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Abstract—Cooperative caching has emerged as an efficient
way to alleviate backhaul traffic and enhance user experience
by proactively prefetching popular videos at the network edge.
However, it is challenging to achieve the optimal design of
video caching, sharing, and delivery within storage-limited edge
networks due to the growing diversity of videos, unpredictable
video requirements, and dynamic user preferences. To address
this challenge, this work explores cost-efficient cooperative video
caching via video compression techniques while considering
unknown video popularity. Firstly, we formulate the joint video
caching, sharing, and delivery problem to capture a balance be-
tween user delay and system operative cost under unknown time-
varying video popularity. To solve this problem, we develop a
two-layer decentralized reinforcement learning algorithm, which
effectively reduces the action space and tackles the coupling
among video caching, sharing, and delivery decisions compared to
the conventional algorithms. Specifically, the outer layer produces
the optimal decisions for video caching and communication
resource allocation by employing a multi-agent deep deterministic
policy gradient algorithm. Meanwhile, the optimal video sharing
and computation resource allocation are determined in each
agent’s inner layer using the alternating optimization algorithm.
Numerical results show that the proposed algorithm outperforms
benchmarks in terms of the cache hit rate, delay of users and
system operative cost, and effectively strikes a trade-off between
system operative cost and users’ delay.

Index Terms—Cooperative video caching, performance-cost
trade-off, multi-agent reinforcement learning

I. INTRODUCTION

With the advancements in communication technologies, the
proliferation of mobile terminals and diversified applications
have led to the explosive growth of mobile data traffic [1].
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According to the forecast report of Ericsson, the video traf-
fic (e.g., short online videos, high-definition films, and live
streaming), will account for 79 percent of the mobile network
traffic that will reach 370 exabytes per month in 2027 [2].

Edge caching arises as a promising technology to address
the challenge of mobile data traffic [3]. Specifically, edge
caching enables the edge servers to store popular videos,
thereby reducing latency and alleviating the transmission pres-
sure [4], [5]. However, the capacity of the edge servers may
not meet the requirement of data storage due to the rapid surge
in data traffic. Fortunately, the introduction of cooperative
caching has enabled the edge to accommodate a larger number
of videos. This is attributed to its capability to facilitate collab-
oration among multiple edge servers, enabling them to share
the cached videos [6]–[8]. Concurrently, video compression
serves as another effective method to mitigate the limitations
of storage space at edge servers. By compressing videos, edge
servers can cache the smaller-sized videos along with their
corresponding transcoding parameters, thereby consuming less
storage space compared to storing the original videos [9], [10].
Therefore, the combination of cooperative caching and video
compression allows the edge to store a greater variety of videos
within the limited storage capacities of edge servers.

Additionally, cooperative video sharing and video delivery
are two pivotal strategies within the cooperative video caching
framework, influencing the Quality of Experience (QoE) for
users. On the one hand, along with the cooperative video
caching strategy, video sharing strategies enable edge to
provide users with more video services by video migration
among edge servers [11]. On the other hand, video delivery
strategies can directly impact the transmission delay that edge
servers send the requested videos to users, thereby influenc-
ing the delay which users acquire videos [12]. Therefore,
it is essential to jointly optimize the strategies of cooper-
ative caching, sharing and delivery. The authors in [13]–
[15] investigated the joint optimization of the three above
strategies in a cooperative caching system, aiming to minimize
the delay of users [13], [14] or maximize user satisfaction
[15]. However, the operational cost was not considered in
[13]–[15], which is important for mobile network operator
(MNO) [16]. MNO expects the development of cost-efficient
cooperative caching systems, aiming to enhance users’ QoE
while minimizing operational costs, in response to practical
constraints and cost considerations [17]. It is worth mentioning
that there is an inherent conflict between high performance and
low operative cost in the cooperative caching system [18].
Therefore, achieving a favorable performance-cost trade-off
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is essential when considering cooperative video sharing and
video delivery in this system.

The integration of cooperative video caching, sharing, and
delivery offers significant benefits, but achieving joint op-
timization of these elements is a complex challenge. This
complexity is primarily due to the varying popularity of
videos across different edge servers over time and space, in-
fluenced by the diverse and changing preferences of individual
users. The spatio-temporal variations in video popularity are
unknown, which poses significant challenges for traditional
optimization methods like the greedy algorithm [19], [20],
convex optimization [21], and Lyapunov optimization [22],
[23]. These methods typically rely on the assumption that user
video preferences are either known or can be accurately pre-
dicted to solve the joint optimization problem in cooperative
caching systems, which is impractical for real-world scenarios.

Deep reinforcement learning (DRL) emerges as a promising
solution to overcome the limitations of traditional optimization
methods [24]–[26]. To be specific, the DRL algorithms do not
rely on the assumption because the agent can directly interact
with the environment, acquiring the ability to generate a
sequence of actions that adapt to the spatio-temporal variations
in video popularity [27], [28]. Existing works focused on
utilizing the DRL algorithms to optimize service caching or
content caching. The authors in [13] developed a proximal
policy optimization algorithm to explore request dynamics,
thereby enabling the joint optimization of service caching
and request scheduling in the multi-access edge computing-
assisted networks. In [29], the authors proposed a Q-learning
algorithm to directly learn content placement instead of pre-
dicting content popularity in cache-enabled networks.

However, the considered joint optimization problem in
cooperative video caching system is still non-trivial even
resorting to the powerful DRL algorithm. Specifically, the co-
operative video caching system, when factoring in video shar-
ing and delivery, involves numerous optimization variables.
These variables encompass decisions related to video caching,
sharing, and resource allocations during the video delivery
phase, resulting in an extensive action space for DRL. One
reason for the huge action space is attributed to the fact that
the dimension of actions in the DRL algorithm exponentially
increases with the number of optimization variables. Directly
employing the DRL algorithm to address the optimization
problem with an extensive action space requirement may slow
down the convergence rate or even result in the failure of
the DRL algorithm’s convergence, which is called the curse
of dimensionality [30], [31]. Hence, a tailored DRL-based
algorithm that can reduce action space is required for the joint
optimization problem of video caching, sharing and delivery.

To this end, we investigate the distributed cooperative
caching over the edge networks from the performance-cost
trade-off perspective in this paper. This is realized through
the joint optimization of video caching, sharing and delivery
while considering unknown time-varying video popularity and
limited storage capacity. To address this joint optimization
problem, we propose an innovative two-layer DRL algorithm
based on alternative optimization and the multi-agent deep
deterministic policy gradient-based (MADDPG) algorithm.

The simulation results prove the feasibility of the proposed
scheme, which strikes the trade-off between the operative cost
and performance. The main contributions of our paper are
summarized as follows:

• We consider the video sharing, video delivery and video
compression in the distributed cooperative caching sys-
tem with unknown video popularity and heterogeneous
user needs. To investigate the performance-cost trade-off
in the cache-enabled edge network, we analyze and derive
user delay and system operative cost.

• We formulate the joint optimization problem of coop-
erative video caching, sharing and delivery to minimize
the user delay and operative cost while satisfying users’
delay requirements. The joint optimization involves five
decision variables, including two variables related to
video caching and sharing as well as three resource
allocation variables relevant to the video delivery, i.e.,
computation resource, sub-carrier, and power allocation.
These variables are tightly coupled in the objective func-
tion and constraints, which makes the problem difficult
to solve.

• To solve the problem with numerous optimization vari-
ables, we first decouple the joint optimization problem
into two subproblems: joint optimization of video shar-
ing and computation resource allocation, and joint opti-
mization of video caching and communication resource
allocation. To deal with the two subproblems, we pro-
pose a two-layer DRL algorithm. Specifically, the outer
layer of the proposed algorithm makes the video caching
and communication resource allocation decision via the
MADDPG algorithm, where each edge base station is
regarded as a learning agent. Then, the inner layer of
each agent generates a joint decision of video sharing
and computation resource allocation via an alternating
optimization algorithm, thereby effectively reducing the
action space.

