initial sen-
tence frames (e.g., “On the cover of my book, some of the
pictures...”) to emphasize prosody equally across all trials.
The average length of each clip (including target item phrase,
e.g., “...are cats”) was approximately 6s. Quantifier triad or-
der, items (within category), target item, and quantifier were
randomized for all participants. There were 270 different tar-
get items and audio clips.

Procedure

Sessions took place individually in a small testing room away
from the museum floor or the classroom of the daycare. To
familiarize children with the iPad, each session began with a

IThe full experiment can be viewed online at

https://rosemschneider.github.io/tablet_exp/si_tablet.html

and all of our data, processing, experimental stimuli, and analysis
code can be viewed in the version control repository for this paper
at: https://github.com/rosemschneider/SI_tablet.

2Based on Horowitz & Frank (2015), we initially planned to col-
lect data from children aged 3-5 years. After 57 participants, how-
ever, we observed significantly lower performance on implicature
trials across all age groups, indicating that the iPad scalar implica-
ture task was slightly more challenging, and included an older age
group of 24 5-6.5-year-olds.
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Figure 2: Children’s overall accuracy for each quantifier type.
Bars show mean performance for each age group. Error bars
are 95-percent confidence intervals.

“dot game,” which required them to press dots on the screen
as fast as possible. After the dot game, the experimenter in-
troduced them to “Hannah,” a cartoon character who wanted
to play a guessing game with her books. The experimenter
explained that Hannah would show the child three books, and
would give one hint about which book she had in mind, so
they had to listen carefully. Children then saw a practice trial
with an unambiguous noun referent.

Each trial allowed 2.5s for children to visually inspect the
book covers before the prompt played (e.g., “On the cover
of my book, none of the pictures are cats.”). Reaction times
were measured from the onset of the target word. Children
could only make one selection. If a child did not hear Han-
nah’s prompt, the experimenter repeated it, matching the orig-
inal prosody. Once children made their selection, a green box
appeared around the chosen book. The experiment was self-
paced, and children initiated each trial by pressing a button
that appeared after they made their selection.

Results

For trials where the child had missed the prompt or was not
paying attention, we excluded reaction times (RTs) longer
than 15s. After this initial cut, we excluded RTs outside three
standard deviations of the log of mean reaction time. This
cleaning resulted in RT data loss for 85 trials (2.09%). We
observed a fairly wide RT distribution for all trial types. This
variability in children’s RTs may have been exaggerated by
testing in a museum environment, or by the motoric demands
associated with making a response on a tablet (Frank, Sug-
arman, Horowitz, Lewis, & Yurovsky, 2016). “Success” is
defined as choosing the image consistent with the scalar de-
scription (e.g., selecting the book with two cats and two birds
in response to the prompt “On the cover of my book, some of
the pictures are cats.”).

Accuracy

Figure [2] shows children’s mean performance for each trial
type, split by age group. For each age group, we saw signifi-
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Figure 3: Frequency histogram of participant totals for each
trial type, across all participants.

cantly lower accuracy for the quantifiers “some” and “none”
in comparison to “all” (all ps < .01 in two-sample t-tests for
each age group). These results generally replicate our previ-
ous findings using this paradigm (Horowitz & Frank, 2015);
one difference from previous results was in implicature tri-
als. Children aged 3-5 years performed significantly lower
on “some” (implicature) trials in this task in comparison to
Horowitz et al. (in prep.) (p < .01 for all tests). Thus,
while the iPad adaptation was generally successful, implica-
tures were more difficult, perhaps because of the non-social
nature of the iPad interaction.

We next fit a logistic mixed effects model predicting cor-
rect response as an interaction of age and trial type, with ran-
dom effects of trial type and participantEl Performance was
significantly lower on “some” (B = —6.72, p < .0001) and
“none” trials (B = —9.44, p < .0001). There was also a sig-
nificant interaction between age and trial type on “none” trials
(B = 1.52, p =.0005), indicating that children’s performance
with this difficult quantifier increased with age. This model
also showed that children’s performance showed a trend to-
wards significance for “some” trials (f = 0.76, p = .051).

Figure [3] shows distributions of correct responses for all
trial types. Performance on “some” and “none” trials was
bimodal (Hartigan’s D = 0.08, p < .0001) and “none” trials
(D =0.11, p < .0001). While children’s average accuracy
was low for these quantifiers, there were some children who
were correct on the majority of these trials (“Some”: N = 30;
“None”: N = 37) and the others were typically incorrect on
the majority of trials. Children did not appear to be respond-
ing randomly. As in previous work, we found a strong cor-
relation between children’s accuracy on “some” and “none”
trials (r = 0.49, p < .0001). Children also exhibited some
interesting systematicity in their errors: on incorrect “some”
trials they overwhelmingly chose “all,” while on “none” trials
they also chose “some” at about half the rate of “all.”

