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Bilinear Models of Parts and Appearances in
Generative Adversarial Networks

James Oldfield, Christos Tzelepis, Yannis Panagakis, Mihalis A. Nicolaou, and Ioannis Patras

Abstract—Recent advances in the understanding of Generative Adversarial Networks (GANs) have led to remarkable progress in
visual editing and synthesis tasks, capitalizing on the rich semantics that are embedded in the latent spaces of pre-trained GANs.
However, existing methods are often tailored to specific GAN architectures and are limited to either discovering global semantic
directions that do not facilitate localized control, or require some form of supervision through manually provided regions or
segmentation masks. In this light, we present an architecture-agnostic approach that jointly discovers factors representing spatial parts
and their appearances in an entirely unsupervised fashion. These factors are obtained by applying a semi-nonnegative tensor
factorization on the feature maps, which in turn enables context-aware local image editing with pixel-level control. In addition, we show
that the discovered appearance factors correspond to saliency maps that localize concepts of interest, without using any labels.
Experiments on a wide range of GAN architectures and datasets show that, in comparison to the state of the art, our method is far
more efficient in terms of training time and, most importantly, provides much more accurate localized control.

Index Terms—GANs, Interpretability, Local Image Editing
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1 INTRODUCTION

G ENERATIVE Adversarial Networks (GANs) [1] consti-
tute the state of the art (SOTA) for the task of image

synthesis. However, despite the remarkable progress in this
domain through improvements to the image generator’s
architecture [2], [3], [4], [5], [6], [7], their inner workings
remain to a large extent unexplored. Developing a better
understanding of the way in which high-level concepts
are represented and composed to form synthetic images
is important for a number of downstream tasks such as
generative model interpretability [8], [9], [10] and image
editing [11], [12], [13], [14], [15], [16]. In modern generators
however, the synthetic images are produced through an
increasingly complex interaction of a set of per-layer latent
codes in tandem with the feature maps themselves [4], [5],
[6] and/or with skip connections [7]. Furthermore, given the
rapid pace at which new architectures are being developed,
demystifying the process by which these vastly different
networks model the constituent parts of an image is an
ever-present challenge. Thus, many recent advances are
architecture-specific [17], [18], [19] and a general-purpose
method for analyzing and manipulating convolutional gen-
erators remains elusive.

A popular line of GAN-based image editing research
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concerns itself with learning so-called “interpretable di-
rections” in the generator’s latent space [10], [11], [12],
[13], [14], [15], [20], [21], [22], [23]. Once discovered, such
representations of high-level concepts can be manipulated
to bring about predictable changes to the images. One
important question in this line of research is how latent
representations are combined to form the appearance at
a particular local region of the image. Whilst some recent
methods attempt to tackle this problem [17], [19], [24], [25],
[26], [27], [28], the current state-of-the-art methods come
with a number of important drawbacks and limitations.
In particular, existing techniques require prohibitively long
training times [17], [26], costly Jacobian-based optimization
[26], and the requirement of semantic masks [17] or man-
ually specified regions of interest [26]. Furthermore, whilst
these methods [17], [26] successfully find directions affecting
local changes, optimization must be performed on a per-
region basis, and the resulting directions do not provide
pixel-level control [26].

In this light, we present a fast unsupervised method
for jointly learning factors for interpretable parts and their
appearances (we thus refer to our method as PandA) in pre-
trained convolutional generators. Our method allows one
to both interpret and edit an image’s style at discovered
local semantic regions of interest, using the learnt appear-
ance representations. We achieve this by formulating a
constrained optimization problem with a semi-nonnegative
tensor decomposition of the dataset of deep feature maps
Z ∈ RM×H×W×C in a convolutional generator. This allows
one to accomplish a number of useful tasks, prominent
examples of which are shown in Fig. 1. Firstly, our learnt
representations of appearance across samples can be used
for the popular task of local image editing [17], [26] (for
example, to change the colour or texture of a cat’s ears as
shown in Fig. 1 (a)). Whilst the state-of-the-art methods [17],
[26] provide fine-grained control over a target region, they
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Fig. 1: We propose an unsupervised method for learning a set of factors that correspond to interpretable parts and appearances
in a dataset of images. These can be used for multiple tasks: (a) local image editing, (b) context-aware object removal, and (c)
producing saliency maps for learnt concepts of interest.

adopt an “annotation-first” approach, requiring an end-user
to first manually specify a ROI. By contrast, our method
fully exploits the unsupervised learning paradigm, wherein
such concepts are discovered automatically and without any
manual annotation. These discovered semantic regions can
then be chosen, combined, or even modified by an end-user
as desired for local image editing.

More interestingly still, through a generic decomposition
of the feature maps our method identifies representations
of common concepts (such as “background”) in all gener-
ator architectures considered (all 3 StyleGANs [4], [5], [6],
ProgressiveGAN [3], and BigGAN [7]). This is a surprising
finding, given that these generators are radically different
in architecture. By then editing the feature maps using these
appearance factors, we can thus, for example, remove specific
objects in the foreground (Fig. 1 (b)) in all generators,
seamlessly replacing the pixels at the target region with the
background appropriate to each image.

However, our method is useful not only for local image
editing, but also provides a straightforward way to localize
the learnt appearance concepts in the images. By expressing
activations in terms of our learnt appearance basis, we are
provided with a visualization of how much of each of the
appearance concepts are present at each spatial location (i.e.,
saliency maps for concepts of interest). By then thresholding
the values in these saliency maps (as shown in Fig. 1 (c)),
we can localize the learnt appearance concepts (such as sky,
floor, or background) in the images–without the need for
supervision at any stage.

