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Abstract 
Decision makers often reject mixed gambles offering equal 
probabilities of a larger gain and a smaller loss. This important 
behavioral pattern is generally seen as evidence for loss 
aversion, a psychological mechanism according to which 
losses are given higher utility weights than gains. In this paper 
we consider an alternate mechanism capable of generating 
high rejection rates: A predecisional bias towards rejection 
without the calculation of utility. We use a drift diffusion 
model of decision making to simultaneously specify and test 
for the effects of these two psychological mechanisms in a 
gambling task. Our results indicate that high rejection rates for 
mixed gambles result from multiple different psychological 
mechanisms, and that a predecisional bias applied prior to the 
computation of utility (rather than loss aversion) is the primary 
determinant of this important behavioral tendency.  

Keywords: drift diffusion model; risky choice; predecisional 
bias; loss aversion 

Introduction 
Consider a gamble that offers you a gain of $11 if a coin toss 
lands heads, and a loss of $10 if it lands tails. Would you 
accept or reject this gamble? Most people choose to reject 
similar positive expected value mixed gambles (gambles that 
offer both a possibility of a gain and a possibility of a loss; 
Kahneman & Tversky, 1979; Samuelson, 1960), suggesting 
an aversion to risk. Yet risk aversion for such small 
monetary payoffs cannot be easily explained by 
conventional applications of expected utility theory. Such 
models predict that anyone who rejects a 50-50 gamble 
between a gain of $11 and a loss of $10, displays such a 
strong degree of risk aversion, so as to also reject a 50-50 
gamble involving a loss of $100 (regardless of the magnitude 
of the corresponding gain; Rabin, 2000). 

This (clearly unreasonable) prediction presents 
compelling evidence against expected utility theory, and 
indicates that additional psychological mechanisms need to 
be incorporated into models of risky choice in order to 
account for high rejection rates in mixed gambles (Rabin, 
2000). The psychological mechanism that is widely 
considered to be responsible for these high rejection rates is 

loss aversion, which states that losses have a greater impact 
on utility than gains (Kahneman & Tversky, 1979; Kőszegi 
& Rabin, 2007; Rabin & Thaler, 2001). For example, in the 
mixed gamble presented at the start of this paper, loss 
aversion predicts that individuals experience more negative 
utility from the $10 loss than positive utility from the $11 
gain. Thus the gamble, despite having a positive expected 
value, appears unattractive, and is rejected.  

If loss aversion is the only mechanism responsible for the 
rejection of mixed gambles, an individual’s degree of loss 
aversion can be estimated by observing how likely he or she 
is to accept or reject such gambles. This measure can then be 
used to relate loss aversion to various psychological, clinical, 
and neurobiological variables. Following this logic, 
researchers have argued that loss aversion plays an important 
role in irrational financial decision making, problem 
gambling, suicidal decision making, and incorrect affective 
forecasting (Hadlaczky et al., 2018; Kermer, Driver-Linn, 
Wilson, & Gilbert, 2006; Lorains et al., 2014; Takeuchi et 
al., 2015); in explaining differences in risky decision making 
between decision contexts (Polman, 2012; Schulreich, 
Gerhardt, & Heekeren, 2016; Vermeer, Boksem, & Sanfey, 
2014) and between individuals with varying psychological 
traits, demographic profiles, and life experiences (Barkley-
Levenson & Galvan, 2014; Bibby & Ferguson, 2011; Pighin, 
Bonini, Savadori, Hadjichristidis, & Schena, 2014; Sokol-
Hessner, Hartley, Hamilton, & Phelps, 2015a); and in 
determining physiological and neural responses to risky 
prospects (Canessa et al., 2017; De Martino, Camerer, & 
Adolphs, 2010; Gelskov, Henningsson, Madsen, Siebner, & 
Ramsøy, 2015; Lazzaro, Rutledge, Burghart, & Glimcher, 
2016; Markett, Heeren, Montag, Weber, & Reuter, 2016; 
Sokol-Hessner, Lackovic, Tobe, Camerer, Leventhal, et al., 
2015b; Tom, Fox, Trepel, & Poldrack, 2007).  An influential 
example of this approach is presented in Tom et al. (2007): 
In this paper, neural activity is correlated with loss aversion, 
measured using gamble rejection rates, and is used to 
identify brain regions that encode loss aversion in risky 
choices involving mixed gambles.  

