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Abstract—This paper proposes an innovative approach to the
Generalized Advantage Estimator (GAE) to address the bias-
variance trade-off in truncated roll-outs during reinforcement
learning. In typical GAE implementations, the k-step advantage
is estimated using a lambda-weighted average, until the terminal
state. While this method provides constant bias-variance proper-
ties at any time step, it often necessitates truncated roll-outs with
shorter horizons for faster learning and policy updates within
a single episode. This study highlights an unexplored issue: the
bias-variance properties differ for small versus considerable time
steps within truncated roll-outs. Specifically, smaller time steps
may have a significant bias, prompting a need for their increase.
The proposed solution involves a partial GAE update, calculating
the advantage estimates for all time steps but updating the policy
only for a specified range. To prevent data wastage, the data
from this range is retained for further processing and policy
parameter updates. This partial GAE approach, despite the
increased memory requirements, promises enhanced computation
speed and optimal data utilization. Empirical validation was
conducted on four MuJoCo tasks and microRTS. The results
show a performance improvement trend with the partial GAE
estimator, outperforming regular GAE in task completion speed
in microRTS. These findings offer a promising direction for
improving policy update efficiency in reinforcement learning.

I. INTRODUCTION

Reinforcement learning, a branch of machine learning that
has seen numerous practical applications in recent years, re-
volves around an agent’s interaction with its environment. The
agent’s approach to this interaction is guided by a systematic
process: it begins by evaluating its current state based on
the environment, proceeds to choose an action in response,
and continues this sequence of action and evaluation, thereby
perpetually learning from its environment. To formalize this
process, we denote S as the set of possible states that an agent
can inhabit and A as the set of potential actions an agent can
take. The likelihood of an agent transitioning between states
by executing a particular action is quantified by the transition
probability, P .

As the agent explores through the environment, it is re-
warded for its actions. These rewards, ranging from Rmin

to Rmax, act as feedback from the environment and can be
represented as a function r : S × A → [Rmin, Rmax]. Over
time, the agent builds a trajectory sequence, τ , constituted by
the states it traversed and the actions it executed, represented
as τ : (s1, a1, ..., sT , aT ). From this trajectory, a cumulative
return, Gt =

∑T
t=1 γ

t−1rt, is derived, where γ signifies the
discount factor, and T denotes the total number of steps
performed. The ultimate objective of reinforcement learning
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is to unearth an optimal policy, denoted π, which guides the
agent in maximizing the expected cumulative reward.

In this context, a policy is a function that assigns a
probability to each possible action in every state, formally
defined as π(a|s) = p(At = a|St = s). When operating
under a particular policy, the cumulative return adheres to a
specific distribution. The expected value of this cumulative
return, given a starting state s, can be represented as a state-

value function: vπ(s) = Eπ[
∞∑
k=0

γkrt+k+1|St = s]. Moreover,

the expected cumulative return from state s after choosing a
particular action a is denoted as a state-action value function:

qπ(s, a) = Eπ[
∞∑
k=0

γkrt+k+1|St = s,At = a].

For the purpose of estimating the value function, two
methods have seen common use in reinforcement learning:
Temporal Difference (TD) and Monte Carlo (MC) methods.
Each method brings its own set of strengths and limitations to
the table. For instance, the TD method of estimating value
function is characterized by a high bias but low variance,
whereas the MC method flips this trade-off, presenting low
bias but high variance. To strike a balance between these
two extremes, Kimura and Kobayashi (1998) [1] proposed
a method termed λ return. Furthermore, the TD(λ) method,
introduced by Sutton (1988)[2], serves as an extension of the
λ return concept, providing a more balanced solution for value
estimation.

Building on this, Schulman et al. (2015)[3] put forth the
Generalized Advantage Estimation (GAE) method, which es-
timates the advantage value function and uses the lambda
return method for the said estimation. In actual applications,
as stated in the Proximal Policy Optimization (PPO) paper by
Schulman et al. (2017)[4], the GAE method is truncated due
to incomplete trajectories. This truncation, however, induces a
notable bias in the process of estimation.

To address this shortcoming, we put forward a novel ap-
proach that we term as partial GAE. This technique har-
nesses partially computed GAEs, significantly curbing the bias
induced by incomplete trajectories. In addition to carrying
out experiments in widely-adopted MuJoCo environments, we
test our methods in the intricate and demanding microRTS
environment. The results derived from these rigorous tests
demonstrate the empirical efficacy of our methods, indicating
promising implications for further research and application.

