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Abstract

Recurrent Neural Networks (RNNs) trained on a language
modeling task have been shown to acquire a number of non-
local grammatical dependencies with some success (Linzen,
Dupoux, & Goldberg, 2016). Here, we provide new evidence
that RNN language models are sensitive to hierarchical syntac-
tic structure by investigating the filler–gap dependency and
constraints on it, known as syntactic islands. Previous work
is inconclusive about whether RNNs learn to attenuate their
expectations for gaps in island constructions in particular or
in any sufficiently complex syntactic environment. This paper
gives new evidence for the former by providing control studies
that have been lacking so far. We demonstrate that two state-
of-the-art RNN models are are able to maintain the filler–gap
dependency through unbounded sentential embeddings and are
also sensitive to the hierarchical relationship between the filler
and the gap. Next, we demonstrate that the models are able
to maintain possessive pronoun gender expectations through
island constructions—this control case rules out the possibil-
ity that island constructions block all information flow in these
networks. We also evaluate three untested islands constraints:
coordination islands, left branch islands, and sentential subject
islands. Models are able to learn left branch islands and learn
coordination islands gradiently, but fail to learn sentential sub-
ject islands. Through these controls and new tests, we provide
evidence that model behavior is due to finer-grained expecta-
tions than gross syntactic complexity, but also that the models
are conspicuously un-humanlike in some of their performance
characteristics.

Keywords: Syntactic Islands, Recurrent Neural Networks,
Blocking Effects, Acquisition of Syntax

Introduction

Recurrent Neural Networks (RNNs) with Long Short-Term

Memory architecture (LSTMs) have achieved state-of-the-

art scores at a number of natural language processing tasks,

including language modeling and parsing (Hochreiter &

Schmidhuber, 1997; Jozefowicz, Vinyals, Schuster, Shazeer,

& Wu, 2016). In addition, they have begun to be used

as a plausible sub-symbolic model for a variety of cogni-

tive functions, including visual perception and language pro-

cessing and comprehension (J. Elman, 1990). However, the

distributed representations learned by RNNs and neural net-

works in general are notoriously opaque, posing a challenge

for their interpretability as models of human sentence pro-

cessing and for their controllability as NLP systems.

One recent line of work aims to uncover what these ‘black

boxes’ learn about language by treating them like human psy-

cholinguistic subjects. In this psycholinguistic paradigm

RNNs trained on the language modeling task are fed hand-

crafted sentences, designed to expose their underlying syntac-

tic knowledge (Linzen et al., 2016; McCoy, Frank, & Linzen,

2018). Much of this work has investigated what RNNs trained

on a language modeling objective are capable of learning

about natural syntactic dependencies. For the purposes of

this investigation, we define dependency as any systematic

co-variation between two words. For example, in one experi-

ment networks were tested as to whether they had learned the

number agreement dependency between a subject and a verb.

They were fed with the prefix The key to the cabinet... and

correctly gave a higher probability to the grammatical is over

the ungrammatical are. Networks were shown to successfully

complete this task for a number of languages, as well as for

sentences whose content words were replaced with random

alternatives of the same syntactic category rendering them

syntactically licit but semantically implausible (Gulordava,

Bojanowski, Grave, Linzen, & Baroni, 2018).

But learning that covariance exists between certain words

or word forms, without reference to their relative positions,

is not enough to say that the RNN models have fully learned

a dependency. Natural language dependencies consist of co-

variation between two elements in certain syntactic positions.

Agents must both attend to the structural relationship between

the two elements bound by the dependency and filter out in-

tervening material in syntactically irrelevant positions. The

subject–verb number agreement task above provides com-

pelling evidence that RNNs are capable of the latter: they

were able to maintain correct predictions despite a number

of distractors that mismatched the subject in number, such as

cabinet in the example provided (Marvin & Linzen, 2018).

