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Efficient Data Compression Leads to Categorical Bias in
Perception and Perceptual Memory

Christopher J. Bates (cjbates@ur.rochester.edu)

Robert A. Jacobs (rjacobs@ur.rochester.edu)
Department of Brain and Cognitive Sciences, University of Rochester

Rochester, NY

Abstract

Efficient data compression is essential for capacity-limited sys-
tems, such as biological memory. We hypothesize that the need
for efficient data compression shapes biological perception and
perceptual memory in many of the same ways that it shapes
engineered systems. If true, then the tools that engineers use
to analyze and design systems, namely rate-distortion theory
(RDT), can profitably be used to understand perception and
memory. To date, researchers have used deep neural networks
to approximately implement RDT in high-dimensional spaces,
but these implementations have been limited to tasks in which
the sole goal is compression with respect to reconstruction er-
ror. Here, we introduce a new deep neural network architecture
that approximately implements RDT in a task-general manner.
An important property of our architecture is that it is trained
“end-to-end”, operating on raw perceptual input (e.g., pixels)
rather than an intermediate level of abstraction, as is the case
with most psychological models. We demonstrate that our
framework can mimick categorical biases in perception and
perceptual memory in several ways, and thus generates spe-
cific hypotheses that can be tested empirically in future work.
Keywords: Perception; memory; deep neural networks;
rate-distortion theory; categorical bias

Introduction
Biological cognitive systems are not infinite. For instance,
it is commonly hypothesized that people have finite atten-
tional and memory resources, and that these constraints limit
what people can process and remember. In this regard, bio-
logical systems resemble engineered systems which are also
capacity-limited. For any capacity-limited system, biologi-
cal or engineered, efficient data compression is paramount.
After all, a capacity-limited system attempting to achieve its
goals should maximize the amount of information that it pro-
cesses and stores, and this can be accomplished through effi-
cient data compression. Of course, this raises the question of
what one means by “efficient”.

In engineered systems, resources (e.g., bandwidth, finite
memory) are limited, and thus system designers allocate these
resources so as to maximize a system’s performance, a pro-
cess referred to as “bit allocation” (Gersho & Gray, 1992).
Consider the design of digital compression algorithms. For
example, file sizes can be reduced by a substantial factor us-
ing JPEG (image) or MP3 (audio) compression while still
maintaining enough fidelity for most applications. When
thinking about how to best perform bit-allocation, engineers
must consider several questions. Which data items are fre-
quent, and thus should be encoded with short digital codes,
and which data items are infrequent, and thus can be assigned
longer codes? Which aspects of data items are important to

task performance, and thus should be encoded with high fi-
delity via long codes, and which aspects are less task relevant,
and thus can be encoded with lower fidelity via short codes?
For example, frequencies beyond the range of the human
ear are less important when compressing audio waveforms
with MP3, and can be stored with less fidelity. To address
these questions, engineers have developed rate-distortion the-
ory (RDT), a sophisticated mathematical formalism based on
information theory (Cover & Thomas, 1991).

Our goal in this paper is two-fold. First, although
exact methods already exist for RDT analysis in low-
dimensional spaces, approximate methods are needed for
high-dimensional spaces. To date, researchers have used deep
neural networks to approximately implement RDT in high-
dimensional spaces, but these implementations have been
limited to tasks in which the sole goal is data compression
with respect to reconstruction error (e.g. Ballé, Laparra, &
Simoncelli, 2016). An innovation of the research presented
here is that we introduce a new deep neural network archi-
tecture that approximately implements RDT in a task-general
manner. That is, our architecture discovers good data com-
pressions even when the data will be used for regression, clas-
sification, recognition, or other tasks. An important property
of our model is that it is trained “end-to-end”, operating on
raw perceptual input (e.g., pixels) rather than intermediate
levels of abstraction (e.g., orientation, texture, shape), as is
the case with most psychological models. In this way, our
framework represents an early step toward scaling up models
of perception and perceptual memory toward levels of com-
plexity faced in real-world situations.

