
1

Rinascimento: Playing Splendor-like Games with
Event-value Functions
Ivan Bravi*, Simon Lucas, Senior Member, IEEE

Abstract—In the realm of games research, Artificial General
Intelligence algorithms often use score as main reward signal
for learning or playing actions. However this has shown its
limitations in scenarios where the rewards are very rare or
absent until the end of the game. The problem is even more
severe when the computational budget available is limited. This
paper proposes a new approach based on event logging: the
game state triggers an event every time one of its features
changes. These events are processed by an Event-value Function
(EF) that assigns a value to a single action or a sequence.
Experiments show that this approach can mitigate the problem
of scarce rewards and improve the AI performance compared
to both point-based heuristics and State-value Functions (SF).
Furthermore this represents a step forward in a finer control of
the strategy adopted by the artificial agent, by describing a much
richer and controllable behavioural space through EFs. Tuned
EFs are able to neatly synthesise the relevance of the events in
the game. Agents using an EF are also more robust when playing
games with several opponents.

Index Terms—Artificial Intelligence, Computational Intelli-
gence, Games, Decision Making, Statistical Forward Planning

I. INTRODUCTION

GAMES offer a multitude of possible applications of
AI algorithms: game-playing, procedural content gen-

eration, player modelling, analytics and more. Game-playing
algorithms can either plan their actions using a model of the
environment to simulate actions (e.g. Monte Carlo Tree Search
(MCTS) [1] and Rolling Horizon Evolutionary Algorithm
(RHEA) [2]), or learn a policy or value function through direct
interaction with the environment (e.g. Deep Reinforcement
Learning (DRL) [3]). These approaches can also be combined
to great effect e.g. AlphaZero [4].

Whether learning or planning, the process usually exploits
the presence of an in-game score as a measure of good game-
play, a reward signal. Such approaches are commonly used in
general game-playing frameworks such as the Arcade Learning
Environment (ALE) [5] and the General Video Game AI
(GVGAI) [6]. Unfortunately in many games these rewards can
be very rare or absent until the end of the game, making the
use of planning or learning particularly expensive.

In this paper we explore a new idea: to directly learn the
value of events. The intuition behind this, is that events are
key to any game, and that it may be easier to learn their value
directly, than to learn a State-value Function (SF) that typically
reflects the combined effects of many different events that

I. Bravi and S. Lucas are with the Departmentof Electrical Engineering and
Computer Engineering (EECS), Queen MaryUniversity of London, London E1
4NS

* I. Bravi is corresponding author: i.bravi@qmul.ac.uk

occurred at different times. The counter-argument is that the
game state represents a distillation of all those events, and so
contains all that matters. However we argue that events have
the unique ability of outlining the direction that the gameplay
is taking which a single representation of the game state can
not have. Furthermore, even if the information content was
theoretically equivalent, learning directly the values of events
in the shape of an Event-value Function (EF) could still be
advantageous as they provide a more compact and explicit
representation of the game dynamics. This representation can
be used by game designers to analyse the game and improve
or fix unwanted dynamics of it.

Another important point that we make in this paper, and
rarely approached in Game AI, is guaranteeing diversity in the
AI’s game-playing style (later in the paper we will use game-
playing style and behaviour interchangeably). For Statistical
Forward Planning (SFP) methods, those using a forward
model, we can achieve some degree of diversity by choosing
different hyperparameter settings for an agent (e.g. how far
ahead it is planning), but we are still bound to a winning or
scoring signal. More specifically, we don’t have much control
on what happens between the signals, e.g. in Super Mario
Bros.™ what Mario does between killing one Koopa and the
next. A different story is for DRL where the black-box nature
of the algorithms makes characterising their ability to express
different styles not as straightforward.

Analysing events may promote behavioural diversity as the
AI decision making is based on a set of semantically-rich
features that unlock a deeper control of playing style than
a non-tunable scalar signal i.e. the score. Behaviour expres-
sivity is crucial aspect of automatic playtesting, we want an
algorithm/player model that can express enough strategies so
to completely cover the space of strategies in the game tested.
This becomes even more important in a multiplayer game, in
fact, opponents will influence the optimal strategy required.
For this reason, in this context any improved performance-
oriented proficiency is welcomed but won’t be a make or break
factor.

In this paper we compare several value functions: score,
Event-value and State-value functions. These functions, used
by a base SFP agent that provides them the results of action
simulations, will produce a value synthesis of the actions
simulated. It’s already clear how EFs and SFs focus on
two different aspect of the game, respectively its dynamic
and its static aspects. Event-logging may seem to require
a conspicuous engineering overhead, on the contrary, it can
be swiftly implemented with an appropriate logging library
directly in the game source which is available in most game
AI applications. In fact, logging is already implemented in

2

many video games for telemetry and analytics purposes.
To summarise, we present a novel approach to reshaping

the reward landscape based on events: rewards are just the
culmination of a series of events triggered by the players and
the environment. Monitoring events is a more fine-grained
approach that can fill in the gaps between sparse rewards
creating a gradient to follow. Events are clearly game-specific,
however the methodology making use of them can be still
regarded as generic.

This paper is a follow-up work to [7] where we expand the
comparison ground to also state-value functions thus showing
further proof of strength for Event-value Functions.

Section II discusses the state of the art where this research
takes place, Section III provides an overview of the value
functions compared with subsection III-B giving a formal defi-
nition of event-value function and its implementation. Section
IV describes the experiments ran which are then discussed
in Section V. Finally Section VI draws the final conclusion
giving a glimpse of possible future work.

II. BACKGROUND

The problem of reward scarcity is central in game AI, it
is well known the case of the game Montezuma’s Revenge,
part of the ALE. This game offers very sparse rewards to the
player and only when performing specific actions. Pohlen et
al. [8] managed to improve the state-of-the-art performance
of general RL algorithms by designing an algorithm based on
heavy exploration. For Ecoffet et al. [9] reached superhuman
performance but with human-provided domain knowledge into
the learning process. Others have reached superhuman perfor-
mance but only by using demonstration-based approaches by
either providing YouTube videos of human players [10] or a
single successful demonstration [11].