We show exhaustive experiments on 5 different architec-
tures [3], [4], [5], [6], [7] and 5 datasets [4], [29], [30], [31],
[32]. Our method is not only orders of magnitude faster
than the SOTA, but also showcases superior performance
at the task of local image editing, both qualitatively and
quantitatively. Our contributions can be summarized as
follows:

• We present an architecture-agnostic unsupervised
framework for learning factors for both the parts and
the appearances of images in pre-trained GANs, that
enables local image editing. In contrast to the SOTA
[17], [26], our approach requires neither semantic masks
nor manually specified ROIs, yet offers more precise
pixel-level control.

TABLE 1: A high-level comparison of our method to the
SOTA for local image editing. “Training time” denotes the
total training time required to produce the images for the
quantitative comparisons for StyleGAN2 (at layer 5 with
feature maps of size 512×16×16). We use “style diversity”
to refer to the ability to make a large number of visual
changes at each semantic part.

StyleSpace LowRankGAN ReSeFa PandA

Manual ROI–free 3 7 7 3
Semantic mask–free 7 3 3 3
Pixel-level control 7 7 7 3
Architecture-agnostic 7 3 3 3
Style diversity 3 7 7 3
Training time (mins) 177.12 324.21 347.79 0.87

• Through a semi-nonnegative tensor decomposition of
the generator’s feature maps, we show how one can
learn sparse representations of semantic parts of images
by formulating and solving an appropriate constrained
optimization problem.

• We show that the proposed method learns appearance
factors that correspond to semantic concepts (e.g., back-
ground, sky, skin), which can be localized in the image
through saliency maps.

• A rigorous set of experiments show that the proposed
approach allows for more accurate local image editing
than the SOTA, while taking only a fraction of the time
to train.

2 RELATED WORK

Generative Adversarial Networks (GANs) [1] continue to
push forward the state of the art for the task of image
synthesis through architectural advances such as the use of
convolutions [2], progressive growing [3], and style-based
architectures [4], [5], [6]. Understanding the representations
induced by these networks for interpretation [8], [9], [10]
and control [8], [11], [12], [13], [14], [15], [17], [23], [26], [33],
[34] has subsequently received much attention.

However, whilst several methods identify ways of ma-
nipulating the latent space of GANs to bring about global
semantic changes–either in a supervised [8], [13], [35], [36]
or unsupervised [11], [12], [14], [15] manner–many of them
struggle to apply local changes to regions of interest in the
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image. In this framework of local image editing, one can
swap certain parts between images [16], [18], [37], [38], [39],
[40], or modify the style at particular regions [17], [19], [24],
[25], [26], [27], [28]. This is achieved with techniques such as
clustering [18], [25], [27], [28], manipulating the AdaIN [41]
parameters [17], [24], or/and operating on the feature maps
themselves [24], [25], [27] to aid the locality of the edit. Other
approaches employ additional latent spaces or architectures
[19], [40], require the computation of expensive gradient
maps [17], [24] and semantic segmentation masks/networks
[17], [19], [42], or require manually specified regions of
interest [26]. In contrast to related work, our method au-
tomatically learns both the parts and a diverse set of global
appearances, in a fast unsupervised procedure without any
semantic masks. Additionally, our method allows for pixel-
level control [26]: the ability to precisely target specific pixels
in the image. For example, one can choose to modify a single
eye only in a face, which is not possible with the SOTA [26].
Our method and its relationship to the SOTA for local image
editing is summarized in Table 1.

From a methodological standpoint, most closely related
to our method are the works of Collins et al. [18], [43].
Both of these perform clustering in the activation space for
parts-based representations in generators [18] and CNNs
[43] respectively. However, [43] considers only discrimi-
native networks for locating common semantic regions in
CNNs, whilst we additionally focus on image editing tasks
in GANs. On the other hand, [18] does not jointly learn
representations of appearances. Therefore [18] is limited to
swapping parts between two images, and is additionally
StyleGAN-specific, unlike our method that offers a generic
treatment of convolutional generators.

3 METHODOLOGY

In this section, we detail our approach for jointly learning
interpretable parts and their appearances in pre-trained
GANs, in an unsupervised manner. We begin by establish-
ing the notation used throughout the paper in Section 3.1.
We then introduce our proposed separable model in Sec-
tion 3.2, and our optimization objective in Section 3.3. In
Section 3.4 we describe our initialization strategies.

3.1 Notation
We use uppercase (lowercase) boldface letters to refer to
matrices (vectors), e.g., X (x), and calligraphic letters for
higher-order tensors, e.g., X . We refer to each element of an
N th order tensor X using N indices, i.e., X (i1, i2, . . . , iN ) ,
xi1i2...iN ∈ R. The mode-n fibers of a tensor are the column
vectors formed when fixing all but one of the indices (e.g.,
x:jk ∈ RI1 ). For a tensor X ∈ RI1×I2×···×IN , its mode-n
fibers can be stacked along the columns a matrix, giving
us the mode-n unfolding denoted as X(n) ∈ RIn×Īn with
Īn =

∏N
t=1
t6=n

It [44]. We denote a pre-trained convolutional
GAN generator with G, and use G[:l] to refer to the partial
application of the last l layers of the generator only.

