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Abstract

Unscaffolded problem-solving before receiving instruction can
give students opportunities to entertain their exploratory hy-
potheses at the expense of experiencing initial failures. Prior
literature has argued for the efficacy of such Productive Fail-
ure (PF) activities in preparing students to “see” like an expert.
Despite growing understanding of the socio-cognitive mecha-
nisms that affect learning from PF, the necessity of success or
failure in initial problem-solving attempts is still unclear. Con-
sequently, we do not know yet whether some ways of succeed-
ing or failing are more efficacious than others. Here, we report
empirical evidence from a recently concluded classroom PF in-
tervention (N=221), where we designed scaffolds to explicitly
push student problem-solving towards success via structuring,
but also radically, towards failure via problematizing. Our ra-
tionale for explicit failure scaffolding was rooted in facilitating
problem-space exploration. We subsequently compared the
differential preparatory effects of success-driven and failure-
driven problem-solving on learning from subsequent instruc-
tion. Results suggested explicit failure scaffolding during ini-
tial problem-solving to have a higher impact on conceptual un-
derstanding, compared to explicit success scaffolding. This
trend was more salient for the task topic with greater difficulty.
Keywords: Classroom Study; Productive Failure; Scaffolding

Introduction
Substantial research has demonstrated the efficacy of learn-
ing approaches where problem-solving as a preparatory ac-
tivity precedes instruction (PS-I). PS-I includes (i) an initial
problem-solving phase where students explore solutions to
complex problems based on concepts they haven’t formally
learnt yet, and (ii) a subsequent explicit instruction phase
where a coach introduces formalisms of the targeted concepts
along with the canonical solution. Research suggests that PS-
I is an effective learning design that improves student’s con-
ceptual understanding and positively impacts how well they
transfer their knowledge to novel problem-solving contexts
(Loibl, Roll, & Rummel, 2017).

A particular variant of the PS-I design that embodies
learning from failure is Productive Failure (PF) (Kapur
& Bielaczyc, 2012). PF comprises rich problem design
that affords multiple representations and solution methods
(RSMs), and follow-up instruction that compares and con-
trasts student-generated solutions with the canonical one. The
positive benefits of approaches implemented based on the PS-
I design (e.g., PF, Invent with Contrasting Cases (Schwartz
& Martin, 2004)) have been attributed to different cognitive
mechanisms. These include intentional activation of relevant
prior knowledge, enhancement of students’ awareness of the
problem situation and own knowledge gaps, focused atten-
tion on search for deeper patterns rather than surface charac-
teristics, and effortful retrieval to resolve incongruity. Some
posited socio-emotional mechanisms include increased moti-
vation to learn targeted concepts and elicitation of curiosity
(Kapur & Bielaczyc, 2012; Loibl et al., 2017).

Research Gap
Despite PS-I designs often working better compared to tra-
ditional instructional approaches (usually direct instruction)
on the acquisition of conceptual knowledge and/or transfer,
there is a considerable variation in effect sizes (Cohen’s d
= 1.12± 0.54) (Loibl et al., 2017). This has spurred lines
of inquiry into systematically analyzing reasons for failure
of PS-I approaches (Sinha & Kapur, 2019), and developing
ways to improve overall effectiveness of the learning design.
One prominent area of focus has been the initial problem-
solving phase. Here, research has started to investigate the
impact of scaffolding student solutions on fostering concep-
tually sound and transferable learning (Kapur, 2011; Loibl &
Rummel, 2014). Despite growing research in the PS-I design
space, we don’t have conclusive evidence yet.

Templates of successful problem-solving usually aim at
pro-active error elimination, and directing student’s attention
to the task by providing immediate feedback. Such instruc-
tion has the advantage of helping students perform the correct
procedure. However, this may not always imply that students
engage in optimal reasoning or acquire high depth of under-
standing of domain principles. Evidence favoring success-
driven (SD) learning in PS-I suggests the presence of an
association between successful problem-solving during the
problem-solving phase and learning from instruction (e.g.,
Chin, Chi, and Schwartz (2016); Schwartz, Chase, Oppezzo,
and Chin (2011); Loibl and Rummel (2014); Schalk, Schu-
macher, Barth, and Stern (2017); Chase and Klahr (2017)).
However, attempts to scaffold such success, both cognitively
(e.g., Kapur (2011); Loibl and Rummel (2014)) and metacog-
nitively (e.g., Holmes, Day, Park, Bonn, and Roll (2014); Roll
et al. (2018)), have been largely unsuccessful.

