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Biogeographic patterns and drivers of  
soil viromes

Bin Ma    1,2,3,14, Yiling Wang    1,2,14, Kankan Zhao    1,2, Erinne Stirling    4,5, 
Xiaofei Lv6, Yijun Yu7, Lingfei Hu    1,2, Chao Tang    8, Chuyi Wu9, Baiyu Dong8, 
Ran Xue1,2,3, Randy A. Dahlgren    10, Xiangfeng Tan11, Hengyi Dai1,2, 
Yong-Guan Zhu    12, Haiyan Chu    13 & Jianming Xu    1,2 

Viruses are crucial in shaping soil microbial functions and ecosystems. 
However, studies on soil viromes have been limited in both spatial scale and 
biome coverage. Here we present a comprehensive synthesis of soil virome 
biogeographic patterns using the Global Soil Virome dataset (GSV) wherein 
we analysed 1,824 soil metagenomes worldwide, uncovering 80,750 partial 
genomes of DNA viruses, 96.7% of which are taxonomically unassigned. 
The biogeography of soil viral diversity and community structure varies 
across different biomes. Interestingly, the diversity of viruses does not align 
with microbial diversity and contrasts with it by showing low diversity in 
forest and shrubland soils. Soil texture and moisture conditions are further 
corroborated as key factors affecting diversity by our predicted soil viral 
diversity atlas, revealing higher diversity in humid and subhumid regions. 
In addition, the binomial degree distribution pattern suggests a random 
co-occurrence pattern of soil viruses. These findings are essential for 
elucidating soil viral ecology and for the comprehensive incorporation of 
viruses into soil ecosystem models.

Viruses are key components of soil ecosystem functions that medi-
ate host community composition and function through cell lysis, 
horizontal gene transfer, host metabolism reprogramming and 
host co-evolution1. Understanding the biogeography of soil viruses 
is important for improving Earth systems and climate models2, as 
well as for informing natural resource management strategies. 
While the biogeography of soil eukaryotic and prokaryotic life is 
well established at the global scale3–5, soil viral biogeography has 

received limited attention. Viruses exhibit a profound reliance on 
host organisms, as they require host organisms to replicate. This 
dependency on hosts subsequently leads to viral community struc-
ture being shaped by the host community. Exploring the alignment 
of biogeography patterns between viruses and their microbial hosts 
can provide insights into the complex interactions within microbial 
communities and the co-evolutionary dynamics between viruses 
and their hosts.
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The viral cluster composition as identified in the GSV was compared 
to that of other large global datasets6,8,9,18–20. Less than 20% of the GSV 
viral clusters overlapped with the IMG/VR ‘soil only’ metagenomes 
(IMGsoil). Futhermore, GSV viral clusters seldom overlap with ocean 
and gut datasets, consistent with previous research7,9 (Fig. 1d).

Host prediction is an important first step to understanding host–
virus interactions. We used the Genome Taxonomy Database (GTDB)21 
to infer virus–host associations, assigning 2,193 viruses to 3,913 host 
strains through multiple in silico methods (Extended Data Fig. 4 and 
Supplementary Table 2). A majority of the bacterial hosts were clas-
sified as Actinobacteriota (50%) or Proteobacteria (9%) (Fig. 1e); the 
general suite of classified bacterial hosts is similar to the dominant 
bacteria often found in soil4.

The viral community reflects biomes and geography
Viral biogeography was influenced by biome, consistent with observa-
tions from bacteria and archaea22,23. The α-diversity (Shannon index) of 
soil viruses in agricultural land, artificial surfaces and bare land biomes 
was greater than that in tundra, forest and shrubland at various phy-
logenetic levels (Fig. 2a). The nonlinear relationship between viral 
diversity and microbial diversity (Metagenome Nd) suggests that the 
two may be uncoupled or not directly linked in soils (Fig. 2b). A previous 
study also found a similar nonlinear relationship between the diversity 
of pathogens and their hosts24. The uncoupling of viral and microbial 
diversity may be explained by different factors driving viral diversity 
and microbial diversity. Soil viral composition was also distinct across 
biomes (Fig. 2c). To assess the impact of sequencing depth on diversity 
results, we conducted a rarefaction analysis, which provided insights 
into the connection between diversity outcomes from subsampled 
reads and those derived from the complete dataset. Furthermore, 
we explored samples with sequencing depths surpassing 100 million 
reads, introducing a novel metric: diversity normalized by sample read 
number. Our analysis across all datasets consistently supported our 
core findings, collectively reinforcing that sequencing depth had a 
limited influence on the diversity results (Extended Data Fig. 5).

Examining whether viruses exhibit a pattern of declining com-
munity similarity with increasing geographic distance is crucial for 
understanding the mechanisms that govern turnover within viral com-
munities. A significant distance–decay relationship within continents 
was observed in the four biomes with >100 samples (Fig. 2d), with the 
trend being more obvious in natural ecosystems than in agricultural 
land (Spearman’s ρ = 0.377); grassland samples had an especially strong 
trend (Spearman’s ρ = 0.605). The underlying mechanisms driving this 
pattern could involve dispersal dynamics25 or the selective pressures 
imposed by spatially dependent environmental factors.

Drivers of soil viral community assembly
The assembly mechanism of soil viral communities is a key question in 
the study of viral biogeography. Metacommunity theory suggests that 
the interplay between dispersal dynamics, environmental gradients and 
biotic interactions influences the composition and diversity of ecologi-
cal communities. In a metacommunity analysis, presence–absence data 
of 17,700 family-level vOTUs, where the genomes were clustered at the 
family level using pairwise average amino acid identity and gene shar-
ing as criteria, were evaluated following the framework described in  
refs. 26,27. The viral metacommunity structure displayed a Clementsian 
pattern (that is, distributions exhibiting turnover and whose boundaries 
are clumped along environmental gradients; Fig. 3a)26,27, indicating that 
communities strongly respond to environmental gradients27. This pat-
tern may be caused by a higher turnover of vOTUs within an environ-
mental gradient, reflecting the contribution of abiotic characteristics 
and biome type to the viral metacommunity structure.

