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Sébastien Hélie (shelie@purdue.edu)
Department of Psychological Sciences, 703 Third Street

West Lafayette, IN 47907 USA

Abstract

This article used an empirical experiment and a computational
model to test the hypothesis that humans rely on the visual
system to solve the traveling salesperson problem (TSP). We
tested two consequences of this hypothesis: (1) humans should
perform better on Euclidean TSP than not–Euclidean TSP; (2)
a model of the visual system should account for performance in
Euclidean TSP. Participants were asked to solve Euclidean or
not–Euclidean TSP, and a pyramid model of the visual system
was used to solve the same tours as the humans. The results
show that deviations from the optimal tour were smaller in Eu-
clidean problems than in not–Euclidean problems, and the fit
of the pyramid model to human performance was worse on
not–Euclidean problems then on Euclidean problems. These
results suggest that participants solve Euclidean problems with
the visual system, but that other mechanisms are needed to suc-
cesfully solve non–visual problems.
Keywords:
Problem Solving; Visual Processing; Traveling Salesperson
Problem; Pyramid Model

Introduction
A problem is a situation in which an agent seeks to attain
a given goal without knowing how to achieve it. Humans
solve problems every day. Example problems include win-
ning at tic–tac–toe or winning a battle, air traffic control, con-
trol of an uninhabited vehicle, getting to checkmate in chess,
visually–guided navigation, proving a logic theorem, solv-
ing math and physics problems, cracking the enigma code,
or formulating a new scientific theory. Some problems are
more visual, such as planning a tour around a grocery store,
while others are more abstract, such as proving a theorem us-
ing predicate logic. In this conference article, we focus on
the Traveling Salesperson Problem (TSP), a well–known op-
timization problem. In the TSP, a set of points is presented to
participants. Each point represents a city, and the goal is to
find the shortest possible route that visits all the cities exactly
once, and returning to the starting city. We refer to this route
as a TSP tour. The TSP has high relevance since it (1) has
an important visual component (i.e., cities or points are spa-
tially laid out on a map) and (2) it has important real–life ap-
plication in many areas such as logistics, transportation, and
shipping.

TSP has been studied extensively by cognitive scientists
to reveal the underlying processes in human problem solv-
ing (van Rooij et al., 2006; Chronicle et al., 2008; Dry et al.,
2006; MacGregor, 2013). One reason that makes the TSP an
interesting problem for cognitive scientists is that the prob-
lem space of the TSP is very large. Even for solving a 16
city TSP, there are 6×1011 possible solutions, which is more
than the number of neurons in the human brain (Azevedo et
al., 2009). Also, the TSP is proven to be computationally
NP–hard, meaning that there is no algorithm that can find an
exact optimal solution for the TSP in polynomial time (Pizlo
& Stefanov, 2013).

Human working memory can only store and manipulate a
few items at a time and cannot make more than a few compar-
isons at a time (Pizlo & Stefanov, 2013). Yet, even with these
severe limitations in memory and processing power, humans
are able to solve the TSP near optimally in approximately lin-
ear time (MacGregor & Chu, 2011; Pizlo et al., 2006). How
can humans with these limitations be able to solve the TSP
fast and near optimally? What cognitive systems and pro-
cesses have evolved to solve the TSP in the human brain?

Goals and Hypotheses
Pizlo and colleagues have argued that the TSP is solved by
parallel processes in a pyramid–like hierarchical architecture
of the visual system (Graham et al., 2000; Pizlo et al., 2006;
Pizlo & Stefanov, 2013). The assumption that humans solve
the TSP visually has important implications on the types of
problems that can be solved. The human visual system has
evolved in Euclidean space, so the visual system likely as-
sumes a Euclidean cost function when solving optimization
problems. As a result, performance in optimization prob-
lems with not–Euclidean or non–metric cost functions might
be impaired.