A different approach to the aforementioned ones is to
enhance the reward signal providing additional rewards using
domain knowledge: reward shaping. This approach tries to
identify functions that simplify the learning problem while
yielding the same optimal policy as result. Given the typical
definition of Markov Decision Process (MDP) as a tuple
of: S, set of states; A, set of actions; p, transition function
between states; r, reward function. In [12], the authors define
a potential-based shaping function as F (s, a, s′) = γΦ(s′) −
Φ(s) with Φ : S → R and γ ∈ [0, 1). Such function is
used to define a new reward function r′ = r + F , i.e. sum
of the original reward function and a potential-based shaping
function. The above definition is proven to be necessary and
sufficient for guaranteeing that the optimal policy learned is
equivalent to that of the original MDP using r. However,
Hu et. al. [13] show, starting from an unconstrained shaping
function f , how it is possible to adjust its signal to learn
an optimal policy. The new definition F = zφ(s, a)f(s, a),
introduces the shaping weight function zφ to properly weight
the contributions of f . When using multiple shaping functions,
zφ can return a vector of weights to combine them together.

The idea of capturing the dynamics of a game has been ex-
plored by taking different approaches, some borrow concepts
from psychology, some rephrase the reinforcement learning

problem for transfer learning while others model the incentive
for exploration as a measure of new dynamics discovered. The
following paragraphs provide insight on each one.

Holmgard et al. [14], use the concept of affordance to
describe specific player-styles or behaviours. The concept of
affordance is closely related to the question ”what can I do
with this object”. This positions the concept close to fields that
make interaction their focus (e.g. Human Computer Interaction
and branches of Robotics). In [14] the authors associate a
metric to each affordance, then design AI agents that plan their
actions to maximise/minimise a selection of such metrics in
order to show specific behavioural traits. These agents were
created in order to develop a portfolio of personas to be used
for playtesting purposes.

Perez et al. [15] have developed an MCTS modification
promoting the exploitation of actions that bring the player in
game states that trigger new and unseen interactions. This is
done by collecting statistics on new interactions during the
rollout phase of MCTS. Their experiment showed that using
information coming from the dynamics of the environment can
bring significant performance improvement.

In the field of Reinforcement Learning the concept of
successor feature has been described in [16]. Based on the
work of Dayan [17] and the above definition of MDP, the
reward function from state s to state s′ performing action
a can be redefined as r(s, a, s′) = φ(s, a, s′)>w, where
φ ∈ R and w is a vector of weights. The function φ yields
a vector encoding the dynamics of the state transition. As a
consequence a new description of the action-value function q
is derived applying the new form of r(s, a, s′) to its definition:
q(s, a) = ψ(s, a, s′)>w. The function ψ(s, a, s′) will decou-
ple the dynamics of the environment from the reward function
in the shape of successor features. In this paper we use events
to produce such a set of features.

Finally, we want to highlight that player behaviour arises
from a combination of several factors, the following are the
two most relevant: (1) the game specification, i.e. rules and
content of the game (e.g. cards, boards, dice etc.); (2) the
ability of the player to search the game tree. When looking at
player behaviour from the perspective of (1) we can analyse
the behaviour possibility space, how the game limits the
actions of the player in the game. Whereas from the point
of view of (2) we can look into the behaviour expressivity
space, how the reasoning abilities of the player limit their
own behaviour. Opponents/teammates can also heavily affect
it but it can be regarded as a secondary factor as not all games
are multiplayer. For example, [18] addresses the behaviour
possibility space since it manipulates the decks (content of the
game) but with a fixed AI player. However this research works
in the direction of agents with high behaviour expressivity
which is a trait we deem necessary for solid automated
playtesting.

A. Rinascimento

Rinascimento (also stylised R) is a framework1 for the
development of Game AI, it is based on the popular board

1github.com/ivanbravi/RinascimentoFramework

3

game Splendor2 published by Space Cowboys and designed by
Marc André [19]. Splendor is a turn-based multiplayer board
game, the objective is reaching 15 prestige points first, points
are obtained by either buying bonus cards purchased using
tokens or attracting nobles based on the cards purchased. Four
cards are laid face-up from each of the three decks, cards can
be bought or reserved and bought later, in both cases they
move to the player’s hand. When a card is bought the player
receives the card’s prestige points, then a new card is drawn
from the same deck and placed face-up on the table. A card can
be reserved if it is face-up or the first face-down of its deck,
in this case it will be revealed to the other players only when
purchased. A player can pick either three tokens of different
suits or two of the same but only if there are more than 3 in
its stack. Each player must perform a single action each turn
and never own more than 10 tokens.

The framework can be used to play Splendor-like games,
in fact, the parameters in the game’s rules are exposed so that
they can be easily changed (see [19]) for a complete list. The
same applies to the decks of cards in the game, Splendor has
3 decks but R can support any number of decks.
R implements a Forward Model (FM) that can be used by

planning algorithms to simulate future game states given the
actions performed by the players. The use of a FM doesn’t
affect the real game state but it provides ”oracle” skills to
the agents during their decision making. It has been used to
test SFP algorithms [19] and particular attention was given
to hyperparameter tuning. The experiments have shown that
algorithms using prestige points increment as reward signal,
prefer very short action sequences when planning. This is
likely due to the highly stochastic nature of the game coming
from decks shuffling, partially observable game states and
opponents actions.