3.2 A separable model of parts and appearances
A convolutional generator maps each latent code zi ∼
N (0, I) to a synthetic image Xi ∈ RH̃×W̃×C̃ via a sequence

of 2D transpose convolutions. The intermediate convolu-
tional features Zi ∈ RH×W×C at each layer have a very
particular relationship to the output image. Concretely, each
spatial activation [45] (which can be thought of as a spatial
coordinate in the feature maps in Fig. 2 indexed with an
(h,w) tuple) affects a specific patch in the output image [18].
At each of these spatial positions, a channel fiber zihw: ∈ RC

lies depth-wise along the activation tensor, determining its
content. With this understanding, we propose to factor the
spatial and channel modes separately with a tensor decom-
position, providing an intuitive separation into representa-
tions of the images’ parts and appearances. Subsequently
editing the feature maps with the learnt appearances at
target semantic part(s) provides a simple interface for local
image editing. We suggest that representations of a set of
interpretable parts for local image editing should have two
properties:

1) Non-negativity: the representations ought to be additive
in nature, thus corresponding to semantic parts of the
images [46].

2) Sparsity: the parts should span disjoint spatial regions,
capturing different localized patterns in space, as op-
posed to global ones [47], [48].

Concretely, given the dataset of N samples’ intermediate
feature maps Z ∈ RN×H×W×C from the pre-trained gen-
erator, each sample i’s mode-3 unfolding Zi(3) ∈ RC×S

contains in its columns the channel-wise activations at each
of the S , H ·W spatial positions in the feature maps.1 We
propose a separable factorization of the form

Zi(3) = AΛiP
> (1)

=

 | |
a1 · · · aRC

| |


︸ ︷︷ ︸

Appearance

 λi11 λi12 . . .
...

. . .
λiRC1 . . . λiRCRS


︸ ︷︷ ︸

Sample i’s coefficients

 | p1
> |

...

| pRS
> |


︸ ︷︷ ︸

Parts

,

(2)

where A ∈ RC×RC are the global appearance factors and
P ≥ 0 ∈ RS×RS are the global parts factors, jointly learnt
across many samples in a dataset. Intuitively, the coefficients
λijk encode how much of appearance aj is present at part
pk in sample i’s feature maps Zi(3). We show our proposed
separable decomposition schematically in Fig. 2. Each non-
negative parts factor pk ∈ RS ≥ 0 spans a spatial sub-region
of the feature maps, corresponding to a semantic part. The
various appearances and textures present throughout the
dataset are encoded in the appearance factors aj ∈ RC and
lie along the depth-wise channel mode of the feature maps.
This formulation facilitates modelling the multiplicative in-
teractions [49] between the parts and appearance factors.
Concretely, due to the outer product, the factors relating to
the parts control the spatial regions at which the various ap-
pearance factors are present. The parts factors thus function
similarly to semantic masks, however (in contrast to related
work [17]) are learnt jointly and in an entirely unsupervised
manner. This is particularly useful for datasets for which
segmentation masks are not readily available.

1Intuitively, Zi(3) ∈ RC×S can be viewed simply as a ‘reshaping’
of the ith sample’s feature maps that combines the height and width
modes into a single S-dimensional ‘spatial’ mode.
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Fig. 2: An overview of our method. We decompose a dataset of generator’s activations Zi ∈ RH×W×C with a separable
model. Each factor has an intuitive interpretation: the factors for the spatial modes pj control the parts, determining at
which spatial locations in the feature maps the various appearances ak are present, through their multiplicative interactions.

3.3 Objective

We propose to solve a constrained optimization problem
that leads to the two desirable properties outlined in Sec-
tion 3.2. We impose hard non-negativity constraints on the
parts factors P to achieve property 1, and encourage both
factor matrices A,P to be column-orthonormal for property
2 (which has been shown to lead to sparser representa-
tions [47], [48], [50], [51], and has intricate connections
to clustering [52], [53]). We achieve this by formulating a
single reconstruction objective as follows. Let Z ∈ RN×C×S

be a batch of N samples’ mode-3 unfolded intermediate
activations. Then our constrained optimization problem is

min
A,P
L(Z,A,P) = min

A,P

N∑
i=1

||Zi −A
(
A>ZiP

)
P>||2F (3)

s.t. P ≥ 0,

where Λi , A>ZiP are the sample-specific coefficients
in Eq. (1), which can be viewed as an ‘encoding’ of the
feature maps in the parts and appearance bases. Given the
symmetric encoder-decoder form of the objective function,
a good reconstruction naturally leads to orthogonal factor
matrices (e.g., P>P ≈ IRS

for P ∈ RS×RS with S ≥ RS)
without the need for additional hard constraints [54]. What’s
more, each parts factor (column of P) is encouraged to
span a distinct spatial region to simultaneously satisfy both
the non-negativity and orthonormality-via-reconstruction
constraints. However, this problem is non-convex. We thus
propose to break the problem into two sub-problems in
A and P separately, applying a form of block-coordinate
descent [55], optimizing each factor matrix separately whilst
keeping the other fixed. The gradients of the objective func-
tion in Eq. (3) with respect to the two factor matrices (see
the supplementary material for the derivation) are given by

∇PL = 2

(
N∑
i=1

P̄Z>i ĀĀZiP+Z>i ĀĀZiP̄P−2Z>i ĀZiP

)
,

(4)

∇AL = 2

(
N∑
i=1

ĀZiP̄P̄Z>i A+ZiP̄P̄Z>i ĀA−2ZiP̄Z>i A

)
,

(5)

with P̄ , PP> and Ā , AA>. After a gradient update for
the parts factors P, we project them onto the non-negative

orthant [55] with max {0, ·} to enforce the non-negativity
constraint. This leads to our alternating optimization algo-
rithm, outlined in Algorithm 1.