However, loss aversion may not be the only mechanism 
responsible for the rejection of mixed gambles. Another 
possibility, one which we explore in the present paper, is that 
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individuals exhibit a predecisional bias towards rejecting 
such gambles. Psychologically, this form of behavior may 
reflect a general preference for the status quo, whereby a 
decision to accept a lottery is regarded as a departure from 
one’s status quo (Gal, 2006; W. Samuelson & Zeckhauser, 
1988). We refer to this tendency as a predecisional bias to 
capture the intuition that individuals may be predisposed 
towards maintaining the status quo in mixed gamble tasks 
even before they have inspected and learnt about the 
monetary amounts that could be gained or lost. Although 
such a tendency could be overridden after monetary amounts 
are evaluated, we would nonetheless expect the 
predecisional bias to influence people’s decisions and, in 
many settings, lead to a higher probability of rejection than 
acceptance. An important prediction of this account is that 
the effect of such a bias would be greatest early on in the 
decision, and would diminish as the decision maker 
deliberates about the money that could be gained or lost. 

Although the predecisional bias mechanism provides a 
fairly intuitive explanation for high rejection rates in mixed 
gambles, it hasn’t yet been formally compared against loss 
aversion, which remains the dominant explanation for this 
important behavioral phenomenon. The reason for this is that 
predecisional biases cannot be accommodated within the 
types of economic models used to specify loss aversion and 
predict risky choice. Typically, these models assume that 
choices depend entirely on utility, which itself is a product 
of the gains and losses offered by the gamble in 
consideration (e.g., Kahneman & Tversky, 1979). Thus there 
is no place for a mechanism that influences choice prior to 
the formation of utility.  

There are, however, neurocomputational models of 
decision making that permit a more nuanced understanding 
of the deliberation process underpinning people’s choices. 
One such model is the drift diffusion model (DDM), which 
assumes that individuals gradually accumulate evidence 
over the time course of the decision, with the decision being 
made when evidence reaches a threshold value (e.g., Bhatia, 
2014; Dai & Busemeyer, 2014; Krajbich, Armel, & Rangel, 
2010; Ratcliff, 1978). The evidence being accumulated 
depends on features of the choice alternatives, such as gains 
and losses, and subsequently on relative utilities. However, 
the start of this accumulation process can be biased towards 
a response (such as rejection), even before these utilities 
have been evaluated by the decision maker.  

Mathematically, DDM implements a sequential 
probability ratio test, and with this interpretation, its 
predecisional bias can be seen as a biased prior. The DDM 
has also been shown to capture aspects of neural information 
processing, for which a predecisional bias corresponds to a 
bias in baseline firing rates (Bogacz, Brown, Moehlis, 
Holmes, & Cohen, 2006; Gold & Shadlen, 2007). In either 
case, a predecisional bias in the DDM generates unique 
patterns in response times, and can be quantitatively 
estimated and differentiated from other DDM parameters 
(including those that govern the use of decision features like 
gains and losses) with a combination of choice and response 

time data (White & Poldrack, 2014). In prior work, 
psychologists and neuroscientists have used these estimates 
to compare predecisional biases against alternate decision 
mechanisms in a variety of perceptual, lexical, and motor 
choice tasks (Leite & Ratcliff, 2011; Mulder, Wagenmakers, 
Ratcliff, Boekel, & Forstmann, 2012; A. Voss, Rothermund, 
& Voss, 2004; White & Poldrack, 2014). The goal of this 
paper is to use a similar methodology to establish the extent 
to which a predecisional bias can account for choices in the 
popular mixed gamble task.  