II. BACKGROUND

The policy gradient algorithm, which is integral to the realm
of reinforcement learning, hinges on a gradient expression
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typically represented as follows:

g = E

[ ∞∑
t=0

Ψt∇θlogπθ(at|st)

]
(1)

In this formula, Ψt is utilized as a factor to control the
magnitude of the policy update along the direction of the
gradient. The rudimentary policy gradient algorithm employs
the action value function, denoted as qπ(s, a), to fill the role
of Ψt. The action value function is typically estimated by the
cumulative return, represented as Gt. Vanilla policy gradient
[5] is the basic form of the policy gradient algorithm. It
directly uses the full trajectory returns for gradient estimation
but suffers from high variance.

Among the variety of methods devised for estimating the
value function, the Monte Carlo (MC) method is arguably
one of the simplest and most intuitive. This technique stems
directly from the definition of the value function and utilizes
the accumulated return values as the estimator for the value
function. More precisely, the MC method deploys the accu-
mulated reward, given by

∑N
n=0 γ

nRt+n, from a sequence
of rewards, denoted as (rt, rt+1, ..., rt+N ), as an estimate
for the state value when the agent finds itself in state st.
Owing to its comprehensive inclusion of all returns post time
t, the MC method is characterized as an unbiased estimator.
However, this comprehensive nature, combined with the high
dimensionality, also attributes high variance to this method.

On the other hand, the Temporal Difference (TD) learning
method employs rt + γVθ(st+1) as the estimator for the
value function V π(st). The discrepancy between the estimated
and actual value functions, referred to as eθ, is incorporated
to drive the TD algorithm, as illustrated in Equation 2.
The TD method is advantageous in its comparatively low
variance due to fewer random variable dimensions in the
estimator. However, it introduces an estimation bias amounting
to γESt+1

[eθ(St+1)].

E(rt,St+1)[rt + γVθ(St+1)] = V πSt+ γESt+1
[eθ(St+1)] (2)

Striking a compromise between the bias-variance trade-off
characteristic of the MC and TD methods, the λ-return method
comes into play. As indicated by Equation 4, the λ-return
method resorts to the TD method’s estimator when λ equals
0, and to the MC method’s estimator when λ equals 1.

G
(n)
t = γnV (st+n) +

n−1∑
l=0

γlrt+l (3)

Gλt = λN−1G(N)t+ (1− λ)

N−1∑
n=1

λn−1G
(n)
t (4)

To address the variance in policy gradient, the concept of
a baseline, b(t), is introduced into the policy gradient, as
indicated in Equation 6. Utilizing the mean return from a
sample as the baseline can lead to significant improvements.
However, in the context of a Markov process, the baseline must
be adaptive with respect to the state. Larger state baselines
are appropriate when all actions have large values, and vice

versa. Algorithms such as Advantage Actor-Critic (A2C) [6]
and Asynchronous Advantage Actor-Critic (A3C) use Vt as
the baseline. Mathematically, the advantage function A(s, a)
is defined as Equation 5. where Q(s, a) is the action-value
function and V (s) is the value function.

A(s, a) = Q(s, a)− V (s) (5)

The action-value function, Q(S,A), can be approximated
as R+γV ′. And the advantage A(st, at) can be calculated as
rt + γV (st+1)− V (st).

g = E

[ ∞∑
t=0

(qπ(s, a)− b(t))∇θlogπθ(at|st)

]
(6)

Emphatic Temporal Difference (ETD) methods, which be-
long to the family of TD methods and involve the use of follow
on traces, have been recognized for their theoretical prowess in
resolving the deadly triad of off-policy reinforcement learning
[7]. Despite the success of ETD methods, they continue to
present open problems, particularly in their application to
prediction and control tasks.

Truncated TD methods offer a variation on TD methods and
provide a viable approach to circumventing some of the issues
inherent to conventional TD methods. The Truncated Temporal
Differences (TTD) technique is an approximation method that
appears to alleviate the drawbacks of eligibility traces [8]. This
method, despite being straightforward and requiring minimal
computation per action, remains relatively unexplored [9].

