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Abstract
Much of what we learn comes from a mix of information that
we select (active) and information that we receive (passive).
But which type of training is better for different kinds of learn-
ing problems? Here, we explore this question by comparing
different sequences of active/passive training in an abstract
concept learning task. First, we replicate the active learning
advantage from Markant & Gureckis (2014) (Experiments 1a
and 1b). Then, we provide a test of whether experiencing ac-
tive learning first or passive learning first improves the effec-
tiveness of concept learning (Experiment 2). Across both ex-
periments, active training led to better learning of the target
concept, but “passive-first” learners were more accurate than
“active-first” learners and more efficient than “active-only”
learners. These findings broaden our understanding of when
different sequences of active/passive learning are more effec-
tive, suggesting that for certain problems active exploration
can be enhanced with prior passive experience.
Keywords: active learning, concept learning, replication

Introduction
Much of real-world learning occurs in contexts that contain
both active and passive input. People rarely learn a new con-
cept entirely from information generated by themselves (ac-
tive learning1) or entirely from information received from the
world (passive learning). And yet we do not have a theory
about whether different sequences of active/passive input are
better for different kinds of learning problems. Consider a
teacher introducing a challenging math concept: should she
allow students to explore first and then provide instruction, or
should she teach first and then let students actively explore?

The potential benefits of active learning have been the fo-
cus of much research in education (Grabinger & Dunlap,
1995), machine learning (Settles, 2012), and cognitive sci-
ence (Castro et al., 2009). In a review of this diverse litera-
ture, Gureckis & Markant (2012) suggest that active learning
can be superior to passive learning because it allows people
to use their prior experience and current hypotheses to se-
lect the most helpful examples (e.g., asking a question about
something that is particularly confusing). But is active learn-
ing always better than passive learning?

Gureckis & Markant (2012) emphasize that the quality of
active exploration is fundamentally linked to the the learner’s
understanding of the task: if the representation is poor, then
self-directed learning will be biased and ineffective. The po-
tential for bias in active learning suggests that receiving pas-
sive training first might be especially important for less con-
strained learning tasks where people are unlikely to gener-
ate examples that help them learn the target concept. For

1Here we focus on deliberate decisions about what to learn, as
opposed to other uses of the term “active” learning (e.g., being en-
gaged with learning materials).

example, work by Klahr & Nigam (2004) shows that ele-
mentary school-aged children are less effective at discovering
the principles of well-controlled experiments from their own
self-directed learning. Moreover, Markant & Gureckis (2014)
showed that active exploration provided no benefit over pas-
sive input when there was a mismatch between the target con-
cept and learners’ prior hypotheses. In both of these cases,
receiving passive training first might have provided learners
with a stronger task understanding that enhanced their active
exploration. In fact, recent work by Thai (2015) has shown
that receiving passive examples prior to performing active
classifications can enhance perceptual classification learning.

In contrast, experiencing active learning first might be bet-
ter for tasks with smaller problem spaces where helpful strate-
gies can be extracted via active exploration and generalized
to the passive learning context. Education research on the
concept of productive failure shows that allowing students to
struggle with a task (e.g., self-directed problem solving) can
lead to better uptake of subsequent instruction (Westermann
& Rummel, 2012). And work from cognitive science shows
that completing a block of active learning prior to passive
learning led to better word learning performance (Kachergis,
Yu, & Shiffrin, 2013). Kachergis et al. (2013) suggest that
active-first learners were able to develop attention and mem-
ory strategies during active training that generalized to the
their passive learning experience.

In the current work, we aim to provide a direct test of how
different sequences of active/passive training affect abstract
category learning. We use a well-understood perceptual cat-
egory learning paradigm from Markant & Gureckis (2014)
since this task produces a reliable active learning advantage.
We predicted that passive-first training would be better than
active-first training for two reasons. First, we thought that
people would generate hypotheses during passive learning,
which they could then refine with highly informative exam-
ples during active exploration. Second, Markant & Gureckis
(2014) reported that the quality of active learning was sub-
optimal early in their experiment, presumably because peo-
ple were building a better understanding of the learning task.
Thus, we predicted that providing passive learning first would
allow people to maximize the selection of high quality evi-
dence during active learning and improve their performance.