As an example of this task, consider the decision to accept 
or reject a gamble 𝑖, offering a 50% chance of gaining 𝐺#	and 
a 50% chance of losing 𝐿# . The utility for accepting the 
gamble in the presence of loss aversion is given by 𝑈# =
𝐺# 	− 	𝜆 ∙ 𝐿# (as the probabilities of the gains and losses are 
identical, they can be ignored without any effect on model 
predictions). Here 𝜆 is the loss aversion parameter, where 
𝜆 > 1  indicates the larger impact of loss than gains. 
Assuming that the utility for rejecting the gamble is 0, the 
decision maker will accept gamble 𝑖  when 𝑈# 	> 	0 , and 
reject the gamble when 𝑈# 	< 	0. Stochasticity in choice can 
be modelled with a logistic response function. With such 
specification, the magnitude of λ (the loss aversion 
parameter) can be estimated using a logistic regression: 
𝐴#	~	𝛽2 ∙ 𝐺# −	𝛽3 ∙ 𝐿# . Here Ai is the participant’s binary 
response to the 𝑖th gamble (1 if Accept, 0 if Reject), and 𝛽2 
and 𝛽3  are regression coefficients that yield 𝜆 = 𝛽3/𝛽2 . In 
practice, researchers often include an additive intercept (𝛼) 
in the logistic regression: 𝐴#		~	𝛼 +	𝛽2 ∙ 𝐺# −	𝛽3 ∙ 𝐿#.  Here 
the additive intercept corresponding to a fixed impact on 
utility favoring acceptance or rejection.  

Although commonly used to make inferences regarding 
the psychological and neural underpinnings of risky choice 
(Tom et al., 2007), the logistic model outlined above 
neglects the possibility that decision makers may be 
predisposed towards one of the choice options (acceptance 
or rejection) prior to evaluating the underlying utilities. To 
permit this possibility, we model the decision using a drift 
diffusion process, which is illustrated in Figure 1A. This 
model assumes that decision makers accumulate evidence in 
favor of accepting vs. rejecting the gamble over time, with a 
drift rate that relates the utility of the gamble to the 
accumulation process. To keep model specifications 
consistent with the static logistic model outlined above, we 
write the drift rate for a trial involving gamble 𝑖¸ as 𝑣# =
𝛼	 +	𝛽2 ∙ 𝐺# −	𝛽3 ∙ 𝐿# . Choices are made when the 
accumulated evidence reaches a positive threshold +𝜃 
(corresponding to acceptance) or a negative threshold −𝜃 
(corresponding to rejection). The magnitude of 𝜃 quantifies 
the amount of evidence required for reaching a decision. 
Mechanistically, this threshold captures the speed-accuracy 
tradeoff in decision making, with higher value of 𝜃 
generating slower but more accurate choices.  

In the DDM, the predecisional bias takes the form of a 
starting point 𝛾	 > 	0, that is closer to +𝜃 (predisposing the 
decision maker towards accepting the gamble), or 𝛾	 < 	0 , 
that is closer to – 𝜃  (predisposing the decision maker 
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towards rejecting the gamble). When 𝛾 = 0, the preference 
accumulation process starts from a neutral state, and the 
choice probabilities generated by the DDM are identical to 
those predicted by the static logistic model introduced above. 
Allowing for the gradual accumulation of evidence prior to 
the decision enables the DDM to predict response times 
(RTs). The response time in a trial is assumed to be the time 
taken for the accumulating evidence to reach a decision 
threshold added to a fixed non-decisional time τ (which 
captures the time taken to perceive the stimuli, execute 
motor responses after the decision has been made, and so on).  

The response times predicted by the DDM depend 
critically on the gamble that is offered on a given trial. 
Responses times on trials with extremely desirable or 
undesirable gambles (which generate large positive or 
negative drift rates) will be shorter, capturing the fact that 
easier decisions are made relatively quickly compared to 
more difficult decisions. Besides the influence of the specific 
gamble at hand, response times also depend on the 
predecisional bias. If there is a predecisional bias in favor of 
rejection (𝛾	 < 	0), response times associated with rejection 
will tend to be shorter than those associated with acceptance, 
and correspondingly, the rejection rates in quicker choices 
will be higher than those in slower choices, controlling for 
the difficulty of the choice in consideration (see Figure 1A). 
Intuitively, the effects of the drift rate (i.e. the utilities used 
in evaluation) persist throughout the preference 
accumulation process; whereas the impact of a non-neutral 
starting point (predecisional bias) gets gradually washed out 
over time. Crucially, such a prediction cannot be made by 
the DDM in the absence of the predecisional bias (i.e. when 
𝛾 = 0, and DDM choice probabilities mimic the standard 
logistic specification), indicating that the choice-RTs 
patterns can be used as a behavioral marker to infer the 
existence of a predecisional bias (White & Poldrack, 2014).  