Evidence suggesting that RNN language models are also

sensitive to the structural relationship between the two bound

elements has emerged from the study of filler–gap depen-

dencies (Wilcox, Levy, Morita, & Futrell, 2018; Chowdhury

& Zamparelli, 2018). The filler–gap dependency is the depen-

dency between a filler—such as who or what—and and a gap,

which is an empty syntactic position. Crucially, filler–gap de-

pendencies are subject to a number of constraints, known as

island constraints, which are a set of structural positions that

prevent the filler and the gap from entering into a dependency

with each other (Ross, 1967). (1-b) gives one example island,

in which the dependency is blocked by a wh-complementizer.

(1) a. I know what the guide said that the lion devoured

yesterday. NO VIOLATION

b.*I know what the guide said whether the lion devoured

yesterday. WH-ISLAND ISLAND VIOLATION

While it has been shown that both simple Elman RNNs and

more contemporary LSTMs are able to represent the basic

covariance between fillers and gaps, as well as other non-

structural aspects of dependency, it is still uncertain whether
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the models are sensitive to island constraints (J. L. Elman,

1991). Previous work has demonstrated that two state-of-the-

art models are sensitive to three of the most-studied island

constraints (wh-islands, complex NP islands and adjunct is-

lands) but insensitive to a fourth (subject islands) (Wilcox et

al., 2018). Others have concluded that the models are merely

sensitive to syntactic complexity plus order. Chowdhury and

Zamparelli (2018) compared sentence-level perplexity scores

obtained by RNN LMs for wh-questions that violate island

constraints, and yes-no questions and statements that violate

no grammatical rules but contain the same syntactic struc-

tures. While the models obtained better perplexity scores

on the statements compared to the island-violation questions,

they performed similarly on the island-violations and non-

violating yes/no questions. These results may indicate that

RNNs are not learning to attenuate their expectations for gaps

in island constructions in particular, but in any sufficiently

complex syntactic environment.

This paper adjudicates between these two accounts of

model behavior by providing control studies that have been

lacking so far. In the first section, we demonstrate that two

state-of-the-art LSTM models are sensitive to some forms

of syntactic complexity, but not to others. Models are able

to maintain the filler–gap dependency through unbounded

sentential embeddings and yet are sensitive to the hierar-

chical relationship between the filler and the gap, suggest-

ing that only specific types of syntactic complexity block

gap expectations. In the second section, we turn to posses-

sive pronoun gender dependencies, demonstrating that the

models are able to maintain general expectations through is-

land constructions—it is not the case that island constructions

block all information flow in these networks. In this section

we also evaluate three untested islands constraints: coordi-

nation islands, left branch islands, and sentential subject

islands. Models are able to learn left branch islands and coor-

dination islands gradiently, but fail to learn sentential subject

islands. Through these controls and new tests, we provide

evidence that model behavior is due to finer-grained expecta-

tions than gross syntactic complexity, but also that the mod-

els are conspicuously un-humanlike in some of their perfor-

mance characteristics.

Methods
Language Models

We assess two state-of-the-art pre-existing LSTM models

trained on English text for a language modeling objective.

The first model, which we refer to as the Google Model,

was trained on the One Billion Word Benchmark and has

two hidden layers with 8196 units each. It uses the output

of a character-level convolutional neural network (CNN) as

input to the LSTM (and was originally presented as the BIG

LSTM+CNN Inputs) (Jozefowicz et al., 2016). The second

model, which we refer to as the Gulordava Model was se-

lected for its previous success at learning the subject-verb

number agreement task. It was trained on 90 Million tokens

of English Wikipedia, and has two hidden layers of 650 units

each (Gulordava et al., 2018).

