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to have low and constant ECs, whereas rivers strongly 
affected by human activities should have high and 
variable ECs throughout the year. We collected infor-
mation on land use, climate, and geology that could 
explain the spatiotemporal variation in EC. We iden-
tified four groups of rivers with differences in EC 
trends that covered a gradient of anthropogenic pres-
sure. According to Random Forest analysis, temporal 
EC patterns were mainly driven by agriculture, but 
de-icing roads, mining, and wastewater discharges 
were also important to some extent. Linear regres-
sions showed a moderate relationship between EC 
variability and precipitation, and a weak relationship 
to geology. Overall, our results show strong evidence 
that human activities disrupt the temporal dynam-
ics of EC. This could have strong effects on aquatic 

Abstract  Human activities are not only increasing 
salinization of rivers, they might also be altering the 
temporal dynamics of salinity. Here, we assess the 
effect of human activities on the temporal dynamics 
of electrical conductivity (EC) in 91 Spanish rivers 
using daily measures of EC from 2007 to 2011. We 
expected rivers weakly affected by human activities 
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biodiversity (e.g., aquatic organisms might not adapt 
to frequent and unpredictable salinity peaks) and 
should be incorporated into monitoring and manage-
ment plans.

Keywords  Freshwater salinization · Temporal 
dynamics · Variability · Agriculture · Precipitation · 
Water quality

Introduction

Freshwater ecosystems are becoming saltier worldwide 
due to human activities (i.e., freshwater salinization, 
FS). Agriculture is the main driver of FS (Thorshlund 
et al., 2021), but there are others such as mining or the 
use of salts as de-icing agents in roads (Estevéz et al. 
2019; Cañedo-Argüelles, 2020). Overall, FS is a global 
water quality problem that not only harms biodiversity 
and ecosystems (Cañedo-Argüelles et al. 2013; Berger 
et al., 2018; Hintz & Reylea, 2019), but also poses risks 
to human health (Kaushal, 2016; Cañedo-Argüelles, 
2020) and can limit our use of hydric resources 
(Van Vliet et  al., 2017; Thorshlund et  al., 2021). The 
vast majority of studies on FS have focused on short-
term laboratory or mesocosm experiments, or on snap-
shot field studies (Kefford et al., 2003; Horrigan et al., 
2007; Birk et al., 2020). Thus, the temporal dynamics 
of FS have been largely overlooked. The few avail-
able studies addressing temporal variability in FS show 
that human activities can disrupt the natural temporal 
dynamics of salinity in freshwater ecosystems (Tim-
pano et al., 2018; Niedrist, 2020). We argue that each 
type of human activity might have a different “temporal 
signature” (i.e., a characteristic temporal behavior) due 
to its intrinsic properties.

In agricultural landscapes the temporal dynamics 
of salinity might depend on the cultivation period and 
practices (e.g., rainfed vs. irrigated crops). For example, 
Gardner & Young (1988) showed that salt accumula-
tion in the Colorado River Basin was primarily driven 
by excess irrigation water from croplands, and that 
irrigation explained more than a third of the basin salt 