Methods 

Our main experimental task incentivized accept-reject 
decisions for mixed gambles with a 50% chance of a gain 
and a 50% chance of a loss. We preregistered our study at 
OSF(https://osf.io/varx6/?view_only=b9b9f84bd9fc4a56b8
df19ea02998fec). In addition to our preregistered study, we 
also conducted three additional non-incentivized studies 
(Experiments 1A-1C), which we do not report in the paper 
due to space limit. The main conclusions of Experiment 2 
were replicated in those studies.  

Experimental design 
Participants. 49 participants were recruited from a paid 
participant pool at the University of Pennsylvania. 
Procedures. Participants were instructed to accept or reject 
a sequence of 200 gambles, presented in four blocks of 50 
gambles. Each gamble had two possible outcomes: A gain of 
some amount of tokens occurring with a 50% chance and a 
loss of some amount of tokens occurring with a 50% chance. 
The outcomes were displayed side by side, with 

positive/negative values indicating gains and losses (see 
Figure 1B). Participants pressed up or down arrow keys on a 
keyboard to indicate acceptance or rejection, with the 
specific key-response associations alternating across blocks 
to control for response biases favoring one of the keys. 
Choices and reaction times were recorded.  

Figure 1 A: The drift diffusion model. B: Task presentation. 
 
Each token was worth US$0.10, and participants began 

the experiment with an endowment of 100 tokens (US$10).  
Participants were informed that their choices in the 
experiment would determine their bonus payment, which 
they would receive on top of a fixed show-up fee of US$8. 
This was accomplished by selecting one of the gambles at 
random. If the participant rejected the gamble, the bonus 
payment would be 100 tokens (US$10). If the participant 
accepted the gamble, then they would flip a coin in front of 
the experimenter to play out the gamble. Their received 
token amount would be their initial endowment (100 tokens 
= US$10) plus or minus the gain or loss associated with the 
coin flip. Average total payments in the experiment were 
US$ 10.43 per participant. 
Stimuli. The possible gain and loss values were taken from 
the set of {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} tokens, or 
equivalently US$ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. With this 
stimuli set we were able to generate a total of 100 unique 
gambles.  We counterbalanced the positions of the gain/loss 
outcomes across blocks, resulting in 200 total trials. 

Model Fitting 
The models were fit to choice and RT data using HDDM 
(Wiecki, Sofer, & Frank, 2013), a Python package for 
hierarchical Bayesian estimation of drift-diffusion models, 
using its default priors. To fit the models, 4 chains of 50,000 
samples were generated, where the first 25,000 were burn-
ins, and a thinning of 2 was applied.  

Results 
Overall, the average rejection probability across participants 
was 71.5%, with 79.6% of participants being more likely to 
reject than accept the gambles. These probabilities are 
significantly different to 50% which is the rate we would 
expect if choices were made by chance or if individuals did 
not display loss aversion or predecisional biases (𝑝 < 0.001 
when compared to 50% using t-tests). On average, 
participants accepted the gambles only when the size of the 
gain exceed 1.75 times the size of the loss. This pattern of 
behavior can be explained by both the loss aversion and the 

(B) (A) 
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predecisional bias mechanisms. According to a model with 
loss aversion but no predecisional bias, the probability of 
acceptance is greater than the probability of rejection only 
when the utility for the gamble exceeds 0, which happens 
only when the size of the gain exceeds the size of the loss by 
a large enough margin to counteract loss aversion. 
According to a model with a predecisional bias but no loss 
aversion, the probability of acceptance is greater than the 
probability of rejection only when the utility of the gamble 
is large enough to override the starting point bias favoring 
rejection. This happens only when the size of the gain 
exceeds the size of the loss by a large enough margin, giving 
a sufficiently positive utility.  

 
Figure 2. A: Choice-RT relationships. Error bars indicated 95% CI. 
B: Loss aversion in the DDM. C: Predecisional bias and additive 
intercept in the drift rate. Most participants have negative posterior 
means for predecisional bias (i.e., bias towards rejecting gambles). 
In panel B and C each dot represents a participant and the error bars 
indicate 95% posterior credible intervals for the parameters in the 
two figures.  

 
We also found that rejections were quicker than 

acceptances. Overall, the average rejection decision took 
1.30 seconds, whereas the average acceptance decision took 
1.72 seconds (the difference is significant: 𝑡(46) =
4.04, 𝑝 < 0.001). Additionally, 74.5% of participants took 
less time to reject than to accept. The RT distributions for 
acceptance and rejections are different from each other 
(Wilcoxon signed rank test: 𝑉 = 935, 𝑝 < 0.001).  

