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A 3D shape inference model matches human visual object similarity judgments
better than deep convolutional neural networks
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Abstract

In the past few years, deep convolutional neural networks
(CNNs) trained on large image data sets have shown impres-
sive visual object recognition performances. Consequently,
these models have attracted the attention of the cognitive sci-
ence community. Recent studies comparing CNNs with neural
data from cortical area IT suggest that CNNs may—in addi-
tion to providing good engineering solutions—provide good
models of biological visual systems. Here, we report evidence
that CNNs are, in fact, not good models of human visual per-
ception. We show that a 3D shape inference model explains
human performance on an object shape similarity task better
than CNNs. We argue that deep neural networks trained on
large amounts of image data to maximize object recognition
performance do not provide adequate models of human vision.

Keywords: shape perception; object recognition; neural net-
works; 3D shape; deep learning;

Introduction
Despite decades of research, we know little about the neural
representations underlying visual perception (Peissig & Tarr,
2007; Kourtzi & Connor, 2011). This is especially true of
high-level representations involved in visual object identifi-
cation and recognition. Although we understand little about
how our brains accomplish visual perception, we are able to
build engineering solutions that approach, and in some cases
match, human performance on some visual tasks. Recently,
multi-layered artificial neural networks known as convolu-
tional neural networks (CNNs) have shown impressive object
recognition performances when trained on large image data
sets. Importantly for the cognitive science community, there
seems to be evidence suggesting that these computer vision
models may also be good models of biological visual systems
(Kriegeskorte, 2015). Several studies have shown that CNNs
provide good accounts of neural data from both monkey and
human inferotemporal (IT) cortex, explaining almost all of
the variance in some cases (Baldassi et al., 2013; Cadieu et
al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Yamins et
al., 2014). Here, we present evidence suggesting that CNNs
are, in fact, not good models of human visual perception.
We show that CNNs fail to capture people’s responses on an
object shape similarity task. Moreover, we show that a 3D
shape inference model outperforms CNNs, suggesting that
3D structure is an important feature of people’s visual object
representations that CNNs fail to capture.

CNNs implement a sequence of convolution and subsam-
pling operations to extract useful visual representations when
trained in a supervised manner on large image data sets.

Due to their huge impact on computer vision research, these
models have now started to attract attention in cognitive sci-
ence and neuroscience where they are actively investigated as
models of biological visual perception.

A recent study by Khaligh-Razavi and Kriegeskorte (2014)
compared a large set of models from computer vision and
neuroscience to human fMRI and monkey neural data from
IT. Similarity matrices calculated from each model were cor-
related with similarity matrices from human and monkey neu-
ral data. They found that AlexNet (Krizhevsky, Sutskever, &
Hinton, 2012), a deep CNN trained on 1.2 million images,
had the highest correlation with IT data. An ensemble model
combining the outputs of each layer of AlexNet with scores
from multiple categorization models trained on the features
learned by AlexNet was able to capture the entire variance
in IT data. The scores from animate/inanimate, face/nonface,
and body/nonbody categorization models were needed to em-
phasize the differences between these categories, since it
seems that IT gives more weight to these categorical distinc-
tions than AlexNet did. These authors also showed that these
results are not purely driven by the category structure in IT.
AlexNet on its own did, in fact, capture some of the within-
category structure. It is remarkable that a model trained to
maximize object recognition accuracy is able to provide a
good model of biological visual systems. This raises the in-
teresting possibility that biological visual systems might be
optimized primarily for object recognition. If so, a high-
performing model of visual object categorization may also
be a good model of biological visual systems.