load. Also, Heimhuber et al. (2019) found that extended 
dry periods increased salinity due to reduced river dis-
charge and salt accumulation in agricultural regions of 
the Murray-Darling Basin (Australia). Finally, Leng 
et al. (2021) found a strong correlation between nutri-
ents and salinity with the discharge of agricultural irri-
gation water into the Amu Darya and Syr Darya Riv-
ers, in Central Asia. Overall, salinity is strongly driven 
by irrigation during low-flow periods in agricultural 
catchments (Crosa et al., 2006; Kulmatov et al., 2020). 
Therefore, peaks in conductivity are most likely to 
occur during planting periods, when fertilizer addi-
tion and irrigation are maximum. During these peri-
ods, the salts that have not been used by the plants are 
washed into surrounding rivers and streams (Williams, 
2001; Anderson et al., 2019). In mining regions where 
residues are stockpiled (i.e., mine tailings) and surface 
rocks are exposed to weathering, heavy rain events 
can wash the salts into surrounding surface waters 
(Cañedo-Argüelles et  al., 2012). This leads to sharp 
salinity increases that are usually brief and not captured 
by conventional water quality monitoring programmes 
(Cañedo-Argüelles et al., 2017; Liu et al., 2021). At the 
same time, saline effluents generated as a by-product 
of resource extraction might be disposed directly to 
surface waters (Cormier et  al., 2013b; Vengosh et  al., 
2014; Sauer et al., 2016; Yusta-García et al., 2017) and 
diffuse salt pollution can generate from leaks in the 
waste management infrastructure (Gorostiza & Sauri, 
2019). Finally, mining can lead to the salt pollution of 
groundwaters (Xinwei et al. 2009; Kaushal et al. 2018; 
Bondu et al. 2021), which can enter rivers and streams 
at different rates depending on complex geomorpho-
logical processes that are difficult to predict (Dahl 
et al., 2007; Sun & Sun, 2013). In cold regions, salts are 
often applied to roads to keep them ice-free and ensure 
road safety and transportation efficiency. For example, 
salt application has exponentially increased in the US 
since 1940 (Jackson & Jobbagy, 2005), with around 
25 million metric tons of salts applied to roads in 2019 
(USGS, 2020). Also, 13.4 tons of sodium chloride are 
applied annually to each kilometer of roads affected by 
ice in the Alpine region of Tyrol (Niedrist et al., 2020). 
Commonly, rivers and streams close to roads in cold 
regions experience an increase in salinity during early 
spring (when the snow is melted and flows into the sur-
rounding streams) and during periods of snow-removal 
from the roads (Crowther & Hynes, 1977; Ruth, 2003; 
Kaushal et  al., 2005; Corsi et  al., 2015; Nava et  al., 
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2020; Dugan et al., 2020; Niedrist, 2020). Cities gener-
ate a large amount of wastewaters that contributes to the 
salinization of surface waters (Venkatesan et al., 2011) 
and groundwaters (Li et al., 2021). Salinity attributed to 
urban areas can be determined by the quantity and type 
of products used by consumers (Hoekstra, 2015), and 
the climatic conditions that influence the dilution capac-
ity of rivers and streams (Tiyasha et  al., 2020). Also, 
the efficiency of wastewater treatment plants (WWTP) 
modulates the salt load of their effluents. For example, 
Levlin (2014) monitored two WWTP in Stockholm and 
found no significant reduction in conductivity by the 
preliminary treatment, and less than a 30% reduction 
by the activated sludge process (Moyano-Salcedo et al., 
2021). Overall, the salt pollution associated with waste-
water discharges depends on the WWTP configuration 
(Gonçalves et al., 2019; Salcedo et al., 2021) and might 
be highest during the summer, when the dilution capac-
ity of rivers and streams is reduced (Dinçer & Kargi, 
2001; Van Vliet & Zwolsman, 2008).

Understanding the temporal dynamics of FS is 
important because they can affect the structure and 
functioning of biological communities. For exam-
ple, Kefford et al. (2007a, b, c) found that the eggs of 
some freshwater invertebrates were more sensitive to 
salt pollution than their larval stages. Thus, FS might 
have a greater effect for macroinvertebrates during 
oviposition than during larval development or during 
summer, when many species have emerged from the 
water. Also, many invertebrates that feed on leaf litter 
are especially sensitive to salinization (Kefford et al., 
2011). This can also have implications for ecosys-
tem functioning, since aquatic invertebrates contrib-
ute to carbon cycling through leaf litter decomposi-
tion (Canhoto et al., 2021).The aim of this study was 
to analyze how human activities might disrupt the 
temporal dynamics of electrical conductivity (EC, a 
proxy to salinity) in Spanish rivers using long-term 
data at high temporal resolution. Although previous 
studies have analyzed long-term salinity trends in riv-
ers (Kaushal et  al., 2005; Jiang et  al., 2022), this is 
the first study focusing on the temporal fluctuations 
of salinity at an interannual scale and a high tempo-
ral resolution. We hypothesized that rivers under low 
human pressure would have low and constant ECs, 
whereas rivers strongly affected by human activi-
ties would have high and variable ECs throughout 
the year. We expected that the temporal dynamics of 
EC in Spanish rivers would be mainly driven by (I) 

agricultural activity, leading to EC peaks during the 
crops’ growing season; (II) mining, leading to high 
ECs near mine tailings during heavy rainfall events; 
(III) transportation in cold regions, with high ECs 
during snowmelt and precipitation events in spring; 
and (IV) wastewater discharge in urban areas that 
would lead to maximum ECs during the summer due 
to low river flows.