Algorithm 1: Block-coordinate descent solution to
Eq. (3)

Input : Z ∈ RM×C×S (M lots of mode-3-unfolded
activations), RC , RS ∈ R (ranks), λ ∈ R
(learning rate), and T (# iterations).

Output: P ∈ RS×RS ,A ∈ RC×RC (parts and
appearance factors).

Initialise
U,Σ,V> ← SVD

(
Z(2)Z

>
(2)

)
;

A(1) ← U:RC
;

P(1) ∼ U(0, 0.01) ;
for t = 1 to T do

P(t+1) ←
max

{
0,P(t) − λ · ∇P(t)L

(
Z,A(t),P(t)

)}
;

// PGD step

A(t+1) ← A(t) − λ · ∇A(t)L
(
Z,A(t),P(t+1)

)
;

end

3.3.1 Editing with the parts and appearance factors
Upon convergence of Algorithm 1, to modify an image i at
region k with the jth appearance with desired magnitude
α ∈ R, we compute the forward pass from layer l onwards
in the generator with X ′i = G[l:]

(
Zi + αajp̂

>
k

)
, with p̂k

being the normalized parts factor of interest. Intuitively, this
operation adds αaj at the non-zero spatial positions in pk

(as is depicted graphically in a single term of Fig. 2).

3.4 Initialization
Let Z ∈ RN×C×S be a batch of N mode-3 unfolded feature
maps as in Section 3.3. A common initialization strategy
[48], [56], [57] for non-negative matrix/tensor decompo-
sitions is via a form of HOSVD [58], [59]. Without non-
negativity constraints, the channel factor matrix subproblem
has a closely related closed-form solution given by the first
RC left-singular vectors of the mode-2 unfolding of the
activations expressed in terms of the parts basis (proof given
in Appendix B of [60]). We thus initialize the channel factors
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at time-step t = 1 with A(1) , U:RC
where U:RC

are
the first RC -many left-singular vectors of Z(2)Z

>
(2). Later

on in Section 5.1.2 we demonstrate the benefits of this
choice, including its usefulness for locating interpretable
appearances.

4 OBJECTIVE FUNCTION ANALYSIS AND REFINE-
MENT

In this section, we first aim to provide a complementary
interpretation of the objective in the parts subproblem of
Eq. (3) from the perspective of clustering. Using this insight
we then suggest a more general graph clustering formu-
lation of a ‘refinement’ step to specialize the global parts
factors to sample-specific parts factors.

4.1 Parts subproblem as regularised k-means

The parts factor subproblem in Eq. (3) is motivated in Sec-
tion 3.2 from the point of view of a tensor factorization–with
the parts factors controlling whereabouts the appearance
factors are present via the outer product. However, many
works in the literature also show a tight connection between
NMF-style objectives and the k-means clustering objective
[47], [48], [52], often differing only in the constraints im-
posed. To view the parts’ objective as a form of clustering
we first show how it can be written in the same form as the
Projective Nonnegative Matrix Factorisation (PNMF) [47],
[48]. Treating the column-orthonormal appearance factors
A ∈ RC×RC as a constant, the parts factors P ∈ RS×RS

are learnt by minimizing the objective in PandA’s parts
subproblem as

arg min
P≥0

N∑
i=1

||Zi −A(A>ZiP)P>||2F (6)

= arg min
P≥0

N∑
i=1

tr
(
Z>i Zi

)
− 2tr

(
PP>Z>i AA>Zi

)
(7)

+tr
(
PP>Z>i AA>AA>ZiPP>

)
= arg min

P≥0

N∑
i=1

−2tr
(
PP>Z>i AA>Zi

)
(8)

+tr
(
PP>Z>i A(A>A)A>ZiPP>

)
= arg min

P≥0

N∑
i=1

−2 tr
(
P>WiP

)
︸ ︷︷ ︸

La

+ tr
(
PP>WiPP>

)
︸ ︷︷ ︸

Lb

, (9)

where Wi , (A>Zi)
>(A>Zi) ∈ RS×S is the Gram matrix

of the S-many channel fibers’ coordinates in the appearance
basis. As identified in [47], [48], La is the (negative) k-
means clustering objective formulated in [52] in terms of
cluster indicator matrix P for our specific data A>Zi. The
second term Lb can be seen as a ‘regularization’ term that
encourages orthogonality in P. Concretely, by inspecting
Eq. (9)’s gradient, given by

N∑
i=1

−4WiP︸ ︷︷ ︸
−2·∇PLa

+ 2PP>WiP + 2WiPP>P︸ ︷︷ ︸
∇PLb

,

one can see that it is the presence of this second term
Lb that means an orthogonal parts factor solution always
corresponds to an optima of the original parts subproblem:
whenever PP> = I the gradient is 0. We therefore have
a second interpretation of PandA’s parts factor subproblem,
when considered in isolation: as a sum of regularized ‘soft’
k-means clustering terms on the channel fibers’ coordinates
in the appearance basis A>Zi for all i = 1, . . . , N data sam-
ples. Solving the parts subproblem can thus alternatively be
seen to give in P a global soft cluster assignment indicator
matrix for the channel fibers, shared between allN samples.