In the practical realm, TD methods and their variants have
found application in tasks such as mobile robot navigation. A
recent study evaluated the performance of standard TD and
least-squares truncated temporal-difference learning (LST2D)
methods in such tasks [10].

As proposed in the Generalized Advantage Estimation
(GAE) paper [3], a TD(λ)-like method calculates the estimated
value as a weighted average of the estimated values of different
lengths. This technique for computing the advantage is adopted
by powerful reinforcement learning algorithms such as Trust
Region Policy Optimization (TRPO)[11] and Proximal Policy
Optimization (PPO)[4].

δVt+l = rt+l + γV (st+l+1)− V (st+l) (7)

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l (8)

The introduction of a discount factor, γ, to estimate the
policy gradient, gγ , results in a bias from the actual gradient,
g. Such policy gradient estimation is effectively targeting the
discounted cumulative reward. The concept and applications
of GAE will be elaborated in subsequent sections of this paper.

There are other policy gradient algorithms besides PPO.
Natural policy gradient [12] modifies the vanilla policy gradi-
ent by considering the natural metric on the space of policies.
This often leads to more stable and effective learning. Deter-
ministic policy gradients (DPG) [13] and Deep deterministic
policy gradients (DDPG) [14] are policy gradient methods
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designed for continuous action spaces. DDPG is the deep vari-
ant that uses neural networks for function approximation and
combines ideas from DPG and actor-critic methods. Soft actor-
critic [15] integrates maximum entropy reinforcement learning
principles into the actor-critic framework. This promotes more
exploratory policies and has shown strong performance in
various tasks. Maximum a Posteriori Policy Optimisation
[16] is designed to generalize well in reinforcement learning
problems, especially in large-scale real-world problems and
off-policy settings.

Additionally, apart from the aforementioned method for
calculating Ψt, different strategies exist for estimating the
value function. The paper by Schulman et al. [3], for instance,
employs the trust region method to optimize the value function
at each iteration of the batch optimization process.

minimize
ϕ

∑N
n=1 ∥ Vϕ(sn)− V̂n ∥

subject to 1
N

∑N
n=1

∥Vϕ(sn)−Vϕold
(sn)∥

2σ ≤ ϵ
(9)

Most implementations clip Vθt around the value estimates
on both sides, Vθt−1

and Vθt+1
.

LV F
t = max

[
(Vθt − V target

t )2,

clip
(
Vθt , (Vθt−1

+ ϵ, Vθt+1
+ ϵ)− V target

t

)2] (10)

The study by Tucker et al. [17] proposes a technique for nor-
malizing the advantage, demonstrating that such normalization
can improve the performance of the policy gradient algorithm.
Once the GAE calculates advantages in a batch, it computes
the mean and standard deviation. Each advantage then under-
goes a normalization process, where the mean is subtracted
from it and then it is divided by the standard deviation. In
Equation 11, Anormi represents the normalized advantage, Ai
the advantage, Amean the mean of the advantages, and Astd

the standard deviation of the advantages.

Anormi =
Ai−Amean

Astd
(11)

In addition, similar to GAE, V-trace [18] was a method of
updating value functions that was tested in complex tasks [19].
Moreover, advantage-weighted Regression [20] fits the policy
to maximize the expected advantage by using the advantage
estimates as weights in a regression problem.

There are more approaches of value estimation outside
the policy gradient architecture. dueling Networks [21] is
introduced in the Dueling DQN architecture, this approach
separates the value function into two streams: one estimating
state value V (s) and the other estimating the advantage
function A(s, a). These are later combined to produce the Q-
values. Dueling architectures can lead to more stable and faster
learning. Distributional value functions model [22] the entire
distribution of returns, which lead to improved performance
and stability in learning. Implicit Quantile Networks (IQN)
[23] is an extension of distributional value functions. Instead
of modeling the return distribution with fixed quantiles, IQN
samples random quantiles, providing a more flexible approxi-
mation of the return distribution.

Overall, the estimation of a more instructive value function
is of great significance for the performance of the policy
gradient algorithm. In the subsequent parts of this paper,
the practical application of GAE will be explored in depth,
alongside potential ways to improve its functionality. This
includes an analysis of the function approximations used, the
impact of varying hyperparameters, and strategies for further
enhancement of policy gradient performance.