Dependent Measure: Surprisal

In this work we take a grammatical dependency to be the co-

variance between an upstream licensor and a downstream li-

censee. We assess the model’s knowledge of the dependency

by measuring the effect that the licensor has on the surprisal

of the licensee, or on material immediately following the li-

censee when it is a gap. Surprisal, or negative log-conditional

probability , S(xi) of a sentence’s ith word xi, tells us how

strongly xi is expected under the language model’s probabil-

ity distribution. For sentences out of context, the surprisal is:

S(xi) =− log p(xi|x1 . . .xi−1). Surprisal is known to correlate

directly with processing difficulty in humans (Smith & Levy,

2013; Hale, 2001; Levy, 2008). In this work, we expect that

grammatical licensors set up expectations for licensee, reduc-

ing its surprisal compared to minimal pairs in which the licen-

sor is absent. We derive the word surprisal from the LSTM

langauge model by directly computing the negative log of

the predicted conditional probability p(xi|x1 . . .xi−1) from the

softmax layer.

Experimental Design: Wh-Licensing Interaction

The filler–gap dependency is biconditional: Fillers set up ex-

pectations for gaps and gaps require fillers to be licensed. To

measure this bi-directionality we employ the 2x2 interaction

design proposed in Wilcox et al.. There, the authors mea-

sure the wh-licensing interaction, which they compute from

four sentence variants, given in (2), that contain the four pos-

sible combinations of fillers and gaps for a specific syntac-

tic position. Note that the underscores are for presentational

purposes only, and were not included in test items. Subse-

quent examples will be given via the (2-d) example, but all

four variants were created in order to compute the licensing

interaction.
(2) a. I know that you insulted your aunt yesterday. [-FILLER -

GAP]
b. *I know who you insulted your aunt yesterday. [+FILLER

-GAP]
c. *I know that you insulted yesterday. [-FILLER +GAP]
d. I know who you insulted yesterday. [+FILLER +GAP]

If the filler sets up an expectation for a gap, then the filled

syntactic position where a gap would typically occur should

be more surprising in contexts that contain an upstream filler.

That is S(b)− S(a) should be a large positive number. If

the gap requires a filler to be licensed, then the transition

from the embedded verb to the S-modifying PP ‘yesterday’

that skips over the otherwise-required grammatical object

should be more surprising in contexts without an upstream

filler. That is, S(d)− S(c) should also be a large negative

number. We can assess how well the model has learned

both expectations by measuring the difference of differences:

[S(b)−S(a)]− [S(d)−S(c)]. This is the wh-licensing interac-

tion. If the models are learning the filler–gap dependency, we

expect this to be a large positive number, with typical models

showing about 4 bits of licensing interaction in simple object

extracted clauses such as (2). Although we might expect the
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Figure 1: C-Command in a binary-branching tree structure. γ
c-commands all the nodes in blue, but does not c-command

the black nodes.

strongest difference in surprisal between (2-a) and (2-b) to be

on the filled-gap position, your aunt, this material is elided in

two of the conditions. Therefore, in order to keep the mea-

surement site the same across all four conditions, we measure

wh-licensing interaction in the post-gap prepositional phrase

(‘yesterday’ in (2)).

In previous work using this methodology, RNN knowledge

of island constraints was assessed by comparing the licensing

interaction in island configurations to that in non-island min-

imal pairs. Strong evidence for an island constraint would be

if the wh-licensing interaction dips to zero for a gap in island

position, indicating that the model has decoupled expecta-

tions for fillers from gaps in this position. In practice we look

for a significant decrease in wh-licensing interaction as indi-

cation that the models have learned to attenuate their expecta-

tions for gaps within islands. We derive the statistical signifi-

cance of the interaction from a mixed-effects linear regression

model, using some-coded conditions (Baayen, Davidson, &

Bates, 2008). We include random intercepts by item but omit

random slopes as we do not have repeated observations within

items and conditions (Barr, Levy, Scheepers, & Tily, 2013).