4.1.1 Clustering in the appearance basis
Recall that in Section 3.4 A ∈ RC×RC is initialized via
the HOSVD. When the full appearance basis is used (i.e.,
RC = C) A is an orthogonal matrix. In this scenario,
clustering the raw activations Zi and clustering the acti-
vations’ coordinates in the appearance basis A>Zi lead
to equivalent solutions. This is because in the expanded
objective of Eq. (9), only the Gram matrix Wi appears,
and an orthogonal A means Wi =

(
A>Zi

)> (
A>Zi

)
=

Z>i (AA>)Zi = Z>i Zi. Interestingly however, if A is chosen
to be low-rank (RC < C) PandA’s parts subproblem step
can be seen as implicitly performing PCA (or dimensionality
reduction more generally) on the channel fibers as a ‘pre-
processing step’ to k-means, clustering the channel fibers
represented in terms of only the leading RC principal com-
ponents. Not only does this reduce the computational cost
when RC < C , but might also alleviate problems arising
from the curse of dimensionality [61] when C is large (e.g.,
C = 2048 at BigGAN’s first layer).

4.2 Graph clustering refinement

As described in [62], the formulation in Eq. (3) for learning
parts and appearances makes the implicit assumption that
the samples are spatially aligned. However, this does not
always hold in practice, and therefore the global parts
are not always immediately useful for datasets with no
alignment. To alleviate this requirement, we propose a fast
optional “refinement” step of the learnt global parts factors
P ∈ RS×Rs to specialize them to sample-specific parts
factors P̃i ∈ RS×Rs for sample i. Concretely, we propose to
optimize the following more general objective:

min
P̃i≥0

LG(Wi,A, P̃i) = min
P̃i≥0

−2tr
(
P̃>i WiP̃i

)
(10)

+tr
(
P̃iP̃

>
i WiP̃iP̃

>
i

)
.

We note that, with column-orthonormal appearance factors
A, setting Wi := (A>Zi)

>(A>Zi) gives the same solution
to the original refinement objective presented in [62], whilst
the use of a sparse Wi can be used to better capture the
local neighborhood relationships [63] in this more general
formulation.

As observed in the literature [47], [64], the form of
Eq. (10) involves only the Gram matrix–a measure of pair-
wise similarity used in many graph clustering methods
involving trace maximization problems of the same form
[52], [65], [66]. Thus, one may view Eq. (10) as a specific
kind of graph clustering, where Wi is an affinity matrix. Each
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Fig. 3: Estimated number of FLOPS in each term of the
original gradient computation Eq. (11) vs the factorized
form Eq. (12) (using RC = 512, RS = 16).

element wijk describes the similarity (in the inner product
sense) between all pairs (j, k) of sample i’s channel fibers.
The gradient for the unconstrained objective is given by:

∇P̃i
LG = 2P̃iP̃

>
i WiP̃i + 2WiP̃iP̃

>
i P̃i − 4WiP̃i. (11)

We analyze in Section 5.3 the benefits of this refinement
step and the impact of various choices of affinity matrix,
comparing the global parts factors to the refined factors.

4.3 Gradient descent with low-rank affinity matrices
The gradient in Eq. (11) computed naively materializes the
full affinity matrix Wi ∈ RS×S . At later layers in the
generator, S can be very large2, and consequently the gra-
dient can become computationally expensive to compute.
However, Wi is often low-rank by construction and/or
positive semidefinite, thus admitting the decomposition
Wi = X>i Xi for some Xi ∈ RRC×S with RC = rank(Wi).
In the case of fully-connected affinity matrices, it can be
written simply as the Gram matrix of the activations with
Xi = A>Zi. When the affinity matrix is PSD more gen-
erally, the compact SVD of Wi can be used with Xi =
Σ1/2U>. Then, through the associativity of matrix multi-
plication, matrices of size S × S need never be computed
when descending the gradients by writing Eq. (11) instead
as:

∇P̃i
LG = 2P̃iY

>
i Yi + 2X>i Yi

(
P̃>i P̃i

)
− 4X>i Yi, (12)

with Y , XiP̃i ∈ RRC×RS . We show in Fig. 3 the estimated
number of FLOPS necessary for the two computations. As
can be seen, this can greatly decrease the computational cost
when S is very large. We highlight that a smarter ordering
of matrix multiplications can also be used to speed up the
computation of the gradients in Eqs. (4) and (5) of the
main paper’s original objectives even further, in a similar
fashion. This is detailed in the supplementary material with
corresponding estimations of FLOPS.

2e.g., S = 16384 at l = 10.

5 EXPERIMENTS

In this section we present a series of experiments to validate
the method and explore its properties. We begin in Sec-
tion 5.1 by focusing on using the method for interpretation:
showing how one can generate saliency maps for concepts
of interest and remove the foreground at target locations.
Following this, we showcase local image editing results on
5 GANs in Section 5.2. Finally, we present ablation studies
in Section 5.4 to further justify and motivate our method.

5.1 Interpreting the appearance vectors

Fig. 4: Our architecture-agnostic method discovers a repre-
sentation of the “background” concept directly in the feature
maps, which allows us to remove objects in a context-aware
manner in the same way for all 5 generators.

Using the learnt appearance basis A, one can straightfor-
wardly visualize “how much” of each column is present at
each spatial location via a change of basis. In particular, the
element at row c and column s of the activations expressed
in terms of the appearance basis A>Zi ∈ RRC×S encodes
how much of appearance c is present at spatial location
s, for a particular sample i of interest. This transformation
provides a visual understanding of the concepts controlled
by the columns by observing the semantic regions in the
image at which these values are the highest.