III. PARTIAL GAE

The bias-variance trade-off has always been a significant
challenge in machine learning. In the estimation of the value of
RL, as mentioned above, achieving satisfactory levels of bias
and variance simultaneously often proves difficult. In practical
applications, a fixed length is typically assigned to each sample
to enhance the efficiency of parallel computing. This approach
is also adopted when sampling a complete trajectory becomes
too time-consuming. Instead, only a portion of the complete
trajectory is sampled at a time to expedite the training process.
As discussed in the PPO paper [4], a truncated Generalized
Advantage Estimation (GAE) is used for fixed-length trajec-
tory segments (Figure 1). The GAE of an incomplete trajectory
with length T is represented as follows:

Â
GAE(γ,λ,T )
T = δVT = rT + γ · 0− V (sT ) (12)

Â
GAE(γ,λ,T )
t =

T−t∑
l=0

(γλ)lδVt+l (13)

In the GAE paper [3], the sum of k δ terms is denoted as
Â

(k)
t . When k = 1, Â(1)

t = δVt , which exhibits a large bias but
low variance. However, as k increases, the bias progressively
decreases.

Â
(k)
t =

k−1∑
l=0

γlδVt+l = −V (st)+γkV (sk+t)+

k−1∑
l=0

γlrt+l (14)

The GAE, ÂGAE(γ,λ,T ), is essentially the sum of
exponentially-weighted Â

(k)
t terms. As T − t increases and

the number of cumulative terms grows, the bias is reduced.

Â
GAE(γ,λ,T )
t = (1− λ)

T−t+1∑
k=1

λk−1Â
(k)
t (15)

For the special cases where T = D and t = T , with D
being the end of the complete trajectory, it is crucial to note
that when T = D, ÂGAE(γ,λ,T )

t is identical to Â
GAE(γ,λ,D)
t ,

and its bias is minimized.

Â
GAE(γ,λ,D)
t = (1− λ)

D−t+1∑
k=1

λk−1Â
(k)
t (16)

Â
GAE(γ,λ,T )
T = rt + γV (st+1)− V (st) (17)

Like the infinite ÂGAE(γ,λ), the truncated GAE strives to
balance bias and variance via λ. While ÂGAE(γ,1,T ) exhibits
low bias and high variance, ÂGAE(γ,0,T ) shows low variance
but high bias. Nevertheless, the truncated GAE generally
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Fig. 1. The black line in the figure represents the complete trajectory of an environment from start to finish. In practical applications, to accommodate parallel
computing and prevent excessively long episodes, a fixed sampling length is adopted. Since the last step of the sampled trajectory does not coincide with the
termination of the full trajectory, a truncated GAE is used as the estimator. The red part illustrates the trajectory obtained through actual sampling and the
truncated GAE calculation based on this trajectory. The purple part depicts the GAE that would be calculated if the trajectory were complete. The blue part
indicates the bias resulting from the exclusion of unsampled portions of the trajectory from the GAE calculation. For all of the calculated truncated GAE
Â

GAE(γ,λ,T )
t , we propose to use Â

GAE(γ,λ,T )
t for updating in the case t ≤ ϵ and discard Â

GAE(γ,λ,T )
t when t > ϵ as it shown in red part of this figure.

presents a higher bias and lower variance compared to its infi-
nite counterpart. From a broader perspective, minimizing bias
is crucial as it makes Â

GAE(γ,λ,T )
t increasingly informative

for a specific trajectory as the step t is reduced.
The difference between the truncated Â

GAE(γ,λ,T )
t and the

GAE of a complete trajectory Â
GAE(γ,λ,D)
t is denoted as Bt.

Bt = Â
GAE(γ,λ,D)
t − Â

GAE(γ,λ,T )
t =

D−t∑
l=T−t

(γλ)lδVt+l (18)

According to the Equation 19, Bt decreases exponentially
with the step t for a specific trajectory length T , given that
0 < γ < 1. This decrease in Bt diminishes the deviation
between Â

GAE(γ,λ,T )
t and Â

GAE(γ,λ,D)
t . Since Â

GAE(γ,λ,T )
t

possesses a larger bias than Â
GAE(γ,λ,D)
t , the reduction of Bt

helps to decrease the bias of ÂGAE(γ,λ,T )
t .