Templates of exploratory or unsuccessful problem-solving,
on the other hand, hold the view that acquisition of solution
schema is not the solitary goal of learning through problem-
solving (Schwartz & Martin, 2004; Kapur & Bielaczyc,
2012). It is equally important to develop the cognitive and
socio-emotional prerequisites to prepare novice students to
see like an expert. Therefore, one should provide opportu-
nities that help students develop awareness and appreciation
for what is known and not known. Instructional attempts that
increase chances of failure during problem-solving have the
advantage of stimulating student’s initiative in gaining knowl-
edge. However, students may not spontaneously come back
to the right track if an incorrect problem representation is in-
voked and they continue to work on it. Evidence disfavoring
SD learning in PS-I suggests that a lack of success when the
problem-solving phase is implicitly scaffolded (e.g. Aleven
et al. (2017); Roelle and Berthold (2016); Mazziotti, Rum-
mel, and Deiglmayr (2016)) or left unscaffolded (e.g., Kapur
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and Bielaczyc (2012)) does not harm learning. Providing no
explicit cognitive or metacognitive support is imperative in
view of giving students complete agency in solution gener-
ation. A consequential side-effect is that the likelihood of
experiencing failures increases.

However, there is no PS-I research that looks at explicitly
scaffolding problem-solving phase towards failure. This sets
up the guiding question of whether and to what extent is suc-
cess or failure during initial problem-solving necessary for
learning from PS-I. How does increasing likelihood of stu-
dents experiencing success or failure differentially prepare
them to learn from the instruction at a deeper conceptual
level? Are some ways of succeeding or failing more effi-
cacious than others? To answer these questions, we design
SD or failure-driven (FD) scaffolds for the problem-solving
phase, as inputs into a classroom PS-I intervention. Evidence
for impact of these scaffolds on learning from PF is discussed.

Method
Participants and Task Domain
We conducted a classroom PS-I intervention with N=221 stu-
dents in an introductory data science course offered at a large
public university in Switzerland. Based on data from a pre-
vious course iteration, two topics Spurious Correlation (SC)
and Anscombe’s Quartet (AQ) were chosen to develop learn-
ing materials. Problem-solving based on these topics had
demonstrated different initial failure rates, and different lev-
els of improvement after students were presented with clues
pointing them to the correct answer (SC task, 40% → 23%;
AQ task, 81%→ 38%). The SC learning goal was to help stu-
dents tease apart the difference between strong versus mean-
ingful relationships among dataset variables. The AQ learn-
ing goal was to help students understand the complementary
importance of numerical and graphical representations in rea-
soning with data. Students worked individually in an online
problem-solving environment (Python Jupyter notebook) that
was dynamically executable, and helped in offloading proce-
dural or syntactical aspects of the computation required (for
task details, see www.tinyurl.com/CogSci2019Tasks).

Experimental Design and Scaffolding Rationale
A mixed experimental design was followed. Scaffolding in
initial problem-solving (SD, FD) was the between-subject
variable, and problem-solving topic (SC, AQ) was the within-
subject variable. Students were randomly assigned to exper-
imental conditions, and ordering of problem-solving topics
was counterbalanced within each condition. We had two con-
ditions representative of SD scaffolding with varying degrees
of specificity, and two conditions representative of FD scaf-
folding with varying levels of suboptimality. For all four con-
ditions, the instruction phase was kept constant. Student so-
lutions were compared and contrasted with the canonical one.