Our second goal is to present one important and previ-
ously uninvestigated implication of efficient data compres-
sion which can be compared against empirical phenomena
in perception and perceptual memory. While in this paper
we present only a qualitative comparison, future work can fo-
cus on more rigorous, empirical evaluations of the hypotheses
that our modeling framework generates. Specifically, we ex-
amine the phenomenon of categorical bias, which we explain
in more detail below.

Principles of Efficient Data Compression and
their Implications for Perception and Memory

This section examines important principles and implications
of efficient data compression. We focus on one implication in
particular, categorical bias, and draw a connection between
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categorical bias in efficient compression and that found in
perceptual memory.

All physically-realized systems are finite, and thus have fi-
nite limits on processing and storage capacities. For people,
this implies that faulty perception and memory—what engi-
neers refer to as “lossy compression”—is inevitable. If per-
ception and memory cannot be perfect, can they at least be
as good as possible given their capacity limits? This ques-
tion has been explored in the context of low-level percep-
tion (“efficient coding”; see Barlow, 1961; Simoncelli & Ol-
shausen, 2001), and researchers have found that low-level
perceptual representations tend to be highly efficient with re-
spect to the statistics of the environment.

Here, we focus on explaining higher-level sensory percep-
tion from the standpoint of efficient data compression. As we
show in our results and analyses below, abstraction and cate-
gorization may be data-efficient strategies in many capacity-
limited situations. There is strong empirical evidence that
people employ these strategies in memory. For instance, re-
search suggests visual working memory (VWM) avails of a
wide array of summary statistics (e.g. Brady & Tenenbaum,
2013; Brady, Konkle, & Alvarez, 2009; Sims, 2016; Mathy &
Feldman, 2012). In addition, various forms of abstract con-
ceptual structures have been studied extensively in the con-
text of long-term memory (LTM), such as schemas and scripts
(Bartlett & Burt, 1933; Schank & Abelson, 1977).

A central assumption for our analysis below on categor-
ical bias is that memory traces decay. Evidence for decay
can be found in many experiments, including iconic visual
memory and VWM (e.g. Sperling, 1960; Luck, 2008). We
account for the decay of individual memory traces by hypoth-
esizing that memory is biased toward representing recent in-
formation because recent information tends to be more task-
relevant (Anderson, 1991). Consequently, memory engages
in a form of adaptive bit-allocation in which fewer resources
are devoted to older perceptual traces (suggesting that these
traces are recoded in more compact and abstract ways over
time) until so few resources are devoted to a trace that, ef-
fectively, the trace has fully decayed. This process frees up
resources that can then be used to encode new information.

We propose that this reallocation happens both across and
within memory subsystems. Within a subsystem (e.g. visual
short-term memory), an individual trace tends to lose infor-
mation over time to decay. Across systems, decay rates for in-
dividual traces vary. First, at stimulus offset, highly-detailed
sensory information decays very rapidly. Next, sensory (e.g.
iconic) memory representations are less detailed (more cate-
gorical) and decay more slowly. Short-term or working mem-
ory representations contain still less detail about the stimu-
lus, are even more categorical and abstract, and decay more
slowly than those of sensory memory. Finally, LTM contains
the least amount of detail about the originally-observed stim-
ulus, is the most categorical and abstract, and decays slowest.

For a well-designed system with limited storage, making
decay rates proportional to information content is an efficient

strategy—abstract representations (e.g those found in LTM)
have low information content, and therefore can be retained
“cheaply”. As an analogy, imagine you are trying to make
room on a full hard drive. It would be efficient to first remove
large video files, before worrying about much smaller text
files. Because highly abstract traces can be retained cheaply,
LTM can accrue and store a large amount of traces over time.
By contrast, working or sensory memory subsystems contain
more detailed representations, and therefore cannot keep as
many traces concurrently.