5.1.1 Generic concepts shared across GAN architectures
The analysis above leads us to make an interesting discov-
ery. We find that our model frequently learns an appearance
vector for a high-level “background” concept in all 5 gen-
erator architectures. This is a surprising finding–one would
not necessarily expect these radically different architectures
to encode concepts in the same manner (given that many ex-
isting methods are architecture-specific), let alone that they
could be extracted with a single unsupervised approach. We
can thus use this learnt “background” appearance vector to
remove objects in a context-aware manner, as shown on all
5 generators and numerous datasets in Fig. 4.

5.1.2 Visualizing and localizing appearance vectors
Through the change of basis A>Zi we can identify the
pixels in the image that are composed of the concept k of
interest (e.g., the “background” concept), offering an inter-
pretation of the images’ semantic content. We first compute
the saliency map mik = a>k Zi ∈ RS , whose elements
encode the magnitude of concept k at each spatial position
in the ith sample. This can be reshaped into a square matrix
and visualized as an image to localize the kth concept in the
image, as shown in row 2 of Fig. 5. We then additionally
perform a simple binary classification following [14]. We
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Fig. 5: Visualizing the coordinates in the appearance basis
(2nd row), one can interpret how much of each appear-
ance vector is present at each spatial patch. For example,
we see appearance vectors at various layers very clearly
corresponding to (a) background, (b) skin, (c) sky, and (d)
foreground.

classify each pixel j as an instance of concept k or not
with m̃ikj = [mikj ≥ µk], where µk = 1

N ·S
∑

n,smnks ∈ R
is the mean magnitude of the kth concept in N samples.
We show this in row 3 of Fig. 5 for various datasets and
GANs. For example, this analysis allows us to identify
(and localize) appearance vectors in various generators that
control concepts including “foreground”, “skin”, and “sky”,
shown in Fig. 5 (b-d). We find this visualization to be most
useful for understanding the first few columns of A, which
control the more prominent high-level visual concepts in
the dataset due to our SVD-based initialization outlined in
Section 3.4.

5.2 Local image editing
Next, we showcase our method’s ability to perform local
image editing in pre-trained GANs, on 5 generators and
5 datasets (ImageNet [29], AFHQ [30], FFHQ [4], LSUN
[31], and MetFaces [32]). In Fig. 6 we show a number of
interesting local edits achievable with our method, using
both the global and refined parts factors. Whilst we can
manipulate the style at common regions such as the eyes
with the global parts factors, the refined parts factors allow
one to target regions such as an individual’s clothes, or their
background. One is not limited to this set of learnt parts
however. For example, one can draw a ROI by hand at test-
time or modify an existing part–an example of this is shown
in the supplementary material. This way, pixel-level control

Fig. 6: Local image editing on a number of architectures and
datasets, using both the global and refined parts factors. At
each column, the original image is edited at the target part
with a different appearance vector.

(e.g., opening only a single eye of a face) is achievable in a
way that is not possible with the SOTA methods [17], [26].

We next compare our method to state-of-the-art GAN-
based image editing techniques in Fig. 7. In particular, we
train our model at layer 5 usingRS := 8 global parts factors,
with no refinement, and RC := C . As can be seen, SOTA
methods such as LowRank-GAN [26] excel at enlarging the
eyes in a photo-realistic manner. However, we frequently
find the surrounding regions to change as well. This is seen
clearly by visualizing the mean squared error [18] between
the original images and their edited counterparts, shown
in every second row of Fig. 7. Additional comparisons are
found in the supplementary material. We further quantify
this ability to affect local edits in the section that follows.

Fig. 7: Qualitative comparison to SOTA methods editing the
‘eyes’ ROI (using editing strength α := 30 for the proposed
method). We also show the mean squared error [18] between
the original images and their edited counterparts, highlight-
ing the regions that change.

5.2.1 Quantitative results
We compute the ratio of the distance between the pixels of
the original and edited images in the region of ‘disinterest’,
over the same quantity with the region of interest (call it
ROIR). Concretely, we compute

ROIR(M,X ,X ′) =
1

N

N∑
i=1

|| (1−M) ∗ (Xi −X ′i ) ||
||M ∗ (Xi −X ′i ) ||

, (13)

whereM ∈ [0, 1]H×W×C is an H ×W spatial mask (repli-
cated along the channel mode) specifying the region of inter-
est, 1 is a 1-tensor, and X ,X ′ ∈ RN×H̃×W̃×C̃ are the batch
of original and edited versions of the images respectively. A
small ROIR indicates more ‘local’ edits, through desirable
change to the ROI (large denominator) and little change
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TABLE 2: ROIR (↓) for 10k FFHQ samples per local edit.

Eyes Nose Open mouth Smile

GANSpace [11] 2.80±1.22 4.89±2.11 3.25±1.33 2.44±0.89
SeFa [12] 5.01±1.90 6.89±3.04 3.45±1.12 5.04±2.22
StyleSpace [17] 1.26±0.70 1.70±0.82 1.24±0.44 2.06±1.62
LowRankGAN [26] 1.78±0.59 5.07±2.06 1.82±0.60 2.31±0.76
ReSeFa [67] 2.21±0.85 2.92±1.29 1.69±0.65 1.87±0.75
Ours 1.04±0.33 1.17±0.44 1.04±0.39 1.05±0.38

elsewhere (small numerator). We compute this metric for
our method and SOTA baselines in Table 2, for a number of
regions of interest. As can be seen, our method consistently
produces more local edits than the SOTA for a variety of
regions of interest. We posit that the reason for this is due
to our operating directly on the feature maps, where the
spatial activations have a direct relationship to a patch in
the output image.