The rationale for the concrete design of scaffolding in our
research was inspired by mechanisms of structuring and prob-
lematizing student work (Reiser, 2004). Structuring scaf-
folds reduce degrees of freedom to lower task complexity,

help students maintain direction, and make problem-solving
tractable. Problematizing scaffolds increase degrees of free-
dom to challenge student’s current understanding, and high-
light discrepancies between what they might generate and
critical/canonical task features. We chose an initial set of
structuring and problematizing scaffolds in line with keeping
the generative characteristics of the problem-solving phase
intact, as well as explicitly increasing success or failure like-
lihood as the intended design rationale.

Figure 1: Experimental Design. SDa, SDb, FDa, FDb are two
instantiations of success-driven (SD) and failure-driven (FD)
scaffolding in the problem-solving phase respectively.

Structuring scaffolds included a combination of prompts,
hints and bottom-out hints for different task topics. Prompts
point students to the problem conditions that should likely re-
mind them of the knowledge component’s relevance. Very
little information is divulged, thus encouraging students to do
most of the thinking themselves. Our design of hints incor-
porates the idea of teaching students the knowledge compo-
nent that is actually relevant in the current problem-solving
context (what to do but not how). Finally, bottom-out hints
tell students precise (and potentially optimal) ways of mov-
ing ahead in the problem-solving task. Such a scaffolding
sequence mimics the behavior of expert human tutors, and is
almost universally used in tutoring systems (VanLehn, 2011).

Problematizing scaffolds included asking students to ex-
plicitly generate suboptimal RSMs to facilitate problem-
space exploration in a more comprehensive manner, rather
than following an isolated solution path. In essence, stu-
dents are led towards questionable decision-making by being
asked to consider a subset of conceptual domain factors (that
don’t lead to the canonical solution), and reason with those
partially-gained insights. No former PS-I work has looked di-
rectly into such “explicit” failure scaffolding. However, one
could view the classic PF design as providing “implicit” op-
portunities for students to create suboptimal RSMs (Kapur &
Bielaczyc, 2012). This is because rich problem design “inher-
ently” affords multiple RSM generation, and targets concepts
students haven’t learnt yet. Work on preparatory benefits of
vicarious failure activities before receiving instruction sug-
gests the evaluation of suboptimal or failed RSMs generated
by others as a significant predictor of learning (Kapur, 2014).

As a concrete example, when reasoning about the rela-
tionship between two variables, a prompt would give stu-
dents general information about statistical dependence be-
tween variables, a hint would provide explanation of the exact
phenomena under consideration (e.g., SC, AQ), and a bottom-
out hint might ask for reasoning with a scatterplot (optimal
graphical representation). Alternatively, reasoning with a 2-
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Table 1: Examples of constructive reasoning coding applied for the analyses of posttest reasoning/code
Category Sub-category Sub-sub-category Examples from data

Non-mathematical
elaboration

Graphical Complete
Thinking for a good distribution that fit with this theory we can imagine a bar in the middle and nothing around. That means that all the people have
the same degree of wealth. Looking at the plots we can already see that the distribution that seems what we have imagined is the normal distribution
for the scenario A. We can also look at the standard deviation that confirm this reasoning

Not Complete Taking into account histogram with 50 bins, a better idea of distribution of wealth between citizens is given

Numerical Complete By using a histplot, we see that for B there is no middle class, only rich and poor people =>not socialist.
Not Complete I add the values of each person and I divide by the number of person to find if the money is well distributed

Mathematical
elaboration

Graphical Complete
Datasets are almost identical specially in descriptive statistics but when we see plot of wealth distribution we can see that in B, there are more
people with less wealth distribution specially after median and with similar reasoning we can say that as C is upper than B and A in most cases,
it is the worst

Not Complete Linecharts show that C has the most wealth in the middle

Numerical Complete
Using the variance of each set, we can see that the values of dfA are much more centered around the mean (and thus a more egalitarian society).
Followed by C then B

Not Complete comparing the median values of the different datasets

D or 1-D histogram are examples of suboptimal RSMs. Here,
information is lost because of binning and/or the lack of di-
rectly perceivable information about co-variation in the data.