Consistent with our theory, experimental findings indicate
that nearly all subsystems are influenced by a mix of percep-
tual and conceptual factors, but that the balance tilts more
in favor of the conceptual the longer something is held in
memory. Irwin (1991, 1992) demonstrated that iconic mem-
ory maintained more visual detail about an array of dots than
VWM, whereas VWM representations seemed to be more ab-
stract, coding information in a way that was robust to spatial
translations. Brady and Alvarez (2011) found that observers’
memories for the size of an object are systematically biased
toward the mean of the object’s category (see also Hemmer &
Steyvers, 2009). Several experiments also indicate that mem-
ories for spatial location are biased toward spatial “proto-
types” (Huttenlocher, Hedges, Corrigan, & Crawford, 2004;
Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher, New-
combe, & Sandberg, 1994). VWM representations not only
encode “gist” or summary statistics (Oliva, 2005) over low-
level visual features and textures, they also summarize high-
level constructs such as the emotion of a face (Haberman &
Whitney, 2007, 2009).

Visual LTM representations appear to be even more ab-
stract. Konkle, Brady, Alvarez, and Oliva (2010) performed
a visual LTM experiment in which subjects studied images of
real-world objects drawn from different categories. Subjects
studied between one and 16 exemplars per category, and later
performed memory recognition test trials. It was found that
as the number of exemplars from a category increased during
study, memory performance decreased. Further analysis re-
vealed that the conceptual distinctiveness of a category—low
when category exemplars belong to the same subcategories
and high when exemplars belong to different subcategories—
is correlated with visual LTM performance but perceptual dis-
tinctiveness is not. The authors concluded that “observers’
capacity to remember visual information in long-term mem-
ory depends more on conceptual structure than perceptual
distinctiveness” (Konkle et al., 2010, p. 558).

To understand how abstraction results from efficient com-
pression, it is important to understand the two central prin-
ciples of RDT, which we name the “Prior Knowledge Prin-
ciple” and the “Task-Dependency Principle”. Now, we will
briefly explain each principle and intuitively how each one
can give rise independently to categorical representations.
Prior Knowledge Principle: Prior or domain knowledge
is crucial to designing information-efficient systems. Accu-
rate knowledge of stimulus statistics allows an agent to form
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efficient representational codes given a limited capacity. To
code a stimulus efficiently, a code must be designed using
knowledge of the statistics of the to-be-coded items. Consider
Morse code which is an algorithm for encoding letters of the
alphabet as binary signals (“dots” and “dashes”). The design-
ers of this code realized that they could increase its efficiency
(i.e., decrease average code length) using knowledge of letter
frequencies by assigning the shortest binary sequences to the
most frequently transmitted letters. The more “peaky” the
frequency of letters, the less information messages convey,
and the shorter codes can be on average. For example, if 90%
of the English language consisted of the letter ‘e’, then mes-
sages could be coded much more compactly on average than
with real English in which e’s are not nearly so frequent.

In many domains, the stimulus prior (i.e. distribution over
stimuli) is highly peaked around several values. For example,
if the set of stimuli consists of many photographs of various
apples and bananas, this would constitute two different peaks
(or modes) in the space of images around apples and bananas
respectively. Efficient data compression predicts that these
types of “modal” stimulus distributions will result in cate-
gorical bias. Specifically, as memory capacity is decreased
(e.g. when decaying from short-term to LTM), representa-
tions should be attracted to one of the two modes, resulting in
categorical bias.
Task-Dependency Principle: In addition to prior knowl-
edge, for a code to be optimal, it must also take into account
the current behavioral goals (or task) of an agent. Codes
should allocate resources according to how an agent will use
the encoded information. In particular, if it is costly to an
agent to confuse stimulus values x and y, then codes should
be designed so that these values are easily discriminated, even
if this means a loss of precision for other discriminations.