• The simulation results show that our proposed scheme
outperforms other benchmark methods in terms of aver-
age cache hit rate, the delay of users, and system operative
cost, which indicates that the proposed scheme can better
adapt to spatial-temporal variations of video popularity
and time-varying wireless channel quality. In addition,
under different trade-off factor settings, the proposed
scheme reduces over 11% user delay and 14.5% system
operative cost compared to benchmark schemes, which
verifies that the proposed scheme achieves a compelling
trade-off between the system operative cost and user
delay.

The remainder of this paper is organized as follows: Section
II presents the main components of the cooperative caching
model and the formulated optimization problem minimizing
delay and cost. In Section III, we propose a decentralized two-
layer DRL algorithm to solve the large-scale mixed integer
optimization problem. Simulation results are presented in
Section VI to evaluate the performances of our proposed
algorithm. Section V concludes this paper.
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TABLE I
NOTATION SUMMARY

Notation Definition
B, B Set of physical BSs; size of B
K, K, Kb Set of users; size of K, set of users associated

with physical BS b
V , V Set of videos; size of V
S, S Set of sub-carriers; size of S
i, zvi , ρ Version of videos and index of virtual edge;

the size of video vi; video compressed ratio
τ , T The duration of each time slot; total number of

time slots
qbk,v(t) Video request indicator of user k
Db,l
vi (t) Transmission delay of video vi from network

entity l to physical BS b

Db,re
v (t) Retrieval delay of video v in physical BS b

Db,com
k,v (t) Computation delay of video v for user k

Db,ac
k,v (t) Transmission delay of user k over access link

Db
k(t) Total delay of user k

Ebre(t), Ebcom(t),
Ebac(t), Ebca(t),
Eb(t)

Retrieval cost; computation cost; caching cost;
transmission cost over access link; total cost of
physical BS b

D(t), E(t) Total delay of all users; total system operative
cost

ζ, ξ Refractive index of fiber; speed of light in the
vacuum

db,l, ηb,l Total optic fiber length; hop counts along the
shortest transmission path from physical BS b
to network entity l

Ro, Rb Transmission rate of backhaul link; transmis-
sion rate of wired links among physical BSs

λbk,v Computing density required by user k to
transcode the compressed video v2

Bw Total bandwidth of the downlink
γbk,s(t),
rbk,s(t), Rbk(t)

SINR and achievable data rate of user k on
sub-carrier s; transmission rate of user k over
the access link

wim,l, wf , wbw,
wp, wc

Unit prices of video migration, computation
resource, bandwidth, power and video updating

ε, δ Normalized factor and trade-off factor between
user delay and system operative cost

rp(t), op Penalty function and penalty coefficient
yb,lvi (t),Yb

t ,Y Indicator of video sharing decisions; set of
yb,lvi (t); set of Yb

t

cbvi(t),C
b
t ,C Indicator of video caching decisions; set of

cbvi(t); set of Cb
t ;

fbk(t), Fbt , F Variables of computation resource allocation,
set of fbk(t); set of Fbt

xbk,s(t), Xb
t , X Indicator of sub-carrier allocation; set of

xbk,s(t); set of Xb
t

pbk,s(t), Pb
t , P Transmit powers allocation variables; set of

pbk,s(t); set of Pb
t

II. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, B cache-enabled physical base sta-
tions (BSs) connected via fibers provide video services to
K users. The physical BSs and users are indexed by B =
{1, · · · , b, · · · , B} and K = {1, · · · , k, · · · ,K} respectively.
For physical BS b, its associated users are denoted by Kb ⊂ K.
It is assumed each physical BS has the same caching capacity
of z bits and limited computing capacity of F cycle/s. The

remote video server communicates with all physical BSs
through a backhaul network.

By employing the network function virtualization (NFV),
each physical BS can be virtualized as one caching virtual
BS (CA-vBS) and one computation virtual BS (CO-vBS).
Naturally, the physical edge, formed by all physical BSs,
is divided into two virtual edges, namely virtual edge 1
comprising CA-vBSs and virtual edge 2 consisting of CO-
vBSs. In virtual edge 1, each CA-vBS is endowed with large
storage space to cache uncompressed videos. Meanwhile, each
CO-vBS in virtual edge 2 has small storage space but sufficient
computing resources for caching and transcoding compressed
videos. Suppose that there are V videos in the remote video
server o, indexed by by V = {1, · · · , v, · · · , V }. Each video v
has both uncompressed version v1 and compressed version
v2, whose sizes are zv1 and zv2 , respectively. Moreover,
zv2 = ρzv1 and 0 < ρ < 1 is video compressed ratio. For
the convenience of representation, let i ∈ {1, 2} denote not
only the version of videos but also the index of the virtual
edge.

B. Video Request Strategy

The time dimension is divided into time slots of duration
τ , indexed by t ∈ {1, 2, · · · , T}. Assuming that each user
sends its video request at the beginning of each time slot.
Let the binary variable qbk,v(t) indicate the request of user
k associated with physical BS b for video v at time slot t.
Specifically, if user k requests video v at time slot t, qbk,v(t) =

1; otherwise, qbk,v(t) = 0. In this cooperative caching system,
we assume that each user request must be satisfied within
the time slot requested by the user. This assumption can be
eliminated by setting that the duration of each time slot τ
exceeds the maximum delay constraint for all users [32]. Fig.
2 shows the operation mechanism that the cooperative caching
system provide users with requested videos in one time slot.
The operation mechanism comprises a video sharing phase, a
video delivery phase, and a video caching phase [29]:

1) Video sharing phase: After receiving a user’s video
request, the physical BS associated with the user firstly checks
whether its corresponding CA-vBS and CO-vBS, i.e., current
vBSs, have cached the requested video. If the current vBSs
have cached the requested video, current vBSs deliver the
requested video to users. When the requested video has been
not cached by current vBSs but is available in other vBSs,
other vBSs share the compressed or uncompressed requested
video with current vBSs via the high-speed wired link. In
the worst-case case, none of the vBSs at the edge have
cached the requested video. In such instances, the remote
video server transmits the uncompressed requested videos to
the current CA-vBS through the backhaul link. Consequently,
the requested video can be fetched from the network entities,
including current vBSs, other vBSs, and remote video server
o. We denote the video sharing decision of cooperative edge
caching system as Y = {yb,lvi (t)|b ∈ B, t ∈ T, v ∈ V, l ∈
B ∪ o, i ∈ {1, 2}}, where yb,lvi (t) ∈ {0, 1} is a binary variable
to represent whether the current vBSs of physical BS b retrieve
the video vi from the network entity l or not.
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Fig. 1. System model of cooperative caching.

2) Video delivery phase: Upon fetching the requested
video shared by network entities, the current vBSs provide
the requested video services to users over the access link
by making the decisions on communication and computation
resource allocation. If the current CA-vBS has fetched the
requested video without compression, the current CA-vBS
delivers the required video directly to the user over the
access link. Alternatively, if the current CO-vBS has fetched
the compressed version of the requested video, it conducts
transcoding procedures before transmitting the required video
to the user. Note that choosing which current vBS to finish
video sharing and delivery process depends on current cache
status, system operative cost and user delay, which will be
introduced in detail later.

3) Video caching phase: At the end of each time slot, each
vBS refreshes cached uncompressed or compressed videos
from the cloud server under the video caching decision. In
each time slot, the video caching decision determines which
videos should have been cached, i.e., cache status, during the
next time slot. The caching decision of the cooperative edge
caching system is denoted as C = {Cb

t |b ∈ B, t ∈ T}, where
Cb
t = {cbvi(t)|v ∈ V, i ∈ {1, 2}} is the caching decision

variable of physical BS b at time slot t. cbvi(t) ∈ {0, 1} is
a binary variable to show whether physical BS b caches the
corresponding video vi at the end of time slot t or not.