Although the observed response time pattern appears 
consistent with those generated by a predecisional bias 
favoring rejection, they do not control for choice factors 
(gains and losses) of the gamble, and thus can also be 
generated by a DDM model without this bias. More 
specifically, it is possible that trials on which gambles are 
rejected involve highly undesirable gambles (and therefore 
quicker response times), whereas trials on which gambles 
are accepted involve only moderately desirable gambles 
(and thus slower response times). To address this issue, 
Figure 2A shows these choice-RTs patterns, with RTs 
adjusted for choice factors. These adjusted RTs are residuals 
from participant-level regressions, in which log RTs are 
regressed on gain values and loss values of the mixed 
gambles for each participant. With choice factors controlled 
for, we observe a negative relationship between choice 
probability and response time for rejection decisions, and a 
positive relationship between choice probability and 
response time for acceptance decisions, showing that 
decision makers are quicker to reject and slower to accept. 
This is a novel behavioral pattern that suggests that our 

participants displayed a predecisional bias favoring rejection. 
Importantly, this pattern cannot be generated by a DDM 
model with only loss aversion and no predecisional bias (or 
by the standard logistic specification of the loss aversion 
mechanism).  

A more rigorous comparison of the loss aversion and 
predecisional bias mechanisms requires quantitative model 
fitting. We did so using hierarchical Bayesian techniques 
applied to choice and RT data. This approach allows for 
three flexible parameters for the drift rate (𝛼, 𝛽3 and 𝛽2) as 
well as a flexible starting point bias (𝛾), threshold (𝜃) and 
non-response time (𝜏).  Thus this model can simultaneously 
display both loss aversion and a predecisional bias. We also 
allowed the threshold (𝜃) to be dependent on the monetary 
loss, in order to capture the effect of losses on attention ( as 
specified in our preregistration plan; Yechiam & Hochman, 
2013).  

Overall, we observe best-fit parameter values such that 
𝛽3 > 𝛽2 for 85.7% participants, with 57.1% of participants 
having a 95% credible interval for 𝛽3 − 𝛽2  that is strictly 
positive. The posterior mean of 𝜆 = HI

HJ
 averaged across our 

participants is 2.11  ( 𝑆𝐷 = 1.35 ). We also observe a 
negative posterior mean of 𝛾	 for 77.6% participants 
(significant for 69.4% of participants as indicated by 95% 
credible intervals). The averaged participant-level posterior 
mean of 𝛾  is −0.24  (𝑆𝐷 = 0.25 ) across all participants. 
Finally, we observe a negative posterior mean of 𝛼 for only 
40.8% participants (significant for 12.2% of participants as 
indicated by 95% credible intervals), with a mean value of 
𝛼 = 0.05 (𝑆𝐷 = 0.45) across our participants. This analysis 
indicates that most participants display loss aversion and 
predecisional biases favoring rejection, but do not display 
any systematic additive intercepts in the drift rate. The 
posterior means for participant-level parameters are shown 
in Figures 2B and 2C.  

To better understand the descriptive power of the 
predecisional bias, and to compare it against the descriptive 
power of loss aversion, we also fit three restricted variants 
of the DDM. The first constrained model set 𝛽3 =
𝛽2	 (eliminating loss aversion while permitting flexible 
values of 𝛾, as well as other DDM parameters). The second 
set 𝛾 = 0  (eliminating the predecisional bias while 
permitting flexible values of 𝛽3  and 𝛽2 , as well as other 
DDM parameters). The third constrained model is a baseline 
model that set both 𝛽3 = 𝛽2  and 𝛾 = 0  (but permitted 
flexible values for the remaining DDM parameters). We 
compared the relative fits of these three constrained models 
against each other, and against the full model. The model 
comparisons were performed using the deviance information 
criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 
2002), which measures model fits while penalizing model 
complexity to avoid over-fitting. Smaller DICs indicate 
better model performance. This measure revealed that 
despite having more parameters than the remaining models, 
the full model (𝐷𝐼𝐶 = 16,871) generated the best fit to the 
observed data (indicated by DIC differences between this 
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model and the remaining models, which we denote as ΔDIC). 
Conversely, despite having fewer parameter than the other 
models, the baseline model generated the worst fit to the 
observed data ( 𝐷𝐼𝐶 = 18,456 , ΔDIC = 1,586 ). This 
indicates that loss aversion and predecisional biases are 
useful for describing behavior in our experiment. However, 
out of the two constrained models, the one that set	𝛽3 =
𝛽2	(𝐷𝐼𝐶 = 17,332, ΔDIC = 461) yielded much better fits 
than the one that set 𝛾 = 0 (𝐷𝐼𝐶 = 17,979, ΔDIC = 1,108), 
indicating that the predecisional bias plays a more important 
role than loss aversion.  