As was the case with prior knowledge, efficient data com-
pression predicts that certain behavioral goals will result
in categorical bias. Namely, if effective behavior depends
on making category distinctions, then when capacity is de-
creased, efficient codes should become more biased toward
category prototypes, even when the stimulus prior is uniform.
Thus, efficient data compression produces two distinct hy-
potheses for the existence of categorical bias. Either it re-
sults from modalities in the stimulus prior or from behavioral
goals. These hypotheses may be evaluated in future work.

In the next section, we present the RDT formalism in order
to make the prior knowledge and task-dependency principles
mathematically precise. Then, we will demonstrate in simu-
lation that each principle can indeed give rise to categorical
bias.

Overview of Rate-Distortion Theory
Information theory addresses the problem of how to send
a message over a noisy channel (e.g., a telephone wire) as
quickly as possible without losing too much information.
How much information can be sent per unit time (or per sym-
bol) is the information ‘rate’ of a channel. Rate-distortion the-

ory focuses on the case when the capacity (or rate) is too low
to send the signal perfectly for a particular application (e.g.,
trying to hold a video conference with a slow internet connec-
tion). In this situation, one’s goal is to design a channel that
minimizes the average cost-weighted error (or distortion) in
transmission, subject to the capacity limitation. Crucially, the
optimization depends on two factors: (i) the prior distribution
over inputs to the channel, and (ii) how the transmitted signal
will be used after transmission. The first factor is important
because common inputs should be transmitted with greater fi-
delity than uncommon inputs. The second factor is important
because, depending on the application, some kinds of errors
may be more costly than others.

Whereas much of the cognitive science literature uses the
number of remembered “items” as a measure of memory ca-
pacity, information theory defines channel capacity as the mu-
tual information between the input distribution and the output
distribution. That is, if you know what comes out of a chan-
nel, how much information does that give you about what was
inserted into the channel? If mutual information is high (high
capacity), then the outputs tell you a lot about the inputs, but
if it is low (low capacity), then the channel does not trans-
mit as much information. The mutual information I(x;y) for
discrete random variables x and y is given by:

I(x;y) = ∑
x,y

p(x,y) log
p(x,y)

p(x) p(y)
. (1)

In the case of memory, sensory stimuli (e.g., pixel values)
can be regarded as inputs to a channel, and neural codes are
the channel’s outputs (e.g., firing rates, changes to synaptic
weights). The capacity of memory is the mutual information
between the stimulus distribution and the neural code.

RDT seeks to find the conditional probability distribution
of channel outputs (neural codes, denoted x̂) given inputs
(sensory stimuli, denoted x) that minimizes an error or dis-
tortion function d(x, x̂) without exceeding an upper limit C
on mutual information. For example, the distortion could be
defined as the squared difference between the channel input
and output, (x− x̂)2. Mathematically, this minimization is the
following constrained optimization problem:

Q∗ = argmin
p(x̂|x)

∑
x,x̂

p(x) p(x̂|x) d(x, x̂)

subject to I(x; x̂)≤C
(2)

where Q∗ is the optimal channel distribution.

Rate-Distortion Theory and Categorical Bias
Above, we described abstract or categorical representations
as being an efficient strategy for compression, and pointed
to evidence that human cognition makes use of this strat-
egy. Furthermore, we noted that as the average information-
content of memory traces decreases, the degree of categori-
cal bias increases. We suggested that LTM might be viewed
as using highly-compressed and categorical compressions,
whereas perception uses less-compressed, less-categorical
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compressions. For example, suppose you view an image of
an apple. At short delays, you may remember that it was a red
apple, at a longer delay, you may only remember that it was
an apple, and perhaps at still longer delays, you may only re-
member that you saw a fruit. At long delays, categorical bias
is large, because your memory for one apple is very similar to
your memory for a different apple. Here, we demonstrate this
phenomenon in simulation. We use a toy, one-dimensional
domain in which it is possible to find the optimal lossy com-
pression. In experiments below, we use approximate methods
to extend this result to high-dimensional spaces, closer to the
level of complexity that real brains must cope with.