Bt =

D−T∑
l=0

(γλ)l+T−tδVT+l = (γλ)T−tBT (19)

At the same time, it should be noted that when (T − t)

increases, the variance of Â
GAE(γ,λ,T )
t will increase. A brief

mathematical explanation is given below.
If Var(ÂGAE(γ,λ,T )

t−1 ) > Var(ÂGAE(γ,λ,T )
t ) holds, then the

proposition is true. The variance of the sum D1+D2 is given
by Equation 20.

Var(D1+D2) = Var(D1)+Var(D2)+2×Cov(D1, D2) (20)

For the variance of D1+D2 to be greater than the variance
of D1, the following must be true:

Var(D2) + 2× Cov(D1, D2) > 0 (21)

From the Inequality 21, if Var(D2) > 0 (which is always
true for any non-constant distribution) and the covariance term
Cov(D1, D2) is positive, then the inequality holds. Thus, in
our context, it is only necessary to prove that the covariance
is greater than 0.

The covariance between two random variables D1 and
D2 is a measure of how the two variables change together.
Mathematically, covariance is defined as:

Cov(D1, D2) = E[(D1 − E[D1])(D2 − E[D2])] (22)

Where E[·] denotes the expected value. When D1 tends to
be above its mean value at the same time that D2 is above its
mean value, or similarly for being below their mean values. In
simpler terms, if D1 increases as D2 increases (on average),
or D1 decreases as D2 decreases, then their covariance is
positive.

From Equation 7, δ comes from the same distribution related
to V (s) for different t.

∑T−t
l=0 (γλ)

lδV changes in the same
direction as (γλ)T−t+1δV . This means that the covariance of
the two is greater than 0, as shown in Equation 23.

Cov(
T−t∑
l=0

(γλ)lδV , (γλ)T−t+1δV ) > 0 (23)
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Algorithm 1 PPO with partial GAE
for iteration=1, 2, . . . do

for actor=1, 2, . . . , N do
Run policy πθold in environment, get samples (s1, a1, ..., sT , aT )
Compute advantage estimates Â1, ..., ÂT

if T is not done then
only use Â1, ..., Âϵ for updating
keep (sϵ, aϵ, ..., sT , aT ) as (s1, a1, ..., sT−ϵ, aT−ϵ)

else if T is done then
use Â1, ..., ÂT for updating

end if
end for
for epoch K do

Optimize surrogate L wrt θ, with minibatch size
θ ← θold

end for
end for

From the equation 13 and inequality 23, it can be get:

Var(
T−t∑
l=0

(γλ)lδV + (γλ)T−t+1δV ) > Var(
T−t∑
l=0

(γλ)lδV ) (24)

Therefore Var(ÂGAE(γ,λ,T )
t−1 ) > Var(ÂGAE(γ,λ,T )

t ), that is,
as (T-t) increases, the variance of truncated GAE will increase.

In conclusion, the practice of using fixed-length sampling
trajectories in practical applications results in truncated GAE
calculations. This truncation leads to significant bias, particu-
larly when t approaches the end of the trajectory. A large bias
can cause underfitting, where the learning algorithm consis-
tently underestimates the value of certain states or actions. This
can skew the learning process, leading the agent to undervalue
certain states or actions, potentially resulting in sub-optimal
behavior. To address this, we suggest adopting a ”partial GAE”
approach. Essentially, we propose using a section of the GAE
and discarding the remaining part of the trajectory, typically
characterized by substantial bias.

We thus propose a Proximal Policy Optimization algorithm
employing partial GAE, as outlined in Algorithm 1. This
method involves a partial parameter, ϵ, and a sample length,
T . During each iteration, each sampler collects T samples
and computes T truncated GAEs. When t > ϵ, we consider a
portion of a GAE; thus, the advantage estimates at time t in
the trajectory are excluded from the training.

Following this, we construct the surrogate loss as defined
in [4], based on these N(T − ϵ) data. Then, we optimize the
policy through minibatch Adam optimization for K epochs.
For Algorithm 1, it is important to note that as T−t increases,
the bias of Â

GAE(γ,λ,T )
t decreases. Also, as the partial pa-

rameter decreases, the bias of Â1, ..., Âϵ reduces as well. This
dynamic ultimately leads to a more effective learning process,
reinforcing the practical utility of our proposed partial GAE
method.