Materials and methods

Study area

We studied 13 river catchments covering a wide range 
of land reliefs (i.e., valleys and mountains) and geo-
logical formations (e.g., carbonated rocks the eastern 
and southern regions and igneous metamorphic and 
rocks in the western regions) (Morán-Tejeda et  al., 
2019), and differing in size (from 900 to more than 
90 000 km2) (Estévez et al., 2019). They also covered 
diverse climatic conditions: the central, southern, 
and eastern regions present a Mediterranean climate, 
whereas the northern border is dominated by a tem-
perate oceanic climate (Rivas et  al., 2011). Finally, 
these heterogeneous environmental conditions result 
in a gradient of hydrological conditions, with some 
rivers drying during the summer (Peñas & Barquín, 
2019; Estévez et al., 2019).

Electrical conductivity measurements

We used daily measures of electrical conductiv-
ity (EC) for the period 2007–2011 from 91 stations 
of the Automatic Water Quality Information Sys-
tem (SAICA, 2020). Using these data, a set of 24 
ecologically meaningful conductivity indices (CIs) 
(Table  S1 in Online Resource 1) were calculated 
based on hydrological indices (Richter et  al., 1996; 
Peñas & Barquín, 2019). These indices were divided 
into three groups regarding (1) the mean annual and 
monthly conductivity, (2) the magnitude and duration 
of annual conductivity extremes, and (3) the timing of 
extreme conductivity events.

Environmental and human drivers

We selected relevant variables that could drive the 
change in the temporal dynamics of EC (Table S2 in 
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Online Resource 1), which were related to land use 
(n = 8), geologic characteristics (n = 2), and anthro-
pogenic pressures (n = 4). Distance to the nearest 
mine (P_DMN) and distance to the nearest icy road 
(P_DIR) were computed in R (R Core Team, 2021) 
according to the information available from the Span-
ish National Geographic Institute (2020). To calcu-
late P_DMN, all mines with operating permits were 
located. Only the mines exploiting ferrous, non-
ferrous, precious, non-metallic (e.g., salt), industrial 
rocks, and coal mines were considered. To calculate 
P_DIR, areas with a minimum of 30  days of snow 
were selected. Then, to determine the roads where 
salt was likely added, the selected areas were inter-
sected with a road map. The intersected roads were 
checked using information provided by the Spanish 
General Direction of Traffic (2020). Finally, the dis-
tances of each SAICA station to mines (P_DMN) and 
icy roads (P_DIR) were calculated. The rest of the 
variables were computed by Estevéz et al. (2019).

Assessment of the drivers of changes in the temporal 
dynamics of EC

First, principal components (PCA) and clustering 
(Lemenkova, 2018) analyses were performed to group 
the samples according to their CIs. The multicollin-
earity of CIs was calculated using the Variance Infla-
tion Factor (VIF) function in the R package “car,” 
and the CIs with highly collinearity (VIF > 5) were 
removed. Then, Random forests (RF) were performed 
to assess the relative importance of the environmental 
drivers for explaining the variation in EC within each 
group using the function “rfsrc” in the package “ran-
domForestSRC” (Ishwaran et al., 2022). ANOVA and 
Tukey’s tests were used to assess the differences in CI 
between clusters. Then, generalized additive models 
(GAMs) were used to assess the relationship between 
EC and the different drivers selected by the RF using 
the function “gam” in the package “mgcv” (Wood, 
2021). The GAMs incorporated independent smooths 
for each cluster and time step (i.e., each day at which 
conductivity was measured) and they were built using 
a default Gaussian distribution. To obtain model 
diagnostics, we used the “gam.check” and “appraise” 
functions in the package gratia (Pedersen et al., 2019). 
We assessed the differences between GAMs (i.e., 
differences in the temporal behavior of EC between 
groups) by looking at the confidence intervals. If the 

difference between the confidence intervals of the 
fitted smooths between two sets of data (i.e., cluster 
groups in our study) was non-zero, a strong difference 
was assumed (Pedersen et  al., 2019). Linear regres-
sions between EC and precipitation were built. All 
the statistical analyses were performed in R (R Core 
Team, 2021). Finally, the nomenclature proposed by 
Muff et al. (2022) was used to report the results from 
statistical analyses in the language of evidence.