As mentioned above, lossy compression can produce cate-
gorical bias when the stimulus prior is modal or when the loss
function penalizes miscategorizations. Figure 1 demonstrates
categorical bias effects in each case for unidimensional stim-
uli. The top panel (A) shows the case of a modal prior and
squared error loss for d, while the bottom panel (B) shows the
case of a uniform prior and categorical loss for d. According
to the categorical loss, there is high cost to misremembering
a stimulus that belongs to category A as one that belongs to
category B, but low cost to misremembering a stimulus as an-
other member of the same category. For example, consider
plants that can be grouped as edible or poisonous. Misre-
membering a poisonous plant as an edible plant has high cost,
whereas misremembering an edible plant as a different edible
plant has low cost.

Figure 1A and B illustrate that channels optimized for a
modal prior or a categorical loss, respectively, yield strong
categorical bias at low capacity, but little at higher capac-
ity. In the top rows of each (low capacity), p(x̂|x) is nearly
identical for all values of x = x0 within a category, but dif-
fers for two x0 from different categories. In both A and B,
categorical bias arises because values closer to the modes
are “safer” when capacity is low and transmission errors are
likely. On the other hand, at high capacity (bottom rows),
p(x̂|x) is tightly peaked around the true input x0 in both cases.
In experiments below, for brevity we only elicit categorical
bias via the distortion function (panel B).

RDT Neural Networks
Although RDT can be implemented exactly to find optimal
compressions for problems using low-dimensional stimuli,
it is too computationally expensive to be used with high-
dimensional stimuli. Therefore, researchers have considered
approximate implementations based on deep neural networks.
To date, however, these implementations have been limited to
tasks in which the sole goal is data (e.g., image) compres-
sion (e.g. Ballé et al., 2016). In this section, we introduce a
new deep neural network architecture that approximately im-
plements RDT in a task-general manner. In other words, our
architecture discovers good data compressions even when the
data will be used for regression, classification, recognition, or
other tasks. Like previous RDT neural network implementa-
tions, our architecture is trained “end-to-end”, meaning that it

A

B

Figure 1: Illustration of how categorical bias can be explained via
the prior (A) or the distortion function d (B). Horizontal axes plot
stimulus space, vertical axes plot probability, dotted vertical line is
the category boundary, solid vertical line marks the true stimulus
value (x = x0), and orange line plots output distribution p(x̂|x). In-
put distribution p(x) is given by the blue line. Top and bottom rows
in A and B show results for low and high capacity channels, re-
spectively. In A, distortion function was squared error and p(x) was
bimodal. In B, distortion function was a weighted sum between a
pure categorical loss and a square-error loss with weights of 1 and
0.001, respectively, and p(x) was uniform.

operates on raw sensory input (e.g., pixel values) rather than
intermediate levels of abstraction (e.g., orientation, texture,
shape), as is the case with most psychological models. The
combination of end-to-end operation and task generality rep-
resents an important step toward scaling up models of per-
ception and perceptual memory toward levels of complexity
faced in real-world situations.

Rate-distortion (RD) Autoencoders: A key component
of our models is the “autoencoder”, parameterized models
(e.g., neural networks) that map inputs to themselves sub-
ject to an information bottleneck. This bottleneck “forces”
a model to find a more abstract, latent representation of the
data. These abstract representations can then be used in sub-
sequent tasks. Conventional neural network autoencoders
consist of one or more ‘encoder’ layers, a middle ‘latent’
layer, and one or more ‘decoder’ layers. The latent layer typ-
ically has many fewer units than there are input dimensions,
effectively reducing the dimensionality of the representation.