3 All mixed effects models were fit in R using the 1me4 package.
The model specification was: correct ~ age * trial type +
(trial type | subject id).
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Figure 4: Density plots of reaction times for correct and incorrect responses on each trial type, split by age.

Reaction time

We fit a linear mixed effects model predicting log RT on cor-
rect trials as a function of log trial number, the interaction of
age and trial type, and random effects of trial type by subjectﬂ
Reaction times were longer on “none” (f = 0.38, p < .0001)
and “some” trials (B = 0.22, p < .0001), and reaction times
decreased with age (B = —0.29, p < .0001). There were no
significant interactions between age and trial type. The model
also showed a main effect of trial number, with reaction times
decreasing over the course of the study ( =-0.1, p < .0001).
Examination of the pattern in Figure [] suggests that ac-
curacy and reaction time may interact, however. In particu-
lar, while correct responses on “all” trials appear to be faster
than the (few) incorrect responses, the opposite is true for
“none” and “some” trials: Errors have faster RTs, potentially
indicating a speed-accuracy trade-off. To test for this effect,
we fit another mixed effects model, this time including accu-
racy and its interactions with age and trial type as predictors.
This model revealed that correct trials overall had faster RTs
(B=—0.16, p =.0002), but that this accuracy term interacted
negatively with trial type such that both “none” and “some”
trials had slower RTs for correct trials (f = 0.34, p < .0001;
B =0.27, p <.0001). There were no three-way interactions
of trial-type and age. This model thus provides evidence of a
speed-accuracy trade-off for “some” and “none” trials.

Drift diffusion models

Motivated by the evidence of a speed-accuracy trade-off, we
further explored the interaction between reaction time and ac-
curacy in more depth using drift diffusion modeling (DDM).
Response latencies associated with “some” and “none” indi-
cated that these longer RTs were associated with higher accu-
racy, but what components of the decision process contribute

4Model specification: log(reaction time) ~ log(trial
number) + age * trial type + (trial type | subject
id). Age was centered for ease of interpretation of coefficients, and
we calculated p values via the t = z approximation.

to this finding? DDM can be used in behavioral tasks to pro-
vide a more detailed view of the relationship between accu-
racy and reaction time (Ratcliff & Rouder, 1998). In DDM,
a behavioral response (a correct or incorrect choice) is the re-
sult of noisy data accumulation through a diffusion process.
Responses have separation boundaries that are dependent on
the amount of information needed to initiate a response; drift
rate formalizes the rate of data accumulation. Nondecision
is the amount of time between stimuli offset and initiating
the diffusion process (i.e., encoding). Finally, different re-
sponses may be biased in their starting point in the diffusion
process. Thus, a DDM can reveal more differences in the SI
decision-making process, and provide clues about the causes
underlying this speed-accuracy trade-off.

Developmental analyses Although DDMs are traditionally
fit to data from two-alternative forced-choice tasks, here we
estimate the drift process between a correct and incorrect
choice, with two options in each trial being “incorrect,” and
only one being consistent with the target noun and quantifier.
We estimated parameters for each subject for each trial type
using the RiWiener package. We then aggregated across sub-
jects to obtain means and confidence intervals for each age
group. Figure [5] shows the parameter estimates for each age
group, split by trial type. To fit the model, we excluded 85
trials with outlier RTs.

For each parameter estimate, we ran a mixed effects model,
predicting parameter value as an interaction of age and trial
typeﬂ There was no significant effect of trial type in bound-
ary separation, indicating that roughly the same amount of
information is needed to make a decision for each quantifier.
This should be expected, given our experimental design. For
non-decision time, we found a significant main effect of age
(B =-0.28, p < .00001), as well as an interaction between

5The specifications for all parameter models are as follows:
Parameter Value ~ age * trial type + (1 | subject
ID)
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Figure 5: Parameter estimates for drift diffusion model, split by age and trial type. Error bars are 95 percent confidence intervals

computed by nonparametric bootstrap.

age and “none” trials (B = 0.24, p = .01). As expected in drift
rate, there was a negative main effect of trial type (“None”: B
=-1.3, p=.0185; “Some™: B =-1.18, p =.03). Interestingly,
for bias there was a significant negative effect of “none” tri-
als (f =-0.5, p =.0005), and “some” trials trended towards
significance (B =-0.28, p =.0503), as well as a significant in-
teraction between age and “none” trials (§ = 0.07, p =.023).