To identify the factors most closely linked to community dynam-
ics, we examined the effect sizes of environmental factors on α- and 
β-diversity (Supplementary Table 5). We identified those factors 

Much of the current knowledge on viral biogeography originates 
from marine systems; however, while ocean viral communities do vary 
with abiotic and biotic variables6, the relatively narrow environmental 
gradients of surface ocean conditions create relatively consistent 
viromes. In contrast, soil viruses experience greater environmental 
extremes (for example, temperature, water availability, oxygen and 
food resources) and fewer dispersal opportunities (from soil heteroge-
neity and physical constraints), possibly causing distinct and complex 
interactions among viruses and a greater genetic divergence than is 
observed in marine systems.

Given the lack of a universal viral marker, metagenomic 
approaches enable viral ecology research through complex micro-
bial metagenomics and viromics. Recently, global viral databases7–9 
have generated an extensive list of viral genomes from diverse eco-
systems. Nevertheless, the limited number of soil metagenomes and 
the high proportion of North American samples used to construct 
these databases suggest a need to expand towards a truly global soil 
viral diversity synthesis. Previous studies have focused on small areas 
with limited soil types to reveal relatively local viral abundance and 
diversity trends9–15. These studies have shown that (1) viral abundance 
is significantly correlated with soil water availability and temperature14, 
(2) soil pH structures viral communities and (3) thawing permafrost 
soil viromes are strongly influenced by peat depth, water content and 
carbon chemistry (CH4 and CO2 concentrations)9. Further, studies have 
shown that soil pH and dissolved organic carbon concentrations impact 
virus/host abundances for Acidobacteria and Nitrospirae10, while a 
study of 19 soils across China revealed that viromes were clustered 
more significantly by geographical location rather than by soil type (for 
example, agricultural or natural)12. Each of the aforementioned trends 
and correlations is a specific example of interactions between viruses 
and their environments. It is essential to explore the underlying drivers 
of these interactions across a broad spatial scale and diverse biomes.

Thus, we have compiled an extended soil virus dataset to develop a 
comprehensive overview of soil viromes to: (1) investigate the biogeo-
graphic patterns of soil viruses and examine their relationships with the 
overall microbial community; (2) investigate the factors, both abiotic 
and biotic, that drive the assembly of soil viral communities; and (3) 
map the distribution of soil viruses worldwide.

Results
Soil viruses are diverse and novel
We first developed the Global Soil Virome (GSV) dataset by retriev-
ing DNA partial viral genomes from 1,415 soil metagenomes in the 
Sequence Read Archive (SRA)16 and combining them with an additional 
409 in-house metagenomes (Fig. 1a,b, Extended Data Fig. 1 and Sup-
plementary Table 1). While viromics is a more appropriate method due 
to the preprocessing required to separate virions from larger microbes, 
there are too few viromic samples to consider large-scale patterns. 
We therefore used deep-sequenced microbial metagenomics with a 
minimum sequence depth of 20 million reads to detect viral sequences 
instead17. The GSV combines ~30 Tb of sequencing data from six conti-
nents to explore the global distribution and diversity of soil viruses. The 
samples span a wide range of biomes with a variety of vegetation types, 
bioclimatic characteristics and edaphic properties. The bioinformat-
ics pipeline is presented in Extended Data Fig. 2. We identified 80,750 
viral operational taxonomic units (vOTUs) with sequence length ≥10 kb 
(Extended Data Fig. 3; median genome size of ~28.2 kb).

At this point in the analysis, only 3.3% of the vOTUs had been 
assigned to at least the family level (Fig. 1c); those identified vOTUs 
were dominated by viruses from Siphoviridae and Myoviridae, both of 
which belong to the order Caudovirales (The International Committee 
on Taxonomy of Viruses 2020 Release). An interactive queryable map 
of the GSV is available at https://bmalab.shinyapps.io/global_soil_
viromes. The low identification rate reflects a substantial lack of closely 
related reference material and hence unexplored soil viral diversity. 

http://www.nature.com/natecolevol
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with values exceeding 0.4 for α-diversity and 0.25 for β-diversity 
(Cohen’s f values of 0.25 and 0.4 are typically regarded as ‘moderate’ 
and ‘large’ effect sizes) as significant factors in further analyses28. The 
influence of environmental selection contrasted between α-diversity 
and β-diversity (Bray–Curtis dissimilarity). When compared to the 
20 environmental factors, α-diversity significantly correlated with 
precipitation, temperature, soil properties (soil sodicity, soil organic 
carbon, sand and silt content) and soil vegetation (Fig. 3c). Variation 
in solar radiation, soil vegetation, temperature and precipitation 
were correlated with virus community structure (Fig. 3b). Tem-
perature and precipitation are important factors affecting micro-
organisms5, and are associated with trophic status and resource 
availability; they affect host growth and virus–host interactions29. 
Specifically, temperature directly affects the survival of phages in 
soil, independent of their hosts30. There is a negative correlation 
between soil sand content and viral diversity, as soils with high sand 
content usually have poor water-holding capacity and a tendency 

to be loose, resulting in lower total porosity and larger pore sizes.  
Climate factors and soil texture are closely associated with soil  
moisture content. Thus, we specifically analysed samples with typical 
high moisture content (paddy soil and coastal soil). We found that 
these samples exhibited the highest level of diversity among the 
studied biomes (Extended Data Fig. 6).