Even though R can potentially express a multitude of
Splendor-like games in this paper we will mainly deal with
the two-player version of the original game, unless otherwise
stated. The nature of the game makes enumerating the legal
action-set computationally expensive (see [19] for a more
detailed explanation linked to the parametric nature of the
framework). To avoid this enumeration, R provides the tools
to randomly sample the action space with the option of
controlling the sampling through a unique random seed. Such
randomly-generated actions can be illegal if performed in a
different game state, that’s why extra care needs to be taken
when designing the agents.

B. Game-playing Agents

Statistical Forward Planning algorithms can be used in
games where a Forward Model is available, this will allow
the algorithm to simulate future actions without affecting the
current state of the game. Both Rolling Horizon Evolutionary
Algorithm and Monte Carlo Tree Search have shown remark-
able performance in games-based competitions such as the
GVGAI Planning Competition and the Fighting Game AI
Competition [20]. In [19] the authors have implemented a
number of game-playing algorithms:

2boardgamegeek.com/boardgame/148228/splendor

[]

t t+5

t+5

0 1 2 3 4

[]0 1 2 3 4

Fig. 1. Branching mutation on a sequence with 5 actions. Actions are copied
up to the mutation point a2, the following actions are then picked randomly.

• RND: random actions;
• OSLA: one step look ahead agent;
• MCTS: an implementation of MCTS using the Upper

Confidence Bound (UCB) formula for the node selection
and Iterative Widening for dealing with the unknown size
of the action space in the expansion phase;

• BMRH: Branching Mutation RHEA evolves a population
of action sequences, during the mutation phase a point in
the sequence is selected and from there on the actions
are mutated with new legal random actions by rolling the
state forward.

• SRH: Seeded RHEA evolves an action sequence made of
seeds thus circumventing the issue of actions becoming
illegal. The seeds are fed to the action random sampling
thus fixing the actions generated.

The hyperparameters of the three different SFP agents have
been tuned for optimal performance against the OSLA agent.
In this paper tuned agents will be characterised with an
asterisk (*) after their name (e.g. BMRH* for the BMRH
hyperparameter space). In this work we will use the BMRH
agent and its hyperparameter space described in [19] for
two main reasons: it has proven similar peak performance as
MCTS and its hyperparameter space resulted much denser of
well performing configurations than MCTS and SRH.

1) Branching Mutation Rolling Horizon: BMRH is a type
Rolling Horizon Evolutionary Algorithm introduced in [19],
for every game tick it evolves sequences of actions evaluating
them using a forward model. Such evaluation is based on some
value function that measures the quality of the sequence, it is
usually the score increment from the starting to final state. Its
main feature is the mutation operator: during the creation of
a new offspring the original sequence is copied one action at
a time and also played until the mutation point, from there on
new actions are sampled and added to the sequence until the
end of the sequence. A visual representation of the process is
shown in Figure 1. At the end of the evolution it picks the
best sequence and returns the first action.

The actions in a sequence are dependent to each other in
a cascade fashion: an earlier action could make a later action
illegal. Given the tight constraints of this game on legal actions
(all resources are very different and limited) we implemented
the branching mutation in order to reduce the impact of illegal
actions to the evolution. For the same reason no crossover
operator is used in creating new offsprings. See [19] for further
details and a list of it hyperparameters.

4

C. Hyperparameter Tuning

Most algorithms have several parameters that can be ad-
justed offline to modify its online execution. Examples for
RHEA are the mutation probability or the action sequence
length. Such parameters are called hyperparameters and in
scenarios like game-playing they can have a big impact on
the agent’s performance.

There’s a vast number of applications of hyperparameter
tuning in many academic fields, however in the field of
game AI its application is still limited. In [21], Lucas et al.
have compared several optimisation algorithms in the task of
tuning a game-playing RHEA AI and concluded that the N-
Tuple Bandit Evolutionary Algorithm (NTBEA) is the best.
NTBEA, introduced in [22], is a model-based optimisation
algorithm, it builds a model of the hyperparameter space
using the information gathered by the fitness evaluations of
the hyperparameter candidate solutions. This information is
stored in multi-armed bandits where each arm of a bandit is
a configuration of N specific hyperparameters. Such bandits
use 1-, 2- or N-tuple models depending on the algorithm
configuration, this means that the outcome of the simulations
will be stored and aggregated according to single, couples or
triplets of hyperparameters respectively.

III. VALUE FUNCTIONS

In Game AI (or more broadly in RL), a value function
is a model that assigns to a given set of features a value
expressing its quality. In the following we will present two sets
of features: state features and events features. These represent
two different but related aspects of gameplay its static and
dynamic representations respectively.

A. State-value Functions

The classical approach to create value functions for playing
games is using a function approximator (e.g. an Artificial
Neural Network (ANN)) to evaluate the expected mean reward
associated to a state. This function is typically called V (s)
where s is the game state evaluated. In order to have a general
approach in the R framework, we present in the following the
parametric grammar used to encode the game state regardless
of the game specification. In addition to being parametric, this
grammar is also size-invariant, meaning that given a set of
R game parameters, the size of the feature vector encoding
the state will always be of the same size. The fixed size allows
methods like feed-forward ANN or other regression models to
work properly.

The grammar is comprised of the rules in Table I CardsRe-
maining is the counter of cards left in the deck. TokensAmount
is a vector of the amount for each token type (order is
consistent). Suit is a one-hot encoding with as many bits as
suits in the game. Cost, similarly to TokensAmount, is a vector
of the cost for each token type. CardSuitCount is the amount
of cards, divided by suit, that a player has bought.

Between squared brackets we specified the items whose
number changes depending on the game’s parameters. Given
this grammar, the game state of the 2-player version of
Splendor has 144 dimensions.

TABLE I
LIST OF ALL THE PRODUCTION RULES FOR COMPILING THE GAME STATE.

TERMINAL SYMBOLS IN ITALICS.