In our figures, error bars represent 95% confidence intervals

of the contrasts between conditions, computed by subtract-

ing out the by-item means before calculating the intervals as

advocated in (Masson & Loftus, 2003). 1

Syntactic Complexity

Unboundedness

The filler–gap dependency can span through a potentially un-

bounded number of sentential embeddings. To test whether

models’ expectations were attenuated with greater embed-

ding depth, we created 23 items in five experimental condi-

tions with between 0 and 4 layers of embedding and gaps in

either object or indirect object (goal) position, following the

examples in (3), and measured the licensing interaction in the

post-gap material. (In this and subsequent examples, the ma-

terial in which the interaction is measured will be highlighted

in bold.)

(3) a. I know who you insulted at the party. [OBJECT GAP,

0 LAYERS]

1Our studies were preregistered on aspredicted.org: To
see the preregistrations go to aspredicted.org/blind.php?=X
where X ∈ {sz8f5d,2r2eu7,zt73qt,es8rx7,f9pk9f,se6i2e}.

b. I know who the gardener reported the butler said the

hostess believed her aunt suspected you insulted at

the party. [OBJECT GAP, 4 LAYERS]

c. I know who you delivered a challenge to at the

party. [GOAL GAP, 0 LAYERS]

d. I know who the gardener reported the butler said the

hostess believed her aunt suspected you delivered a

challenge to at the party. [GOAL GAP, 4 LAYERS]

The results for this experiment can be seen in figure 2, with

the object gap results on the top and goal gap results on

the bottom. First, we find a significant interaction between

fillers and gaps resulting in supperaditive reduction of sur-

prisal (p < 0.001 for all conditions) indicating that both mod-

els have learned the filler–gap dependency. Starting with the

object gap conditions: For the google model, we find no

effect of embedding depth on the wh-licensing interaction

(p > 0.85 in all cases); for the gulordava model, we find a

significant decrease in wh-licensing interaction only between

the no embedding conditions and conditions with 3 or 4 ad-

ditional layers of embedding (p < 0.001 in both). When the

gap occurs in the goal position, for the google model, we find

no significant effect of embedding depth of the wh-licensing

interaction. For the gulordava model, we find a generally

smaller wh-licensing interaciton, as well as a significant ef-

fect of embedding between the no embedding condition and

conditions with two or more additional embedding layers

(p < 0.05, p < 0.05, p < 0.01 for 2 ,3 and 4 layers). We take

these results to indicate that the google model has learned the

unboundedness of the filler–gap dependency whereas the gu-

lordava model has learned only relative unboundedness and

shows behavior that reflects human performance more than

human competence. However, these results indicate that both

models can, in principle, thread their expectations for gaps

through complex syntactic structures, if we take the number

of syntactic nodes as a proxy measure for syntactic complex-

ity.

Syntactic Hierarchy

Although the filler–gap dependency is unbounded, it is sub-

ject to a number of hierarchical constraints, the most basic

of which is that the filler must be “above” the gap, struc-

turally. Here, we take this to mean that the filler must c-

command the gap, although the precise relationship is more

complex (Pollard & Sag, 1994). Structurally-speaking node γ
c-commands node δ if neither node directly dominates the

other and every node X that dominates γ also dominates

δ. Figure 1 demonstrates this relationship, with the noes c-

commanded by γ highlighted in blue.

To assess whether the models had learned this constraint

on the structural relationship we created 24 variants following

the examples in (4) and measured the wh-licensing interaction

in the post-gap PP. If the model has learned the structural con-

straints on the filler–gap dependency, an undischarged filler in

the matrix clause should not make a gap in subsequent parts

of the sentence more or less likely, leading to near-zero li-

censing interaction in the Matrix Clause condition.
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Figure 2: Effect of sentential embedding and syntactic hierarchy on wh-licensing interaction.

(4) a. The fact that the mayor knows who the criminal shot

shocked the jury during the trial. [SUBJECT]

b.*The fact that the mayor knows who the criminal shot

the teller shocked during the trial. [MATRIX]

The results from this experiment can be seen in Figure 2, on

the far right panel. We find strong licensing interaction for the

grammatical Subject Clause conditions (in red), but a strik-

ing reduction in licensing interaction for the Matrix Clause

conditions (in blue), which is significant for both models

(p < 0.001). As the results in (2) and Wilcox et al. have

shown that RNN models are insensitive to linear distance be-

tween the filler and the gap, we take these results suggest that

it is the relevant structural properties which block the models’

expectations for gaps inside the matrix clause.