C. Delay and Cost Model

We first analyze of the delay and cost within the video
sharing and delivery phase, which can be divided into three
components.

1) Retrieval delay and cost: In the video sharing phase,
the retrieval delay of video v in physical BS b is given by

Db,re
v (t) =

∑
l∈B∪o

∑
i∈{1,2}

yb,lvi (t)Db,l
vi , (1)

where Db,l
vi is the transmission delay that network entity l

delivers the requested video vi to physical BS b. From physical
BS b to network entity l ∈ B∪o, the total optic fiber length and
hop counts along the shortest transmission path are denoted

Have current vBSs        

 cached requested video?

Have other vBSs 

cached requested video?

Current vBSs retrieve  

requested video from remote 

video server via backhaul link.

Making the video caching decisions 

to update all vBSs  cache space

Users generate video request

Current vBSs retrieve  

requested video from 

other vBSs via fibers. 

Current vBSs transmit video to users by 

making decisions about communication 

and computation resource allocation

No

NoYes

Yes

Video delivery phase

Video caching phase

Video sharing phase

 (Making the video sharing 

decisions for users)

Fig. 2. The operation mechanism in one time slot.

as db,l and ηb,l, respectively. The transmission delay Db,l
vi can

be expressed by [13]

Db,l
vi =

{
ηb,l

zvi
Rb

+ db,l
ζ
ξ , if l ∈ B ,

ηb,l
zvi
Ro

+ db,l
ζ
ξ , if l = o ,

(2)

where ζ are refractive index of fiber, ξ is speed of light in the
vacuum, Ro is the transmission rate of backhaul link, and Rb
is transmission rate of wired links among physical BSs.

The retrieval cost of each physical BS is defined as the
migration cost of the requested videos from network entities
to current vBSs [33]. Hence, the retrieval cost of physical BS
b at time slot t can be given as follows

Ebre(t) =
∑
v∈V

∑
i∈{1,2}

∑
l∈B∪o

wim,lηb,ly
b,l
vi (t), (3)

where wim,l is the unit migration price of transmitting videos
between corresponding vBS in virtual edge i of physical BS
b and network entity l ∈ B ∪ o. Note that wim,o > wim,b,∀b ∈
B, i ∈ {1, 2}. This is because the transmission overhead that
the remote video server transmits the requested videos to
vBSs is larger than the transmission overhead among vBSs.
Besides, considering that the size of compressed videos is less
than that of uncompressed videos, the unit migration price of
compressed video is smaller than uncompressed videos’ unit
migration price, that is, w1

m,l > w2
m,l.

2) Computation delay and cost: The computation delay
and cost are introduced when the retrieval process is performed
in virtual edge 2. The computation delay of user k who
requests the video v at physical b is given by [34]

Db,com
k,v (t) =

∑
l∈B∪o

yb,lv2 (t)
zv2λ

b
k,v

f bk(t)
, (4)
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where λbk,v is the computing density (in CPU cycle/bit) to
transcode the compressed video v2 requested by user k asso-
ciated with physical BS b, f bk(t) is computation resource of
user k, which is allocated by the corresponding CO-vBS of
physical BS b at time slot t. The computation cost of physical
BS b depends on the amount of computation resource that the
corresponding CO-vBS consumes to transcode the compressed
videos at time slot t, which is calculated by

Ebcom(t)=
∑
k∈Kb

wff
b
k(t) (5)

where wf is the unit price of the computation resource.
We denote the computation resource allocation decision of
cooperative system as F = {f bk(t)|b ∈ B, k ∈ Kb, t ∈ T}.

3) Transmission delay and cost of access link: The
last stage is video transmission from the current vBSs of
physical BSs to their associated users via the downlink of
wireless access network. We use the orthogonal frequency
division multiple access method for each cell’s downlink
communication without intra-cell interference [35]. The total
bandwidth of the downlink is Bw Hz, which is divided into
S sub-carriers, each occupying a bandwidth of Bw/S Hz.
Let S = {1, · · · , S} denote the set of sub-carriers. The
binary variable xbk,s(t) = 1 indicates that the sub-carrier s
is allocated to the user k associated physical BS b at time
slot t, otherwise xbk,s(t) = 0. In addition, we define the set
of sub-carrier and transmission power allocation of downlink
at slot t as X = {xbk,s(t)|b ∈ B, k ∈ Kb, s ∈ S, t ∈ T}
and P = {pbk,s(t)|b ∈ B, k ∈ Kb, s ∈ S, t ∈ T}, where
pbk,s(t) is the transmission power of the user k associated
with physical BS b and sub-carrier s. The channel between
a physical BS and a user is assumed to be a Rayleigh fading
channel, which is independent and identical distributed over
time. Then, the signal to interference plus noise ratio (SINR)
of user k associated with physical BS b and sub-carrier s at
time slot t is given by

γbk,s(t) =
pbk,s(t)h

b
k,s(t)

(
dbk(t)

)−α
Ibk,s(t) + Bw

S N0

, (6)

where hbk,s(t) is the channel gain of the desired transmission
path between user k and its associated physical BS b on sub-
carrier s at slot t, which follows a unit-mean exponential distri-
bution. The path-loss between the physical BS n and user k is
modeled as

(
dbk(t)

)−α
, where dbk(t) denotes the reference dis-

tance between them in the path loss model, and α is the path-

loss exponent. Ibk,s(t) =
∑
b′∈B\{b}p

b′

k,s(t)h
b′

k,s(t)
(
db

′

k (t)
)−α

is the inter-cell interference of user k associated with physical
BS b and sub-carrier s at time slot t. N0 is the power spectral
density of the additive white Gaussian noise.

Hence, the achievable data rate of user k on sub-carrier s
associated with physical BS b at time slot t is given by

rbk,s(t) =
Bw
S

log2

(
1 +

pbk,s(t)h
b
k,s(t)

(
dbk(t)

)−α
Ibk,s(t) + Bw

S N0

)
. (7)

Based on (7), the total transmission rate of user k associated
with physical BS b over the access link at time slot t is

expressed as

Rbk(t) =
∑
s∈S

xbk,s(t)r
b
k,s(t). (8)

The transmission delay that physical BS b delivers video v
to the associated user k depends on the total transmission rate
of user k over the access link and the size of the uncompressed
requested video v1, which is given by

Db,ac
k,v (t) =

zv1
Rbk(t)

. (9)

Meanwhile, the transmission cost of physical BS b over the
access link at time slot t can be measured by the usage of
bandwidth and transmission power, which is given by

Ebac(t) =
∑
k∈Kb

[
wbw

Bw
S

∑
s∈S

xbk,s(t) + wpp
b
k(t)

]
, (10)

where wbw and wp are the prices of unit bandwidth and
unit power, respectively. Moreover, the transmission power
of user k associated with physical BS b is expressed as
pbk(t) =

∑
s∈S

xbk,s(t)p
b
k,s(t) + pck, where pck is the circuit power

consumption of user k associated with physical BS b.
4) Total delay and cost: Based on the above analysis,

the user delay and system operative cost can be obtained.
Specifically, the delay that users obtain the requested videos
is composed of the retrieval delay, the computation delay, and
the transmission delay over the access link. Based on (1), (4)
and (9), the delay of user k associated with physical BS b at
time slot t is expressed by

Db
k(t) =

∑
v∈V

qbk,v(t)(D
b,re
k,v (t)+Db,com

k,v (t)+Db,ac
k,v (t)). (11)

Thus, the total delay of all users in the proposed cooperative
caching system is denoted as D(t) =

∑
b∈B

∑
k∈Kb

Db
k(t). Corre-

spondingly, we define the total system operative cost as the
operative cost of all physical BSs. The total system operative
cost at time slot t can be expressed as E(t) =

∑
b∈B

Eb(t),

where Eb(t) is operative cost of physical BS b. The operative
cost of physical BS b depends on not only retrieval cost,
computation cost and access cost but video caching cost in
the video caching phase. The operative cost of physical BS b
at time slot t is modeled as