RD autoencoders differ from traditional autoencoders in
that (i) they have a stochastic latent layer, and therefore a clear
probabilistic interpretation, and (ii) a regularization term is
added to the training objective function which acts to con-
strain how much information is represented in the latent units.
If the coefficient on this term is high, then the network will
seek a highly compressed latent representation. In our ex-
periments, the latent unit activations are our models’ “mem-
ory” of an input. Several variants of the rate-distortion au-
toencoder have been proposed, but here we choose the β-
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Variational Autoencoder (β-VAE; Alemi et al., 2018).
Architecture: The models for all experiments presented

here are defined by deep feedforward neural networks. Our
general architecture (see Figure 2) consists of two modules:
a β-VAE autoencoder and a decision module. The decision
module takes as input the memory code (i.e., the activations
of the latent units in the autoencoder) and optionally a task-
related “probe” image, and outputs a decision variable. For
example, in a change-detection task, the input to the autoen-
coder would be a target image, the input to the decision mod-
ule would be a probe image and memory representation of
the target, and the output of the decision module would be
the probability that the probe is different than the target. Cor-
respondingly, the training objective function has three terms,
which can all be weighted differently to achieve different
tradeoffs, corresponding to: (1) the distortion (or error) of
the autoencoder’s image reconstruction, (2) the information
capacity of the memory representation, and (3) the decision
error. Crucially, we can manipulate what kind of information
is encoded in memory by varying how much reconstruction
error is weighted relative to decision error during training, as
well as how one kind of decision error is weighted relative to
others (e.g., up-weighting errors along one stimulus dimen-
sion relative to other dimensions).

Implementation Details: Specific architectural choices
for both experiments discussed below were standard within
the neural network literature, and no specific fine-tuning was
required to produce our results. In Experiment 1, we chose
standard fully-connected layers with ‘tanh’ activation func-
tions. The encoder and decoder both had two hidden layers,
and the decision module had one. The latent layer and all hid-
den layers had 500 units. However, results were relatively in-
sensitive to the choices of number of hidden units and layers,
as long as the number of units was large. In Experiment 2,
the encoder was composed of four 3× 3 convolutional lay-
ers (32, 64, 64, and 64 filters for each layer, respectively),
followed by a fully-connected layer with 1000 units. There
were 1000 latent (memory) units. The decoder mirrored the
encoder, except that convolutional layers were replaced with
standard convolution-transpose layers. All hidden units used
rectified-linear activations (ReLU). Again, a range of archi-
tectural choices can produce similar results. Finally, the de-
cision module output was a single sigmoidal unit in Experi-
ment 1, while in Experiment 2, the output was a softmax layer
with one output unit for each of the three categories. All net-
works were trained with the “Adam” optimization algorithm.

Training sets: For Experiment 1, the dataset consists of
images of an artificial plant-like object which we varied along
two dimensions: leaf width and leaf angle. Images were con-
verted to gray scale, down-sampled, and cropped to a size of
120× 120 pixels. The space was discretized to 100 values
along each dimension, for a total of 10,000 unique stimuli.

For Experiment 2, we used the Fruits-360 database1. We
chose a subset of the classes to train on, specifically apples,

1https://github.com/Horea94/Fruit-Images-Dataset

target
hidden

memory

reconstruction

probe

Decision

decision layer

hidden

Memory 
module

Decision 
module

encoder decoder

Figure 2: Schematic of the general model architecture. Dark gray
boxes represent a vector of pixel values, while other boxes represent
layers (or a set of layers) in the network. Layer that represents the
memory code is in red.

tomatoes, and bananas. We augmented the dataset during
training by randomly zooming and cropping inputs, as well as
flipping the inputs horizontally at random. All images were
resized to 112×112 pixels.

Experiment 1: Artificial Images: Experiment 1 used
the artificial plants dataset to demonstrate that the categorical
bias effect depicted in Figure 1 extends to models operating
in high-dimensional pixel-space. We show that, as expected,
when a limited-capacity network is highly penalized for mis-
categorizing a stimulus, its memories exhibit categorical bias.