IV. EXPERIMENTS

Our methodology was examined and put through a rigorous
evaluation across two distinct environments: MuJoCo [24]

and microRTS [25]. MuJoCo, an acronym for Multi-Joint
dynamics with Contact, is a physics engine or, more precisely,
a physical simulation platform. It offered us the opportunity
to conduct primary experiments in the Ant-v3 environment,
a robotics task involving a simulated quadruped robot. Our
analysis was further supported by supplemental tests in sev-
eral other environments like Halfcheetah-v3, Hopper-v3, and
Walker2d-v3, each with unique characteristics.

In contrast to MuJoCo’s continuous and physically sim-
ulated environment, we also engaged with microRTS. This
streamlined and highly abstracted real-time strategy (RTS)
game environment is essentially a grid-based environment with
RTS game features. Unlike MuJoCo, it offers discrete states
and actions, and a significantly large number of game-play
steps, creating a vastly different experimental backdrop.

For the MuJoCo experiments, we opted to use Version 1.31,
distributed under an open-source MIT License. To achieve
optimal results, we carefully configured the hyperparameters
according to industry standard practices. This included setting
a discount factor (γ) of 0.99, a Generalized Advantage Esti-
mation (λ for GAE) of 0.95, a Proximal Policy Optimization
(PPO) clip coefficient of 0.2, and a value coefficient of 1.
Moreover, the optimizer’s learning rate was set to 2.5e-4,
across 32 environments, over a period of 2 epochs. In the
architecture of the policy representation, we implemented a
fully connected three-layer Multi-layer Perceptron (MLP) with
a 64-unit hidden layer. To further enhance the model’s learning
capability, an additional two noise layers were appended after
the MLP to facilitate exploration during the training process.
In the Ant-v3 games, we conducted games consisting of 1000
steps, with experiments for a sample length (T ) ranging from
128 to 1024 and parameter (ϵ) from 64 to 512.

In our journey of testing the methodology in the microRTS
environment, we conducted experiments against CoacAI, an
AI that emerged victorious in the 2020 microRTS competition.
We maintained consistency by employing the same values
for the discount factor (γ), Generalized Advantage Estimation
(λ for the GAE), PPO clip coefficient, value coefficient,
optimizer’s learning rate, number of environments, and epochs
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Fig. 2. Training curve in different MuJoCo environments. In the experiment, each epoch contains 8192 steps. The baseline in the experiment is common
PPO, and the partial parameter of the partial GAE group is 256.

as those we used in the MuJoCo experiments. The one and
only variance from the MuJoCo setup was the introduction of
an entropy regularization coefficient of 0.01. When it came
to policy representation, we used a two-layer convolutional
neural network attached to a fully connected three-layer MLP,
with a significantly larger 512-unit hidden layer.

To assess the efficiency and effectiveness of our methodol-
ogy, we relied heavily on results obtained under specific sam-
pling conditions. In the context of the MuJoCo environment,
we employed the total reward per episode during training as
the performance score. In the microRTS setting, the evaluation
criterion was the win rate of the most recent 100 episodes
following a predefined training period. We ensured consistency
and randomness by running each set of variables with 10
random seeds. All experiments were conducted on an Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz.

A. Experiments in MuJoCo

As was expounded upon in the previous sections, the value
of t in the truncated Generalized Advantage Estimation (GAE)
ÂGAE(γ,λ,T )t plays a crucial role. Specifically, both a smaller
t value and a larger sample length T tend to result in a decrease
in the bias of the estimate. Conversely, it also leads to an

Fig. 3. The performance after training in Ant-v3. Since sample time T is
greater than or equal to partial parameter ϵ, the white part has no data. T = ϵ
means not to discard any GAE, which is the baseline.

increase in the variance. And the variance of Â
GAE(γ,λ,T )
t

consistently remains smaller than that of ÂGAE(γ,λ,D)
t .

Theoretically, the partial parameter ϵ should be as small as
feasible to decrease the bias and sample length T should be
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as large as feasible. However, this theoretical standpoint faces
challenges when applied in practical scenarios. In real-world
applications, employing small partial parameters can lead to
an increase in the number of GAE calculations required. This
might potentially escalate the complexity of computational
operations. On the other hand, opting for a larger sampling
length results in a longer sequence that needs to be processed
in a single GAE calculation, which in turn increases the
calculation time. At the same time, the increase in variance
should be taken into account, which further highlights the need
for a trade-off.