Island Effects: Gender Expectation vs.

Filler–Gap Dependency

Island constraints are specific syntactic configurations that

block the filler–gap dependency. One way to show that the

RNN models are learning island conditions as constraints on

the filler–gap dependency is to demonstrate that they are ca-

pable of threading other expectations into island configura-

tions. To do this, we used pronoun gender expectation be-

tween a gendered noun, such as ‘actress’ or ‘husband’, and a

possessive pronoun such as ‘his’ or ‘her.’. Nouns that carry

overt gender marking or culturally-imbued gender bias set

up expectations that subsequent pronominals match them in

gender. Previous work has shown that humans thread ex-

pectations set up by cataphoric pronouns into syntactic is-

lands (Yoshida, Kazanina, Pablos, & Sturt, 2014). Cataphoric

pronouns are pronouns that precede the nominal element to

which they refer, as in (5).

(5) Her manager revealed that the studio notified Judy

Dench about the new film.

Because cataphoric pronouns are relatively less frequent than

anaphoric pronouns, which follow the nominal to which they

refer, we use sentences such as those in (6) to assess whether

RNN LMs can thread expectations into island environments.

We measure the strength of the gender expectation by calcu-

lating the difference in surprisal between the matching con-

dition and the mismatching condition, or S((6-b))-S((6-a)). If

the models attenuate their expectation for gender agreement

in island positions, then we expect an interaction between

MISMATCH and ISLAND resulting in supperaditivally lower

surprisal.

(6) a. The actress said that they insulted her friends.

[MATCH, CONTROL]

b.#The actress said that they insulted his friends. [MIS-

MATCH, CONTROL]

c. The actress said whether they insulted her friends.

[MATCH, ISLAND]

d.#The actress said whether they insulted his friends.

[MISMATCH, ISLAND]

In order to test whether the models maintained their gen-

der expectations through island constructions, we created six

suites of experiments following the pattern of (6) for six of

the most frequently studied islands constructions. For each of

the gender expectation experiments, we created 30 variants,

15 with masculine subjects and 15 with feminine subjects and

measured the surprisal at the possessive pronoun. The results

are presented on the bottom row in Figure 3 alongside model

performance on the filler–gap dependency for the same syn-

tactic constructions (top row). For the filler–gap dependency,

results for four islands had already been tested in Wilcox et al.

(2018), which we present alongside novel results for Coordi-

nation Islands, Sentential Subject Islands and Left-Branch Is-

lands, the latter separately without a gender expectation con-

trol. For these experiments, we created between 20-24 ex-

perimental items and measured the wh-licensing interaction

in the post-gap material. We take a reduction in wh-licensing

interaction in island constructions and no such reduction in

the gender expectation as evidence that the model has both

learned the island constraint, and has applied that constraint

uniquely to the filler–gap dependency.

Wh-Islands The wh-constraint states that the filler–gap

dependency is blocked by S-nodes introduced by a wh-

complimentizer, as demonstrated in the unacceptability of

(7-b) compared to (7-a). We created experimental items fol-

lowing the examples in (7) and measured their gender expec-

tation and filler–gap dependency (filler–gap dependency ma-

terials were taken from Wilcox et al.).

(7) a. I know who Alex said your friend insulted yester-

day. [CONTROL, FILLER–GAP]

b.*I know who Alex said whether your friend insulted

yesterday. [ISLAND, FILLER–GAP]

c. The actress said they insulted {his/her} friends.

[CONTROL, GENDER EXP.]

d. The actress said whether they insulted {his/her}
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Figure 3: Effect of island construction on gender dependency.

friends. [ISLAND, GENDER EXP.]