Results

The minimum EC was always above 100 µS/cm and 
the maximum EC value was 5989 µS/cm. Overall, we 
found a strong decrease in mean EC (R2 = 0.001; P 
value < 0.001) at a rate of 17 µS/cm per year (Fig. S1 
in Online Resource 2).

Variations in temporal dynamics of EC among 
Spanish rivers

Five indices related to the annual coefficient of varia-
tion (CVA), twelve to the monthly coefficient of vari-
ation (CVM), and ten indices related to the timing of 
extreme EC events (JMax and JMin) were selected to 
classify the rivers because of having a VIF lower than 
5 (Tables S3, S3a and S3b; Online Resource 1). The 
first two axes of the PCA (Fig. 1) explained 56.7% of 
the variance in the different CIs, and the cluster anal-
ysis resulted in four groups of stations (SCI1, SCI2, 
SCI3, and SCI4; Fig. 2). The first axis of the PCA was 
mainly related to the coefficient of variation of the 
mean annual EC (CVA) and the coefficient of varia-
tion of the mean monthly EC (CVM from month 1 to 
12). The groups were arranged along this axis as fol-
lows (from positive to negative values): SCI1, SCI4, 
SCI3, and SCI2. The second axis of the PCA was 
positively related to the Julian day of annual maxi-
mum EC per year (JMax) and negatively to the Julian 
day of annual minimum EC per year (JMin). All the 
groups contained stations with both positive and neg-
ative values of this axis, but the group SC1 showed 
the widest dispersion (i.e., a highest temporal varia-
tion in EC). SCI1 included 9 stations with the high-
est mean EC and standard deviation (2500 ± 930 µS/
cm); group SCI2 included 37 stations with the lowest 
mean EC and standard deviation (374 ± 185 µS/cm); 
group SCI3 included 26 stations with moderate-low 



4535Hydrobiologia (2023) 850:4531–4546	

1 3
Vol.: (0123456789)

mean EC and standard deviation (850 ± 268 µS/cm); 
and group SCI4 included 19 stations with moderate-
high mean EC and standard deviation (1300 ± 473 µS/
cm). Figure  3 shows the EC variations by SCIs for 
the study period. In agreement with the PCA analy-
sis, SCI1 showed the highest EC variations, followed 
by SCI4, SCI3, and SCI2. According to the compari-
son of GAMs, SCI1 showed strong differences (i.e., 
confidence intervals in pairwise comparisons for 
GAMs smooth terms was non-zero) from the rest of 
the groups in terms of temporal variations in EC (Fig. 
S2 in Online Resource 2). According to the Random 
Forest (R2 = 0.52), the temporal variation in EC was 
mainly driven by agriculture (MN_AGR), distance 
to the nearest icy road (P_DIR) and mining site 
(P_DMN) in SCI1; distance to the nearest icy road 
(P_DIR), area occupied by moors, heathland, scrub 
and shrubs (MN_SSH), agriculture (MN_AGR), and 
pasture (MN_PAS) in SCI2; mining (P_DMN) and 
urban areas (MN_UHD) in SCI3; and by pasture 

cultivation (MN_PAS), agriculture (MN_AGR) and, 
in some cases, the area occupied by coniferous forest 
(MN_CNF) in SCI4 (Fig. 4).

According to ANOVA, there was strong evidence 
of differences between groups (P value < 0.001 in 
all cases) for several of the drivers analyzed (Fig. 5). 
SCI1 was the most subjected to human activities, 
with the highest values of agricultural land, min-
ing, and urban areas, and the lowest values of for-
est cover and calcareous and siliceous soils. On the 
opposite extreme of the anthropogenic disturbance 
gradient, SCI2 and SCI3 were characterized by the 
highest forest and pasture cover and the lowest urban 
cover, although SCI2 showed the closest distance to 
roads affected by snow, and SCI3 showed the clos-
est distance to mining sites. SCI4 presented inter-
mediate values for most drivers.  Finally, geological 
conditions showed a weak relation to temporal EC 
variations in all SCIs and had the lowest relevance 
to explain EC variations in SCI1 (the most impacted 