Experiment 1a
Experiment 1a is a direct replication of the active learning ad-
vantage for the Rule-Based (RB) category structure found in
Markant & Gureckis (2014). In this task, people are asked to
learn acategory boundary that is defined by a point on a single
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Figure 1: An example of a training trial from the active learn-
ing condition in Experiments 1 and 2. Participants could ro-
tate the antenna or change the antenna’s size before seeing
which channel the antenna received.

continuous dimension (e.g., size). Active learners generate
their own examples, whereas passive learners see data gener-
ated randomly from the category distributions. We used the
same stimuli and followed the exact procedures as the orig-
inal study with only minor differences, which we describe
below. All of the stimuli, the experiments, and analysis code
can be viewed and downloaded at the project page for this
paper: https://kemacdonald.github.io/Act-Learn/.

Methods

Participants We planned a sample of 48 participants, 24 in
each condition and posted a set of Human Intelligence Tasks
(HITs) to Amazon Mechanical Turk. Only participants with
US IP addresses and a task approval rate above 85% were
allowed to participate, and each HIT paid one dollar. Data
were excluded if participants completed the task more than
once or if they reported to not understand the task at the end
of the experiment (1 HITs). The final sample consisted of 52
participants (Passive: 27; Active: 25).
Stimuli Visual stimuli were black “antennas” on a white
background (Fig 1). Each antenna could vary along two con-
tinuous dimensions – radius size or central angle – and was
assigned a value between 1-600. To make sure that partici-
pants could not completely rotate the antenna, we limited the
rotation to 150 degrees. The smallest radius and angle pa-
rameter values were randomized for each participant, so each
participant had a unique category boundary. Finally, we used
the Rule-Based category structure where the category bound-
ary is defined by a point on a single dimension: either size or
central angle.

Radius and angle values for the 96 passive training trials
were generated from two Gaussian distributions with identi-
cal mean and covariance parameters as Markant & Gureckis
(2014) (Fig 2). For test trials, we created a uniform grid of
192 unique test items that covered the entire parameter space.
We randomly sampled 8 items from each quadrant to get 32
test trials for each block and randomized the order of training
and test trials within each block and for each participant.

Figure 2: Example distributions of training stimuli shown to
participants in the passive learning condition. Each point rep-
resents a different antenna constructed with an orientation
value (vertical axis) and radius value (horizontal axis). The
color of the points show the category membership of each an-
tenna (red: channel 1; blue: channel 2). The solid line in
each facet represents the optimal category boundary for both
the Rule-Based category and the Information-Integration cat-
egory structures.

Design and procedure Participants saw a total of 288 trials
(96 training and 192 test trials) across 6 blocks2. Each block
consisted of 16 training and 32 test trials. Before the task,
participants were told that they would see “loop antennas”
for televisions and each antenna received one of two chan-
nels, and their goal was to learn the difference between the
two types of antennas. We told participants that the antennas
could sometimes pick up the wrong channel, and that they
should learn what channel is most often received by a partic-
ular type of antenna.

After the instructions, participants were randomly assigned
to one of the two between-subjects conditions (Active vs. Pas-
sive). In the Active condition, participants could design their
own antennas. They modified the antenna by clicking and
dragging the mouse from left to right. To change the size of
the antenna, they first pressed the “Z” key. To change the an-
gle, they first pressed the “X” key. When participants were
finished with their design, they pressed the space bar to see
which channel the antenna received. The channel label ap-
peared in a text box with a green border located above the
antenna.

In the Passive condition, participants saw antennas gener-
ated randomly using the size and angle values taken from the
category distributions. After a two second delay they were
told which channel the antenna received. The channel labels
were deterministic. To help ensure that participants actually
saw the channel, they had to click on the channel label in or-

2Six blocks is two blocks shorter than the original experiment.
We reduced the length to increase our sample size.
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Figure 3: The left panel shows overall accuracy performance on the classification task for the Active and Passive training
conditions from Experiment 1a. The right panel shows accuracy across each of the six blocks in the experiment. The grey curves
are generated by a logarithmic smoother and the error bars indicate 95% confidence intervals computed by non-parametric
bootstrap.

der to advance the experiment. When they clicked, a green
box appeared around the text to indicate that their response
was recorded.

After training, participants proceeded to test trials. On
each test trial participants saw one antenna and were asked,
“Which channel does this antenna receive?” To indicate their
response, participants selected one of two buttons (Ch1 or
Ch2) located above the antenna. At the end of each block of
test trials, participants saw a summary of their accuracy on
the preceding block.