Symbol Production rule
State -> Board [Player]
Board -> [Deck][Noble] TokensAmount
Deck -> CardsRemaining [Card]
Card -> Suit Cost Points
Noble -> Points Cost
Player -> Points TokensAmount CardSuitCount [Card]

B. Event-value Functions

In a RL scenario, where S is the set of states and A is the
set of actions, our main objective would be learning a value
function. This can be a state-value function in the shape of
v : S → R or an action-value function as q : S × A → R.
However in this work we introduce the concept of event-value
function: h(Es→s′) where s is the current state, s′ is a future
reached playing a (sequence of n actions), Es→s′ is the set
of events happening between s and s′ as E is the set of all
possible events. This function requires a model m : S×A→ E
that generates the events triggered by a from s.

As a first step in developing this approach we have de-
constructed the function h as hw(Es→s′) = fw(σ(Es→s′)).
The function σ synthesises θ ∈ Rt features from the list of
events Es→s′ while fw(θ) is a parameterised function model
in w ∈ Rt weights.

This separation between features θ and weights w perfectly
isolates respectively the identification of meaningful game-
play features from the multi-objective optimisation problem
of prioritising certain events dynamics.

1) Event Logging: In R the game state is made up by
the following elements: decks of card, face-up cards, nobles,
common tokens, joker tokens, player hands. Each player state
is made up by: points, purchased cards, common tokens, joker
tokens, reserved cards, hidden reserved cards. Whenever the
engine performs an action that modifies the game state, this
generates an event which is forwarded to a list of subscribed
loggers. An event is described by the fields: tick, when it
happened; who: who triggered it; type, unique type identifier
in the range [0,#types − 1]; duration, how long it lasted;
durationType, whether the event is instant, delayed or durative;
attributes, dictionary of attributes characterising the event;
signature, list of possible attribute keys; trigger, what action
triggered it. This description provides very rich information
that can be used by the player to make better informed
decisions. This definition is general enough to be applied to
most games, in fact, it was compiled by referring to several
AI game-playing competitions specifically the knowledge they
provide to the AI players. However, in this work we explore
the use of just two fields: who and type. For the specific case of
R we have defined 18 different event types, see Table II. The
column Typeid assigns a unique id to each event. Typehc,
instead, groups the events in 5 hand-crafted macro-events and
filters out minor events (id = -1). In particular, when it comes
to token related events, an event is triggered for each single
token suit.

5

TABLE II
LIST OF ALL THE EVENTS, Pi IS THE i-TH PLAYER, E FOR EVENTS

TRIGGERED BY THE PASSIVE RULE OF R’S ENGINE. WHEN A STATE
ELEMENT HAS SEVERAL EVENTS THESE ARE LISTED IN THE EVENT
COLUMN SEPARATED BY A COMMA AND SO ARE THE RELATIVE IDS.

State element Event Who Typeid Typehc

Noble place, take, receive Pi 7, 0, 14 -1, -1, 3
Table’s token increase, decrease Pi 1, 2 -1, -1
Table’s joker increase, decrease Pi 3, 4 -1, -1
Table’s card draw, place Pi 5, 6 -1, -1
Player’s token increase, decrease Pi 8, 9 0, -1
Player’s joker increase, decrease Pi 10, 11 0, -1
Table’s card reserve, hidden Pi 13, 12 2, 1
Player’s points from card Pi 16 4
Player’s points from noble E 17 4
Player’s card buy Pi 15 -1

real

GS
simulation

GS
L

attach

play

notify
copy

Engine

Player

EF

0

Fig. 2. Interaction between engine, state, player and EF. The player starts
simulating the action sequence from action a0. At the end of the evaluation
the EF can be queried to get the value v.

2) Logging dynamics: An EF contains two components: a
synthesis function σ, an event logger (L) and a set of weights
w. The Event Logger receives all the events triggered by the
game state (GS) it is attached to. Then, during the action
sequence evaluation, the events generated are forwarded to the
synthesizer. σ is responsible for filtering and processing the
events in order to produce a vector of features θ of the same
length of w. As the EF-based player prepares to evaluate an
action sequence, the EF subscribes to the events generated by
the game state used for the forward planning, then the actions
are performed. At this point, the EF can compute the value
v = hw(θ). See Figure 2 for a schematic representation of
these dynamics.

3) Synthesis Function: Our synthesis function σ is quite
straightforward: it counts the events grouping them by type
filtering out the events not triggered by the player. Currently,
events are filtered directly in the code by comparing the player
id, however this could be learned as well introducing opponent
critique. In order to reduce the size of the feature vector we
also introduce the possibility of remapping the types to group
them. See Table II for the mappings, id is the identity mapping
while hc is a hand-crafted mapping. Note that mapping to −1
is a way of discarding the event altogether.

4) The implementation burden: All these functionalities
come at a cost, creating and embedding into a game a logging
infrastructure together with model and synthesising functions
requires time and engineering skills. However we need to make

two observations to put things into perspective.
First, this approach has been developed with the long term

objective for being applied in a playtesting scenario where
there is an explicit need for expressing as many strategies as
possible in the most controlled way. Take the example of an
agent based on an ANN that given the current state as input
provides next action to play. The control we have over such
agent, and consequently its strategy, is by adjusting the ANN’s
weights, unfortunately selecting the weights is a very delicate
task. In a EF instead there’s a direct link between game
dynamics (represented as features) and the agent’s behaviour.

Second, what is currently done by hand could be done by
a specialised model trained using classic RL techniques or
engineered in a general-purpose game engine. In the former,
the RL model would receive as input the starting and ending
states and output the features vector. There’s a trend that is
moving from single network architectures to multi-network
architectures, i.e. from the Deep Neural Networks in [3] to
AlphaStar [23]. This forces each portion of the system to focus
and specialise into a specific task. What we are envisioning
is the possibility in the near future to automatically generate
the features θ by learning the mapping we are currently hand-
crafting in σ(Es→s′) with the aid of the logging system. In
the latter the implementation overhead would be extremely
limited, potentially limited as a one-liner call to an embedded
logging engine.