Although our quantitative fits do provide strong evidence 
in favor of the predecisional bias mechanism, using such fits 
as a single piece of evidence for theory testing is problematic 
(Roberts & Pashler, 2000). Ideally, we should also compare 
our models in terms of their ability to account for a 
qualitative behavioral marker, in this case, the finding that 
rejection rates are higher for trials with shorter RTs 
compared to trials with longer RTs (Figure 2A, and solid 
blue lines in Figures 3A-D). As discussed above, this pattern 
is consistent with the effect of a predecisional bias towards 
rejecting mixed gambles. A model without such a bias 
cannot account for RT differences between acceptance and 
rejection, controlling for choice factors. To establish this 
more rigorously, we used simulated data from the best-
fitting full and constrained models. In line with our intuition, 
we found that the choice-RT relationship can be captured by 
the best-fit full model (Figure 3A), as well as by the best-fit 
constrained model with flexible predecisional bias but no 
loss aversion (Figure 3B). However, both the best-fit model 
with loss aversion but no predecisional bias (Figure 3C) and 
the best-fit baseline model (Figure 3D) fail to capture this 
relationship. This finding provides one explanation for why 
the predecisional bias plays a more important role than loss 
aversion in our quantitative model fits.  

In our final analysis we tested the relationship between 
individual-level model parameters and observed 
heterogeneity in participant behavior. For this purpose, we 
correlated best-fitting participant-level estimates of loss 
aversion ( 𝜆 = 𝛽3/𝛽2 ) and predecisional bias ( 𝛾 ) with 
average participant-level rejection rates. The Pearson 
correlation between acceptance rates and the predecisional 
bias is 0.91 ( 𝑡(47) = 	14.79, 𝑝 <
0.001;	𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛	𝐶𝑜𝑟𝑟 = 0.92, 𝑝 < 0.001 ); whereas the 
correlation between acceptance rates and loss aversion is 
−0.25  ( 𝑡(47) = 	1.78, 𝑝 = 0.08; 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛	𝐶𝑜𝑟𝑟 =
−0.43, 𝑝 = 0.002 ). These correlations are displayed in 
Figures 3E and 3F. From the perspective of describing 
participant heterogeneity, the predecisional bias is clearly 
the more important psychological mechanism.  

Did the participants develop the predecisional bias over 
the course of the experiment, or did they already have a 
predecisional bias for gamble choices based on previous life 
experiences? To test this, we examined the choice-RT 
relationship (the behavioral marker for predecisional biases) 
in the first 25 trials of the experiment (first half of the first 
block). As Figure 3G shows participants were quicker to 

reject gambles than accept gambles when choice factors are 
controlled for. In other words, participant already had a 
predecisional tendency to reject gambles, even when they 
had limited knowledge regarding the gain and loss value 
distributions involved in the experiment.   

Figure 3. A-D: Choice-RT relationships for observed data (solid 
lines) and model simulated data (dashed lines). Rejection rates are 
higher in quicker trials compared to slower trials, controlling for 
choice factors (gain and loss values). This pattern can only be 
generated by models that permit a predecisional bias (panels A and 
B). MAE: Mean absolute error. E-F: Relationships between the 
DDM mechanisms and acceptance rates. Each dot represents a 
participant. The predecisional bias is more strongly correlated with 
the observed choice outcomes, compared to loss aversion. G: 
Choice-RT relationship for observed data in the first 25 trials of the 
experiment. 