To test this hypothesis, we designed a TSP experiment
where participants solved either a regular (Euclidean) or not–
Euclidean TSP. The participant’s data was then compared
with tours produced by a well–known computational model
of the visual system, namely the pyramid model (Adelson et
al., 1984; Pizlo et al., 1995). According to our hypothesis,
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human participants should perform well in the Euclidean ver-
sion of the TSP but not in the not–Euclidean version of the
TSP. Further, the pyramid model should provide a good ac-
count of participant TSP tours in the Euclidean TSP but not
in the not–Euclidean TSP. These results would support the
hypothesis that participants are solving the regular TSP us-
ing the visual system, but not the not–Euclidean TSP. Further,
the compensatory mechanisms used to solve the not–Eucliean
TSP are not as efficient as the visual system at solving opti-
mization problems.

Method
The first aim of this study was to explore how humans per-
form in different conditions of the TSP (i.e., Euclidean and
not–Euclidean). The second aim was to explore how human
performance is compatible with the visual pyramid model.
The experiment and model are described in turns.

Participants
Ninety–one Purdue undergraduate students participated in the
experiment for course credit. Participants were randomly as-
signed to one of three conditions: Single–color (n = 36),
Colored–with–no–switch–cost (n = 28), and Colored–with–
switch–cost (n = 27).

Apparatus and Stimuli
The stimuli were 30 maps each generated by putting 50 ran-
domly scattered cities (points) in a 900px× 900px display.
The minimum distance between two cities was set to 50px to
prevent overlapping points. The resulting set of 30 maps was
used to create two different stimulus sets. In the first stimulus
set, all cities were colored red. This stimulus set is referred as
containing single–color maps (See Figure 1a). In the second
stimulus set, half of the cities (points) were randomly selected
and colored red. The remaining cities (points) were colored
blue. This stimulus set is referred as containing colored maps
(See Figure 1b).

The experiment was run on a regular PC. Stimuli were dis-
played in a 21–inch monitor (1,920 × 1,080 resolution). Par-
ticipants responded by clicking on the city (point) that they
wanted to visit next using a regular computer mouse. After
each mouse click, a dark blue edge was drawn between the
last visited city and the city that was clicked in the current
trial. The order of the city visited was recorded.

Procedure
Each participant solved all 30 maps in one of three condi-
tions. (1) Single–color (Euclidean): This was a typical TSP
experiment. The first stimulus set was used (i.e., single–
color maps). Participants were asked to find the shortest TSP
tour on each map, one map at a time. The cost between
cities was Euclidean (i.e., the distance on the screen). No
feedback was provided. (2) Colored–with–switch–cost (not–
Euclidean): The second set of stimuli was used (i.e., colored
maps). In this condition, the cost between two points was not
always Euclidean. Specifically, when travelling from a blue

city to a red city (or vice–versa), the calculated distance (cost)
was twice the distance on the screen. Otherwise, when trav-
elling between two cities of the same color, the distance was
as seen on the screen. Note that this arrangement can break
the triangle inequality and make the cost non–metric. (3)
Colored–with–no–switch–cost (control): Similar to (2), this
condition used the second set of stimuli (i.e., colored maps).
However, the distance between two points was always the dis-
tance on the screen, so the colors could be ignored. This con-
dition was designed to control for possible grouping effects
that could be created by having cities of two different colors.
In all conditions the experimenter explained the cost structure
to the participants (as described above) and instructed them to
find the tour with the smallest cost for each map.

Pyramid Model
A pyramidal architecture refers to multiple representations of
the input data, with different representations having different
scales and resolutions. In vision, the input data is the retinal
image and the first layer is represented by the retinal ganglion
cells. Each ganglion cell receives information from a partic-
ular region of the retina called the cell’s receptive field. Re-
ceptive fields of different cells partially overlap. In the second
layer of the pyramid, each “parent” cell receives input from
several “child” cells. In the third layer, each “grandparent”
cell receives input from several of its children. This process
continues until a single cell on the top of the pyramid can
“see” the entire image. Cells at lower layers can see small
parts of the retinal image but they can process the informa-
tion with high spatial resolution. Cells in higher layers can
see larger parts of the retinal image but with lower resolution.
More generally, cells in higher layers can handle only some
statistical information about their receptive fields. The mean
value of some property, like intensity, speed, contrast and so
on, is the simplest example.