Yamins et al. (2014) recently offered evidence for this
claim. They showed that models that are better at catego-
rization explain neural responses better. Instead of using a
fixed set of models, they defined a model space using param-
eters that control various features of CNNs such as number
of layers, filter sizes, and activation thresholds. Examining
a large number of models in this space, their results showed
that categorization performance was highly correlated with
IT response predictivity. However, they also showed that an
“ideal” categorization model was not highly correlated with
IT responses. This suggests that solely aiming for good cat-
egorization does not, by itself, result in models predictive of
IT responses. The authors claimed that it is the combination
of a hierarchical architecture and high categorization perfor-
mance that accounts for why CNNs provide good models of
IT responses.
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In spite of these impressive results, there is reason to ques-
tion whether CNNs provide good models of human visual
systems. CNNs are trained only to maximize object recog-
nition performance. However, human visual systems solve
not only object recognition but a myriad of visual tasks from
segmentation to extraction of 3D shape. Indeed, because 3D
shape and semantic category labels are highly correlated, it
is unclear whether IT representations are best thought of as
shape-based or semantic (Kourtzi & Connor, 2011). Even
though CNNs often account for more variance in IT responses
than other models, it is possible that the driving factor be-
hind these results is shape similarity rather than semantic fea-
tures. Baldassi et al. (2013) provided evidence that shape
similarity, rather than semantic information, accounts for the
structure of IT representations. They demonstrated that most
of the semantic category structure in IT is explained by vi-
sual shape similarities within semantic categories. This re-
sult raises the question of whether the representations learned
by CNNs—which receive supervised training based solely on
semantic category labels—adequately characterize represen-
tations used by human visual systems. A striking demonstra-
tion suggesting these representations are, in fact, inadequate
was provided by Szegedy et al. (2013). They showed that it is
possible to create pairs of images that are indistinguishable to
the human eye, but nonetheless are classified by CNNs into
different classes. For example, it is possible to impercepti-
bly perturb an image that a CNN classifies as a bus such that
the CNN classifies the perturbed image as an ostrich. This
finding suggests that CNNs might be solving the problem of
object recognition in a way that is rather different from that
of human visual systems.

Here, we report behavioral evidence from an object shape
similarity task suggesting that CNNs are not good models of
human vision. Moreover, we show that a 3D shape inference
model provides a better account for human behavior. We ar-
gue that models trained solely to maximize object recognition
performance cannot capture the nature of human visual rep-
resentations. A crucial feature of these representations not
captured by these models is the 3D structure of objects.

Experiment

We created a set of 10 base objects using a “shape grammar”
(Figures 1 and 2) where each object consisted of multiple
rectangular blocks (referred to as “parts” and denoted by P
in the grammar). A base object was generated as follows. To
start, a root part was assigned 0-3 neighboring parts, also re-
ferred to as child parts, using the production rules of the shape
grammar. A child part connected to the root part at one of its
six faces. This face was chosen at random. Similarly, the
width, height, and depth of a child part were randomly cho-
sen from the range [0,1]. A child part could also be assigned
neighboring (or grandchild) parts using the same production
rules and random selections. Note that, in this framework, an
object can be characterized using a “parse tree” due to our
use of a shape grammar. We constrained the parse trees for

P → P | PP | PPP | ε

Figure 1: Production rules of the shape grammar used in gen-
erating the experimental stimuli and representing shape in our
3D shape inference model. P is the only non-terminal sym-
bol, and ε is the Null symbol.

our base objects to have a depth of four, which produces ob-
jects with three levels of parts (see Figures 2a and 2b for an
example base object and its parse tree).

Each base object was then used to create 8 additional ob-
jects, called variations, by applying 1 of 4 possible manipula-
tions, referred to as change part size, add part, remove part,
and change connecting face of part. Each of these four ma-
nipulations was applied at two different levels (second and
third levels) of the parse trees (see Figure 2 for examples of
each manipulation). When using the change part size ma-
nipulation, we picked one of the parts at the desired level in
the parse tree and resampled its size. When using the add
part manipulation, a new part was added to the desired level,
picking its size and connecting face (i.e., the face of its par-
ent to which it is connected) randomly. For the remove part
manipulation, we again randomly picked one part at the de-
sired level and removed it and all of its children parts. Lastly,
for the change connecting face manipulation, we randomly
picked a part and chose a new connecting face for it from the
empty faces of its parent. This manipulation moved the part
and all of its children.

Experimental stimuli consisted of images of the 10 base
objects and 80 variations (90 images in total).1 We used
Blender (http://www.blender.org), a 3D computer graph-
ics and animation software package, to render each object
from a random viewpoint by rotating the camera around the
vertical axis keeping its distance to the origin fixed. Con-
sequently, there was significant pose variation in our experi-
mental stimuli.

The goal of the experiment was to collect people’s object
shape similarity judgments. On each trial, a subject was pre-
sented with one target and two comparison objects, and was
asked to pick the comparison object that he or she thought
was more similar in shape to the target object. The target
object was always one of the ten base objects, and the two
comparisons were two randomly picked variations of the tar-
get object. (For instance, a trial may show Figure 2a as the
target object, and Figures 2c and 2d as the comparison ob-
jects.) On “catch” trials, one of the comparison objects was
the same as the target object. Each subject participated in 100
trials, 16 of which were catch trials. The experiment was per-
formed on the world wide web by 41 subjects via Amazon
Mechanical Turk. Five subjects were discarded because they
failed to reach 85% correct performance on catch trials.