To elucidate the patterns of co-presence between viruses, we 
constructed a co-occurrence network of viruses31. We utilized the abun-
dance data of major vOTUs (that is, viruses present in ≥10 samples) to 
determine viral associations with statistically significant relationships, 
presented as edges between viral nodes (Fig. 4a). Virus co-occurrence 
was found to be strongly modular, with 31 clusters that are clearly 
associated with continents and biomes. While the continent-level 
underrepresentation in regions other than North America resulted 
from limited sample availabilities, biome-level depletion further  
supports the role of environmental factors in viral biogeographic 
patterns. For example, even though the networks for forest and 
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Fig. 2 | Viral community properties across biomes and geography. a, Median 
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Statistical significance was determined using one-way analysis of variance 
(ANOVA) and least significant difference (LSD) tests. Different lowercase letters 
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n = 56 (Tundra), n = 417 (Forest), n = 21 (Shrubland)). b, Correlation between 
microbial diversity and viral diversity, with each dot representing a soil 
metagenome sample coloured by biome type. c, NMDS analysis per biome 
(stress: 0.007, R2 = 0.045, P = 0.001); each point is one sample. d, Distance–decay 
patterns of global soil viral communities based on the Bray–Curtis dissimilarity 
across biomes. The numbers in the lower left corner are the results of Spearman 
correlation within continents.
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agricultural land have substantial overlap, clusters 3 and 5 were 
depleted in agricultural land samples and cluster 8 mainly presented 
in forest samples. Furthermore, some clusters were completely absent 
from some biomes, with cluster 12 being depleted in all the biomes 
except the forest samples, and cluster 2 being present only in grassland, 
bare land and wetland biomes.

Despite the strong modularity observed in the virus co-occurrence 
network, it displayed a binomial node degree distribution, indicating 
a random co-occurrence pattern among vOTUs (Fig. 4b). Unlike many 
other biological networks such as gene32, protein33 and bacteria34,35 
networks that typically follow a scale-free distribution (that is, node 
degree distribution follows a power law), the virus co-occurrence 
network displayed a lack of hub nodes and a low proportion of lightly 
connected nodes. Biological networks that do not strictly follow a 
power-law distribution tend to be distinctly more ordered than ran-
dom36. A scale-free distribution was also present in the equivalent GSV 
virus–host network (Extended Data Fig. 4).

In addition to the influence of environmental factors, understand-
ing the interactions between viruses and their hosts is a crucial step 
towards comprehending viral diversity. To investigate the impact of 
host density on viruses, we estimated the correlation between the 

relative abundance of viral genomes and that of their predicted hosts 
(log-transformed). Out of the 2,244 pairs of viruses and hosts, 1,035 
pairs exhibited a significant sublinear pattern (P < 0.05) (Fig. 4c). In 
addition, we compared the virus/host ratio (VHR), calculated by divid-
ing the abundance of viral genomes by that of their host genomes, 
with the abundance of the hosts themselves. The VHR was negatively 
correlated with host abundance in a majority of pairs (98.3%) (Fig. 4d),  
consistently across the many ecosystems studied37. The observed 
pattern could be explained by multiple governing mechanisms; one 
of the more important factors is the variation in life history traits of 
viruses involved in antagonistic virus–microbe dynamics. One possible 
explanation is the Piggyback-the-Winner (PtW) theory, which posits 
that viruses adopt a lysogenic infection strategy when their microbial 
hosts are thriving at high abundances38. Previous research has also 
reported a significant positive correlation between host density and 
lysogeny in soils compared with other ecosystems39.

Biogeographic pattern of soil viral diversity
The above results suggest that soil viral diversity is noticeably driven 
by environmental factors; hence we predicted biogeographic-scale 
patterns of viral diversity using the mixed-effects model, random-forest 
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model and XGBoost model included in the GSV dataset and 84 global 
environmental datasets (Fig. 5 and Supplementary Table 4). All covari-
ates were clustered into 10 groups and each model contained 10 covari-
ates as primary effects. Based on a leave-one-out cross-validation, our 
random-forest models explained 51.8% of the variance in α-diversity 
(Extended Data Fig. 7b). The soil viral Shannon index varied from 0.82 to 
6.03 (mean = 3.33; s.d. = 0.51; median = 3.32). Trends in North America, 
Eastern Asia and Oceania are the best representations as samples were 
densely distributed in these regions.

Unlike the clear latitudinal trends reported for bacterial,  
fungal and archaeal diversity5,40, viral diversity was found to be greater 
in humid and subhumid areas. Notably, the highest viral diversity 
was concentrated in irrigated land such as the North China Plain. 
Conversely, low viral diversity was observed in arid climates, includ-
ing both hot and cold deserts and steppes. The results highlight the 
influence of soil moisture as a predominant driver of viral diversity. 
Viral survival displays a nonlinear correlation with moisture content 
and a threshold inflection near soil saturation41. Changes in water 
content can rapidly affect soil oxygen concentration (oxic vs anoxic 
habitats) and available carbon substrates, thereby indirectly influenc-
ing microbial respiration and survival42. Furthermore, soil moisture 
content is well known to directly affect virus particle adsorption43 
and may impact viral growth patterns (lytic/lysogenic), both of which 
influence viral activity42.