Results and Discussion

Classification accuracy First we report the planned repli-
cation analysis: a t-test to compare overall classification per-
formance between the active and passive conditions. Active
learners were more accurate, t(49) = 2.98, p = 0.004. More-
over, the effect size of the active learning advantage was large
and greater than that of the original study (Original study: d
= 0.47; Replication: d = 0.73).

Classification accuracy over time To quantify perfor-
mance over time, we used a mixed effect logistic regression
including a random effect for participants. We predicted test
performance at the trial-level as a function of condition (Ac-
tive/Passive) and block (1-6) and found a main effect of con-
dition (β = -0.68, p = 0.041) with better performance for ac-
tive learners overall, and a main effect of block (β = 0.25, p
< .001) such that responses were more accurate later in the
experiment. There was also an interaction between block and
condition (β = -0.1, p = 0.01) with passive learners showing
less of an increase in accuracy across the six test blocks.

Relations between quality of active learning and accuracy
Another important result from Markant & Gureckis (2014)
was the link between the quality of active learning and clas-
sification accuracy. Thus, we performed the same analysis on

our replication data, quantifying the quality of evidence se-
lection by computing the orthogonal distance between each
sample and the true category boundary. Samples closer to the
boundary are higher quality. We computed a mean accuracy
score and a mean sample distance score for each participant,
and fit a linear model using the mean sample distance score
to predict accuracy. We found an effect of sample distance (β
= -.0004, p < .001) with accuracy increasing as the sample
distance decreased.

Experiment 1a provides strong evidence for a success-
ful replication of the original results reported in Markant
& Gureckis (2014). We found a comparable advantage in
accuracy for active learners and we found the same rela-
tionship between quality of evidence selection and learn-
ing outcomes. Our results differ slightly from the origi-
nal study in that we found an immediate advantage for ac-
tive learners in the first block. We next attempt to replicate
Markant & Gureckis (2014)’s findings for the more complex
Information-Integration category structure and for the yoked
passive learning condition.

Experiment 1b

The goals of Experiment 1b were: (a) to replicate the
lack of an active learning advantage for the more difficult
Information-Integration (II) category structure, where the cat-
egory boundary was defined by a linear combination of an an-
tenna’s size and central angle, and (b) to replicate the finding
that passive learners did not benefit from being “yoked” to
active learners’ data. We also performed an internal replica-
tion of the active learning advantage for the RB category that
we found in Experiment 1a. We used the same stimuli and
followed the exact procedures as the original study. How-
ever, we reduced the length of the experiment to two blocks
in order to increase our sample size.
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Figure 4: Accuracy across each of the two blocks in Exper-
iment 1b for the Active, Passive, and Yoked training condi-
tions for the Rule-Based (one dimension) and Information-
Integration (two dimensions) category structures. Error
bars indicate 95% confidence intervals computed by non-
parametric bootstrap.

Methods

Stimuli Visual stimuli were identical to Experiment 1a.

Participants Participant recruitment and inclusion-
ary/exclusionary criteria were identical to those of Experi-
ment 1a (excluded 3 HITs). 196 HITs were posted across
each of the between-subjects conditions: two category
structures and three training conditions (A-RB: 66, A-II: 26,
P-RB: 25, P-II: 28, Y-RB: 27, and Y-II: 24).

Design and procedure Procedures were identical to those
of Experiment 1a except that we included a “yoked” learning
condition where we matched each passive learning partici-
pant with training data generated by an active learner. Thus,
the active and yoked participants saw the exact same data,
but active learners were in control of the information flow.
We also reduced the length of the experiment to two blocks.

Results and Discussion

Classification accuracy We fit the same logistic regression
as specified in Experiment 1a and found a main effect of cate-
gory (β = -0.82, p < .001) with better performance in the RB
category. We also found a main effect of condition (β = -0.76,
p < .001) such that participants in the passive and yoked con-
ditions performed worse than participants in the active con-
dition. We also found an interaction between block and the
passive learning condition (β = 0.33, p = 0.03) with passive
learners showing more learning over time, and an interaction
between category type and block (β = -0.29, p = 0.04) with
less learning in the II category.