To further scrutinize these dynamics, we executed a com-
parison of the common Proximal Policy Optimization (PPO)
as the baseline with the partial GAE PPO across several envi-
ronments: Ant-v3, Halfcheetah-v3, Hopper-v3, and Walker2d-
v3. In addition, we compared the effects of different partial
parameters and sample lengths specifically in the Ant-v3
environment. In an attempt to ensure a clean and undisturbed
comparison, we excluded interference from additional meth-
ods. Therefore, our implementation did not incorporate any
of the tricks outlined by Engstrom et al. [26], such as value
clipping and an advantage normal.

The fruits of our experimental labor are illustrated in Figure
2. In this figure, one can observe that utilizing the partial GAE
yields better performance than the baseline. Furthermore, a
noteworthy trend emerges wherein an improvement in perfor-
mance is achieved by employing smaller partial parameters.
The corresponding heat-map in Figure 3 showcases the per-
formance after one hour of training as T and ϵ are varied. A
meticulous inspection reveals that the peak performance score
coincides with the partial parameter ϵ lying within the range
of [384, 512] and the sample length T falling in the range of
[64, 128], specifically in the Ant-v3 environment.

It’s important to highlight that performance improvements
do not occur indefinitely by continuing to increase the partial
parameter or decrease the sampling length, especially when the
partial parameter is small or the sampling length is large. This
phenomenon can be attributed to the fact that, as evidenced
by Equation 19, when (T − t) becomes significantly large,
Bt tends to shrink considerably, and the alteration brought
about by persistently increasing (T − t) becomes negligible.
According to the worker of PPO paper [4] and GAE paper [3]
while GAE indeed does an excellent job of drastically reducing
variance by sacrificing bias, and the variance of the truncated
GAE is lower than that of the complete trajectory, based on
our experiments’ results this doesn’t imply that the sole aim
should be to minimize bias while disregarding the impact of
variance. In the realm of practical applications, it’s essential to
find the median of the partial parameter ϵ and sample length T
to strike a balance between bias and variance. This essentially
implies that there exists an intermediate value that optimizes
the training effect, rather than just focusing on maximizing
(T − ϵ).

B. Experiments in microRTS

To further validate and enrich our research findings, we
ventured into additional experimentation within the microRTS

Fig. 4. Initial states of maps for experiments. From left to right maps
are “basesWorkers16x16”, “basesWorkers8x8Obstacle”, “TwoBasesWork-
ers12x12”

environment. MicroRTS is known for being a sparsely re-
warded setting that presents an array of extensive game steps,
adding complexity and depth to the conducted experiments.
The specific tasks in this environment require participating
agents to acquire and demonstrate proficiency in key mechan-
ics of real-time strategy (RTS) games. These mechanics are
multifaceted, including of resource collection, construction of
game units, and the strategic elimination of enemy units and
their bases. For these supplemental experiments, we set the
sample length T to 512.

In our endeavor to create a comprehensive testing sce-
nario, we selected three distinct maps: ”basesWorkers16x16”,
”basesWorkers8x8Obstacle”, and ”TwoBasesWorkers12x12”.
This diverse selection of maps aimed to encapsulate various
map sizes and initial conditions, thereby ensuring that the
experimental results weren’t biased towards any particular
configuration.

It’s worth noting that due to its extensively long game
steps, the microRTS environment inherently introduces a
larger bias into the value estimate when truncated GAE is
used. As highlighted in previous sections, substantial bias in
value estimation when employing Proximal Policy Optimiza-
tion (PPO) can have several negative ramifications. One key
consequence is that it can significantly undermine learning
efficiency, primarily because inaccurate estimations fail to
reflect the expected return of a state or state-action pair
accurately. As a result, the agent ends up learning sub-optimal
policies. Secondly, a substantial level of bias can disrupt the
delicate balance between exploration and exploitation for the
agent, potentially leading to sub-optimal policy decisions as
the agent might consistently undervalue or overvalue specific
actions. Another repercussion is the potential for an increase in
training instability, triggered by inaccurate advantage estimates
originating from a biased value function, leading to unpre-
dictable and inefficient policy updates. Lastly, the agent might
encounter difficulties in converging to the optimal policy, given
that flawed feedback inaccurately guides policy updates.