Discussion
Viruses have important roles in soil microbiome ecology, but  
methodological limitations have hampered the understanding 
needed to generalize the biogeography and driving factors of soil 
viruses. We have generated an extensive viral sequence catalogue 
of 80,750 soil viral partial genomes through bioinformatics, greatly 
enhancing the soil virome reference resource using our large-scale 
GSV dataset. The large proportion of unassigned viral contigs in the 

GSV dataset suggests a critical need for soil viral ‘dark matter’ mining1. 
In host–virus linkage analysis, we identified few hosts (~3%) when 
comparing the GSV to the GTDB, which is significantly lower than 
the ~42% identified in the gut virome using the same method19. The 
low identification rate in soil hosts and viruses indicates the need for 
specialized assembly predictions using the database itself44, which 
needs to be further supplemented by experimental evidence45–48, 
particularly as experimental means are the most reliable methods 
to verify infection relationships.

Knowledge of the global-scale biogeography pattern of soil 
viromes is still limited. With the establishment of this massive viral 
sequence catalogue, community analysis of vOTUs was conducted 
across biomes and geography. A predictive atlas of soil viral biogeogra-
phy, a critical piece of the biogeography puzzle, was constructed using 
random-forest models with 84 environmental variables informed by 
globally distributed information. We observed that regions character-
ized by high humidity levels, moderate precipitation, or irrigated land 
exhibited higher levels of viral diversity.

Our findings reveal that viruses, similar to most other organ-
isms, exhibit biome preference and distance–decay effects. However, 
the diversity of soil viruses does not align with that of their hosts.  
Contrasting with other microorganisms, the binomial degree dis-
tribution analysis suggests that soil viruses may exhibit a random 
co-occurrence pattern. Furthermore, metacommunity analysis 
revealed lower levels of nestedness in soil viruses compared with the 
prokaryotic community49, indicating higher turnover rates, which 
could be attributed to the high reproduction potential of viruses. 
Previous studies utilizing Mantel correlation analyses also found no 
significant association between planktonic bacterial and viral com-
munities25. Combining the aforementioned results, we can conclude 
that while viruses are typically highly host specific, they exhibit differ-
ent distribution patterns and potentially operate through different  
influencing mechanisms compared with their microbial hosts.
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We primarily focused on two major influencing mechanisms 
of viral community assembly: environmental factors and biological 
interactions. The confirmed Clementsian pattern observed in the soil 
viral metacommunity emphasizes the crucial role of environmental 
gradients in shaping soil viral communities. Our analysis of environ-
mental factors affecting soil viral diversity, along with the predictive 
atlas, has revealed that soil texture and moisture are the most impor-
tant factors influencing viral diversity. Virus particle movement, for 
example, is strongly regulated by soil water films and therefore soil 
moisture content and precipitation50. Unlike cellular organisms, the 
small size of many soil viruses (30–80 nm) allows them to interact with 
their environment as colloidal particles50, possibly causing them to 
be more sensitive to changes in the microenvironment and soil min-
eral interactions than other microbiota. The inability of the virus to 
actively move makes it more affected by the soil structure, which can 
be influenced by various factors such as soil moisture, organic carbon 
and texture. For infection and viral reproduction to occur, physical 
contact between the virus and its host is necessary. However, due to 
the size disparity between viruses and host cells, they can become 
spatially separated in tiny pores. As a consequence, the connectivity 
among soil particles may be diminished and the viruses may be further 
isolated if the pores housing them and their hosts become hydrologi-
cally disconnected. This disconnection hampers viral dispersal and the 
propagation of lytic viruses that infect new host cells, consequently 
impacting viral diversity51.

In addition, we explored the influence of host density on viruses, 
revealing the potential existence of PtW in the soil environment. In 
PtW scenarios, the resistance of lysogens to superinfection by related 
viruses becomes increasingly significant. Hosts incur lower ener-
getic costs when acquiring resistance via carrying proviruses vs via 

mutation37. This dynamic can restrict the opportunities for other viral 
variants to prosper and diversify within the community, ultimately 
leading to a decrease in viral diversity. However, there are still many 
factors to explore regarding the inconsistent distribution patterns of 
viruses and hosts, such as host specificity25, emphasizing the continued 
need for experimental approaches to investigate and validate these 
complex biotic interactions.

Considering the recommended threshold of ≥10 kb for reliable 
identification using Virsorter52, the focus on DNA-based metagen-
omes and the limitations of viral prediction tools, it is important to 
acknowledge that the dataset is likely to miss a significant number of 
single-stranded (ss)DNA and RNA viruses18. Furthermore, metagenomic 
approaches may have a bias towards capturing the most abundant viral 
groups in soil, leading to a reduced coverage of viruses and an elevated 
level of randomness within the co-occurrence network. However, it 
is worth noting that previous studies have indicated a low overlap 
between viral sequences obtained from metagenomic data and those 
obtained from virome data53. Combining these two types of data may 
provide a more comprehensive understanding of soil viral information.

Since this study combines data from various sources, includ-
ing different research projects, there may be inherent differences in 
individual methodologies (sample collection, DNA extraction, library 
construction, sequencing depth and so on) that may contribute to 
an increased distance–decay relationship. To clearly disentangle the 
mechanisms that drive viral community assembly processes, standard-
ized and coordinated protocols should be implemented to reduce bias 
among samples in future studies. The Earth Microbiome Project (EMP), 
which engaged the global scientific community to collect environ-
mental samples and associated metadata from diverse environments, 
serves as an excellent reference49. However, when it comes to viruses, 
their distinct characteristics make the preprocessing of samples (such 
as the inclusion of mitomycin C and the size-fraction method) and 
library construction methods (for example, multiple displacement 
amplification bias in ssDNA viruses54) crucial factors influencing the 
recovery of viral communities. The implementation of a coordinated 
metagenomic pipeline is also necessary, and a protocol based on ref. 
55 can serve as a valuable reference in this regard. We acknowledge that 
the concentration of samples in specific continents (North America, 
China and Australia) and biomes (Agricultural land, Forest, Grassland 
and Wetland) may introduce certain considerations. This sample bias 
could potentially lead to limitations in terms of generalizability and 
global applicability of the research findings. Furthermore, the accu-
mulation curve suggests that the diversity of soil viruses continues to 
represent a frontier for further exploration and discovery (Extended 
Data Fig. 8). Despite the satisfactory performance of our model, uncer-
tainties arising from uneven and inadequate sampling pose a significant 
constraint. To address this limitation and assess model uncertainties 
related to sampling, we employed bootstrapped iterations to derive 
per-pixel mean and standard deviation estimates, and assessed the 
extent of extrapolation (Extended Data Fig. 7).