1The entire set of experimental stimuli can be
seen online at http://gokererdogan.github.io/
CogSci16SupplementaryMaterials/
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(a)
(b)

P(1)

P(2)

P(4)

ε

P(5)

ε

P(3)

P(6)

ε

P(7)

ε

(c) (d)

(e) (f)

Figure 2: (a) An example base object. The numbers on parts
refer to the part numbers in its parse tree. (b) Parse tree rep-
resenting the object in (a). (c)-(f) Examples of change part
size (c), add part (d), change connecting face of part (e), re-
move part (f) manipulations, respectively. The parts affected
by each manipulation are Part 2 in (c), Part 4 in (e), and Part
6 in (f).

Computational Models
We compare five models on how well they account for our
experimental data.

Pixel-Based model: The first one, called the Pixel-Based
model, works directly on image pixel values. The dissimi-
larity between two objects is calculated as the Euclidean dis-
tance between their images in pixel space. The predictions
of the Pixel-Based model are determined by calculating the
distances between each comparison object and the target, and
choosing the comparison that is closest to the target.

CNN models: Our main aim is to compare the perfor-
mances of deep CNNs and a 3D shape inference model. For
this purpose, we use two CNNs.2 The first one is the eight-

2We use the pretrained models provided by the Caffe framework

layer (five convolutional, three fully connected layers) CNN
by Krizhevsky et al. (2012), referred to as AlexNet, trained
on 1.2 million images in the ImageNet dataset. AlexNet
achieved the best performance on the 2012 ImageNet Large
Scale Visual Recognition Challenge. We treat each of its lay-
ers as a separate mini-model. There are, in total, 14 layers
(making the three max-pooling and two normalization layers
explicit). Using the standard terminology in the deep neu-
ral network literature, these layers are: conv1, pool1, norm1,
conv2, pool2, norm2, conv3, conv4, conv5, pool5, fc6, fc7,
fc8, and prob. The last layer, prob, is a 1000-dimensional
vector encoding the probability of belonging to each of 1000
object categories in ImageNet. The second deep CNN that we
test is by Szegedy et al. (2014), named GoogLeNet, which
set the state-of-the-art performance on the 2014 ImageNet
Large Scale Visual Recognition Challenge. GoogLeNet has
22 layers (with an additional five pooling layers). Our sim-
ulations used 16 layers: pool1, conv2, inception3a-b, pool3,
inception4a-e, pool5, inception5a-b, pool5, loss3 and prob.
To make predictions from AlexNet and GoogLeNet, we input
each image to a CNN and perform a bottom-up pass to cal-
culate each layer’s responses. The dissimilarity between two
objects is computed as the Euclidean distance between these
responses. When presented with a trial from our experiment,
a mini-model chooses the comparison object that is closest in
its response space to the target object.

Our 3D shape inference model: We developed a shape
perception model that aims to infer 3D shape from 2D input
images. Similar to our previously published 3D shape infer-
ence models (Yildirim & Jacobs, 2013; Erdogan, Yildirim,
& Jacobs, 2015), this model combines a representational lan-
guage characterizing 3D shape with forward models mapping
from shape representations to 2D images. Using Bayesian in-
ference, we invert this forward 3D-to-2D mapping and extract
3D shape from 2D images. Formally, a shape representation
H consists of a string T from our shape grammar (Figure 1)
and a spatial model S that associates a size vector (s ∈ R3)
and a connecting face ( f ∈ {1,2,3,4,5,6}) with each P node
in T . The probability of H is

p(H) = p(S|T )p(T ) (1)

where p(T ) is the probability of producing parse tree T from
the shape grammar. We assume production probabilities to be
uniform3 which gives the following expression for p(T )

p(T ) =
1

4|P |
. (2)

The probability for spatial model S consists of the probabil-
ities of picking part sizes and connecting faces. Since we
assumed part sizes to be uniform over the interval [0, 1], we
only need to focus on the probabilities for connecting faces.

(Jia et al., 2014).
3Production probabilities can also be integrated out, which leads

to a slightly different prior distribution. Note that our results here
are significantly robust to choice of prior distribution.
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For a part with k available faces and c children, there are(k
c

)
possible combinations of face assignments to its children.