Fig. 1   Plot representing 
PCA and clustering of 
Synthetized Conductivity 
Indices (SCIs). The points 
and arrows represent the 
number of SAICA stations 
by cluster and the CIs, 
respectively
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by human activities) (Fig. 4). Also, according to the 
ANOVA test, there was no evidence (P value = 0.738) 
for differences in EC between calcareous (mean 
EC = 920 ± 300 µS/cm) and siliceous (mean 
EC = 800 ± 279 µS/cm) catchments (Fig. S3, Online 
Resource 2). We found strong positive linear relation-
ships between precipitation and EC during February 
(P value = 0.012) and November (P value = 0.007) 
in SCI1. In SCI2, EC was strongly associated with 
precipitation in March (P value = 0.027), July (P 
value < 0.001), August (P value < 0.001), October (P 
value = 0.002), and December (P value < 0.001). In 
SCI3, EC was strongly related to precipitation in Feb-
ruary (P value < 0.001), October (P value = 0.019), 
and November (P value < 0.001). In SCI4, EC was 
very strongly related to precipitation in August 
(P value < 0.001), November (P value < 0.001), 
and December (P value < 0.035). Finally, EC was 
strongly related to heavy rainfall events in SCI3 (P 
value = 0.05), and to low rainfall events (< 10  mm) 
in SCI1 (P value < 0.019), SC2 (P value < 0.001), 
and SCI3 (P value < 0.001). The R-squared values 
of the linear models are shown in Table  S4 (Online 
Resource 1).

Discussion

Overall, we found strong evidence for an amplifica-
tion of the temporal variability in EC in Spanish riv-
ers due to human activities. The EC was relatively 
constant along the year in rivers dominated by pas-
ture and forests, whereas it experienced frequent and 
strong fluctuations in rivers subjected to high human 
pressure. Also, the group of sites most affected by 
anthropogenic disturbance (SCI1) showed mean EC 
values above the current Spanish water quality stand-
ards set to protect aquatic ecosystems (1000 µS/cm; 
Real Decreto 670, 2013) and human health (2500 µS/
cm; Real Decreto 140, 2003). This aligns with pre-
vious studies showing that water quality standards in 
Europe are failing to protect aquatic biodiversity from 
salinization (Schuler et al., 2019; Hintz et al., 2022a, 
b). Contrary to our expectations, we found that the 
grouping of sites according to the temporal variabil-
ity in EC did not respond to unique human drivers, 
but to a combination of them. Therefore, we cannot 
claim that each human activity has its own “temporal 
signature.” This is likely related with regional differ-
ences in the human drivers of FS (e.g., different crops 

Fig. 2   Geographical map 
showing a spatial repre-
sentation of the obtained 
cluster groups of Synthe-
tized Conductivity Indices 
(SCIs). The points represent 
the number of SAICA sta-
tions by cluster
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have different growing seasons) and in the natural 
drivers that modulate natural salinity (e.g., hydrol-
ogy). Overall, the range of EC values reported in our 
study matches those reported by previous studies in 
Spanish rivers (Table S5 in Online Resource 3). We 
found strong evidence that the EC trends decreased 
from 2007 to 2011 for the whole set of rivers ana-
lyzed. These EC trends could be linked to technol-
ogy improvements and the increase in the number 
of wastewater treatment plants (Fuentes et al., 2017; 
Rufí-Salís et  al., 2022; Pompa-Pernía et  al., 2022). 
Although a decrease in EC has also been reported 
for other regions (Jiang et  al., 2022), it is important 
to notice that many freshwater ecosystems are getting 
saltier (Kaushal et al., 2005; Dugan et al., 2017) and 
this trend might be amplified by climate change (Le 
et al., 2019; Olson, 2019).