5.3 Parts factor refinement
Finally, we showcase the benefit of our optional parts factors
refinement process for data with no alignment. In row 2
of Fig. 8, we show the global parts factors overlaid over
the target samples. Clearly, for extreme poses (or in the
case of data with no alignment, such as with animals and
cars), these global parts will not correspond perfectly to
the specific sample’s parts. After a few projected gradient
descent steps of PandA’s original refinement objective, we
see (row 3 of Fig. 8) that the refined parts factors span the
specific parts of the individual samples more successfully.

5.3.1 Graph clustering
Despite the success of [62]’s original refinement step, we
find that at generator layers with large spatial resolutions
(e.g., l = 10 where S = 1282) it may co-cluster se-
mantically unrelated channel fibers when using a small
number of parts. One example of this problem is shown
in Fig. 9 (a), where the cat’s face is co-clustered along
with the ears. Appealing to the more general graph clus-
tering perspective, one possible reason for this is that the
Gram matrix used in the original refinement objective (i.e.
Wi := (A>Zi)

>(A>Zi)) is non-sparse, and thus is overly
permissive in considering semantically unrelated channel
fibers as similar. Therefore, to better capture the local (in the
inner product similarity sense) neighbourhood structure, we
propose to follow the popular spectral clustering approach
of using a mutual KNN graph [63] to limit the number of
edges in the graph as desired. In particular, we sever the
edges between non-neighboring vertices with wijk := 0 if
channel fibers at spatial positions j, k are not considered to
be mutual KNN-given neighbors in Euclidean space. This is
outlined in detail in Algorithm 2, where setting the desired
number of neighbors to k = S − 1 recovers the full Gram
matrix in the original PandA formulation.

We show examples of the parts learnt with the original
refinement objective and with the new graph clustering
objective with sparse Wi in Fig. 9 (row 1). We also show
local image edits using the two methods’ parts in Fig. 9
(row 2). As can be seen, the new formulation clearly makes it
possible to learn parts that span only single semantic regions
to a greater extent than before. More results comparing the

Fig. 8: Visualization of the global parts factors (2nd row),
PandA’s refined factors with the original fully-connected
Wi (3rd row), and the refined factors with the new graph
clustering objective with sparse Wi (4th row).

Algorithm 2: Graph clustering refinement

Input : Zi ∈ RC×S , A ∈ RC×RC ,P ∈ RS×RS ,
T, λ ∈ R, and k < S (desired # neighbors).

Output: P̃i ∈ RS×RS (Refined parts factors)
Initialise

P̃
(1)
i ← P;

G ∈ {0, 1}S×S ← MKNN adj matrix(A>Zi, k) ;
Wi ← G ∗

(
(A>Zi)

>(A>Zi)
)

; // sever edges

for t = 1 to T do
P̃

(t+1)
i ←

max

{
0, P̃

(t)
i − λ · ∇P̃

(t)
i
LG

(
Wi,A, P̃

(t)
i

)}
end

parts learnt with the two objectives can be found in the
supplementary material.

5.4 Ablation studies

In this subsection, we present a thorough study of the
various components of our method, and the resulting learnt
parts factors. Moreover, we find the method flexible to the
choice of decomposition rank RS . Higher values produce

Fig. 9: Editing an image using the original refined parts (a)
and with the parts learnt with the new graph clustering
objective using a sparse affinity matrix (b).
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more fine-grained parts (e.g. eyebrows), whilst lower values
lead to more coarse-grained parts (e.g. whole faces). We refer
readers to Sect. 2.7 of the supplementary material for many
such additional ablation studies and visualizations.

Fig. 10: Ablation study comparing the parts factors learnt
with various constraints and formulations.

5.4.1 Constraints and form
We first study the impact of the non-negativity constraints
on the parts factors, and the importance of operating on
the mode-3 unfolded Zi(3) ∈ RC×H·W tensors (rather than
their original 3rd-order form Zi ∈ RH×W×C ). We show
along the rows of Fig. 10 the resulting parts factors using
various forms of decomposition and constraints. In particu-
lar, naively applying MPCA [59] (row 1) to decompose Zi

imposes a separable structure between the spatial modes,
restricting its ability to capture semantic spatial regions.
Moreover, even when combining the spatial modes and
decomposing Zi(3), the solution given by MPCA [59] (row
2) and by optimizing our method without any non-negativity
constraints (row 3) leads to parts factors spanning the entire
spatial window. This is due to the non-additive nature of the
parts. However, as shown in row 4 of Fig. 10, only our con-
strained method successfully finds local, non-overlapping
semantic regions of interest.

Training time An important benefit of our method
is the lack of need to compute expensive gradient maps
or Jacobians with respect to target regions [17], [26]. To
quantify this, we benchmark the total time needed to train
the methods to produce the results in Table 2. This is
summarized in Table 1 (and shown in detail in the sup-
plementary material). We find that our method takes less
than 1/400th of the training time of LowRankGAN [26], and
1/170th the time of StyleSpace [17]–greatly speeding up the
task of local image editing. Alternatively, one can use an
optimizer such as Adam [68] in an autograd framework
(e.g., PyTorch [69]) to compute Algorithm 1. We find this
removes some sensitivity to the learning rate that comes
with vanilla gradient descent. However, we find that when
solving our objective manually with the gradients in Eq. (5),
our method takes less than 1/3rd of the time to train. This is
a particularly useful performance boost when decomposing
later layers in the network.