Analytical Procedures
Due to dropout at various stages of the study (12%-57%), we
applied standard multiple imputation (MI) procedures (n=5)
to fill missing dataset values (Van Buuren, 2018). Discarding
missing data may result in the complete cases being no longer
representative of the target population, and consequently, es-
timates derived from them being subject to non-response bias.
MI accounts for the process that created the missing data, and
preserves uncertainty among relations in the data. Logistic re-
gression and its variants (multinomial, ordered) were used for
binary, nominal (>2 categories) and ordinal data respectively.
Predictive mean matching was used to impute numeric data.
Density plots of observed and imputed values were visually
inspected for validity. Non-parametric statistics were used
to see differences in ordinal posttest scores (e.g., Kruskal-
Wallis tests, follow up Dunn tests). Multiple comparisons
were adjusted using the Benjamini-Hochberg method. For
non-significant results (p > 0.05), equivalence tests were per-
formed to provide evidence for absence of a meaningful effect
(Lakens, Scheel, & Isager, 2018). Here, the smallest effect
size of interest was set within Cohen’s d bounds of ± 0.2.

We also developed a coding scheme (Krippendorf’s α >
0.7) for qualitative analyses of student’s posttest reasoning
and code, based on prior work (Chi, 2009; Kapur & Kinzer,
2009). First, we identified if reasoning was constructive
(meaningful elaborations that went beyond what was pre-
sented). If yes, we identified if the elaborations were non-
mathematical or mathematical. The former refers to elab-
orations that explain inferences leading up to the results,
while the latter refers to elaborations that explicitly men-
tion mathematical formalisms in words and/or in the code
and base solution inferences on these formalisms. Next, for
each kind of elaboration, we further checked if the elabora-
tions comprised one or more graphical/numerical representa-
tion(s), meaning graphs, plots or other quantitative indices.
Finally, we checked if these representation(s) were complete.
Non-mathematical elaborations were coded as complete if all
variables were set in relation to each other, and the result
could be clearly derived from the elaboration. No information
was missing and the connection between evidence and claim
was fully explained using reasoning. Mathematical elabo-
rations were coded as complete if all necessary methods in

order to derive results were mentioned in words and/or pre-
sented in the code. Table 1 provides examples from the data.

Measures
Before the problem-solving phase, we collected student’s
prior knowledge using high school math scores as a proxy.
No explicit pretest was conducted to prevent redundancy with
the problem-solving phase. Based on prior literature on inter-
individual factors that characterize heterogeneity in student’s
approach to FD and SD learning, we also included question-
naires assessing incoming profile variables like effort regula-
tion (Pintrich et al., 1991), self-esteem (Jones, 1973), learning
goal orientation (LGO) (Dweck, 1992) and attitude towards
mistakes (ATM) (Leighton, Tang, & Guo, 2015). Effort reg-
ulation reflects a commitment to completing one’s goals de-
spite difficulties. High self-esteem triggers positive attribu-
tional style towards success and failure. An LGO disposition
affects whether students view failures as learning opportuni-
ties. Finally, ATM, which includes the utility of making mis-
takes and induced affective reactions, enhances or impedes
receptivity to failures. After the problem-solving phase, stu-
dents answered task experience questionnaires, in line with
PS-I preparatory mechanisms (Loibl et al., 2017).

These experiences included perceived awareness of knowl-
edge gaps at the current moment (Glogger-Frey, Gaus, &
Renkl, 2017), state curiosity about task actions and what they
would like to know (Naylor, 1981), germane and extraneous
cognitive load induced by problem-solving (Leppink, Paas,
Van Gog, van Der Vleuten, & Van Merrienboer, 2014), and
the experienced cognitive dissonance. Cognitive dissonance,
defined as a state of discomfort associated with detection of
conflicting concepts (Levin, Harriott, Paul, Zhang, & Adams,
2013), has not been studied in prior PS-I work because of lack
of work on problematizing. Consistency of both incoming
profile and task experience questionnaires was good for our
dataset (McDonald’s ω >0.7). After the instruction phase,
students solved an isomorphic and a non-isomorphic concep-
tual understanding posttest for each of the two task topics.