Since we have six empty faces for the root P node and five
for the remaining P nodes (because one face is occupied by
the parent), the probability of spatial model S is

p(S|T ) = 1( 6
|Oroot|

)
∏n∈{P\root}

( 5
(|On|−1)

) (3)

where Oi refers to the set of occupied faces of node i. To
map these shape representations to 2D images, we use a for-
ward model that takes in the 3D representation and renders it
as a 2D image. Because the shape representation H does not
specify the viewpoint, forward model F takes in viewpoint θ

along with the shape representation H and produces a 2D im-
age I (i.e., F : {H,θ}→ I). We used the Visualization Toolkit
(VTK; http://www.vtk.org), a software package for 3D
computer graphics, image processing, and visualization, to
implement the forward model. To define the likelihood func-
tion L(H,θ; I), we assume Gaussian noise on I:

L(H,θ; I) = p(I|H,θ) ∝
1

σ2 ||I−F(H,θ)||2F . (4)

Here σ2 denotes the variance of the noise (this is the only free
parameter of the model—it was set to a value that achieves
acceptance rates around 20%) on I, and || · ||F is the Frobe-
nius norm. Combining the prior on shape representations and
the likelihood function, we use Bayes’ rule to infer likely 3D
shape representations given a 2D image:

p(H,θ|I) ∝ p(I|H,θ)p(H)p(θ). (5)

We assume p(θ) is a uniform distribution. Object similarity is
computed by calculating how likely the model is to observe
the image for one object given the image of the other. De-
noting the images by I1 and I2, we calculate three similarity
measures: p(I2|I1), p(I1|I2), and their average. We calculate
p(I2|I1) as follows (and similarly for p(I1|I2)):

p(I2|I1) =
∫

p(I2|H,θ)p(H|I1)p(θ)dHdθ. (6)

The expression inside the integral in Eqn. 6 is equivalent to
inferring the 3D shape representation for I1, picking a random
viewpoint, and calculating the sum of squared error between
the observed I2 and the rendered image on the basis of in-
ferred H and chosen viewpoint.

To sample from the posterior distribution p(H,θ|I)4 we use
an MCMC procedure. We devised multiple proposal strate-
gies to move in the hypothesis space, and used a Metropolis-
Hastings (MH) algorithm to sample from the posterior.5

4To calculate Eqn. 6, we need samples from p(H|I). However,
p(H|I)≈ p(H,θMAP) because there is only a single viewpoint from
which an object H looks close to its image I. The results reported
here do not change if we integrate out θ instead of using the MAP
sample.

5The code for our shape inference model is available at
https://github.com/gokererdogan/Infer3DShape

These proposal strategies are: add/remove part, change part
size, change connecting face of part, and change viewpoint.
The add/remove part either adds a new P node to a ran-
dom location in the tree, or removes randomly one of the P
nodes with no child parts. Note that this move jumps be-
tween spaces of different dimensions; hence, we need to use
a reversible-jump MCMC method. For the change part size
move, we resample the size of a randomly picked P node.
Similarly, the change connecting face of part move picks one
P node randomly and assigns it a new random connecting
face from the available faces of its parent P node. Finally, the
change viewpoint move rotates the viewpoint around the ver-
tical axis a random amount, which is drawn from a Gaussian
distribution. Due to space limitations, we cannot go into the
implementation details here.6

In our simulations, we ran one chain for each image used
in the experiment. To speed convergence, we constrained the
depth of parse trees to be at most six. Each chain was run
for 200,000 iterations, and sample collection started after the
first 50,000 iterations. Hence, we had 15 samples per image
(see Figure 3 for two typical samples [i.e., two illustrations of
the model’s inferred 3D shape given an image]). To calculate
the similarity between two images, we used Eqn.6, approxi-
mating the integral by a sum over samples from the posterior
p(H|I).

Ideal 3D observer model: As our last model, we use an
“ideal” 3D observer that can perfectly extract the true 3D
shape of an object from its image. Although not realistic, this
model provides a useful benchmark because it defines opti-
mal performance for our model. Two objects are compared
by an alignment mechanism that rotates one object and finds
the viewpoint that matches the image of the other object best
(as in Eqn. 6). If we assume that shape matching is done on
the basis of only the MAP sample, this ideal observer model
sets the performance upper bound for our 3D shape inference
model.