5.5 Concept rewriting
In this section, we propose a intuitive way of ‘rewriting’
[16] the semantic concepts found by our method via ba-
sic arithmetic on the coefficients of the appearance basis.

Fig. 11: Concept rewriting via manipulation of the rows of
the images’ feature maps in the appearance basis.

In particular, we aim to visually replace all instances of
target concepts in the image with a new source concept
(e.g., to change all ‘concrete’ to ‘trees’ in an image). Let
Zi ∈ RC×S be a sample’s activations, and A ∈ RC×C be
the learnt orthogonal appearance factor matrix. We always
have Zi = AA>Zi = AẐi. Viewing the feature maps Zi as
a linear combination of the columns of A, the jth row of the
coefficients, Ẑi(j, :) ∈ RS can be understood as specifying
‘how much’ of appearance vector j is at the various spatial
positions in the feature maps. However, the coefficients are
not strictly positive, and a negative amount of aj will control
a different high-level concept in the image to a positive
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Fig. 12: Ranking the dataset by the same appearance at
different parts: e.g. hair on the fringe / hair around the
head. Here we use 100k images with a truncation value of
0.7 (please zoom for detail).

amount of aj . To disentangle this effect resulting from the
mixed signs of Ẑi we can split the row vector controlling the
jth appearance concept into its positive and negative parts

Ẑi(j, :) =
[
Ẑi(j, :)

]
+

+
[
Ẑi(j, :)

]
−
, (14)

where the terms on the left and the right denote the positive
and negative amounts of concept j at each spatial position
respectively. To replace the instances of concept j in the
image with concept k we propose to simply move the
positive coefficients in the jth row to the kth row. Concretely,
we set:

Ẑi(k, :) := Ẑi(k, :) + α
[
Ẑi(j, :)

]
+
, (15)

Ẑi(j, :) :=
[
Ẑi(j, :)

]
−
. (16)

Intuitively, at each spatial position that previously contained
a positive amount of concept j, we now instead add concept
k. The image with its concepts rewritten can then be gener-
ated with G[:l](AẐi). In Fig. 11 we show many instances of
possible manipulations with this technique with particular
chosen columns of A. For example, one can replace the
church concrete with trees, or the face of cats with fur. In-
terestingly, at earlier layers of StyleGAN2 trained on AFHQ
(wild), we find abstract concepts controlling whole animal
species. It’s thus possible to perform what resembles image-
to-image translation by changing dogs to lions, or to cats,
as shown in Fig. 11 (c). Like with Section 5.1.2, we find
this to work best at earlier layers, and for only the first few
columns of A, where the high-level concepts are most easily
located.

5.6 Parts-based ranking

Finally, we consider the downstream task of ranking images
according to a particular target concept. We can compute the
amount of a target concept j in image i’s feature maps with

rij = a>j Zi1 ∈ R, (17)

where 1 ∈ RS is a vector of ones, summing the contribution
over all spatial positions. This scalar rij can then be used to
rank the images according to attribute j of interest. Whilst
such a method is useful for many ranking tasks, this is
theoretically straight forward to achieve in many existing
frameworks [11], [12] that find interpretable directions in the
W latent space. Concretely, one could perform the orthogo-

nal projection rij =
u>

j wi

u>
j uj

of latent code wi ∈ Rd onto in-

terpretable direction uj ∈ Rd of interest. However, PandA’s

joint decomposition of parts and appearance factors allows
for the more involved task of ranking the amount of an
attribute j at a particular spatial part k. Achieving this is non-
trivial in existing methods, where one has no direct spatial
control. Using our jointly learnt parts factors, we can achieve
part-based ranking for sample i by computing

rijk = a>j Zipk (18)

where the spatial part pk ≥ 0 can be thought to act like a
mask that zeros-out values everywhere but at the semantic
part of interest. We show in Fig. 12 (a) the result of a
global ranking of the appearance vector for the hair concept
following Eq. (17). However, as shown in Fig. 12 (b-c), a
part-based ranking following Eq. (18) can be performed
to order images by the amount of hair over the fringe,
or around the head, independently. This provides a much
more fine-grained analysis for when one is interested in the
amount of a concept at a particular spatial region only.

6 CONCLUSION

In this paper, we have presented a fast unsupervised algo-
rithm for learning interpretable parts and their appearances
in pre-trained GANs. We have shown experimentally how
our method outperforms the state of the art at the task of
local image editing, in addition to being orders of magni-
tude faster to train. We showed how one can identify and
manipulate generic concepts in 5 generator architectures
for tasks such as object removal. We also believe that our
method’s ability to visualize the learnt appearance concepts
through saliency maps could be a useful tool for network
interpretability.

6.1 Limitations

Whilst we have demonstrated that our method can lead
to more precise control, the approach is not without its
limitations. Such strictly local editing means that after
modifying a precise image region, any expected influence
on the rest of the image is not automatically accounted
for. As a concrete example, one can remove trees from an
image, but any shadow they may have cast elsewhere is
not also removed automatically. Additionally, we find that
methods editing the feature maps have a greater tendency
to introduce artifacts relative to methods working on the
latent codes. This is one potential risk with the freedom of
pixel-level control–adding appearance vectors at arbitrary
spatial locations does not always lead to photorealistic edits.
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