We trained the architecture on the full plants dataset. Fol-
lowing panel B in Figure 1, the training objective function
was a mixture of pixel reconstruction error and categorical er-
ror, with a high relative coefficient on the latter. Specifically,
the decision module was tasked with deciding whether the tar-
get image (input into the autoencoder) was the same category
as a subsequent randomly-chosen probe image (input to the
decision module). Given the high penalty for miscategoriza-
tion, the optimal strategy for a model with very little capacity
is to store little more than the category label. Figure 3 demon-
strates this outcome by plotting target image reconstructions
(outputs from the decoder) corresponding to a range of pos-
sible inputs. At low capacity (top panel), reconstructions of
exemplars to the left of the category boundary are all nearly
identical, and reconstructions of exemplars to the right of the
boundary are also nearly identical. However, reconstructions
on one side of the boundary are quite different from those
on the other. In other words, there is a strong bias in the re-
constructions to the appropriate category means, and thus a
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sharp discontinuity at the category boundary. These results
imply that at low capacity, the memory representation is a
code that simply indicates which category the input belonged
to. The best the autoecoder can do in this case is to produce
the mean or prototype of that category. At higher capacities,
the memory code contains more perceptual details beyond the
category membership.

Experiment 2: Natural Images Experiment 2 used the
Fruits-360 dataset to show that our approach scales to natu-
ral images. Again, we show that our models have increasing
categorical bias as capacity decreases. However, our analyses
in this experiment differ in a few ways. First, because nat-
ural image datasets do not contain a clear set of dimensions
along which stimuli vary (like leaf width and leaf angle in Ex-
periment 1), we indirectly measure the categorical bias in the
trained models using autoencoder reconstructions and princi-
ple components analysis (PCA). An additional difference is
that the decision module was trained to categorize each im-
age, rather than to detect a change between target and probe.

Figure 4 (top panel) shows image reconstructions from the
autoencoder at high, medium, and low capacity. These im-
ages demonstrate that the amount of detail that is retained in
memory decreases as capacity decreases. At low capacity,
the reconstructions are clearly categorical: each type of fruit
corresponds to a unique output, which is the average of all im-
ages in that category. At medium capacity, different varieties
within each species of fruit can begin to be distinguished. The
figure’s bottom panel demonstrates that the model’s memory
codes become more categorical at lower capacities. We per-
formed PCA on memory vector activations and plotted stim-
uli in the space defined by the first two principle components.
At medium or low capacity, memory codes for stimuli that
belong to the same class are very similar, whereas at high ca-
pacity, memories of stimuli within a category are quite distin-
guishable from each other, and thus more perceptual details
may be recovered2.

Conclusion
We have argued, from both theoretical and empirical stand-
points, that efficient data compression may be a central goal
of perceptual and memory subsystems. In future work, we
will discuss the extensive empirical evidence that efficient
data compression is implemented in biological perception and
memory, beyond the limited examples given here. In the cur-
rent work, we highlighted one interesting piece of evidence
that neural systems follow these principles, specifically that

2Note that even though the principle-components space appears
to scale with capacity, this does not imply that the degree of categor-
ical bias stays constant. For example, if the magnitude of noise that
is added to the latent activations is fixed, more separation between
two points in principle-components space implies that the decoder
can more easily distinguish between them despite the noisiness. In
fact, as network capacity is increased, the magnitude of noise added
to the latents tends to decrease (because this allow more informa-
tion to be stored), and thus two points that are a distance d apart
in principle-components space are at least as distinguishable at high
capacity compared to low capacity.

categorical representations are prevalent in memory. In sim-
ulation, we showed how categorical representations can be
a natural outgrowth of efficient compression. These mech-
anisms for categorical bias generate hypotheses that can be
tested in future empirical work. Because our modeling frame-
work operates in an end-to-end and task-general manner, we
believe that it shows promise for being scalable in ways that
most psychological models are not.
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