Eb(t) = Ebre(t) + Ebcom(t) + Ebac(t) + Ebca(t), (12)

where Ebca(t) represents the caching cost of physical BS b at
time slot t. The caching cost of physical BS b is related to
the operations that physical BS b refreshes the videos cached
in its current two vBSs’ storage space. The caching cost of
physical BS b at time slot t is given by

Ebca(t) = ωc
∑
v∈V

∑
i∈{1,2}

cbvi(t)(1− c
b
vi(t− 1)), (13)

where wc is the unit price of video updating, and the sum term
is the number of uncompressed and compressed videos to be
fetched and cached at time slot t, which were not cached at
the time slot (t− 1) [36].
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D. Problem Formulation

In general, the users tend to obtain the required videos
with minimal delay while the MNO’s objective is to provide
video services at the least operative cost. From both the
perspectives of users and MNO, this work aims to strike a
balance between the system operation cost and user delay
under the delay constraints of users, which is achieved by
optimizing the video caching, video sharing, communication
and computation resource allocation under the limited storage
space, computation capacity, and communication resource.
The optimization problem is formulated as follows:

min
C,Y,F,X,P

T−1∑
t=0

[δεD(t) + (1− δ)E(t)] (14)

s.t. (C1) : Db
k(t) 6 Db

k,th(t),∀b, k, t,

(C2) :
∑
v∈V

∑
i∈{1,2}

zvic
b
vi(t) 6 z,∀b,m,

(C3) :
∑

i∈{1,2}

cbvi(t) 6 1,∀v, b, t,

(C4) : yb,lvi(t)6c
l
vi(t− 1),∀l, v, b, i, t,

(C5) :
∑
l∈B∪o

∑
i∈{1,2}

yb,lvi(t)61,∀v, b, t,

(C6) :
∑
l∈B∪o

∑
i∈{1,2}

yb,lvi (t) > Γ(
∑
k∈Kb

qbk,v(t)),

∀v, b, t,

(C7) :
∑
k∈Kb

xbk,s(t) 6 1,∀b, s,

(C8) :
∑
k∈Kb

pbk(t) 6 pbmax,∀b,

(C9) :
∑
k∈Kb

f bk(t)6F,∀b,

(C10) : pbk,s(t) > 0,∀k, s, b,
(C11) : f bk(t) > 0,∀k, b,
(C12) : xbk,s(t), c

b
vi(t), y

b,l
vi (t) ∈ {0, 1},

∀b, k, l, v, i,

where ε is the normalized factor to make user delay and system
operative cost in a similar scale, trade-off factor δ ∈ [0, 1] is
used to balance user delay and system operative cost, where a
large δ emphasizes the reduction of user delay by sacrificing
the system operation cost. (C1) represents that the delay of
each user can not exceed its allowed delay threshold denoted
by Db

k,th(t). (C2) is the cache capacity limitation of each
physical BS. (C3) implies the corresponding CA-vBS and CO-
vBS of each physical BS can not cache the same video, which
can improve the video diversity at the edge. (C4) specifies
the range of network entities from which the current vBSs
can retrieve the requested videos at time slot t. The range
of network entities refers to the network entities that have
cached the requested videos during the video caching phase
of time slot (t − 1). In (C6), we define a function Γ(x) that
its function value is 1 if x > 0 and 0 if x 6 0. (C5) and (C6)
ensure that each physical BS selects the most suitable network

entity to retrieve each requested video. (C7) guarantees that
each physical BS could only allocate each sub-carrier to at
most one associated user. (C8) limits the maximal transmission
power of physical BS b ∈ B to pbmax. (C9) is to ensure
that the computation resource that each CO-vBS consumes
to transcode the compressed videos should not surpass its
corresponding physical BS’s computation capacity. (C10) and
(C11) indicate that the value of the transmission power and
computation resource used by each user is non-negative. (C12)
ensures binary-valued xbk,s(t), c

b
vi(t), y

b,l
vi (t).

The long-term optimization problem involves multiple opti-
mization variables, i.e., video caching, video sharing, com-
putation resource, subcarrier, and power allocation. Those
variables are deeply coupled in the objective function and con-
straints, which makes this problem non-convex. Furthermore,
the presence of unknown future information, such as video
popularity and wireless channel state, further complicates
obtaining a long-term global optimal solution. To approach
a long-term optimal solution, employing DRL algorithms is
a viable approach. However, directly using DRL algorithms
to solve the problem may face difficulties in convergence
due to the extensive action space involving five variables. To
address this complicated problem, an efficient two-layer DRL
algorithm is proposed in the following section.

III. SOLUTION BASED ON TWO-LAYER DRL FRAMEWORK

Due to the interdependence of multiple variables, we pro-
pose to decouple problem (14) into two subproblems and
employ a two-layer DRL framework to solve the subprob-
lems sequentially. The details of each layer are given in the
following two subsections.

A. Inner Layer: Joint Video Sharing and Computation Re-
source Allocation Subproblem

Under given video caching and communication resource al-
location policy {C,X,P}, the inner subproblem is to minimize
the weighted sum of system operative cost and user delay via
optimizing video sharing decision and computation resource
allocation variables, i.e.,

min
Y,F

T−1∑
t=0

[δεD(t) + (1− δ)E(t)] (15)

s.t. (C1), (C4)− (C6), (C9), (C11), (C12),

By analyzing the objective function of problem (15), video
sharing and computation resource allocation decisions at any
time slot t only impact retrieval delay and cost as well as
computation cost and delay in t. In addition, the constraints
of problem (15) are independent in each time slot. Hence,
optimizing long-term optimization problem (15) can be recast
as optimizing multiple one-shot problems, whose objectives
are to minimize instantaneous retrieval delay and cost as well
as computation cost and delay.

Furthermore, video sharing and resource allocation deci-
sions of each physical BS b in any time slot t (i.e., {Yt

b,F
t
b})

only affect its own retrieval and computation cost as well as the
retrieval and computation delay of its associated users in t, i.e.,
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Ebre(t), Ebcom(t), Db,re
k,v (t) and Db,com

k,v (t), ∀k ∈ Kb. Mean-
while, each physical BS makes video sharing and resource
allocation decisions in each time slot independently. There-
fore, the video sharing and computation resource allocation
variables of each physical BS can be optimized independently.
For physical BS b, the video sharing and computation variables
{Yt

b,F
t
b} are optimized to minimize its retrieval delay and cost

as well as computation cost and delay under caching state and
communication resource allocation decision at time slot t. The
corresponding problem can be reformulated as

min
Yt

b, Ft
b

f bY,F (t) (16)

s.t. (C1), (C4)− (C6), (C9), (C11), (C12),

where

f bY,F (t) =
∑
v∈V

∑
l∈B∪o

 ∑
i∈{1,2}

yb,lvi (t) (17)

(∑
k∈Kb

qbk,v(t)(ηb,l
zvi
Rl

+ db,l
ζ

ξ
)ε,1 + wim,lηb,lε

,
2

)

+yb,lv2 (t)
∑
k∈Kb

qbk,v(t)
zv2ε

,
1λ
b
k,v

f bk(t)

]
+
∑
k∈Kb

wfε
,
2f
b
k(t),

and ε,1 = δε, ε,2 = 1 − δ. Base on (4), (11) and (17),
it can be observed that the constraint (C1) and the objec-
tive function f bY,F (t) is related to a fractional term yb,lv2 (t) ·∑
k∈Kb

qbk,v(t)
zv2ε

,
1λ
b
k,v

fbk(t)
. Due to the coupling between Yt

b and

Ftb in the fractional term, f bY,F (t) and the constraint (C1) are
non-convex, resulting that problem (16) is difficult to solve.
Hence, we develop an alternating optimization algorithm to
optimize video sharing and computation resource allocation
alternatively. The details of the alternating optimization algo-
rithm are given as follows.