Results
Variable-centered Approach
We first performed variable-centered analyses to look at over-
all patterns of the impact of SD and FD preparatory activities
on conceptual understanding in PF (figure 2).
Task topic SC For the SC topic, we found a signifi-
cant omnibus effect of the experimental grouping on the
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Figure 2: Scaled posttest scores with inferential error bars
(L to R: SC non-isomorphic, SC isomorphic, AQ non-
isomorphic, AQ isomorphic). Significant differences marked.

non-isomorphic conceptual understanding posttest (χ2(3) =
11.73, p = 0.008, Cohen’s d = 0.409). The FD condition was
better than the SD condition that offered the more-specific
clue, in this case a hint describing the SC phenomena. How-
ever, the FD conditions were equivalent to the SD condition
that offered the less-specific clue, in this case a prompt de-
scribing what statistical dependence among variables is. The
two FD conditions here asked students to generate/reason
with a correlation table and scatterplot matrix respectively,
both of which reflect suboptimal numerical and graphical rep-
resentations respectively. This is because they don’t fully al-
low inferences on the nature of relationships (strength and/or
meaningfulness) between dataset variables. No significant
omnibus difference in scores on the isomorphic conceptual
understanding posttest was observed across the four exper-
imental conditions (χ2(3) = 1.37, p = 0.712, Cohen’s d =
0.174). Equivalence testing suggested that the observed effect
was neither statistically different from zero nor statistically
equivalent, indicating insufficient data to draw conclusions.

Qualitative analysis suggested that for the non-isomorphic
conceptual understanding posttest, the trend mirrored posttest
scores. Students in the FD conditions had higher percentage
of complete mathematical (32.1%, 38.7% >> 27.3%) and
non-mathematical elaborations (44.7%, 56.7% >> 27.3%),
compared to the SD condition with the more specific clue.
Additionally, completeness of reasoning was almost identical
between the FD condition and the SD condition with the less
specific clue. However, for the isomorphic conceptual under-
standing posttest, student reasoning was often dominant in
either complete mathematical or complete non-mathematical
elaborations across the experimental conditions. The SD con-
ditions had comparatively higher percentage of the former
(38.9%, 45.8% >> 32.4%, 25%), while the FD conditions
had comparatively higher percentage of the latter (33.3%,
48.8% >> 43.3%, 23.6%). This might be one reason why
we saw no posttest score differences.

Task topic AQ For the AQ topic, we found significant om-
nibus effects of the experimental grouping on both the non-
isomorphic (χ2(3) = 10.84, p = 0.012, Cohen’s d = 0.387)
and isomorphic (χ2(3) = 20.16, p = 0.0001, Cohen’s d =
0.586) conceptual understanding posttest. Follow up pairwise
comparisons suggested that scores for students in FD condi-
tion were greater than those in the SD condition with the more
specific clue, in this case a bottom-out hint asking for scatter-
plot generation. However, the difference did not reach signif-

icance when comparing the FD condition and SD condition
with the less specific clue, in this case a hint describing the
AQ phenomena. The two FD conditions here asked students
to generate/reason with a 2-D and 1-D histogram respectively.
Both reflect suboptimal graphical representations.

We separated the coding of numerical and graphical
representations to assess their independent usage in stu-
dent reasoning. Qualitative analysis suggested that for the
non-isomorphic conceptual understanding posttest involv-
ing graphical representations, students in the FD conditions
had higher percentage of complete mathematical (72.2%,
68.7% >> 33.3%, 40%) and non-mathematical elaborations
(44.4%, 37.5% >> 26.6%, 40%), compared to the SD condi-
tions. This also held true for complete mathematical (27.7%,
37.5% >> 20%, 0%) and non-mathematical elaborations
(27.7%, 31.2% >> 13.3%, 0%) involving numerical rep-
resentations. For the isomorphic conceptual understanding
posttest, a similar trend held for elaborations involving graph-
ical representations. We did not see clear trends in qualita-
tive differences in student reasoning for elaborations involv-
ing numerical representations, the less straightforward (and
dominant) approach for this isomorphic question. Taken to-
gether, despite no posttest score differences between students
who received FD scaffolds and the less-specific SD scaffold,
there were salient differences in reasoning quality.