We implemented a Pyramid model adapted from Pizlo et
al. (2006). The algorithm is presented in Figure 2. We used
Python for our implementation. Inputs to the model were the
maps that the participants in the experiment had solved. Be-
cause we hypothesized that the visual system evolved in a
Euclidean world, the distances between the cities were con-
sidered Euclidean in all three conditions. This corresponds
to the visual system not being able to process not–Euclidean
distances.

Finding Optimal Tours
We used NEOS server of Concorde TSP solver to find
the optimal TSP tours for each map. Concorde is
one of the best exact TSP solvers currently available.
It is available freely for academic use: https://neos-
server.org/neos/solvers/co:concorde/TSP.html.

Results
One participant in the Single–color condition had tours that
were three standard deviations longer then the condition
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(a) Single–color map (b) Colored map

Figure 1: Example maps used in the experiment.

mean. All tours produced by this participants were not in-
cluded in the following analyses.

Human Performance
Figure 3 shows typical example solutions produced by par-
ticipants in each condition. As can be seen, the colored–
with–switch–cost tour was qualitatively different from those
obtained with the single–color and with colored–with–no–
switch–cost conditions. Specifically, the not–Euclidean con-
dition included a number of path crossings, which would be
suboptimal in Euclidean space (but could be optimal in not–
Euclidean space). These crossings were not observed when
colors were present without a switch cost.

To quantify the participant performances, the error (i.e., de-
viation from optimal) was calculated for each map:

error ji =
(S ji −Oi)

Oi
(1)

where error ji is the error or participant j on map i, S ji is the
length of the tour produced by participant j on map i, and Oi
represents the length of the optimal tour for map i .

Table 1 presents the mean error in each condition. As can
be seen, the single–color error was 12.6% and the colored–
with–no–switch–cost (Euclidean) error was 12.7%, which is
almost half of the error observed in the colored–with–switch–
cost (not–Euclidean) TSP condition. This shows that partic-
ipants perform well in Euclidean space but struggle in not–
Euclidean space. Also, participants were able to ignore the
irrelevant color and the longer tours obtained in the not–
Euclidean condition were not caused by a perceptual effect
of the city colors. Hence, larger errors for the not–Euclidean
condition were not the result of unwanted color grouping ef-
fects.

To investigate if the observed differences were statistically
significant, we performed Holm–corrected pairwise compar-
isons t–tests for all three conditions. Error in the not–
Euclidean condition significantly differed from error in the
single–color (t(60) = 6.10, p < .0001) and error in the color–
with–no–switch–cost (t(53) = 5.63, p < .0001) conditions.
The two Euclidean conditions did not differ from each other
(t(61)< 1,n.s.).

Table 1: Mean participant error in each condition

Condition Error
Single–color 12.6%
Colored–with–no–switch–cost 12.7%
Colored–with–switch–cost 20.7%

The results show that the errors for the single–color and
control conditions were not statistically different. How-
ever, the colored–with–switch–cost condition differed from
the other two conditions. These statistical differences clearly
show that participants’ performances were highly dependent
on the problem being Euclidean or not–Euclidean, and sup-
port the hypothesis that the visual system may assume a Eu-
clidean cost function in solving the TSP.

The performance of the Pyramid model

In Table 2, we compared the Pyramid model generated tours
with optimal tours. As can be seen, the error is 14.2% for
both Euclidean conditions (single and color), and it increased
to 34.5% for the not–Euclidean condition. As expected, the
model error was similar to humans in the Euclidean condi-
tions. The RMSD was 4.6% in the single–color condition
and 4.5% in the color–with–no–switch–cost condition. How-
ever, the model provided a poor fit of human performance
in the not–Euclidean condition (RMSD = 15.0%). Assum-
ing that the Pyramid model is an adequate model of human
vision, this result suggest that participants solving the Eu-
clidean TSP used the visual system (good model fit), but not
the not–Euclidean TSP (poor model fit). Since the partici-
pants were doing better than the model in the not–Euclidean
condition, this result also suggest that participants may have
access to a separate (compensatory) mechanism to attempt
to solve not–Euclidean TSP. The pyramid model, in contrast,
was purely a model of the visual system and could only deal
with Euclidean spaces.
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Figure 2: A representation of the Pyramid model. The top row shows the input as it gets partitioned into k clusters (by using
a clustering algorithm, such as k–means). In this example, k = 3. Next, the pyramid is built. The root of the Pyramid (0–1) is
the TSP solution for the centers of the clusters for the partitioned input. The solution for this TSP at the root is trivial because
there are only three points and all three points are connected to each other. In the next level of the pyramid (level 1), each
cluster is considered separately and recursively repeats the clustering until there is only one point (or city) in each cluster. For
example, (1–1) shows the partition of the top–left cluster into k clusters (if the number of points is smaller than k, then k−1 is
used, here k = 2), and a TSP solution for this cluster is found. Since, there were only two points, the solution is trivial, and the
two points were connected to each other. Then by brute–force (considering all possibilities), the incoming and outgoing edges
are connected to this cluster to obtain the shortest edges. The model then moves to the next cluster (1–2) and repeats the same
procedure, until there is no non–visited cluster.
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(a) single–color (b) colored–with–no–switch–cost (c) colored–with–switch–cost