1) Optimization of Ftb: The computation resource alloca-
tion problem for a given {Yt

b} from (16) becomes

min
Ftb

∑
k∈Kb

[∑
v∈V

∑
l∈B∪o

qbk,v(t)y
b,l
v2 (t)

zv2ε
,
1λ
b
k,v

fbk(t)
+wfε

,
2f
b
k(t)

]
s.t. (C1) : f bk(t) ≥

∑
v∈V

∑
l∈B∪o

qbk,v(t)yb,lv2
(t)zv2λ

b
k,v

Dbk,th(t)−
∑
v∈V

qbk,v(t)(Db,rek,v (t)+Db,ack,v (t))
,

∀k, b, t,
(C9) :

∑
k∈Kb

f bk(t)6F,∀k, b, t,

(18)

we can prove that problem (18) is a convex optimization
problem. Specifically, the constraint (C1) indicates that the
computation resource allocation variable f bk(t) is non-negative.
Hence, 1

fbk(t)
and f bk(t) are convex functions with respect to

f bk(t). Accordingly, the objective function of problem (18)
remains convex due to the convexity of convex functions’
linear combination. In addition, (C1) and (C9) are all lin-
ear. Therefore, problem (18) is convex with respect to Ftb.
Consequently, the optimal solution of computation resource
allocation at time slot t is obtained by using Lemma 1.

Algorithm 1: A Binary Search-Based Method for the
Lagrange Multiplier

Input: Give a big enough θbup(t), initialize θblow(t) = 0,

θb(t) =
θblow(t)+θbup(t)

2
, set success = False;

Output: Optimal value of the Lagrange multiplier θb∗(t);
1 while NOT success do
2 Calculate Hb(θb(t)) according to (20) ;
3 if 0 ≤ Hb(θb(t)) ≤ Λ1 then
4 Obtain the optimal computation resource allocation

with given Yt
b and accuracy level Λ1, set success

= True;
5 else if Hb(θb(t)) < 0 then
6 Halve the searching region according to

θblow(t) = θb(t), θb(t) =
θblow(t)+θbup(t)

2
7 else
8 Halve the searching region according to

θbup(t) = θb(t), θb(t) =
θblow(t)+θbup(t)

2
9 end

10 end

Lemma 1. The optimal computation resource allocation so-
lution for problem (18) meets the following condition:

f bk(t) = max{φbk(t), ϕbk(t)} (19)

where

φbk(t) =

√√√√ ∑
v∈V

∑
l∈B∪o

yb,lv2 (t)qbk,v(t)zv2ε
,
1λ
b
k,v

wfε
,
2 + θb(t)

,

ϕbk(t) =

∑
v∈V

∑
l∈B∪o

qbk,v(t)y
b,l
v2 (t)zv2λ

b
k,v

Db
k,th(t)−

∑
v∈V

qbk,v(t)(D
b,re
k,v (t) +Db,ac

k,v (t))
,

and θb(t) ≥ 0 is a Lagrange multiplier, which is determined
by the equation

∑
k∈Kb

f bk(t)=F .

Proof. Please see Appendix A.

By substituting (19) into
∑
k∈Kb

f bk(t) =F , it is difficult to

derive analytically θb(t). To get the optimal value of θb(t)
numerically, we define a function with respect to θb(t), which
is given by

Hb(θb(t))=F −
∑
k∈Kb

[
βbk(t)φbk(t)+(1−βbk(t))ϕbk(t)

]
(20)

where βbk(t) = 1 if φbk(t) ≥ ϕbk(t) and βbk(t) = 0 otherwise.
Since φbk(t) monotonically decreases with θb(t), Hb(θb(t)) is
monotonically decreasing function with respect to θb(t). It is
obtained that the low bound of θb(t) is 0 from Lemma 1.
A binary search method (Algorithm 1) is proposed to obtain
the optimal value of θb(t) numerically within initial searching

region [0, θbup(t)]. Begin with the value θb(t) =
θblow(t)+θbup(t)

2 ,
we iteratively calculate the Hb(θb(t)) and the computation
resource f bk(t) for current value θb(t). The searching region is
divided in half, with the larger half preserved if Hb(θb(t)) < 0,
and the smaller half retained if Hb(θb(t)) > Λ1. Once the
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given precision requirement (i.e., Λ1) is satisfied, the searching
will be terminated. By substituting the optimal value of the
Lagrange multiplier θb∗(t) into (19), the optimal computation
resource allocation Ft

b is obtained with given Yt
b.

2) Optimization of Yt
b: Given Ftb, problem (16) is non-

convex with respect to yb,lvi (t). To this end, we relax the value
of yb,lvi (t) to the interval of [0, 1]. Accordingly, problem (16)
is recast as

min
Yt

b

f bY (t) (21)

s.t. (C1), (C4)− (C6),

(C12) : 0 ≤ yb,lvi (t) ≤ 1,∀b, l, v, i,

where

f bY (t) =
∑
v∈V

∑
l∈B∪o

[ ∑
i∈{1,2}

yb,lvi (t)( ∑
k∈Kb

qbk,v(t)(ηb,l
zvi
Rl

+ db,l
ζ
ξ )ε,1 + wim,lηb,lε

,
2

)

+yb,lv2 (t)
∑
k∈Kb

qbk,v(t)
zv2ε

,
1λ
b
k,v

fbk(t)

]
.

(22)

It is observed from (21) that the objective function and
constraints are all linear. Therefore, the optimal video sharing
decision for each physical BS can be directly obtained via
convex optimization toolkit, such as CVXPY [37]. Note that
the relaxation can be regarded as a cooperative transmission
among network entities, where the set of network entities is
denoted by {l|yb,lvi (t) 6= 0,∀l ∈ B ∪ o}. To illustrate, a partial
video sharing indicator yb,lvi (t) 6= 0 means that network entity l
transmits the portion yb,lvi (t) of the video vi to current vBS b at
time slot t. After the cooperative transmission among multiple
network entities in the video sharing phase, the current vBS
b receives the complete requested video vi, and subsequently
transmits the requested video vi to its associated users in the
video delivery phase.

Combining the solutions for Fbt and Yb
t , problem (16)

can be addressed via an alternative optimization method.
Specifically, by updating the solutions for Fbt and Yb

t at
each iteration d, we can obtain the optimal video sharing
and computation resource allocation until the decrease in
objective of problem (16) falls below a threshold Λ2. The
detailed procedure for solving problem (16) are summarized
in Algorithm 2. It is noted that the inner optimization problem
(16) can be infeasible if the user delay constraint (C1) is not
satisfied by performing the joint decision of video caching and
communication resource allocation. The infeasibility issue can
be solved by introducing a penalty mechanism in the outer
layer algorithm, which is detailed in the next subsection.

B. Outer Layer: Video Caching and Communication Resource
Allocation Subproblem

By fixing Y and F, problem (14) can be recast as outer sub-
problem (23). The outer subproblem is to select which videos
are cached at vBSs and allocate communication resource to

Algorithm 2: Alternating Optimization Algorithm for
Video Sharing and Computation Resource Allocation

Input: Initialize the video sharing decision Yt,1
b , set the

iteration number d = 1 and accuracy level Λ2, .
Output: Video sharing variables Yt

b and computation
resource allocation decisions Ft

b;
1 while |fb,(d+1)

Y,F (t)− fb,(d)Y,F (t)|< Λ2 do
2 Solve problem (18) for given Y

t,(d)
b , and obtain the

optimal computation resource allocation F
t,(d)
b by

using Lemma 1 and Algortihtm 1;
3 Solve problem (21) for given F

t,(d)
b , and get the optimal

video sharing strategy Y
t,(d+1)
b via convex

optimization solvers;
4 Update d = d+ 1;
5 end

users with the objective of minimizing the long-term weighted
sum of user delay and system operative cost, i.e.,

min
C,X,P

T−1∑
t=0

[δε1D(t) + (1− δ)ε2E(t)] (23)

s.t. (C1), (C4)− (C6), (C9), (C11), (C12).