Person-centered Approach
We performed complementary person-centered analyses to go
beyond an average FD or SD learning pattern (figure 3). The
rationale here was to factor in the interactions among incom-
ing student characteristics, in order to understand the impact
of this heterogeneity on learning. We used latent profile anal-
ysis to first cluster students based on incoming profile vari-
ables like prior knowledge, effort regulation, learning goal
orientation, self-esteem and attitude towards mistakes. This
approach provides an elegant way to discover subgroups by
“simultaneously” considering interactions among “more than
one” incoming cognitive and motivational student character-
istic. Non-parametric multivariate finite mixture models were
used (Hickendorff, Edelsbrunner, McMullen, Schneider, &
Trezise, 2017). A two-cluster solution (figure 4) reflected
parsimonious fit to the data (based on model fit (loglik =
530.41), mixture distributions and visual inspection of mix-
ture density plots when fitting more than two clusters).

Cluster assignments for students into these homogeneous
subgroups were based on posterior probability distributions.
These cluster assignments allowed us to then use this in-
formation for studying interaction effects (reported below).
Statistically, we found one of these clusters (henceforth,
Clusterhigh) to have significantly higher scores on all of
these incoming characteristics, compared to the other cluster
(Clusterlow). Clusterlow reported higher extraneous cognitive
load than Clusterhigh (W = 7319.5, p = 0.001) after problem-
solving. All other task experiences were statistically similar.

Task topic SC/AQ Not surprisingly, we did find that stu-
dents in Clusterhigh scored significantly higher than those in
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Figure 3: Scaled posttest scores with inferential error bars (L to R: SC non-isomorphic, SC isomorphic, AQ non-isomorphic,
AQ isomorphic). Significant differences marked. Low and High represent students from Clusterlow/high within a condition.

Figure 4: Mixture density distributions when clustering students based on incoming cognitive and motivational characteristics
(L to R: Prior knowledge, Learning goal orientation, Effort regulation, Self-esteem, Attitude towards mistakes)

Clusterlow on the non-isomorphic conceptual understanding
posttest. This trend held for both SC (W = 4885.5, p = 0.04)
and AQ task topics (W = 4811.5, p = 0.02). On the other
hand, both Clusterhigh and Clusterlow performed equally well
on posttests scores for the isomorphic conceptual understand-
ing question. Equivalence testing results were inconclusive.
Interaction We finally looked at impact of the interaction
between experimental grouping and incoming student profile
on posttest. Results suggested that the omnibus trend for dif-
ference in non-isomorphic conceptual understanding posttest
still held for the SC topic (χ2(7) = 17.16, p = 0.016, Cohen’s
d = 0.448). Descriptively, students in the FD sub-groupings
outperformed those in the SD sub-groupings. As before, the
omnibus effect was still not significant for the isomorphic
conceptual understanding posttest (χ2(7) = 11.5, p = 0.118,
Cohen’s d = 0.294). Equivalence testing showed 24/28 pair-
wise comparisons to be inconclusive.

For the more difficult topic AQ, again, as before, exposure
to failure-driven scaffolds benefited students on both the non-
isomorphic (χ2(7) = 16.91, p = 0.017, Cohen’s d = 0.442)
and isomorphic (χ2(7) = 27.16, p = 0.0003, Cohen’s d =
0.647) conceptual understanding posttest. Descriptive trends
for students in FD sub-groupings scoring higher than their
counterparts in the SD sub-groupings still held. This also sug-
gests that perhaps task difficulty and the extent to which stu-
dent reasoning requires manipulation and integration of mul-
tiple representations, might be an important factor when look-
ing at the relative efficacy of FD and SD scaffolds.