C. Function Models

In an effort to keep the complexity of this study under
control and preserving interpretability we use three models:
linear, multivariate polynomial, Pruned Artificial Neural Net-
work (PANN). Regardless of the model the agent simulating
an action sequence from state s to s′ computes its fitness signal
as fw(s′)− fw(s).

1) Linear: function simply consists in summing each fea-
ture multiplied by a weight, i.e. linw(θ) = w • θ

2) Multivariate polynomial: function of degree d, see Equa-
tion 1 where the function sel, selects the j-th element in the
i-th d-multicombination of |θ| variables

polydw(θ) =

((|θ|p))∑
i=1

wi

d∏
j=1

selθ(i, j) (1)

For example given θ = [θ0, θ1] we have poly2w(θ) =
w1θ

2
0 +w2θ0θ1 +w3θ

2
1 . We want to emphasise that we don’t

need any constant w0 since hw is a ranking function. The
purpose of using a higher degree function is to detect possible
dependencies between features.

3) PANN: function approximation model based on an Arti-
ficial Neural Network with pruned connections [24]. Pruning
consists in nullifying a percentage of the connection weights
in a fully connected feed-forward topology, it has shown
comparable performance to using the full network but saving
a considerable amount of computation. See Figure 3 for an
example. These name these models as pannp%w where p% is
the percentage of active connections. The decision of enabling
or nullifying a connection is controlled by a random seed.

6

input hidden output

Fig. 3. topology of the pruned feed-forward ANN, the dashed lines represent
the pruned connections while the solid lines the active ones. The connections
to the output node are all preserved active.

When using a PANN the values of the feature vector fed as
input is rescaled to guarantee inputs within [0, 1] simply by
dividing all the features by fixed number for consistency across
games.

The space of possible weights w then becomes the hy-
perparameter space for the function model whether that’s
used by a SF or an EF. In machine learning this would be
considered a simple parameter space, however, in SFP, these
parameters don’t belong to the model built by the game-
playing algorithm making them hyperparameters. This is in
contrast with the classical applications of state-value functions
which are learned. Unfortunately learning an SF is usually an
expensive task and to provide a level ground and experimental
parity we will treat both SF and EF models as hyperparameter
spaces.

Compared to [7] we introduce the use of PANN to provide
State-value Functions with an appropriate model to support
a fair comparison between the two approaches. PANN are
particularly appropriate to maintain the complexity of the
function model relatively low, i.e. the amount of weights to
tune. This is particularly important remembering the amount
of features used by the SFs.

TABLE III
TABLE SHOWS THE NUMBER OF WEIGHTS FOR EACH FUNCTION MODEL
FOR SF AND EF. THE FEATURES COLUMN SPECIFIES HOW MANY EVENT
FUTURES ARE PROVIDED, WHILE THE TOTAL COLUMNS INDICATES HOW

MANY WEIGHTS THE FULLY CONNECTED NETWORK WOULD HAVE.

Event-value Functions

Model Features |w|
linhc

w 5 5

poly2,hcw 5 15

linid
w 18 18

poly2,idw 18 171

State-value Functions

Model Total |w|
linw 202 202

pann10%
w 5760 576

pann5%
w 5760 288

pann1%
w 5760 58

IV. EXPERIMENTS

The main objective of the experiments is to show that event-
value functions can be a valid substitute to both state-value
functions and score-based state evaluations for SFP algorithms.
We designed three sets of experiments:
• Hyperparameter Tuning: hyperparameter tuning using

NTBEA (see Section II-C) in the hyperparameter space
of BMRH coupled with the hyperparameter space of an
EF or a SF, run for several EFs (see Section IV-A). The
purpose is to understand the theoretical potential of each
hyperparamenter space;

• Round-robin Tournament: picking the best agents tuned
with NTBEA we are going to set one against the other
(see Section IV-B);

• Multi-opponent Games: compare the stability in terms of
win rate in scenarios where there are 3 opponents (see
Section IV-C).

All the SFP agents in the following experiments were allowed
a budget of 1000 simulated actions for each turn of the agent.
In the following sections we will address the tuned agents with
an asterisk (*) and the hyperparameter space without it.

A. Hyperparameter Tuning

Both event- and state-value functions are parameterised in a
set of weights w (whether these are used in a linear, polyno-
mial or ANN model), these define an hyperparameter space of
|w| dimensions. Since NTBEA is a discrete optimisation al-
gorithm, we discretise the continuous space of each weight wi
as W = {−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1}.
The limited variety of weights could constrain the ability of
fine tuning the heuristics, but it will most likely be sufficient
for the lower dimensional w.

When the BMRH agent uses an EF (or a SF), BMHR’s
and the w hyperparameter spaces are combined to define
the hyperparameter space of BMRH+EF (or BMRH+SF),
combining the two spaces will allow the two components to
adapt to each other. We are going to tune several configurations
of BMRH+EF and BMRH+SF to perform as well as possible
against BMRH*, therefore NTBEA will be set to maximise
the win rate of the tuned agent in a 2-player Splendor game.
For each set of hyperparameters evaluated, we run a single
game in spite of the high stochasticity of R, in fact, NTBEA
was designed to deal with objective functions with high noise.

In Table III are reported all the models used in the ex-
periments, when considering the dimensionality of the hyper-
parameter space for those experiments we need to add 10
dimensions from BMRH to the dimensions specified in the
table. NTBEA was run 100 times for each tuning configuration
and with several budgets: 50, 100, 200, 500, 1k, 10k, 100k,
500k games. Once the budget is over, the suggested optimal
configuration is validated on 1000 games against BMRH*.
Under the same conditions we also tuned the BMRH, but
with the classic score-based value function, as this will give
us an idea of the trade off between tuning a basic agent with
a small hyperparameter space (10D) and a more sophisticated
agent with a much larger space (from 15D to 576D). NTBEA
has two hyperparameters that can be adjusted, we picked the

7

0%

20%

40%

60%

100 1000 10000 100000 500000
budget

w
in

 ra
te

Agent BMRH**

Agent tuning with NTBEA

Fig. 4. NTBEA results all the configurations of BMRH+EF as the budget variables. When data is missing, it is due to exeeding the maximum computational
time allowed.

values k = 1 and ε = 0.7, see [22] for more details. The
results from the validation phase after NTBEA are shown in
Figure 4.