In summary, the results provide solid evidence that biome type 
has a strong effect on the composition of soil viral communities, and 
that viral diversity is tied to the soil-wide compositional spectrum. 
Importantly, this viral biogeography pattern and map will facilitate 
global soil modelling efforts to elucidate the roles of viruses in regu-
lating soil microbial community functions in biogeochemical cycling, 
greenhouse gas emissions and environmental health.

Methods
Sampling, DNA extraction and sequencing
In-house samples for this study were sourced from field sampling 
conducted in 2018 and 2019 using a uniform sampling protocol (see 
details in Supplementary Table 1) outlined in ref. 56. Briefly, all soil 
samples were refrigerated during transport using either bagged or dry 
ice. After transport, visible roots and stones were removed from fresh 
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soil samples; moist soils were stored at −80 °C until DNA extraction. 
In all cases, DNA was extracted from soil samples using MP FastDNA 
SPIN kits for soil (MP Biomedicals) following manufacturer instruc-
tions. Equal amounts (400 mg) of soil were used to extract DNA from 
each sample; DNA purity and concentration were analysed using 
Qubit fluorometric quantitation (Thermo Fisher). Isolated DNA was 
stored at −20 °C before sequence analysis. Shotgun sequencing of 
metagenomic DNA was performed using an Illumina HiSeq 4000 or 
Illumina NovaSeq PE150 system (Illumina) and produced a total of  
8–37 billion paired-end reads per sample (read length = 150 bp). 
Sequence data have been deposited in the NCBI SRA under BioProject 
accession number PRJNA983538.

Collection of soil metagenomic data and processing protocols
In-house metagenomic data were combined with 1,415 publicly avail-
able samples containing viral sequences that were retrieved from 
the SRA on 21 May 2019 (ref. 16) (Extended Data Fig. 1; ref. 57). Public 
soil metagenomics were selected by environment and SRA file size 
(≥3 Gb)58–69. This file size threshold, equivalent to ~20 million reads, 
was derived from previous metagenomic research trends, a systematic 
threshold analysis showcasing optimal viral diversity representation 
and the necessity to strike a balance between comprehensive global 
coverage and data quality. From our literature review, we sampled 
datasets with read counts ranging from 10 M to 100 M reads. We calcu-
lated the Shannon index and conducted statistical assessments. A clear 
trend emerged: datasets below 20 M reads consistently yielded limited 
sample outcomes. This supports our claim that a 20-M-read threshold 
enhances data quality and reliability (Supplementary Table 6). Project 
information metadata were collected to manually define the sample 
biome type; projects with insufficient information were defined by 
location using GlobeLand30 (ref. 70) and Google Maps (https://www.
google.com/maps). Trimming and assembly were conducted follow-
ing ref. 56. Raw reads were quality-controlled using Trimmomatic 
(v.2.39)71 to trim adaptors and primers, and to filter short (<50 bp) and 
low-quality (<20 bases) reads. Quality-controlled reads were assembled 
per sample using MEGAHIT (v.1.2.9)72 with a minimum contig length of 
500 bp (k-step = 10; k-min = 27).

Viral contig prediction
Assembled contigs were piped through VirSorter (v.1.0.5)52 against 
the NCBI viral Reference Sequence Database (Refseq) (www.ncbi.nlm.
nih.gov/genome/viruses/), and through VIBRANT (v.1.2.1)73 and Deep-
VirFinder (v.1.0)74 with a cut-off length of 1,000 bp. Contigs annotated 
as VirSorter categories 1, 2, 4 and 5, or with DeepVirFinder score ≥0.7 
and P < 0.05, were considered putative viral contigs. CAT (v.5.0.3)75 was 
used to further estimate medium-accuracy contigs from those sorted 
as VirSorter categories 3 and 6, or with DeepVirFinder score of 0.7–0.9 
and P < 0.05, by combining the data with those from VIBRANT. Contigs 
with >40% open reading frames annotated as bacterial, archaeal or 
eukaryotic were regarded as non-viral contigs. Contigs ≥5 kb or ≥1.5 kb 
and circular were pulled for further investigation; Φx174 DNA identified 
via BLAST (v.2.11.0)76 were removed manually.

Viral potential false positives assessment and database 
compilation
Viral contigs were searched against bacterial universal single-copy 
orthologues (that is, BUSCO77) using BLAST with an e-value cut-off 
of <0.05 to determine whether contigs were bacterial false posi-
tives (sensu ref. 19). Viral gene enrichment was assessed using 
hmmsearch78 for all viral contigs and compared against the curated 
viral protein family modules (VPFs)79. Viral contigs with a BUSCO 
score >0.067 and VPF ≤ 3 were identified as contaminated contigs 
and were removed from the database. In total, 555,944 putative 
viral contigs were recovered. The remaining viral contigs were clus-
tered into vOTUs at 95% average nucleotide identity across ≥80% 

coverage of the shortest sequence using nucmer80. The longest 
sequence in each cluster was selected as the representative sequence 
of the cluster. The database was dereplicated into 345,607 vOTUs. 
To further improve sequence quality, only contigs ≥10 kb and with 
DeepVirFinder score ≥0.9 (80,750 sequences) were used for the 
biogeographical survey.