These issues assume heightened significance in the context
of our microRTS experiments. The Figure 5 reveals a telling
story about the performance on the three different map ex-
periments. Initial states of maps for these experiments are
shown in Figure 4. Initially, the baseline method displays a
learning curve strikingly similar to the method using partial
GAE. However, as training progresses, the baseline method
struggles to keep up, faltering in its quest to achieve a higher
win rate and reward. In contrast, the method utilizing partial
GAE demonstrates significant improvement, illustrating the
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Fig. 5. Learning curve of win rate and rewards in different maps. In the experiment, each epoch contains 8192 steps. Each column represents a different
map, the first row is the winning rate in different maps, and the second row is the rewards in different maps. The baseline in the experiment is common PPO,
and the partial coefficien of the partial GAE group is 256.

Fig. 6. Trained model against different AI in 1000 games, where CoacAI is 1st place in 2020, tiamat is 1st place in 2018, MixedBot is 2nd place in 2019,
WorkerRushAI is 8th place in 2020, NaiveMCTS is 9th place in 2020.

benefits of this approach by eventually converging to a win
rate of nearly 100%.

The comparative performance of our trained model against
other AI counterparts is depicted in Figure 6. It is evident
from the figure that our PAE-trained model exhibits superior
performance on larger 12x12 and 16x16 maps. On the other
hand, the model utilizing GAE shows better performance
on smaller 8x8 maps. This difference in performance out-
comes invites an investigation into the underlying reasons.
A conjecture we put forward is that the PAE model could
be overfitting when competing against coacAI on the smaller
8x8 map. Overfitting signifies a situation where the model is
excessively adapted to the training data, impairing its ability
to generalize to unseen data. This event might be more likely
to transpire on smaller maps due to the smaller state space and
the fewer variables to account for. Moreover, double-descent
risk curve [27] as mentioned by Belkin et al. Smaller neural
networks are more susceptible to overfitting, whereas larger,
more complex networks are less so. Given that the complexity
of the neural network correlates with the map size in our

experiments, methods which learn faster on smaller maps may
be more inclined towards overfitting. Consequently, our PAE
model could be over-learning the specific patterns of coacAI,
which adversely impacts its versatility and effectiveness in
unfamiliar situations. Nonetheless, it’s critical to recognize that
across all map sizes, our PAE model consistently exhibited
superior performance in overcoming the specific adversary it
was trained against. This implies that the PAE model has a
strong capability to learn and optimize its performance based
on the traits of its opponent.

Additionally, we examine different parameters on maps of
different sizes (but similar initial states as shown in Figure
8). As shown in Figure 7. As explained in Section 3, the
most effective partial parameter is an intermediate value that
requires a trade-off between bias and variance. However, it can
also be seen from the figure that the results of using partial
GAE are often better than not using it.
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Fig. 7. Winning rate with different sample time T and partial parameter ϵ after training in different map. T = ϵ means not using partial GAE, which is the
baseline. From left to right “basesWorkers10x10”,“basesWorkers16x16”, “basesWorkers24x24”

Fig. 8. Experiments in different size maps with similar initial states.
From left to right maps are “basesWorkers10x10”, “basesWorkers16x16”,
“basesWorkers24x24”

V. CONCLUSION

In conclusion, this paper introduces and explores a novel
concept of Partial Generalized Advantage Estimation (Partial
GAE) in the context of Reinforcement Learning (RL), focus-
ing particularly on Proximal Policy Optimization (PPO). We
analyzed the bias-variance trade-off that arises in traditional
GAE when considering trajectories of fixed lengths for more
efficient parallel computing and sampled only a part of a
complete trajectory for more effective training. Theoretical
underpinnings were provided, showing how Partial GAE can
reduce bias while maintaining computational efficiency.

We put forward a variant of the PPO algorithm with
Partial GAE, with a particular emphasis on the role of the
partial parameter in reducing bias. This new approach offers
a systematic way to decrease the bias of the GAE estimator
by leveraging trajectory information effectively.

The paper also presents experimental results that demon-
strate the effectiveness of the proposed Partial GAE in both
continuous control tasks using MuJoCo and discrete control
tasks in the microRTS environment. Across these varied ex-
perimental landscapes, the proposed method, in most cases,
surpassed the conventional approach, affirming the theoretical
propositions underpinning this study.
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