In sum, the parameter estimates from our DDM align with

the analyses presented above: Older children are more likely
to respond correctly in our scalar implicature task, while
younger children’s failures appear to be due to a low rate of
data accumulation and a high separation boundary. One hy-
pothesis for older children’s successes in our task, and their
trend towards more positive drift rates and lower biases, is
rooted in a firmer grasp of the quantifier scale. In Horowitz
et al. (in prep.), we observed a significant correlation be-
tween children’s performance on a quantifier-knowledge task
and SI computation. We found that this correlation increased
with age, and that difficulties in computing an SI may be
grounded in quantifier comprehension. It is possible that
older children’s SI success, and the observed speed-accuracy
trade-off, may reflect increased knowledge of available lex-
ical alternatives—particularly “none”—and the cost of com-
paring contrasting quantifiers to make Sls.
Exploratory analyses We also conducted an exploratory
analysis, examining differences in the decision-making pro-
cess for children who consistently made SIs compared with
those who did not. This exploratory analysis was motivated
by the hypothesis that successful participants in this task
might display different signatures in their decision processes.
Therefore, we split children into two groups by accuracy on
scalar implicature trials, and then estimated parameters by
accuracy group. High accuracy was defined as an average
of 75% or higher performance on scalar implicature trials.
Figure [6] shows parameter estimates for each accuracy group,
split by trial type.

We again used mixed-effects models to predict DDM coef-
ficients across participants. As in the developmental DDM
analysis, there were no significant effects of separation or
non-decision. While drift rates showed a significant effect of
accuracy, because we estimated parameters for high- and low-
accuracy children separately, these differences are expected.

In our bias estimates, however, we found a significant in-
teraction between accuracy group and trial type on “some”
trials (B = -0.18, p = .0013). This interaction suggests that
bias (the starting point in the diffusion process) might be an
important factor in successfully making a scalar implicature:
More successful children were less biased towards incorrect
response alternatives, perhaps due to greater knowledge about
the quantifier scale.

General Discussion

What makes scalar implicatures using quantifiers so hard for
children? The best current hypothesis posits that children do
not have access to the appropriate inferential alternatives and
hence fail to consider them in their pragmatic computation
(Barner & Bachrach, 2010; Barner et al., 2011). But what are
those alternatives? Recent work has suggested that the neg-
ative alternative “none” may compete with “some” and “all”
when making SIs. Although “none” is not typically consid-
ered an alternative in Gricean theories (Grice, 1975; Horn,
1972), it nevertheless provides a relevant lexical alternative
along the quantifier scale. Our findings here are consistent
with this account and provide some additional support. Us-
ing a new method, we replicated the pattern found in previ-
ous studies that those children who succeed in comprehend-
ing the quantifier “none” are also able to make SIs (Horowitz
& Frank, 2015; Horowitz et al., in prep.). In addition, our
data revealed a speed-accuracy trade-off, such that reaction
times in those trials for which children succeeded in making
SIs were slower overall.

One interpretation of this speed-accuracy trade-off is that
children who have more inferential alternatives accessible to
them (e.g. are considering “none,” “some,” and “all” together)
are both better at making SIs and slower to make them due
to the processing cost of making the inference. This theory
makes the prediction that children who have greater quanti-
fier knowledge will be more successful in computing Sls, but
will display higher RTs due to competing scalar alternatives.
Our data are consistent with this account, which is also sup-
ported by an exploratory drift diffusion model analysis. We
fit a DDM to our data for children who succeeded in making
scalar implicatures versus children who failed. The model
suggested that bias in “some” and “none” trials might be a
key factor related to success—that is, children who were con-

2427



Bias Drift Non.Decision Separation
0.7- 13 1.4+ 6.0 Trial Type
1.0 ’
- 0.67 1.2+ —+— All
g 0.5 031 1.0 >
s V27 . 50- —+— None
0.0+ ’
0.4+ 0.8 4
0.5 45+ Some
0.3 : : ' ; h 0.6 : : . :
high low high low high low high low
Accuracy

Figure 6: Parameter estimates for drift diffusion model, split by accuracy and trial type. Error bars are 95 percent confidence

intervals computed by nonparametric bootstrap.

sidering “some” and “none” responses equally in their deci-
sion were more likely to make the SI. Both of these findings
are again consistent with the idea that weighing alternatives
appropriately in the SI computation is critical to success.
The speed-accuracy patterns we report are correlational,
however, and other accounts are consistent with these find-
ings as well. For example, some third factor (say inhibitory
control) could underlie the ability to succeed in “some” and
“none” trials and also explain why some children are able to
inhibit their response long enough to complete the SI compu-
tation. Horowitz et al. (in prep.) did not find evidence of cor-
relations between individuals’ ST abilities and their executive
function using one popular measure (the dimensional change
card sort). Other versions of this account (or other accounts
entirely) are still possible, however, and should be explored
in future work. Nevertheless, our present work suggests that
there is a meaningful relationship between children’s accu-
racy and processing times in making scalar implicatures.
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