Read mapping to detect viral population raw abundances
Following our usual read mapping approach56, paired reads from 1,824 
soil metagenomes were mapped to the vOTUs with Bowtie2 (v.2.3.2)81 
using default parameters. CoverM v.0.2.0-alpha7 (https://github.com/
wwood/CoverM) was used to remove reads aligned for <90% of their 
length and with <95% average nucleotide identity. Filtered bam files 
were passed to SAMtools (v.1.9)82 to determine how many positions 
were covered by reads, and an R script was used to further ensure that 
each genome had reads covering ≥70% of their length. CoverM was used 
to calculate the average read depth of viral contigs across samples with 
the ‘tpmean’ mode using default parameters. The final OTU table was 
generated from the CoverM output and normalized by the number of 
base pairs sequenced.

Microbial community evaluation
Metagenomics diversity (Metagenome Nd) was analysed using  
Nonpareil (v.3.40)83 in k-mer mode. The soil microbial genomic cata-
logue (SMAG) database84 was used to calculate the pairwise VHRs and 
host abundances. The relative abundance of each genome in each line-
age was calculated as described above. The coverage of each metage-
nome assembled genome (MAG) was determined as the average of 
contig coverages, weighting each contig by its length in base pairs84. 
To achieve a balanced outcome across all samples, the MAG relative 
abundance in each sample was normalized to the sequencing depth 
of that sample (the number of base pairs sequenced). To ensure the 
reliability of our results, we only analysed pairs of viruses and hosts 
that appeared together in at least 18 samples (≥1% of the total).

Subsampling reads
To evaluate the impact of unequal sequencing depth on α-diversity 
assessment, all metagenomes in the GSV dataset were randomly sub-
sampled without replacement to 20 million reads. The OTU table was 
obtained using the method above.

Viral clustering and database comparison
Each public database was combined with GSV to form the database 
comparison. Pairwise comparisons were carried out by blasting each 
genome against the others (e-value ≤ 0.001); sequences were retained 
when they were aligned with ≥90% sequence similarity and shared 
positions covered at least 75% of the smaller sequence. The remain-
ing pair results were piped through the Markov clustering algorithm 
(MCL v.14-137)85 with an inflation value of 6.0. Gene sharing and amino 
acid identity were used to cluster viral genomes into genus-level and 
family-level vOTUs44.

Viral taxonomic assignment
Contigs that were clustered with RefSeq references via vConTACT2 
(ref. 86) were assigned to the same genus as the RefSeq viruses. CAT 
was used to annotate eukaryotic, ssDNA and RNA viruses at the family 
level. Unidentified prokaryotic double stranded DNA viruses after 
the above two steps were assigned using a majority-rules approach by 
searching for viral proteins against the Viral Refseq database. Viruses 
with >50% matching proteins with a Refseq viral family after blasting 
(bitscore ≥50) were determined as part of that viral family.

Temperate phage identification
CheckV (v.0.6)87 and VIBRANT (v.1.2.1)73 were used to identify lysogenic 
viruses using default settings.
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Virus–host linkage analysis
Four bioinformatic approaches were employed to predict virus–host 
linkages between GSV and GTDB21; GTDB consists of both bacteria 
and archaea hosts. (1) Host CRISPR spacers were sorted via MinCED 
v.0.4.2 (-minNR 2)88 from host genomes, and BLASTn was run to deter-
mine alignment between viral genomes and CRISPR spacers. Multiple 
spacer matches were scored as ‘perfect’, a single exact spacer match 
as ‘high’ and a single spacer with a base difference as ‘intermediate’.  
(2) Integrated prophages were searched using BLASTn to compare 
vOTUs against GTDB. Aligned regions needed to be at least 2,500 bp 
with at least 90% identified. Among the filtered hits, links were clas-
sified into four levels on the basis of viral contig coverage: ≥90% cov-
erage, ‘perfect score’; ≥75% and <90%, ‘high score’; ≥50% and <75%, 
‘intermediate score’; and ≥30% and <50%, ‘low score’. (3) Host and 
virus transfer (t)RNA genes were predicted via tRNAscan-SE (v.1.3.1)89. 
General and bacterial/archeal models were used to explore tRNA genes 
(-G/ -A/ -B); all tRNAs that matched with promiscuous tRNAs from the 
Earth virome dataset7 were removed from the dataset. BLASTn was 
used to link viral tRNA genes to host tRNA genes; a report of less than 
two base differences led to further analysis. An exact match was scored 
‘high’, a single base difference was scored ‘intermediate’ and a two-base 
difference was scored ‘low’. (4) Markov model-based predictions with 
WIsH v.1.0 (-b -p)90 were used to calculate sequence similarities in 
tetranucleotide frequency patterns. The whole host database was 
used as the null model to calculate P values under the assumption 
that every bacteria model has a negligible number of phages to which 
the bacteria is a host. To test accuracy, the null model was used to run 
a benchmark dataset, yielding 63% similar results to benchmark link-
age at the genus level and 96% similar results at the family level. Strict 
control was applied to each viral population in that a P value of zero 
gave a ‘high’ score and a P value of <10−5 gave an ‘intermediate’ score. 
A bipartite network was constructed on high and perfect score results 
generated from the four methods described above using Cytoscape 
(v.3.8.0)91, with the edges presenting virus–host linkages.