A few further notes must be made for the PANN model. We
have set the seed to be the module 10 of the experiment id
(1-100), this was a trade-off between trying several network
configurations and still run NTBEA with the same exact
configuration several times. The combinatorial nature of the
tuning algorithm makes tuning large spaces challenging as the
number of simulations grows as well. We were limited by
maximum amount of computational time of 10 days to run
each instance of NTBEA. For this reason we PANN models
were tuned using NTBEA with all three tuple models and just
1- and N-tuple models, this last scenario can be discerned by
a ♦ in the (e.g. NN10%

w uses 1-, 2- and N-tuples whereas
NN10%♦

w only 1- and N-tuples)

B. Round-robin Tournament

The main purpose of running a round-robin tournament is
to get a better understanding of the all-round performance
of the optimised agents, not only against the reference agent
BMRH*. From the previous NTBEA experiments we selected
the best (highest win rate) configuration according to the
validation statistics, we are going to name this configurations
by using the subscript w∗ instead of the generic w (e.g.
poly3,hcw∗). Instead BMRH** is the optimal BMRH tuned
against BMRH*. In Figure 5 the win percentage of each couple
of agents is reported based on 10000 games of two-player
Splendor. This number of samples guarantees that the real
value of the estimated win percentage will lie within a 95%
CI with boundaries ±1.

C. Multi-opponent Games

Since one of the higher sources of stochasticity in R are the
opponents, we tried to evaluate the robustness of the agents
by varying the number of opponents. We first let each tuned
agent play against 3 RND agents in a 4-player Splendor game
for 1000 times. This is to evaluate if the presence of a random
player can influence the their performance. Then we repeat the
experiments but with 3 BMRH* opponents. Figure 6 shows
the outcome of these experiments.

V. DISCUSSION

A. BMRH+EF Tuning

The tuning experiments have highlighted a multifaceted
scenario concerning both the optimisation algorithm and the
BMRH+EF/SF spaces. The results reported in Figure 4 show
the box plot summarising the 100 runs for each experimental
condition, outliers have been reported with single dots. As
a sanity check we can notice the average fitness improving
as the budget increases and the box-blot whiskers shrinking
highlighting a more solid convergence of NTBEA.

1) Overall considerations: Our baseline, the BMRH hyper-
parameter space can be tuned to outperform BMRH* using a
budget of 1000 games, this is a very small amount of com-
putational resources especially for such a fast framework. As
the budget increases the performance saturates never crossing
the 60% mark. The best BMRH configuration is found with a
small budget of 500. This suggests that NTBEA could either
make a better use of the budget pushing for more exploration,
or have an intrinsic limit in dealing with big amounts of data
in small search spaces.

With regards to the BMRH+EF spaces, in order to find
well performing solutions, NTBEA needed a budget of 10k

8

games for linhcw , this was expected as the search space has
5 more dimensions. It is actually reassuring as it took only
10 times the budget use by BMRH for a search space > 105

times bigger. The best overall performance, with a win rate
of 62%, was found using the poly2,idw EF and a budget of
100k. This is an outlier considering the average outcome for
such experimental condition. However the purpose of these
experiments is not evaluating NTBEA but rather the possibility
for EFs to improve BMRH performance, thus outliers are just
as relevant as any other data point.

Finally the BMRH+SF spaces show a healthy increase
in performance with growing budget but they don’t show
promising nor competitive performance. Only a few outliers
get close to the 50% mark (SF NN10%♦

w). Even though the
size of those spaces is comparable to that of EFs, it’s likely
the dishomogeneous nature of the features (scalars vs one-
hot) that severely complicates the tuning process. Two other
limiting factors could be the number of connections used and
the size neurons in the hidden layer, however this had to be
restrained to comply to the limited computation available.

With both EFs and SFs we can notice how the performance
reached by models with different amounts of weights shrinks
as the budget grows, highlighting how on average even simple
models can yield comparable results, only

We want to emphasise that with the current approach on
EFs, even though we can recognise score variations with
events 16 and 17, we are not actually using their magnitude.
So they are not able to differentiate between a variation of
3 points and that of 1. The same is true for the amounts of
coins taken or given. This is an area of improvement that
will require to query information stored in other fields of the
event data structure. In this work, however, we stuck to the
simple use of type and who fields of an event, for the sake of
simplicity. On the other hand, SF can potentially access all this
extremely valuable information as it is explicitly embedded in
the state representation. However the tuning process is likely
hindered by the sheer complexity of the state representation
burying useful information in the midst of mostly-irrelevant
information.

2) Optimal configurations: One of the most interesting
aspects of these new EFs is how they can be used to better
understand the game and the player’s strategy. Both linw∗

can be used to directly infer the relevance (or the agent’s
preference) of the events from hc and id. Unfortunately SFs
are more complicated to address as their multi-layer nature
compounds features in a non-trivial way.

Inspecting linhcw∗ optimal weights (0.2, 0.2, -0.4, -0.6, 0.8)
and matching these with Table II we can notice that taking
tokens is positive (0.2) and even more important if different
token types are taken as the contribution scales with the
number of events triggered; player’s points are the most
important (highest weight: 0.8); reserving cards is mildly
discouraged (-0.4) unless if hidden which is lightly encouraged
(0.2); attracting nobles is seen as a negative event w3 = −0.6,
however when considering that this event is always triggered
together with the event linked to w4 = 0.8 it becomes apparent
that this is just a way of preferring point events that come from
cards. This last consideration in particular shows how this new

Fig. 5. Results for the round-robin tournament, each element (row, column)
shows the win rate of player row against player column . The heatmap
colours are invariant in 0-30% and 70-100% in order to highlight relevant
subtleties around the 50% mark. The last column, avg, shows the average
win rate across all opponents.