Discussion 
The results presented above have a number of important 
implications for the study of risk preference. First, these 
results shed light on the psychological underpinnings of one 
of the most important behavioral findings pertaining to risk: 
The rejection of small scale 50-50 mixed gambles with 
positive expected values (Kahneman & Tversky, 1979; 
Samuelson, 1960). They show that this phenomenon is not 
just a product of loss aversion (i.e., higher weights attached 
to losses relative to gains), but is also due to a predecisional 
bias favoring the status quo. This bias generates a tendency 
to reject the gamble even before the gamble’s payoffs are 
evaluated, and the effect of this bias is the strongest early on 
in the decision process. For this reason, the predecisional 
bias makes unique predictions regarding the relationship 
between response time and rejection probability. Our 
experiments provide novel evidence in support of these 
predictions, indicating that a model equipped with a 
predecisional bias is necessary to account for behavioral 
patterns in mixed gamble tasks.  

We also used model fitting to evaluate the relative 
contributions of the loss aversion and predecisional bias 
mechanisms. Although both loss aversion and predecisional 
bias play a valuable quantitative role, a model with the 
predecisional bias but without loss aversion fits better than a 
model with loss aversion but without predecisional bias. A 
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second test evaluating the predictive power of best fit model 
parameters shows that individual-level predecisional bias 
parameters correlate more strongly with individual-level 
rejection rates than do individual-level loss aversion 
parameters. These findings provide strong quantitative 
evidence that predecisional biases are the primary 
determinant of high rejection rates in mixed gamble tasks. In 
doing so they complement recent experimental results 
showing that loss aversion is not as good of a descriptor of 
choice behavior as has been previously assumed (Bhatia, 
2017; Birnbaum, 2008; Erev, Ert, & Yechiam, 2008; Ert & 
Erev, 2013; Walasek & Stewart, 2015).  

Our findings have important implications for how we 
interpret people’s tendency to reject mixed gambles. A lot of 
prior work in psychology, economics, and neuroscience 
infers loss aversion through mixed gamble rejection rates, 
and subsequently uses this measure of loss aversion to 
explain the effect of social, cognitive, emotional, 
developmental, demographic, clinical, physiological, and 
neural variables on risky choice (e.g., Bibby & Ferguson, 
2011; Canessa et al., 2017; Engelmann et al., 2015; Gelskov 
et al., 2015; Hadlaczky et al., 2018; Kermer et al., 2006; 
Lazzaro et al., 2016; Lorains et al., 2014; Markett et al., 2016; 
Pighin et al., 2014; Polman, 2012; Tom et al., 2007; Vermeer 
et al., 2014). Yet our results indicate that these explanations 
may be incorrect, and that these variables may be better 
understood in terms of predecisional bias tendencies. Thus, 
for example, the well-known finding that ventral striatum 
activity correlates with mixed gamble rejection rates (Tom 
et al., 2007) could be due to the relationship between brain 
activity and predecisional bias rather than the relationship  
between brain activity and loss aversion, as is commonly 
assumed. Additional research is needed to untangle these 
relationships, and future work should consider the 
possibility that gamble rejection rates, as well as the 
psychological and neurobiological correlates of high 
rejection rates, can be understood in terms of multiple 
different psychological mechanisms.  

The tests presented in this paper rely critically on response 
time data: without this type of data, it would be impossible 
to identify and measure the predecisional bias. Our analysis 
uses the drift diffusion model to account for trends in 
response time data, and by doing so, illustrates the 
descriptive power of this popular neurocomputational theory 
(Ratcliff, 1978). The DDM has been previously used to 
model perceptual, lexical, motor phenomena, and the 
predecisional bias has been shown to be an important 
parameter in these low-level tasks (e.g., Forstmann, Ratcliff, 
& Wagenmakers, 2016; Mulder et al., 2012; Ratcliff et al., 
2004; Ratcliff, Smith, Brown, & McKoon, 2016; White & 
Poldrack, 2014). Additionally, this bias has a theoretically 
compelling interpretation in terms of baseline firing rates in 
neural models and statistical priors in optimal sequential 
evaluation tasks (Bogacz et al., 2006; Gold & Shadlen, 2007). 
Recent work applying DDM and related models to 
preferential choice data has also shown that these models 
provide a powerful account of a variety of choice anomalies. 

We recommend that future research utilizes the DDM, 
alongside response time data, to obtain a more 
comprehensive understanding of the psychological and 
neurobiological determinants of risky choice.  
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