By analyzing the objective of problem (23), the current deci-
sions on video caching and communication resource allocation
{Ct,Xt,Pt} impact not only the current user delay D(t) and
system operative cost E(t) but also affect the future state, i.e.,
D(t+ 1) and E(t+ 1), forming a sequence decision problem.
In addition, the video caching and communication resource
allocation decisions of each physical BS b {Ct

b,X
t
b,P

t
b}

impact user delay and operative cost of other physical BSs,
i.e., Db′

k (t) and Eb
′
(t), b′ ∈ B\{b}, which is caused by video

sharing and spectrum resource interference among physical
BSs. The above analysis suggests that the cooperative caching
and dynamic communication resource allocation in multiple
cells resemble a stochastic game. Consequently, we reformu-
late problem (23) as a stochastic game and use the MADDPG
algorithm to solve it [38], [39].

Hence, a tuple of G =< B,S, {Ab}b∈B,O,P,R, γ > is
defined for the stochastic game, where B = {1, 2, . . . , B} is
the set of B agents. Each physical BS b is regarded as agent b.
S is the state space of the entire cooperative caching system.
Ab is the action space of physical BS b, which is a set of all
possible actions of physical BS b. A = A1×A2× . . .×AB is
joint action space of all agents. O is the observation set of all
agents. In each time slot, each agent b ∈ B makes its action
decision atb ∈ Ab based on local observation otb of system
state st ∈ S, thereby forming a joint action of all agents, i.e.,
at = {at1,at2, ...,atB}. After taking the joint action at, system
state changes from current state st = {ot1,ot2, ...,otB} to next
state st+1 = {ot+1

1 ,ot+1
2 , ...,ot+1

B }. P denotes the transition
probability function among different states. Considering that
the objective of problem (23) is to minimize the weighted sum
of total user delay and system operative cost, all agents have
the same reward function, R : S ×A→ R, γ ∈ [0, 1] denotes
the discount factor. For each physical BS, the observation,
action and reward are formulated as:
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Observation: The observation space of BS b at slot t
contains the channel states, users’ requests and video caching
decision in the edge at the last time slot, i.e.,

otb = {hb(t),hbin(t),qb(t),Db
th(t),Cb(t− 1)}, (24)

where hb(t) is the set of the channel gain hbk,s(t) and hbin(t)

is the set of interference channel gain of users, qb(t) is the set
of users’ request for videos, Db

th(t) = {Db
k,th(t)|∀k ∈ Kb} is

the set of users’ delay requirement at time slot t, and Cb(t−1)
is the set of video caching decision at last time slot t − 1 in
of CA-vBS b and CO-vBS b.

Action: Consistent with the decision variables in the prob-
lem (23), the action set includes the caching decision variables,
subcarrier and power resources allocation variables, i.e.,

atb1 = {Ct
b,X

t
b,P

t
b}. (25)

To maintain continuous action space required by the MAD-
DPG algorithm, the binary variables {Ct

b,X
t
b} are relaxed to

continuous variables ranging from 0 to 1. Note that Each
agent checks the selected actions, and then modifies any
actions violating the constraints of problem (23). Specifically,
if some of actions Ct

b and Xt
b violate caching decision indi-

cator and subcarrier allocation constraints (C3), (C7), agent b
will reserve one caching decision indicator or one subcarrier
allocation indicator and modify the conflicting actions as zero.
For the convenience of analysis, the storage space constraint
of each physical BS (C2) is transformed as the maximum
number of videos that its corresponding CA-vBS and CO-
vBS can cache [40]. Assume that each CA-vBS can cache
up to V1 uncompressed videos and the storage space of each
CO-vBS is V2 uncompressed videos. If the selected Ct

b does
not meet the storage space constraint of each vBS, the value
of some cache actions will be replaced by zero to ensure that
constraint (C2) is not violated. Besides, some of the selected
actions Ptb will be modified to the low values to satisfy the
transmission power constraints (C8), (C10) if they are not
within the limitation range of transmission power.

Reward: The reward function should assess how the actions
taken impact the performance of the system [41]. In this
system, we minimize the long-term total user delay and system
operative cost while satisfying users’ delay requirements. If
user delay exceeds the maximum tolerable delay, these actions
are regarded as detrimental to the system’s performance and
the agent should face penalties. Therefore, the reward function
is designed to include both the optimization objective of
problem (23) and a penalty function rp(t), which is defined
based on the constraint (C1), i.e.,

rp(t) =
∑
b∈B

∑
k∈Kb

op(D
b
k,th(t)−Db

k(t)),

where op is the penalty coefficient for not satisfying the
maximum tolerable delay for users. Note that the penalty
mechanism not only guides the agents to take actions ensuring
the existence of feasible solutions to the inner optimization
problem but also encourages agents to take actions reducing
user delay. At time slot t, the immediate reward for agent b is

expressed as

r(t) = −δε1D(t)− (1− δ)ε2E(t) + rp(t). (26)

Therefore, the expectation of the long-term discounted cu-
mulative reward of each agent is defined as

J(µ)=Eµ[r(0)+γr(1)+γ2r(2)+...+γT−1r(T−1)],

where µ is the policy of actor in agents. By utilizing the
system-wide performance as the immediate reward function
for each agent, cooperation is promoted among the agents.

C. Proposed Algorithm

Combining the above-given inner and outer layers, we
design a two-layer MADDPG method to solve the cooper-
ative caching problem (14). The two-layer architecture of
the proposed algorithm is shown in Fig. 3. In the outer
layer, the actor network of each agent makes decisions about
communication resource allocation and video caching based
on local observation in a decentralized manner. For agent
b, we denote the neural network parameters of the online
network and target network in the actor network as θµb and
θµ

′

b , and the corresponding parameters in the critic network
are denoted as θQb and θQ

′

b . At time slot t, the actor network
makes video caching and communication resource allocation
decisions atb1 = {Ct

b,X
t
b,P

t
b} based on current local obser-

vation otb, i.e.,

atb1 = µ(otb|θ
µ
b ) + Nb, (27)

where Nb is exploration noise.
Then, an alternating optimization method in the inner layer

of agent b generates the video sharing and computation re-
source allocation decisions atb2 = {Yt

b,F
t
b} based on the

current state and the action atb1. Note that each agent may
make communication resource allocation decisions {Xt

b,P
t
b}

that enable the transmission delay of access link to be greater
than users’ maximum tolerate delay, i.e., Db,ac

k (t) > Db
k,th(t).

In this case, there is no feasible solutions to the inner op-
timization problem (16), and we can not calculate reward.
To address this issue, we will set the variable D̃b,ac

k (t), and
substitute D̃b,ac

k (t) for Db,ac
k (t) in the constraint (C1) of

inner optimization problem (16), ensuring there are feasible
solutions to the inner optimization problem (16). Accordingly,
we obtain video sharing and computation resource allocation
decisions. A joint decision set of agent b atb = {atb1,atb2} can
be obtained. The environment gives a reward and state tran-
sition as the feedback after taking joint actions of all agents.
Afterward, the experience memory D stores all agents’ current
experience, which can be represented by < st,at, rt, st+1 >.
The storage size of the experience memory D is MD, which
is located at the cloud computing center. During the training
phase, both the actor network and critic network of each agent
are trained by utilizing a mini-batch of Ms samples from
the experience memory. The parameter of each agent’s actor
network is updated by the following policy gradient:

∇θµb J(µθµb ) = Est,at∼D[∇θµb µ(otb|θ
µ
b )

∇atb
Q(st,at1, ...,a

t
B |θ

Q
b )|atb1=µ(otb|θ

µ
b )].

(28)
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Fig. 3. The proposed algorithm framework. There are B agents in the
outer layer, and the actor network of each agent makes decisions about
video caching and communication resource allocation atb1 = {Ctb,X

t
b,P

t
b}

according to local observation otb. Then, the alternating optimization method
in the inner layer generates the video sharing and computational resource
allocation decisions atb2 = {Yt

b,F
t
b} based on the current state otb and the

action atb1.