Underlying Mechanisms
We computed partial correlations between student’s task ex-
periences during the problem-solving phase and their posttest
scores, controlling for experimental grouping (SD, FD) and
incoming student profile (Clusterhigh/low). For the more dif-
ficult topic (AQ), we saw positive associations of both iso-
morphic and non-isomorphic posttest scores with awareness
of knowledge gaps (ρ = 0.112+, 0.172*) and germane cog-
nitive load (ρ = 0.114+, 0.120+). The correlation between
these task experiences and posttest scores was not signifi-

cant for the easier topic (SC). Experiencing higher state cu-
riosity (ρ = 0.158*, 0.184**) and cognitive dissonance (ρ =
0.193**, 0.187**) was positively associated with only with
non-isomorphic posttests, however for both SC and AQ top-
ics. Finally, experiencing greater extraneous cognitive load
was negatively associated with posttest scores for both SC
(ρ = -0.243**, -0.236**) and AQ (ρ = -0.185**, n.s.) topics.

Manipulation Check and Design Implications
Students in every experimental condition had the opportu-
nity to make two solution attempts (prior/post exposure to
the scaffold) during the problem-solving phase. This de-
sign allowed us to assess the percentage of students who im-
proved/degraded their solution across these two time points
within the initial problem-solving. We computed a summary
index S (ranging from -100 to 100) for each condition and
task topic, by subtracting (i)∆D, the percentage of students
who degraded (got the right answer pre-scaffold, but wrong
answer post-scaffold), from, (ii)∆I, the percentage that im-
proved (got the wrong answer pre-scaffold, but right answer
post-scaffold). For the two FD conditions, we found S to be
highly negative (∆D > ∆I) for the more difficult task topic
AQ (-72%, -47%), suggesting that the problematizing scaf-
fold indeed pushed students towards explicit failure. For the
easier task topic SC (-51%, -34%), S was still negative but
comparatively lower in absolute terms.

Interestingly, for the two SD conditions, S was not positive
or ∆I was ≯ than ∆D (as one might intuitively expect). Over-
all, despite S being lower in absolute terms compared to the
FD conditions, it was still negative for both the AQ (-52%,
-54%) and SC (-40%, -6%) task topics. This suggests that
although explicit structuring prior to instruction led to greater
net solution accuracy (compared to explicit problematizing),
it was still not enough to push majority of student solutions
to match the canonical answer. Taken together, these analyses
show that students may not necessarily be prepared to receive
explicit structuring during initial exploration, especially for
difficult topics. It also opens up questions about re-calibrating
the specificity of structuring scaffolds so that ∆I > ∆D.
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Discussion and Conclusion
Table 2: posttest differences across experimental grouping

Non-isomorphic conceptual
understanding posttest

Isomorphic conceptual
understanding posttest

Topic SC
(Variable-centered)

χ2(3) = 11.73, p = 0.008
Cohen’s d = 0.409

χ2(3) = 1.37, p = 0.712
Cohen’s d = 0.174

Topic SC
(Person-centered)

χ2(7) = 17.16, p = 0.016
Cohen’s d = 0.448

χ2(7) = 11.5, p = 0.118
Cohen’s d = 0.294

Topic AQ
(Variable-centered)

χ2(3) = 10.84, p = 0.012
Cohen’s d = 0.387

χ2(3) = 20.16, p = 0.0001
Cohen’s d = 0.586

Topic AQ
(Person-centered)

χ2(7) = 16.91, p = 0.017
Cohen’s d = 0.442

χ2(7) = 27.16, p = 0.0003
Cohen’s d = 0.647

To summarize, our results indicate the efficacy of FD over
SD preparatory activities on student’s conceptual understand-
ing. We go beyond prior PS-I work by performing stringent
comparisons between explicit ways of pushing students to-
wards success and failure in problem-solving prior to instruc-
tion, and investigating their impact on learning. Overall, we
found a significant main effect for experimental grouping on
the non-isomorphic conceptual understanding posttest, with
the FD conditions outperforming the SD condition with the
more-specific clue, but not the SD condition with the less-
specific clue. Posttest score similarity between the latter com-
parison indicates that FD and SD approaches might poten-
tially offer two distinct but effective paths to learning. Nudg-
ing students to make them realize by themselves the extent
to which their activated knowledge is (ir)relevant for solving
the problem (we can have both SD and FD ways towards this
end), is better than directing their activation of relevant prior
knowledge (via a highly specific SD scaffold).