Agriculture was the main variable that differenti-
ated sites with high mean EC and EC variability (SC1 
and SCI4) from sites with low-moderate mean EC 
and EC variability (SCI2 and SCI3). This is in align-
ment with previous studies at the global (Kaushal 
et al., 2018; Thorslund et al., 2021) and the Spanish 
(Estévez et al., 2019) level, which identified agricul-
ture as the main driver of FS. Our study reveals that 
agriculture is not only increasing the salt concentra-
tion of rivers, but also disrupting the natural tem-
poral dynamics of salinity. Although the proximity 
of icy roads was not as important as agriculture, the 
ANOVA tests showed very strong evidence for dif-
ferences between groups according to this variable. 
So far, road salt pollution of rivers and streams has 
been almost exclusively studied in Canada and the US 
(Cunillera-Montcusí et al., 2022). Our results suggest 

Fig. 3   Plot representing 
the mean value and vari-
ability in conductivity of 
each group with Synthe-
tized Conductivity Indices 
(SCIs). The point and the 
irregular line represent the 
mean value and standard 
deviation, respectively



4538	 Hydrobiologia (2023) 850:4531–4546

1 3
Vol:. (1234567890)

that this activity is partly responsible for the increase 
in EC and the alteration of EC dynamics in Span-
ish rivers, as it has been found for the Alps (Niedrist 
et al., 2020). Thus, we suggest that road salt pollution 
of rivers and streams deserves to be further studied 
in Europe. Despite wastewater treatment plants hav-
ing a weak effect on EC variability, these also deserve 
attention due to the potential interacting effect of 
salinity with other chemical cocktails that com-
pose the so-called freshwater salinization syndrome 
(Kaushal et  al., 2018, 2019, 2021, 2022). Finally, 
we found weak differences in EC between rivers 

according to their geological composition. This sug-
gests that human activities are overriding the influ-
ence of geology, which is the main driver of changes 
in salinity in pristine rivers and streams (Meybeck, 
2003).

Temporal changes in EC were very strongly 
affected by precipitation during some of the studied 
months. The fact that the months that showed a strong 
linear relationship between precipitation and EC were 
different for each group suggests that human activities 
and climatic drivers interact to modulate the temporal 
dynamics of salt pollution. For instance, in the case of 

Fig. 4   Random forests (RF) plot representing the relative 
importance of the environmental drivers for explaining vari-
ation in conductivity within each SCIs. P_DMN: Distance to 
the nearest mining. P_DIR: Distance to the nearest icy road. 
P_DAR: Distance to the nearest dam upstream. V_DAR: Dis-
tance to the nearest effluent discharge upstream. MN_UHD: 
Area occupied by urban areas in the draining catchment. 
MN_AGR: Area occupied by agricultural land in the draining 

catchment. MN_CNF: Area occupied by coniferous forest in 
the draining catchment. MN_PLT: Area occupied by planta-
tions in the draining catchment. MN_SSH: Area occupied by 
moors, heathland, scrub, and shrubs in the draining catchment. 
MN_PAS: Area occupied by pasture in the draining catchment. 
MN_calc: Area occupied by calcareous rocks in the draining 
catchment. MN_slic: Area occupied by siliceous rocks in the 
draining catchment
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agriculture (which was most important in SCI1), daily 
EC and precipitation were strongly related during 
August–November, suggesting that salts could build 
up in the soil during the summer and then enter the 
rivers as runoff. Concordantly, Merchant et al. (2020) 
found that EC significantly increased in the Cidacos 
river (included in our study) during July–November 
due to crop irrigation. In SCI2, where road-de-icing 
and wastewater discharge were among the most 
important predictors according to RF, EC was related 
to precipitation during winter, spring, and summer. 

These are the months when there were roads affected 
by snow, salt could be washed into the rivers due to 
ice melting and river flows were low, respectively. 
The potential influence of road salt application on 
the EC of rivers enclosed in SCI2 aligns with a previ-
ous study (Asensio et al., 2017) that found salinized 
soils 3  m away from roads affected by snow during 
winter in some of the rivers belonging to this group 
(Aragon, Araquil, and Arga). Concordantly, in our 
study, these rivers showed higher mean and standard 
deviation EC (670 ± 155 µS/cm) than the rest of the 