Figure 3: Sample tours produced by participants in each condition.

Table 2: The error of the Pyramid model.

Condition Error
Single–color 14.2%
Colored–with–no–switch–cost 14.2%
Colored–with–switch–cost 34.5%

Discussion
This article used an empirical experiment and a computa-
tional model to test the hypothesis that humans solve the TSP
by assuming an Euclidean cost function. This assumption
follows from the TSP being solved visually, and the visual
system having evolved in an Euclidean world. We specifi-
cally tested two consequences of this hypothesis, namely that
humans would perform better on Euclidean TSP than not–
Euclidean TSP and that a model of the visual system could
account for performance in Euclidean TSP. Participants were
asked to solve the TSP in three conditions, two Euclidean
and one not–Euclidean. A pyramid model of the visual sys-
tem was used to solve the same tours as humans. The results
show that the deviations from the optimnal tours were almost
twice as small in Euclidean problems than in not–Euclidean
problems, and the fit of the pyramid model to human per-
formance was three times worse on not–Euclidean problems
than on Euclidean problems.

Relevance for Problem Solving Research
Some problems are visual, like TSP on a Euclidean plane or
visual navigation, but other problems may not have an ob-
vious visual representation. Algebra problems, first order
logic, and chess are examples. Logic is not visual, but set
theory, with Venn diagrams, provides a visual version for at
least some logical problems. However, not all problems are
amenable to a useful visual representation. In these cases, the
massively parallel nature of the visual system is no longer suf-
ficient: problems need to be solved sequentially. One possi-
bility is to use reinforcement learning (Sutton & Barto, 1998).
In this framework, the agent is a sequential decision–making

system and the environment is another system evaluating the
distance between the current problem state and the goal state
(Dandurand et al., 2012). In visual cases, the environment
could be the visual system with geodesic estimates. In more
abstract cases, the environment could be a meta–cognitive
system used to evaluate states and rewards. Regardless of
how the environment is implemented, actions are selected in
each state by using a policy. The policy numerically describes
the desirability of each action in each state. The goal of rein-
forcement learning is to find a policy that maximizes the re-
turn, which is the sum of all future rewards, until the problem
is solved. However, any sequential system attempting to solve
a NP–hard problem, such as the TSP, will quickly be over-
whelmed by complexity. This could explain why human par-
ticipants did better than the pyramid model in not–Euclidean
TSP but did not do as well as in the Euclidean problems.

Future Work and Limitations

Future work can be directed in two ways. First, we can fur-
ther test the theory of the engagement of the visual system in
solving the TSP. It can be done by studying whether human
performance is compatible with other characteristics of the
visual system such as its limited ability to learn. The second
direction is proposing a more complete model of human prob-
lem solving. Implementing a dual–system model of problem
solving, including both a parallel visual module and a sequen-
tial decision–making module can be a promising direction.
Tentatively, using a reinforcement learning agent for sequen-
tial decision–making would allow for learning in problems
that cannot be solved visually. This possible dissociation in
learning ability for visual and non–visual problems may al-
low for optimizing the way we represent and solve problems.
Future work should be devoted to implementing and testing
such a model.
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