EF approach is able to differentiate between action sequences
leading to the same score variation.

These results are the demonstration that using an EF the
agent can express very specific and refined strategies in terms
of in-game behaviour. Unfortunately interpreting the results
for the polyw∗ EFs can be very complicated, the optimal
configurations can be found in the online repository3.

The algorithm hyperparameters can give further insight
on the agents. We saw from [19] that all the agents were
tuned with a sequence length of 2 actions. This time, instead,
several of the optimal configurations had a sequence length of
three actions: BMRH**, poly2,hcw∗ and poly3,hcw∗ . These longer
horizons highlight the need for longer planning in order to
beat BMRH*. On the contrary, all SFs have an horizon of a
single action. This highlights the inability of tuning a value
function able to analyse the compound contribution of several
actions. This may be due to the inadequacy of the models or
the tuning getting stuck in a strong local minimum.

B. Round-robin Tournament

The heatmap in Figure 5 immediately suggests a stagger-
ing performance difference between EFs (top half) and SFs
(bottom half), we can see BMHR*/** and EFs beating SFs
in the top-right corner. This is also suggested by a higher
average performance across opponents (reported on the avg
column). Our baseline is BMRH** shows an improved tuning
compared to BMRH*, as they share the same hyperparameter
space. However when playing against an EF-BMRH agent, it
shows a 50/50 win rate at best. The result that immediately
stands out is the performance of poly2,idw∗ , this agent dominates
all the other agents, in particular BMRH** with a solid 56.4%

3at the project path RinascimentoFramework/agents/journal.json

9

of victories. This result is encouraging as it shows a promising
edge over a points-based agent.

Between EFs we see a fairly clear dominance of poly2,idw∗

over all the agents in the tournament suggesting that using a
more fine-grained event set can better characterise the in-game
behaviour of the agent. Instead, SFs suggest that enabling 10%
of the connections yields the best results between SFs. Also
in this case we can see how when tuning we must carefully
weight the amount of weights against its computational bur-
den, vastness of the search space and quality/amount of the
features available to the function.

What is striking, looking at these results and at NTBEA’s,
is the lack of a really strong player with win rates around
80/90%. There is a number of reasons for this. The most
likely reason is the heavy interference of stochasticity in the
game which can suddenly turn the tables. Another reason
is the limited amount of budget allowed to the agents (i.e.
1000 simulated actions per turn). This is a limiting factor
in their ability to predict the future, however, the amount of
stochasticity could also just be prohibitive. Finally, we must
remind that the real search space for the weights is continuous,
thus the limited set of weights used to discretise such space
might be limiting the NTBEA’s ability of fine tuning the
functions with higher number of weights.

C. Multi-opponent Games

In these two experimental settings we evaluated the win-
rate drop (∆) between playing against one or three opponents.
In the first case, playing against RND agents, we can notice
how SFs mixed results with most agents in the range (10-
23%), the exceptions are SF linw∗ with the worst overall
performance and SF NN1%

w∗ the only SF agent getting close
to EFs consistency who all remarkably have a very slight drop
between 0.3% and 2.1%. BMRH*/** have a relevant drop but
still contained compared to most SFs. When playing against
multiple BMRH*, we can see an even clearer separation
between EFs and SFs with the former showing fairly solid
performance (in 9.9-18.5%) with a worst win-rate of 36.3%
while the latter collapsing (∆ in 22.7-38.5%) with a best
case scenario of 11.1% win-rate. These results show how
on average the EF-based agents can guarantee a much more
consistent performance in more noisy and competitive games
than if they were using point heuristic or a state-value function
model.

VI. CONCLUSIONS

In this paper we have presented a further analysis of a novel
approach for value functions in scenarios with scarce or absent
reward signals: event-value function hw(Es→s′). The playing
field is that of easy-to-tune Statistical Forward Planning algo-
rithms. The main purpose is to provide a smoother gradient
in the evaluation of a sequence of actions. This evaluation
will be based on the set of events that are triggered during
the execution of such actions. These events are characterised
by a type. Discerning by type, we can count the number of
events that happened and create a feature vector. This feature
vector describes the dynamics of the system uncovering what

Fig. 6. Win rates for the column players against the row agents. In each one
of the two matrices, the third row represents the delta between the win%. For
a 4-player game the uniform random target for the win rate is 25%. Since we
are comparing 2 and 4-player games we are interested only in the win rate
and not in relative placement (2nd, 3rd, 4th).

happens in the state transitions. Finally by recombining and
weighting the features we can evaluate the quality of the
dynamics triggered by the action sequence.

The EFs approach has shown performance improvements
in terms of win rate when compared to the baseline agents
BMRH* and BMRH** whereas SFs were fare from achieving
comparable results even to our baselines. Event-value func-
tions have also proven more robust when playing against more
opponents, as shown in Section V-C. EFs also allowed a more
controllable characterisation of the game-playing style of the
agent as shown by the EF’s weights analysis. Using an event-
value function we can discern the difference between two ac-
tion sequences that lead to the same outcome in terms of score
variation, meaning we have finer control over the behaviour
of the agent. This particular feature is very important when it
comes to the ability of automatically play-testing a game, in
fact optimal agents are blind to the variety of possible non-
optimal but human-like strategies in the game.

This novel methodology was tested in a relatively simple
multiplayer board game with limited use of domain knowl-
edge. We have seen how simplifying the event mapping, from
id to hc, can bring a remarkable speed up in tuning time.
Such flexibility provides a great oppurtunity for designers and
developers to inject domain knowledge in the form custom-
designed events or event filtering. With further development of
the methodology, it could be fast and effective even in complex
real-time games with appropriate involvement of the designers.