However, we also found that a comparatively higher per-
centage of students who received FD scaffolds demonstrated
reasoning with complete mathematical or non-mathematical
elaborations, indicating better quality of reasoning than stu-
dents in the SD conditions. This result supports the idea that
focusing on the pragmatic goal of performing the correct pro-
cedure (in presence of SD scaffolding) without appropriately
articulating understanding (non-reflective work) can lead to
fragile conceptual gains (Jonassen, 2010). We also found a
significant main effect for the incoming student profile on the
non-isomorphic conceptual understanding posttest, with stu-
dents having high self-reported scores significantly perform-
ing better. There was no evidence for an interaction effect.
Exposure to FD scaffolds had a greater impact on posttest
scores for the more difficult topic (AQ). Finally, we found
mechanistic task experiences to be positively associated with
posttest scores (stronger associations for AQ task topic and
for non-isomorphic posttests), controlling for experimental
grouping and incoming profile.

What might explain the superiority of problematizing scaf-
folds over structuring scaffolds in the PS-I design? Although
scaffolding for success might push for speed/accuracy to fa-
cilitate fluency in knowledge application for one form of in-
dependent performance (Schwartz, Sears, & Chang, 2007),
both posttest scores and qualitative analysis of reasoning sug-
gest that it does not guarantee improved conceptual under-
standing. Correct performance of a procedure scaffolded via
structuring might stem from the lack of awareness and appre-

ciation of long-term sub-optimality of a solution that works
reasonably well in the short-term (Schwartz, Chase, & Brans-
ford, 2012). The resulting quick/easy success may be insuf-
ficiently disruptive to challenge existing thought processes,
and induce inattention when learning from instruction.

Existing meta-analysis of PS-I literature (Loibl et al., 2017)
also suggests that students need to be made aware of the lim-
itations to their knowledge (knowledge gaps). Further, we
must instill in them a strong desire to know more about the
canonical solution to fill these knowledge gaps. Finally, the
learning design needs to facilitate understanding of which
solutions don’t work and why. In line with these vital pre-
instructional goals, the suboptimal RSM generation strategy
triggers “effortful activation” of prior knowledge conceptu-
ally relevant to the targeted learning concept.

By exposing students to additional exploration of the
problem-space structure that doesn’t necessarily lead to the
canonical solution, suboptimal RSM generation provides sup-
port for meaningful variation in reasoning (Soderstrom &
Bjork, 2015), which aids in improved conceptual understand-
ing. Further, the uncertainty induced about consequences
of partially-gained insights during solution revision is likely
to trigger momentary curiosity driven by student’s problem-
solving experiences. One’s own failed attempt is also likely
to better prepare students for acquisition of negative knowl-
edge regarding applicability conditions of solution strate-
gies during instruction. Finally, at a methodological level,
we see an improvement in effect sizes compared to a tra-
ditional variable-centered approach for both task topics (ta-
ble 2). Complementary person-centered analyses provide a
more accurate assessment of the impact of our PF interven-
tion, since they factor in the differential benefits arising due
to individual differences in SD and FD learning.

The scaffolding implemented in this work can be embed-
ded into metacognitive tutors (Joyner & Goel, 2015) that de-
ploy computer agents to imitate functional roles of teachers -
“guides” to offer structuring, and “critiques” to problematize
exploration. Limitations of this work stem primarily from the
classroom time constraints. This was reflected, for e.g., in
choice of datasets we used. For future work, we will design
rich(er) datasets (that allow greater scope of inferences). The
allocated time budget also led us to design one-step SD or
FD scaffolds, and collect single task experience questionnaire
after students finished solving problems on both topics (SC,
AQ). Finally, optional university attendance resulted in con-
siderable student dropout over the two study weeks, despite
our efforts to mitigate this threat via participation reminders.
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