Viral community analysis
Shannon indices were used to measure α-diversity and were calculated 
using the Vegan92 R package. Bray–Curtis similarities and non-metric 
multidimensional scaling (NMDS) analysis depicting viral community 
structure variations between samples were conducted with Vegan. 
Metacommunity structure was introduced to assess the relative impor-
tance of environmental heterogeneity, competition and recruitment 
processes. Coherence, turnover and boundary clumping were calcu-
lated using the metacom R package following refs. 26,27. The coherence 
(>0), turnover (>0) and clumping (>1) results were used to determine 
the Clementsian spatial structure of the GSV metacommunity.

Co-occurrence network construction
On the basis of viral correlations and P values, a viral co-occurrence 
network was constructed. The Network Enhancement93 module in the 
neten R package was used to denoise undirected weighted biological 
networks, after which the network was generated using correlation 
coefficient cut-offs determined through random matrix theory-based 
methods conducted using RMThreshold, and topological features 
were assessed in igraph. To assess the degree distribution pattern, a 
power-law pattern network was generated using the Barabási–Albert 
(BA) model and a binomial pattern indicating random features was 
generated using the Erdős–Rényi (ER) model.

Map generation and uncertainty estimation
A total of 84 ecological/environmental relevant global layers (for exam-
ple, soil characters, climatic indices and vegetation) were used to cre-
ate models for viral α-diversity prediction (Supplementary Table 4).  
The global layer information of 84 global layers was converted into 
a unified pixel grid in EPSG:4326 (WGS84) at a 0.01° resolution using 

the nearest-neighbour method. The 1,824 samples that fell within the 
same 0.01 degree pixels were aggregated as an average, resulting in a 
total of 490 unique pixels as inputs to the models. All layers were split 
into 10 groups using the collinear method94, and we then selected the 
covariate with the highest effect size in each group for model devel-
opment (Extended Data Fig. 7a). We compared a linear mixed-effects 
model (LMM) implemented in lme4 (https://github.com/lme4/lme4) 
and modelr (https://cran.r-project.org/web/packages/modelr/ index.
html), a random-forest model using the randomForest R package95,96 
and an XGBoost model based on the xgboost R package with default 
values97. When building the LMM, multicollinearity between the vari-
ables was tested using variance inflation factors. Variables with the 
highest variance inflation factor were depleted in turn until all the 
variables remaining were under a threshold of 3. Each model was then 
simplified on the basis of Akaike information criterion (AIC) values 
(removal of interactions until the model has minimum AIC values)98. 
The random-forest and XGBoost models were tested using all variables 
with and without latitude/longitude data; the results showed that 
models for the Shannon index performed better with latitude. The 
map was then constructed using GDAL99 and visualized using tmap100. 
Each model was tested using leave-one-out cross-validation to assess 
performance and overfitting. For each fold, one pixel was extracted and 
the remaining pixels were used to train the models; then the models 
were used to predict the pixel (Extended Data Fig. 7b).

The extent of extrapolation was estimated by examining the pro-
portion of variables falling outside the sampled range across all mean-
ingful pixels. All percentages of covariate band terrestrial pixels within 
the sampled range were greater than 99.8%. Thereafter, following  
ref. 3, a principal component analysis was applied to assess how well our 
data represented the full multivariate environmental covariate space. The 
first five principal components (PCs) collectively explained >80% of the 
sample space variation and were used to create convex hulls (Extended 
Data Fig. 7c). We then quantified map uncertainty using a stratified boot-
strapping procedure101,102 to create per-pixel coefficients of variation 
(standard deviation divided by the mean predicted value) (Extended Data 
Fig. 7d). Biome was used as the stratification category (100 iterations).

Statistical analysis
All data analyses in this project were conducted using R, unless  
otherwise stated, and visualization was performed using the R pack-
ages TidyVerse, Reshape2, dplyr and ggplot2 (refs. 103–107). Mantel 
tests and both linear and nonlinear regressions were used to evaluate 
direct effects of environmental factors on soil viral diversity and struc-
ture. Effect sizes were calculated using Evident28; numeric data were 
transformed to categories using deciles. To mitigate spatial autocor-
relation, we utilized the ‘lagsarlm’ function of the spdep package for 
spatial regression108,109. We defined spatial weights using the ‘nb2listw’ 
function with a neighbourhood distance threshold range between 
d1 = 0 and d2 = 26. The weights matrix was standardized using the ‘W’ 
style to ensure that the influence of each observation on its neighbours 
was proportional to the total number of neighbours. We then assessed 
post-regression residuals with Spearman’s correlation, considering 
both environmental factors and the interplay between viral and micro-
bial diversity (Supplementary Table 7). Even after accounting for spatial 
autocorrelation, correlations persisted with soil structure indicators 
and both microbial and viral diversity. In addition, using Moran’s index 
I, we found non-significant spatial autocorrelation in our random-forest 
model residuals (observed I = 0.029, expected I = −0.002, P = 0.128)110. 
Moran’s I test was performed using the ‘moran.test’ function of the 
spdep package, with a spatial weights matrix configured similarly to 
that used in the lagsarlm analysis.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
All GSV sequences, GSV database viral information and map TIFF 
files can be downloaded from Zenodo at https://zenodo.org/
records/10463783. The interactive GSV map is available at https://
bmalab.shinyapps.io/global_soil_viromes.