Relations between evidence selections and accuracy over
time Since the main goal of the current work was to test the
effectiveness of different sequences of active/passive learn-
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Figure 5: The relations between quality of evidence selection
and accuracy on test trials across blocks for participants in
Experiments 1a and 1b. Each point is an individual partic-
ipant. Note that higher mean sample distance means worse
evidence selection. The blue lines are linear model fits.

ing, we performed an exploratory analysis of the relations
between sampling behavior and test accuracy over time for
all active learners in Experiments 1a and 1b. We fit a linear
model predicting each participant’s mean accuracy based on
the quality of their sampling behavior and experiment block.
As expected, participants’ accuracy improved in the second
block (β = 0.21, p = 0.01). Interestingly, there was a reli-
able two-way interaction between sample distance and block
(β = -0.0013, p = 0.005) such that the relationship between
the quality of evidence selection and accuracy did not emerge
until the second block (see Fig 5).

Experiment 1b provides additional evidence for a success-
ful replication of the original results reported in Markant
& Gureckis (2014). Importantly, yoked learners performed
worse than active learners even though they had seen the
same training data, suggesting that the link between people’s
hypotheses and the input is an important contributor to the
active learning advantage. We did find that active learners
performed better than both passive and yoked learners in the
more complex II category structure. This advantage was not
found in the original study, but this finding fits with recent
work by Edmunds, Milton, & Wills (2015) suggesting that
RB and II categories are not learned in qualitatively differ-
ent ways. Finally, we found evidence that the link between
the quality of active learning and accuracy emerges as people
gain more experience with the task – an effect that we set out
to explore in Experiment 2.

Experiment 2
Direct comparisons of active and passive learning are impor-
tant for understanding when and why we might see advan-
tages for one type of learning over the other. But real-world
contexts are not neatly divided into active learning and pas-
sive learning. So when are different kinds of learning bet-
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Figure 6: Accuracy across each of the two blocks in Ex-
periment 2 for the Passive-Active (PA) and Active-Passive
(AP) conditions for the Rule-Based (one dimension) and
Information-Integration (two dimensions) category struc-
tures. Error bars indicate 95% confidence intervals computed
by non-parametric bootstrap.

ter for different kinds of learning problems? Experiment 2
provides a direct test of different predictions about the ef-
fects of different sequences of active/passive training in an
abstract category learning task. Is active-first learning better
because it makes people to engage more deeply with the task,
enhancing their subsequent passive learning? Or is passive-
first training better because it enhances later active learning?

Methods
Stimuli Stimuli were identical to Experiment 1.

Participants Participant recruitment and inclusion-
ary/exclusionary criteria were identical to those of Experi-
ment 1 (3 HITs). Approximately 44 HITs were posted for
each training condition and category type for total of 176
paid HITs (AR-RB: 46, AR-II: 41, RA-RB: 38, RA-II: 51).

Design and procedure Procedures were identical to those
of Experiment 1. Participants were randomly assigned to one
the two between-subjects conditions: Active-Passive (AP)
vs. Passive-Active (PA). In the AP condition, participants
completed a block of active training and test trials before pro-
ceeding to a block of passive learning and test trials. In the PA
condition, the order of the training/test blocks was reversed
with passive training coming first.

Results and Discussion
First, we present analyses of classification accuracy and sam-
pling behavior, focusing on just the AP and PA conditions.
The key test of our hypothesis is the interaction between train-
ing condition and experiment block, since this tests the ef-
fect of training condition on improvement in classification
accuracy. We then compare performance in the AP and PA
conditions to performance from the Active-Active (AA) and

Passive-Passive (PP) conditions from Experiments 1a and
1b, which allows for comparisons to training regimes where
learners did not have to switch between types of learning.

Classification accuracy Which sequence of active and pas-
sive learning was better? We fit a logistic regression predict-
ing test performance based on condition (PA vs. AP), block
(1 vs. 2), and category type (RB vs. II). We found a main ef-
fect of block (β = 0.63, p < .001), with better performance in
the second block across all conditions. For the key test of our
hypothesis, we found a reliable two-way interaction between
training condition and block (β = -0.39, p < .001), such that
participants in the PA condition showed more learning over
time compared to the AP condition. We also found a reliable
two-way interaction between category type and block (β =
-0.44, p < .001) and a marginally significant three-way inter-
action between condition, category type, and block (β = 0.32,
p = 0.08). Participants showed less of an increase in accuracy
for the more complex II category, and there was less of an
advantage for the PA training condition in the II category.