VII. FUTURE WORK

For future work we plan on doing a variety of improvements
and enhancements to the work presented here and also to apply
this to different scenarios.

Improvement could be brought by the use of the information
from the event, this far, only the type and who were used.
Embedding the richer information coming from the event’s
attributes can potentially allow for a more precise definition
of the player’s strategy. An option could be assigning weights
to these values as well while carefully distinguish between
categorical, ordinal and numerical attributes.

10

Since EFs could define and express more focused strate-
gies, several behavioural metrics could be defined and used
to numerically evaluate the differences between the agents
presented so far.

Finally, the Event-value Functions are able to represent in
a very compact representation a potentially very expressive
behavioural space. Such space could be explored using a
MAP-Elites algorithm that has shown very promising results
[25] in such tasks. The behavioural space would be described
by metrics as the ones mentioned above.

ACKNOWLEDGEMENTS

This work was funded by the EPSRC CDT in Intelligent
Games and Game Intelligence (IGGI) EP/L015846/1. This
research utilised Queen Mary’s Apocrita HPC facility [26],
supported by QMUL Research-IT.

REFERENCES

[1] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo Tree Search Methods,” IEEE Transactions
on Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[2] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen, “Rolling
Horizon Evolution versus Tree Search for navigation in single-player
real-time games,” in Proceedings of the 15th annual conference on
Genetic and evolutionary computation. ACM, 2013, pp. 351–358.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari With Deep Reinforcement
Learning,” in NIPS Deep Learning Workshop, 2013.

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[5] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[6] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and
S. M. Lucas, “General Video Game AI: A Multitrack Framework for
Evaluating Agents, Games, and Content Generation Algorithms,” IEEE
Transactions on Games, vol. 11, no. 3, pp. 195–214, 2019.

[7] I. Bravi and S. M. Lucas, “Rinascimento: using event-value functions for
playing Splendor,” in 2020 IEEE Conference on Games (CoG). IEEE,
2020, pp. 283–290.

[8] T. Pohlen, B. Piot, T. Hester, M. G. Azar, D. Horgan, D. Budden,
G. Barth-Maron, H. Van Hasselt, J. Quan, M. Večerı́k et al., “Observe
and look further: Achieving consistent performance on atari,” arXiv
preprint arXiv:1805.11593, 2018.

[9] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First
return, then explore,” Nature, vol. 590, no. 7847, pp. 580–586, 2021.

[10] Y. Aytar, T. Pfaff, D. Budden, T. Paine, Z. Wang, and N. de Freitas,
“Playing hard exploration games by watching YouTube,” in Advances
in Neural Information Processing Systems, 2018, pp. 2930–2941.

[11] T. Salimans and R. Chen, “Learning Montezuma’s Revenge from a
Single Demonstration,” arXiv preprint arXiv:1812.03381, 2018.

[12] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Icml,
vol. 99, 1999, pp. 278–287.

[13] Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and
C. Fan, “Learning to utilize shaping rewards: A new approach of reward
shaping,” Advances in Neural Information Processing Systems, vol. 33,
2020.

[14] C. Holmgård, M. C. Green, A. Liapis, and J. Togelius, “Automated
playtesting with procedural personas through mcts with evolved heuris-
tics,” IEEE Transactions on Games, vol. 11, no. 4, pp. 352–362, 2018.

[15] D. Perez, S. Samothrakis, and S. Lucas, “Knowledge-based fast evo-
lutionary MCTS for general video game playing,” in 2014 IEEE Con-
ference on Computational Intelligence and Games. IEEE, 2014, pp.
1–8.

[16] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van
Hasselt, and D. Silver, “Successor features for transfer in reinforcement
learning,” in Advances in neural information processing systems, 2017,
pp. 4055–4065.

[17] P. Dayan, “Improving generalization for temporal difference learning:
The successor representation,” Neural Computation, vol. 5, no. 4, pp.
613–624, 1993.

[18] F. de Mesentier Silva, R. Canaan, S. Lee, M. C. Fontaine, J. Togelius,
and A. K. Hoover, “Evolving the hearthstone meta,” in 2019 IEEE
Conference on Games (CoG). IEEE, 2019, pp. 1–8.

[19] I. Bravi, D. Perez-Liebana, S. M. Lucas, and J. Liu, “Rinascimento:
Optimising Statistical Forward Planning Agents for Playing Splendor,”
in 2019 IEEE Conference on Games (CoG). IEEE, 2019, pp. 1–8.

[20] H. Noguchi, R. Ishii, T. Harada, and R. Thawonmas, “Improving rolling
horizon evolutionary algorithm in a fighting game,” in 2019 Nicograph
International (NicoInt). IEEE, 2019, pp. 118–118.

[21] S. M. Lucas, J. Liu, I. Bravi, R. D. Gaina, J. Woodward, V. Volz,
and D. Perez-Liebana, “Efficient evolutionary methods for game agent
optimisation: Model-based is best,” arXiv preprint arXiv:1901.00723,
2019.

[22] S. M. Lucas, J. Liu, and D. Perez-Liebana, “The n-tuple bandit evolu-
tionary algorithm for game agent optimisation,” in 2018 IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2018, pp. 1–9.

[23] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[24] M. Zhu and S. Gupta, “To Prune, or Not to Prune: Exploring the Efficacy
of Pruning for Model Compression,” in 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Workshop Track Proceedings, 2018.

[25] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” arXiv preprint arXiv:1504.04909, 2015.

[26] T. King, S. Butcher, and L. Zalewski, Apocrita - High Performance
Computing Cluster for Queen Mary University of London, Mar. 2017.
[Online]. Available: https://doi.org/10.5281/zenodo.438045