Code availability
Scripts used in this manuscript are available on microbma GitHub 
under project ‘global soil viromes’ (https://microbma.github.io/ 
project/gsv.html).
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Extended Data Fig. 1 | Flow diagram of sample identification. The arrow delineates sequential steps. There are three main stages: identification, screening and 
inclusion. The number in each box represents the total number of samples involved in the step.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Bioinformatic Workflow. The red background highlights 
the software used along with version specifics. The blue background outlines 
information on data volumes. Arrows illustrate the order of computational 
procedures, encompassing (A) prediction of viral contigs from metagenome-

assembled contigs, (B) creation of OTU tables and conducting biogeography 
analyses, (C) clustering of genomes for database comparison (a) and detailing 
phylogenetic levels (b), (D) assignment of viral taxonomy, (E) identification of 
temperate phages and (F) determination of host assignment.
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Extended Data Fig. 3 | Viral information. Virus validation (a) Density plot of 
the number of BUSCO hits divided by the total number of genes (BUSCO ratio) 
for all viruses in GSV dataset. (b) Histogram of the number of GSV vOTUs with 
different numbers of viral protein family (VFP) hits. Histograms of the number 
of (c) vOTUs, (d) viral genus-level vOTUs and (e) viral family-level vOTUs 
present in different percentages of GSV samples. (f) The proportion of genome 
populations that are putative prophages for this study (GSV), IMG/VR v3 ‘soil 

only’ metagenomes (IMGsoil), Phages and Integrated Genomes Encapsidated 
Or Not database (PIGEON), Global Oceans Viromes 2.0 database (GOV2), Gut 
Virome Database (GVD), Gut Phage Database (GPD) and Viral Refseq v201 
(Refseq). (g) Distribution of sequence quality determined by CheckV. (h) Viral 
contigs sorted by relative abundance and contig length, and those identified at 
Family level (blue).
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Extended Data Fig. 4 | Host-virus linkages. Host-virus network wherein nodes 
indicate species (hosts; blue) or vOTUs (viruses; bronze); edges indicate a 
host-virus relationship. A small number of viral nodes were responsible for a 
large number of host-viral relationships in the virus-host network. Microbial 

interaction networks often follow a scale-free format in which the majority of 
connections belong to a small number of nodes. As such, keystone (or hub) nodes 
enact substantial leverage over the community as a whole.
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Extended Data Fig. 5 | Assessing the Impact of Sequencing Depth on Diversity 
Results. (a & b) Correlations between Shannon index obtained from subsampled 
reads and those obtained from all reads. Each dot represents a soil metagenome 
sample that colored by the biome type. The lines denote the predicted values 
based on the linear mixed model and the shaded areas flanking the lines indicate 
the upper and lower 95% confidence intervals. The numbers in the lower right 
corner are the spearman correlation results. (c) Viral Shannon index across 
varying sequencing depths, with second-order fit for total samples (left upper 
corner) and for subsamples separated by biomes (upper) and continents 
(bottom). The lines in the graph represent the predicted values as calculated by 
the linear mixed model. Surrounding these lines, the shaded regions illustrate 
the upper and lower bounds of the 95% confidence intervals. (d) Correlation 
between microbial diversity and viral Shannon index normalized by sample read 
number (Shannon per Read Count), and each dot represents a soil metagenome 

sample that colored by the biome type. (e) Median and interquartile ranges for 
Shannon per Read Count, with whiskers extending to ≤1.5× interquartile range. 
Significance differences were assessed using one-way ANOVA with LSD test; 
biomes with different lowercase letters are significantly different at α=0.05;  
(n = 620 (Agricultural Land), n = 42 (Artificial Surfaces), n = 40 (Bare Land),  
n = 310 (Wetland), n = 293 (Grassland), n = 56 (Tundra), n = 417 (Forest), n = 21 
(Shrubland)). (f) Correlation between microbial diversity and viral Shannon 
index for samples with sequencing depths ≥100 million reads. (g) Median 
and interquartile ranges for viral Shannon index at species level for samples 
with sequencing depths ≥100 million reads, with whiskers extending to ≤1.5× 
interquartile range. Significance was assessed using one-way ANOVA and LSD 
tests, with varying lowercase letters marking significant differences at α = 0.05  
(n = Same as (e)).
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Extended Data Fig. 6 | Expanded viral diversity across biomes (including 
paddy soil and coastal soil). Median and interquartile ranges for viral Shannon 
index at species level, with whiskers extending to ≤1.5× interquartile range. 

Significance differences were assessed using one-way ANOVA with LSD test; 
biomes with different lowercase letters are significantly different at α = 0.05. The 
numbers in the figure represent sample sizes (n).
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Extended Data Fig. 7 | Model validation, accuracy assessment and extent of 
interpolation across all terrestrial pixels for the 10 environmental covariate 
layers. (a) Clustering tree of covariates (main effects circled with a red box). 
(b) Leave-One-Out cross validation result of the models forecasting viral alpha 
diversity (Shannon index). Linear regression was used to analyze the relationship 
between observed and predicted Shannon indices, assuming a two-sided test. 
(c) Percentage of pixels falling within the convex hulls of the first 5 principal 
component spaces (covering >80% of the sample space variation collectively). 

Prediction outliers occurred at latitudinal extremes. The limited sample 
footprint in equatorial sites, Sahara Desert area, middle Asia and Australia 
resulted in lower forecast confidence for these regions. (d) Bootstrapped (100 
iterations) coefficient of variation (standard deviation divided by the mean 
predicted value) results represent prediction accuracy of Shannon index. 
Sampling was stratified by biome. The Shannon predictions had low certainty in 
Sahara Desert area, middle Asia and areas between the Tropic of Capricorn and 
the Equator.
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Extended Data Fig. 8 | Accumulation curves. Accumulation curves for total samples (left upper corner) and for subsamples separated by biomes (upper) and 
continents (bottom). The curves depict mean values, and the shaded regions around these curves represent the standard deviation (SD).
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