Quality of evidence selection To test which condition pro-
duced higher quality sampling behavior, we fit a linear mixed
model predicting sample quality as a function of condition
and category type. We found that PA learners generated bet-
ter samples than AP learners (β = 22.4, t = 2.3), and we found
that sampling quality was lower in the II category (β = 61.08,
t = 6.46). We also we fit a linear model predicting mean clas-
sification accuracy based on the mean distance of samples
from the target category boundary, and replicate the finding
from Experiments 1a and 1b: that higher quality sampling
was related to higher accuracy scores (β = .00006, p = 0.01).

Classification accuracy for all sequences How does learn-
ing from different sequences of active/passive learning com-
pare to learning from only active or passive data? We fit a
logistic regression predicting test performance with the same
specifications, but we included data from the active and pas-
sive learning conditions in Experiments 1a and 1b and coded
user-defined contrasts to test classification accuracy for spe-
cific comparisons of interest. We found that receiving any
active learning (AA, PA, AP) was better than receiving only
passive learning (PP) (β = 0.07, p < .01), and that complet-
ing two blocks of active learning (AA) was marginally better
than completing one block of active learning (PA or AP) (β =
0.06, p = 0.09).

Time costs associated with different learning sequences
We were also interested in the time costs associated with dif-
ferent sequences of active and passive learning. We fit a lin-
ear mixed effects model with the same specifications but pre-
dicting the amount of time spent on each training trial. We
found that training took longer in any active learning condi-
tion compared to passive learning (β = 2.59, t = 11.57). We
also found that people who completed only active training
(AA) took longer than people who only completed one block
of active learning (PA, AP) (β = -0.71, t = -2.22). Surpris-
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ingly, we found that people in the active-first condition (AP)
took longer than people in the passive-first condition (PA) (β
= 2.67, t = 3.64). We did not find any reliable interactions.

The main findings from Experiment 2 are that despite ex-
periencing the exact same amount of active and passive data,
passive-first learners were more accurate overall, produced
higher quality sampling behavior, and spent less time on
training. These results suggest that receiving passive train-
ing first improved learners’ active learning by helping them
to explore more efficiently.

General Discussion
Mixtures of active and passive learning are a fundamental
feature of real-world learning contexts. But we do not know
when different sequences of active/passive input are better for
different kinds of learning problems. In the current work, we
take a first step towards answering this important question.
We found that that receiving passive learning first improved
subsequent active exploration and led to better overall per-
formance in an abstract concept learning task. This finding
broadens our understanding of the types of learning problems
where passive learning might support effective active learn-
ing.

Why was passive-first learning better in this kind of ab-
stract concept learning problem? One possibility is passive
training allowed people to generate hypotheses about the cor-
rect category boundary, which they could begin testing from
the very first trial of active learning. We did find that passive-
first learners produced higher quality active learning, suggest-
ing that perhaps active-first learners used their initial active
learning less effectively. In contrast, we did not see active
learning strategies transfer to passive learning, as had been
found previously (Kachergis et al., 2013). Perhaps we did not
see transfer because this task involved incremental changes
to hypotheses, which depend on generating the right example
to falsify the learner’s current hypothesis on a trial by trial
basis. In contrast, if active learning helps learners develop
better attentional/memory strategies, these strategies can of-
ten be transferred to passive contexts.

It is interesting that two blocks of active learning was
slightly better than the passive-first learning. But, passive-
first learning provides an additional benefit: it reduces learn-
ing costs (i.e., time and mental effort). We found that ac-
tive learners took longer to complete the task and spent more
time on the training blocks. Thus, even if passive-first learn-
ing does not achieve the same level of performance as active
learning, it still might be preferable.

There are several limitations to our experiment. First,
while the learning task we used is well-understood, like other
tasks of this type it dramatically simplifies real-world concept
learning. So we do not know how our sequencing finding
would scale to learning more complex, higher dimensional
concepts. It could be that passive learning becomes even
more important as the concept becomes more complex. Sec-
ond, we used a coarse sequence manipulation, at the level of

training/test blocks. And sequences of active/passive learn-
ing might have differential effects on learning at finer levels
of granularity (e.g., trial level).

We need a theory of what kinds of learning work best for
the diverse set of problems that learners must solve. Our work
here provides an important first step towards understanding
when passive learning experiences could be used to support
better active exploration. Overall, these results show that, for
some tasks, passive learning can equip people with a better
task representation, making them more effective active learn-
ers.
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