The results for this experiment can be seen in the far left panel

of Figure 3, with island structures graphed in blue and non-

island controls in red. We find a significant difference in li-

censing interaction between the island and non-island condi-

tions for both the google and gulordava models (p< 0.001 for

both models), but no such difference in gender expectation.

Adjunct Islands Gaps cannot be licensed inside an ad-

junct clause, as demonstrated by the relative unacceptability

of (8-a) over (8-b).

(8) a. I know what the librarian placed on the wrong

shelf. [CONTROL, FILLER–GAP]

b.*what the patrong got mad after the librarian placed

on the wrong shelf. [ISLAND, FILLER–GAP]

c. The actress thinks they insulted {his/her} perfor-

mance [CONTROL, GENDER EXP.]

d. The actress got mad after they insulted {his/her} per-

formance. [ISLAND, GENDER EXP.]

The results for this experiment can be seen in Figure 3, sec-

ond panel from the left. We find a significant reduction of

wh-licensing interaction between the control and island con-

ditions in the case of the filler–gap dependency for both mod-

els (p < 0.001 google; p < 0.01 gulordava; materials taken

from ]Wilcox et al.). However, we find no effect of syntactic

structure on the gender effect.

Complex NP Islands Gaps are not licensed inside S-nodes

that are dominated by a lexical head noun, as demonstrated by

the relative badness of (9-b) compareid to (9-a).

(9) a. I know what the actress bought yesterday. [CON-

TROL, FILLER–GAP]

b.*I know what the actress bought the painting that de-

picted yesterday. [ISLAND, FILLER–GAP]

c. The actress said they saw her {his/her} performance.

[CONTROL, GENDER EXP.]

d. The actress said they saw the exhibit that featured

{his/her} performance. [ISLAND, GENDER EXP.]

We created items follwing the examples in (9), with filler–

gap items adopted from (Wilcox et al., 2018). The results

from this experiment can be found in the middle-left panel

of Figure 3. We found an effect of syntactic location on

wh-licensing interaction for both models (p < 0.001 google;

p< 0.01 gulordava) but no such interaction for gender expec-

tations.

Coordination Islands The coordination constraint states

that a gap cannot occur in one half of a coordinate structure

as demonstrated by the difference between (10-b) and (10-a),

in which a whole conjunct has been gapped.

(10)a. I know what the man bought at the antique shop.

[CONTROL, FILLER–GAP]

b.*I know what the man bought the painting and at the

antique shop. [ISLAND, FILLER–GAP]

c. The fireman knows they talked about {his/her} per-

formance. [CONTROL, GENDER EXP.]

d. The fireman knows they talked about the football

game and {his/her} performance. [ISLAND, GENDER

EXP.]

We created experimental items following the examples in

(10). Results can be seen in 3 center-right panel. For the

filler–gap dependency, in both models there is a significant

difference between the control condition and island condi-

tions (p < 0.05 for both models). These results indicate that

the models have somewhat attenuated expectations for gaps

when they occur in the second half of a coordinate struc-
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ture. However, note that, at least for the google model, the

wh-licensing interaction is significantly greater than zero, in-

dicating that this model still maintains some expectation for

gaps in this syntactic location. For both models there is no

difference in gender expectation between the control and is-

land conditions).

Subject Islands Gaps are generally licensed in preposi-

tional phrases, except when they occur attached to sentential

subjects. We created experimental items following the exam-

ples in (11), with filler–gap materials adapted from Wilcox et

al..

(11)a. I know what fetched a high price. [CONTROL,

FILLER-GAP]

b.*I know who the painting that depicted fetched a

high price. [ISLAND, FILLER–GAP]

c. The actress said they sold the painting by {his/her}
friend. [CONTROL, GENDER EXP.]

d. The actress said the painting by {his/her} friend sold

for a lot of money. [ISLAND, GENDER EXP.]