The critic network of each agent in the outer layer is trained
to assess the joint decision by estimating the Q-values based
on global information. The critic online network of agent b is
updated by minimizing its own loss function, i.e.,

L(θQb ) = Est,at,rt,st+1∼D[(rtb + γQθ
Q′
b (st+1,at+1

1 , ...,

at+1
B )|at+1

b1 =µ(ot+1
b |θµb ) −Qθ

Q
b (st,at1, ...,a

t
B))2],

(29)
where at+1

b = {at+1
b1 ,at+1

b2 }.
For agent b, based on the soft update rule, the parameters

of the target network for both the actor network and critic
network are updated by gradually tracking the corresponding
online networks [42], i.e.,

θµ
′

b ← τθµb + (1− τ)θµ
′

b , (30)

θQ
′

b ← τθQb + (1− τ)θQ
′

b , (31)

where τ is the update rate of target networks. The proposed
algorithm is encapsulated in Algorithm 3. Considering that
the cloud computing center has a significant computational
advantage, the training process of all agents’ neural networks,
including the actor network and critic network, is completed
at the cloud computing center in an offline model. After
sufficient training, the cloud computing center transmits the
training models to all agents (i.e., physical BSs) via high-
speed backhaul links. Each physical BS is equipped with the
trained actor network, which generates joint policies for video
caching, sharing, and delivery based on local observation.

IV. SIMULATION RESULTS AND DISCUSSION

This section evaluates the performance of our proposed
algorithm based on the simulation results. The simulation
experiments are conducted in a cellular network with four
physical BSs, i.e., B = 4. There are different video popularity
distributions within the coverage area of each physical BS. We

Algorithm 3: Proposed Algorithm
Input: Users’ request for videos and corresponding delay

requirement, channel state and the current video
caching status at each BS, i.e., ot

b;
Output: The video caching, communication resource

allocation, video sharing and computation resource
allocation decisions {Ct,Xt,Pt,Yt,Ft};

1 Initialization: Initialize actor and critic networks
(θµb , θ

µ′

b ,θQb , θ
Q′

b , ∀b ∈ B) and the experience memory;
2 for episode= {1, 2, ..., E} do
3 Reset environment and obtain the initial observation o

according to (24);
4 for slot t = {1, 2, ..., T} do
5 . Experience generation
6 For each agent b, choose the action according to

(27). Obtain the video caching and communication
resource allocation decision atb1 = {Ct

b,X
t
b,P

t
b};

7 Obtain the video sharing and computation resource
allocation decisions atb2 = {Yt

b,F
t
b} by using

Algorithm 1;
8 Execute joint decision at={atb1,atb2,∀b∈B};
9 Receive the reward rt and obtain the new

observation o′;
10 Store the transition < ot,at, rt,ot+1 > into

experience memory;
11 for agent b = {1, 2, ..., B} do
12 Sample randomly a mini-batch of Ms transitions

from the experience memory;
13 Update the critic online network by minimizing

the loss function in (29);
14 Update the actor online network by the policy

gradient in (28);
15 end
16 Update target network actor and critic for each agent

in (30) and (31).
17 end
18 end

assume that the video popularity follows a Zipf-like distribu-
tion. Similar to [32], [43], the video popularity is modeled
as a finite Markov state transition model, which includes four
states {ov1, ov2, ov3, ov4} with different parameters that can
indicate the skewness of popularity, i.e., ∆1 =0.8, ∆2 =0.9,
∆3 =1.0, ∆4 =1.2. The popularity of video v with parameters
∆j is p(j)

v = v−∆j/
∑V
i=1 i

−∆j . We denote the probability that
video popularity transfer from state ovu to state ovj as Puj ,
where Puj ∈ {0.2, 0.4},∀u, j ∈ {1, 2, 3, 4}. To assess the
performance of video caching decision, we define the cache
hit rate of physical BS b at time slot t as

hitb(t) =

∑
v∈V

∑
k∈Kb

∑
i∈{1,2}

qbk,v(t)c
b
vi(t− 1)∑

v∈V

∑
i∈{1,2}

cbvi(t− 1)
,

The other simulation parameters are summarized in Table
II, and the primary simulation environment settings of the
proposed algorithm are concluded in Table III.

In addition, to reflect the advantages of our proposed joint
optimization scheme, we compare it with different benchmark
schemes, which are listed as follows,

• Proposed scheme with different caching methods: We
consider three caching strategies to replace the caching
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TABLE II
SYSTEM PARAMETERS

Parameter Value Parameter Value
V 100 pbmax 40 W
S 40 pc 0.1 W
K 16 Ro 150 Mbps
Bw 30 MHz Rb 100 Mbps
N0 -99 dBm zv1 [1,2] Mbits
δ 0.6 Db

k,th [0,1] s
F 10 Gigacycle/s ρ 0.33
wbw 10−5 λbk 1000 cycle/bit
wf 0.8×10−8/cycles ηb,o 12
wp 20 /W ηb,b′ {1,2,3}
ζ 1.5 db,o 13 km
ξ 3× 108 m/s db,b′ 259.8m
ε 1000 w1

m,o 100
op 300 w2

m,o 50
V1 3 w2

m,b 1
V2 7 w1

m,b 2
E 500 T 100

TABLE III
HYPERPARAMETER OF PROPOSED ALGORITHM

Parameter Value
Actor hidden layers 2
Critic hidden layers 2
Actor hidden units 64
Critic hidden units 64
Learning rate of actor 0.001
Learning rate of critic 0.001
Discount factor 0.9
Minibatch size 96
Optimizer Adam

scheme in the proposed scheme, including the random-
cache (RC) scheme, the least frequently used (LFU)
scheme, and no video compression in proposed scheme
(NVC). In the RC scheme, the caching decisions for
each CA-vBS and CO-vBS are randomly selected. In the
LFU scheme, the videos with the least requested times
will be replaced in CA-vBSs and CO-vBSs. There are
no CO-vBSs in the system and each CA-vBS only can
cache uncompressed videos in the NVC scheme. In the
above three schemes, the policies about video sharing
and delivery keep the same as the proposed scheme,
where the communication resource allocation policy is
still determined by the MADDPG algorithm.

• Independent MADDPG with proposed video shar-
ing and computation resource allocation strategies
(IMADDPG): In this solution method, agents only
have local observations from the environment and make
caching and communication allocation decisions indepen-
dently of each other, with the goal of maximizing the sum
of the delay of local users and operative cost instead of
the overall system reward.

• Random communication resource allocation with pro-
posed video caching, video sharing and computation
resource allocation strategies (R-Com): Each vBS al-
locates randomly subcarriers and transmission power to
its associated users. The caching decision and communi-
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Fig. 4. Convergence performance for proposed algorithm under different
numbers of users.

cation resource allocation policy remain consistent with
the proposed scheme.

• Proposed scheme with non-cooperative caching (NCC)
mechanism: In this scheme, the process of video sharing
between different vBSs is not considered while video
caching and delivery policies remain the same as the
proposed scheme.

Fig. 4 illustrates the convergence performance with varying
numbers of users. We employ a total of 50,000 algorithm
iterations, calculated by multiplying 100 episodes and 500 time
steps. From Fig. 4, we can see that the proposed algorithm
can achieve a relatively stable reward value after about 7500
training iterations. It can also be observed that there are some
minor fluctuations in reward values, which are caused by
each agent’s exploration in action space and the time-varying
video popularity. In addition, the reward value is impacted
by the number of users. With an increasing number of users,
the reward value decreases. This phenomenon is explained
by (26), where both delay and cost values, comprising the
main components of the reward, grow as the number of users
increases.