Results and Discussion
We calculated the predictions of each model as described in
the previous section. For the experimental data, we gathered
the data from all subjects and, for each trial, chose the ma-
jority response. We measured the accuracy of each model by
calculating the percentage of correctly predicted trials (where
a trial is correctly predicted if a model’s response matches the
subjects’ majority response).

The results are shown in Figure 4. The Pixel-Based
model has the lowest accuracy with 58%. CNNs achieve
accuracies of 62% (AlexNet, using responses of the out-
put layer) and 64% (GoogLeNet, using responses of the
layer inception5a). Our 3D shape inference model achieves
72% accuracy using the similarities calculated by averaging
p(Comparison|Target) and p(Target|Comparison). This per-
formance is significantly better than both AlexNet’s (bino-
mial test, p < 0.001) and GoogLeNet’s performance (p =

6Readers interested in these details can contact the first author.
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(a) (b)

(c) (d)

Figure 3: Sample runs of our 3D shape inference model. (a)
An example input image. (b) One sample from our model for
the image in (a). (c)-(d) Another example input image and a
sample from our model.

0.004). The 3D ideal observer reaches an accuracy of 76%.
However, the performances of the 3D ideal observer model
and of our model are not significantly different (p = 0.21).

Because subjects did not show a strong preference for ei-
ther of the comparisons in some trials, we also measured per-
formance on only “high confidence” trials in which at least
80% of the subjects picked the same response. There were in
total 120 (out of 280) high-confidence trials. Performances
were as follows (due to space constraints, we omit the graph
of these results). The Pixel-Based model’s accuracy is 62%.
Using the outputs of layer prob, AlexNet performs at 73%.
GoogLeNet achieves an accuracy of 68% with the outputs
of layer inception5b. Our 3D shape inference model per-
forms the best, matching the accuracy of the 3D ideal ob-
server model with 87% accuracy using the average similar-
ity measure. This performance is significantly better than
both GoogLeNet’s performance (binomial test, p < 0.001)
and AlexNet’s performance (p < 0.001).

Our comparison here might seem unfair because our model
knows that stimuli are built out of blocks while we used pre-
trained CNNs that have never seen similar objects. However,
subjects in our experiment have also never seen objects like
our stimuli. In addition, previous studies presenting CNNs as
good models of our visual systems used pre-trained networks.
However, in order to alleviate further concerns, we have fitted
the representations learned by CNNs to subjects’ data using
a metric-learning (Kulis, 2013) approach.7 Accuracies have

7See Supplementary Materials for further information.

improved slightly (2%-4% increase) but not significantly, and
our model still significantly outperforms both CNNs.

Taken together, these results show that a 3D shape infer-
ence model captures human performance better than deep
CNNs on an object shape similarity task. This suggests that
CNNs are, in fact, not good models of human vision. Al-
though CNNs perform significantly better than chance, we
believe this is due largely to the correlations between seman-
tic object categories and shape features (Baldassi et al., 2013).
Our study casts doubt on the claim that biological visual sys-
tems are optimized chiefly for object categorization, and that
a system trained solely for object categorization will learn
representations that are similar to ours. To the contrary, the
low performances of the intermediate layers of the CNNs in
our study suggests the opposite. Why does our 3D shape in-
ference model perform better than CNNs? We believe this
is due to the 3D nature of our model’s shape representations.
In contrast, a CNN trained to maximize object categoriza-
tion performance learns to extract 3D features only to the ex-
tent that 3D information helps discriminate object categories.
Therefore, it is unclear whether shape representations learned
by CNNs carry 3D shape information. Since there is substan-
tial evidence showing that human and monkey IT are selective
for 3D shape (Orban, 2011), it becomes doubtful that CNNs
offer good models of biological visual systems.

Lastly, we believe that our model is better suited than
CNNs to understand visual perception in its totality because
it is not intended simply as a model of object categorization.
Biological visual systems solve a myriad of tasks from seg-
mentation to scene perception, and our model can be read-
ily extended to handle these diverse set of tasks. Moreover,
vision is just one aspect of perception. We believe that our
model—with its combination of a rich, modality-independent
representational language, a forward model, and Bayesian
inference—provides a promising theoretical framework for
understanding not only visual, but also multisensory percep-
tion (Yildirim & Jacobs, 2013; Erdogan et al., 2015).
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