The results from this experiment can be seen in Figure 3, sec-

ond panel from the right. For the filler–gap dependency, we

found a significant difference between the control and island

condition in the case of the gulordava model (p < 0.01), but

no such reduction in the case of the google model. For gen-

der expectation, we found no significant difference between

the two conditions.

Sentential Subject Islands The sentential subject con-

straint states that gaps are not licensed within an S-node that

plays the role of a sentential subject. To assess whether the

RNN models had learned this constraint we created items fol-

lowing the variants in (12).

(12)a. I know who the seniors defeated last week. [CON-

TROL, FILLER–GAP]

b. I know who for the seniors to defeat will be trivial.

[ISLAND, FILLER–GAP]

c. The fireman knows they will save {his/her} friend.

[CONTROL, GENDER EXP.]

d. The fireman knows for them to save {his/her} friend

will be difficult. [ISLAND, GENDER EXP.]

The results for this experiment can be seen in Figure 3, in the

far right panel. We found no decrease in gender expectation

between the control and island conditions for either model.

Likewise, for the filler–gap dependency we found no signifi-

cant decrease in wh-licesning interaction between the island

and non island conditions in either model. These results in-

dicate that neither model suspends its expectations for gaps

within sentential subjects.

Left Branch Islands The left-branch constraint states that

modifiers which appear on the left branch under an NP cannot

be gapped, which accounts for the relative ungrammaticality

of (13-b) compared to (13-a). Because possessive pronouns

cannot grammatically occur in left-branches under an NP, this

experiment examines only the filler–gap dependency. We cre-

ated 20 items following the examples in (13) and measured

the wh-licensing interaction in the post-gap material.
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Figure 4: Left Branch Islands.

(13)a. I know what color car you bought last week.

[WHOLE OBJECT]

b. I know what color you bought car last week. [LEFT

BRANCH]

The results from this experiment can be seen in Figure 4 with

experimental conditions on the x-axis and wh-licensing inter-

action on the y-axis. We see strong wh-licensing interaction

in the two whole object conditions, but a significant reduction

in licensing interaction when the gap consists of the Adjective

Phrase modifier (p < 0.001 for the google model; p < 0.05

for the gulordava model). This results indicate that the mod-

els have learned the left branch islands, insofar as they do not

expect left-branching modifiers to be extracted without the

NP to which they are attached.

For every condition tested we found that the expectation

set up by gendered subjects for possessive pronouns is not

affected by the pronoun’s location inside island constructions.

For the three novel structures, we found that the two models

tested are sensitive to left branch islands and gradiently to

coordination islands, but not to sentential subject islands.

Discussion
The filler–gap dependency has been the focus of intense re-

search for over fifty years because it is both far reaching and

tightly constrained. It can be threaded through a potentially

unbounded number of sentential embeddings; yet the filler

must syntactically dominate the gap and the dependency is

subject to a number of highly-specific blocking ‘island’ con-

ditions. In this work we have shown that RNNs trained on

a language modeling objective have learned both the power

and the constraints imposed on this dependency. First, we

provided evidence that they are able to thread the dependency

through an unbounded number of sentential embeddings, and

have also learned the constraints that govern the syntactic hi-

erarchy of the filler relative to the gap.

Second, using gender expectation effects, we have demon-

strated that the models are able to thread some contextually-

dependent expectations into island constructions, providing

evidence that previously-observed island effects have been

learned for the filler–gap dependency in particular, and are

not due to the model’s inability to thread any information

into syntactic islands. In addition, we have increased the ex-

perimental coverage of island effects, demonstrating that the

models were able to learn left-branch islands and gradiently
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learn coordination islands, but failed to learn sentential sub-

ject islands. This brings the total number of islands learned

to 5/7 for the google model and 6/7 for the gulordava model.

Although some of the model behavior remains strikingly un-

like human acceptability judgements (in e.g. coordination is-

lands), these experiments demonstrate that sequence models

trained on a language modeling objective are able to sepa-

rate natural language dependencies from each other and learn

different fine-grained syntactic rules for each.
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