Fig. 5 presents a comparison of the reward under five
different cache methods. It is observed that when the learning
process becomes stable, our proposed scheme outperforms
the other caching methods, by converging to a larger reward
value. This is because our proposed scheme can adjust caching
decisions along with video sharing, computation and commu-
nication resource allocation according to the time-varying user
preference. Meanwhile, RC neglects the cooperation cache
among vBSs, resulting in a low cache hit rate and high video
delivery delay, which are crucial components affecting the
reward. Compared with the proposed scheme, IMADDPG
converges to a lower reward because it relies on local ob-
servations, prioritizing local video popularity and neglecting
cooperative caching between vBSs. Additionally, LFU demon-
strates a relatively high reward value as it leverages historical
information about video popularity from the previous episode.
Nevertheless, LFU exhibits a wider fluctuation range of reward
due to its inability to learn the video popularity distribution
and promptly adapt to time-varying user preferences like our
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Fig. 5. Reward comparison of different caching methods.

proposed scheme. NVC exhibits low video diversity and cache
hit rate at the edge, attributed to caching fewer videos due to
the absence of video compression. This can explain why NVC
has the lowest reward value.

Fig. 6 depicts the performance of the proposed scheme in
terms of the average cache hit rate under different cache size
of vBSs. Here, the average cache hit rate is defined as the
average value of the cache hit rate of all BSs hitb(t). From
Fig. 6(a), we observe average cache hit rates of all caching
schemes increase with the expansion of the cache space in
CA-vBSs. This is because user requests are more likely to
be satisfied by CA-vBSs that can cache more uncompressed
videos with larger cache capacity. Furthermore, the proposed
scheme consistently holds the advantage in average cache
hit rate compared to all other caching methods. Compared
with other caching methods, the high average cache hit rate
achieved by our proposed scheme is attributed not only to
learning the changing mode of users’ preference but facilita-
tion of enhanced cooperation among all vBSs. There are some
similar trends and characteristics regarding the average cache
hit rate in Fig. 6(b) except for NVC. The average cache hit
rate of NVC remains unchanged as the cache size of CO-
vBSs increases due to the absence of CO-vBSs for caching
compressed videos in the NVC scheme. In addition, from Fig
.6, we can see that both the increasing of cache space for CA-
vBSs and CO-vBSs can achieve high cache hit ratio. However,
it may not be feasible if MNO would like to provide more
video services with users at the edge by only increasing the
cache space of CO-vBSs. This is because the CO-vBSs can
not serve users if the computing resource of CO-vBS is not
sufficient to transcode compressed videos.

Fig. 7 focuses on average delay and cost versus the number
of users K under the five different schemes. For our proposed
scheme, the average delay and cost arise almost linearly with
the increasing of K. The behind reasons are explained as
follows: 1) A higher number of users indicates more video
requests. While the number of users is increasing, the proba-
bility that current vBSs have cached all the requested videos
will reduce, and the current vBSs are more likely to fetch
the request videos from other vBSs even remote video server.
Therefore, retrieval delay Db,re

v (t) and retrieval cost Ebre(t)
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Fig. 6. The comparison of average cache hit rate versus the cache size of
vBSs under different caching methods.
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Fig. 7. Average delay and cost versus numbers of users under different
schemes.

will rise up. 2) A higher number of users also implies more
traffic loads. With the extension of the number of users, the
current vBSs consume more spectrum resource and power to
transmit more videos to users via access link, thereby leading
to the increasing of transmission cost in the access link Ebac(t).
Given the limited communication resource within vBSs, the
surge in the number of users inherently leads to the increase
of the transmission delay in the access link Db,ac

k,v (t). For the
other four schemes, there are similar variations in average
delay and cost. However, the four baseline schemes all perform
worse than the proposed scheme. Specifically, the average
delay and cost of NCC surpass those of the other schemes,
because NCC has no video sharing mechanism among vBSs
and each vBS can only acquire videos that are not cached
in local cache space from remote video server, resulting in
the increasing of total user delay and system operative cost
due to higher backhaul-link delay and larger retrieval cost.
When K surpasses 20, the R-Com scheme achieves the highest
average delay. This is because it can not adjust an effective
communication resource allocation strategy as the number of
users increases under limited spectrum and power resource,
thereby contributing to the fast growth of the transmission
delay of access link and average delay of R-Com. Therefore, in
the case of limited communication resource and cache capacity
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schemes.

at the edge, the MNO should adopt our proposed scheme,
which reduces average delay and saves more cost than the
other four schemes.

Fig. 8 presents the average delay and cost versus the trade-
off factor δ of five schemes. The increasing of trade-off factor
δ means that the problem focuses more on user delay instead
of system operative cost. It is consistent with the results of Fig.
8, where the average delay decreases and average cost arises
with the increment of δ. This result indicates the reduction in
average delay is accompanied by the increase of the average
system operative cost, which proves that there is a trade-
off, controlled by δ, between average delay and cost. It is
noteworthy that the average delay and cost of the proposed
scheme are always lower than that of the above four schemes.
Specifically, the proposed scheme can reduce the average user
delay by nearly 11% and save 14.5% in system operative
cost than the best two baselines (LFU and IMADDPG). The
improvement verifies the proposed scheme’s effectiveness in
making joint decisions related to cooperative caching, video
sharing, computation, and communication allocation under
different trade-off factor δ.

V. CONCLUSION

In this work, we investigated cooperative edge caching
of videos relying on video compression while considering
video sharing and delivery. With the goal of minimizing user
delay and system operative cost, we formulated an optimiza-
tion problem while satisfying users’ delay requirements by
jointly optimizing decisions on video caching, video shar-
ing, communication, and computation resource allocation. To
address the problem’s complexity, we decomposed it into
two subproblems: the joint video sharing and computation
resource allocation subproblem, and the joint video caching
and communication resource allocation subproblem. Then, we
proposed a two-layer DRL algorithm, integrating an alternat-
ing optimization method at the inner layer and MADDPG at
the outer layer, to solve these two subproblems. Simulation
results verified the convergence of the proposed algorithm and
indicated that the proposed algorithm can reduce the average
user delay and system operative cost by distributively making

video caching and sharing policies and managing the available
communication and computation resources. Additionally, our
proposed scheme achieved a superior trade-off between aver-
age users’ delay and operational cost compared to benchmark
schemes, reducing over 11% user delay and saving 14.5%
system operative cost under different trade-off factor settings.

APPENDIX

A. Proof of Lemma 1

Since problem (18) is convex with respect to Ftb, Karush-
Kuhn-Tucker (KKT) conditions are employed to derive the
optimal solution of the computation resource allocation at time
slot t. The Lagrangian function of problem (18) is written as

L(F tb , θb(t)) =
∑
v∈V

∑
l∈B∪o

∑
k∈Kb

yb,lv2 (t)qbk,v(t)
zv2ε

,
1λ
b
k,v

fbk(t)

+
∑
k∈Kb

wfε
,
2f
b
k(t) + θb(t)(

∑
k∈Kb

f bk(t)− F ).

(32)

Accordingly, the KKT conditions of problem (18) are given
as follows:

∂L(F tb ,θb(t))

∂fbk(t)
= wfε

,
2 + θb(t)−∑

v∈V

∑
l∈B∪o

yb,lv2
(t)qbk,v(t)zv2ε

,
1λ
b
k,v

[fbk(t)]2
= 0,

f bk(t) ≥
∑
v∈V

∑
l∈B∪o

qbk,v(t)yb,lv2
(t)zv2λ

b
k,v

Dbk,th(t)−
∑
v∈V

qbk,v(t)(Db,rek,v (t)+Db,ack,v (t))
,∑

k∈Kb
f bk(t)− F =0,

θb(t) ≥ 0.

(33)

The optimal solution of the computation resource allocation
satisfies the KKT conditions (33). By solving the above
equations and inequalities of (33), (19) is obtained. In addition,
the value of Lagrange multiplier θb(t) is related to the equation∑
k∈Kb

f bk(t)− F =0,. The proof is completed.
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