Fig. 5   Results of the rel-
evant environmental vari-
ables (according to RF) and 
differences between SCIs 
(Standardized Values). A 
MN_AGR: Area occupied 
by agricultural land in the 
draining catchment. B P_
DIR: Distance to the nearest 
icy road. C P_DMN: Dis-
tance to the nearest mining. 
D V_DAR: Distance to the 
nearest effluent discharge 
upstream. Limitation of 
5000 m. E MN_CNF: 
Area occupied by conifer-
ous forest in the draining 
catchment. F MN_PAS: 
Area occupied by pasture in 
the draining catchment. G 
MN_UHD: Area occupied 
by urban areas in the drain-
ing catchment. H MN_calc: 
Area occupied by calcare-
ous rocks in the draining 
catchment. I MN_slic: Area 
occupied by siliceous rocks 
in the draining catchment
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rivers belonging to the same group (280 ± 104 µS/
cm). In SCI3, which had the greatest impact from 
mining, EC was strongly related to heavy precipita-
tion in autumn. Heavy rainfalls and flash floods are 
common in Spain during autumn, especially in the 
Mediterranean region (Belmonte & Beltrán, 2001; 
Machado et  al., 2011; Camarasa, 2016; Ribas et  al., 
2020), where important mining areas exist (Spanish 
National Geographic Institute, 2020). These heavy 
rain events are associated with EC peaks in min-
ing areas due to the washing of salts that are stock-
piled in mine tailings (Cañedo-Argüelles et al., 2012, 
2017; Ladrera et al., 2017; Gorostiza & Sauril, 2019). 
Finally, it is important to take into account that the 
rivers included in this study are relatively large (mean 
water level = 0.76 ± 0.97  m), thereby having a high 
salt dilution capacity (Turunen et al., 2020). Thus, our 
results need to be taken with caution, as the magni-
tude of salt pollution and the disruption of the tem-
poral salinity dynamics in smaller rivers and streams 
might be higher than those reported here. The disrup-
tion of the temporal dynamics of EC can have serious 
consequences for aquatic biodiversity. For example, 
we found EC peaks higher than 3500 µS/cm in SC1. 
These EC values are lethal to many riverine organ-
isms according to field studies and laboratory assays 
(Kefford et al., 2003; Horrigan et al., 2007; Cañedo-
Argüelles et  al., 2013). However, it is not only the 
magnitude of the EC peaks that matter, but also their 
timing. For example, during winter, many macroin-
vertebrate species are at early development stages, 
which tend to be more sensitive to salinization than 
the older stages (Kefford et  al., 2004, 2007a, b, c). 
Also, during summer, many taxa lay their eggs, which 
might not hatch at high EC (Bailey et al., 2004; Kef-
ford et  al., 2007a, b, c; Lawson et  al., 2021). Also, 
the existence of unpredictable and frequent EC peaks 
along the year could difficult the adaptation of the 
species to salinization and have deleterious effects 
on both biodiversity and ecosystems functioning 
(Cañedo-Argüelles et al., 2014; Oliveira et al., 2021).

Conclusions

This study is the first to analyze how the combina-
tion of natural and human drivers (agriculture, min-
ing, wastewater, transportation, and urban areas) 
influences the temporal dynamics of EC in Spanish 

rivers. We found strong evidence for a disruption of 
the temporal dynamics of EC due to human activities 
during the period study (2007–2011). We obtained 
four groups (SCI1, SCI2, SCI3, and SCI4) of rivers 
separated according to EC variability and the timing 
of extreme EC events. We found different EC pat-
terns throughout the year, with some rivers show-
ing high mean EC and EC variability (SCI1 and 
SCI4) and others lower and less variable ECs (SCI2 
and SCI3). The disruption of the temporal dynamics 
of EC did not show a clear separation between sta-
tions according to the dominance of different human 
activities. Instead, we found that EC variations were 
determined by a combination of multiple environ-
mental and human drivers. Agriculture was the main 
driver of FS, but de-icing roads, mining, and waste-
water discharges were also important to some extent. 
Also, there was very strong evidence for relationships 
between precipitation and EC that could be related 
to different human activities (e.g., crop irrigation or 
road salt application). Overall, our results call for 
more studies analyzing the ecological implications 
of increased variability of EC as a result of human 
activities. According to our results, it seems advis-
able to measure EC multiple times throughout the 
year and establish monitoring periodicity according 
to the human pressures that are operating on rivers 
and the natural seasonal EC dynamics. For example, 
in agricultural watersheds dominated by agriculture, 
information on the timing of pesticide and fertilizer 
application, irrigation, and harvesting could be very 
useful to anticipate changes in ECs in the rivers. Also, 
more studies on the ecological impacts of EC fluctua-
tions are needed to implement effective management 
responses that protect freshwater biodiversity from 
salinization.
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