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Abstract
Deep neural networks have repeatedly been shown to be non-robust to the uncertainties of the real
world, even to naturally occurring ones. A vast majority of current approaches have focused on
data-augmentation methods to expand the range of perturbations that the classifier is exposed to
while training. A relatively unexplored avenue that is equally promising involves sanitizing an im-
age as a preprocessing step, depending on the nature of perturbation. In this paper, we propose to
use control for learned models to recover from distribution shifts online. Specifically, our method
applies a sequence of semantic-preserving transformations to bring the shifted data closer in distri-
bution to the training set, as measured by the Wasserstein distance. Our approach is to 1) formulate
the problem of distribution shift recovery as a Markov decision process, which we solve using re-
inforcement learning, 2) identify a minimum condition on the data for our method to be applied,
which we check online using a binary classifier, and 3) employ dimensionality reduction through
orthonormal projection to aid in our estimates of the Wasserstein distance. We provide theoreti-
cal evidence that orthonormal projection preserves characteristics of the data at the distributional
level. We apply our distribution shift recovery approach to the ImageNet-C benchmark for distri-
bution shifts, demonstrating an improvement in average accuracy of up to 14.21% across a variety
of state-of-the-art ImageNet classifiers. We further show that our method generalizes to composites
of shifts from the ImageNet-C benchmark, achieving improvements in average accuracy of up to
9.81%. Finally, we test our method on CIFAR-100-C and report improvements of up to 8.25%.
Keywords: distribution shift, Markov decision process, reinforcement learning

1. Introduction

Deep learning models are excellent at learning patterns in large high dimensional datasets. How-
ever, the brittleness of deep neural networks (DNNs) to distribution shifts is a challenging problem.
Hendrycks and Gimpel (2018) showed that, even in naturally occurring distribution shift scenar-
ios, a classifier’s performance can deteriorate substantially. Arguably, one of the most widespread
uses of deep learning techniques currently is in image recognition. In this paper, we propose to
use decision and control for learned models (DC4L) to improve robustness to distribution shifts,
with demonstration on image classification tasks. The idea is to actively sanitize a set of images
depending on the type of the distribution shift. Intuitively, the training distribution of a classifier is
viewed as its comfort zone, where the behavior is more predictable and trustworthy. At run time,
when exposed to perturbations that push the images outside of this comfort zone, a feedback policy
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takes control actions which can bring the images back to a more familiar space. The control actions
are so chosen that the semantic meaning of the images are preserved. This ensures correctness.
While approaches for DNN robustness have until now focused on data-augmentation techniques
(Hendrycks et al., 2019; Erichson et al., 2022; Verma et al., 2019; Yun et al., 2019; Kim et al.,
2020b; Hendrycks et al., 2020), we show that by using ideas from the data-driven control paradigm,
it is possible to provide an additional level of performance boost beyond what can be offered by
SOTA augmentation methods.

Our technique exploits the following observation: when distribution shift arises in the external
environment due to natural causes, it persists for a certain duration of time. For instance, when
a corruption in image quality occurs due to snow, this corruption does not disappear in the next
image frame. This gives the system some time to adapt and recover from this shift by computing
some semantic preserving transformations to the data. Our technique, Supervisory system for Shift
Adaptation and Recovery (SuperStAR), applies a sequence of semantic-preserving transforms
to the input data, correcting the input to align with the original training set of the classifier. We
show that formulating the sequence selection problem as a Markov decision process (MDP) lends a
natural solution: reinforcement learning (RL).

In summary, our contributions towards addressing the problem of robustness to semantic pre-
serving shifts are as follows. 1) We translate the problem of distribution shift recovery for neural
networks to a Markov decision process, which we solve using reinforcement learning. 2) We iden-
tify a minimum condition of operability for our method, which we check online using a binary
classifier. 3) We develop a method to efficiently compute the degree of distribution shift by project-
ing to a lower dimensional space. This uses results from Cai and Lim (2022) in conjunction with
the Wasserstein distance. 4) We demonstrate an application to ImageNet-C and achieve significant
accuracy improvements (up to 14.21% averaged across all shift severity levels) on top of standard
training and data-augmentation schemes. We further show that our method generalizes beyond the
ImageNet-C benchmark, yielding up to 9.81% on composite Imagenet-C shifts and up to 8.25% on
CIFAR-100-C in accuracy improvements.

2. Preliminaries

We begin by assuming that the images are sampled from a measurable space (X ,AX ). Let ∆(X ,AX )
denote the set of all probability measures on (X ,AX ). We pick a distribution D ∈ ∆(X ,AX ) from
which the current set of images are sampled. Assume that the labels belong to a measurable space
(Y,AY), and a classifier C is an AX \AY measurable map, C : X → Y . An oracle classifier C∗
produces the ground truth labels. Next, we define a semantic preserving transform T.

Definition 1 (Semantic Preserving Transform) A function T : X → X is semantic preserving iff
C∗(x) = C∗(T(x)), for all x ∈ X .

We denote by S the set of all such semantic preserving transforms. In the standard empirical
risk minimization (ERM) paradigm, we approximate C∗ with some classifier C. When measuring
robustness to common corruptions, typically a corrupting transform Tc belongs to S. This includes
transforms like the addition of Gaussian noise, speckle noise, and alike. The error of a classifier C
under the distribution D, is defined as

err(D) := Ex∼D [1(C∗(x) ̸= C(x))] ,

2
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Figure 2: Example transformations applied to an image with contrast shift level 5. CLAHE(x,y) denotes histogram
equalization with strength determined by x and y (details in Appendix E). The policy applies a non-trivial composition of
transformations that would be difficult to find through manual manipulation. The policy chooses few redundant actions
and improves the accuracy of an AugMix-trained ResNet-50 on a random batch of 1000 images.

where 1 is the standard indicator function, which evaluates to 1 iff C∗(x) ̸= C(x).1 For a robust
classifier we expect err(D) to be minimal for multiple choices of the distribution D. For instance
in the case of common corruptions introduced in Hendrycks and Dietterich (2019), the goal is to
optimize the choice of classifier C such that err(D) is minimized, even under shift. This is typically
achieved using data-augmentation schemes such as Augmix, NoisyMix, and DeepAugment.

3. Functionality and Problem Statement

Figure 1: Overview of SuperStAR. At deployment,
assume that a distribution shift causes a drop in accu-
racy. This is detected through changes in the Wasser-
stein distance between a validation set and the corrupted
set. SuperStAR computes a composition of trans-
forms Ik to adapt to the shift and recover accuracy. This
composition of SuperStAR with the classifier helps it
detect and adapt, boosting robustness of classification.

At a high level, the functioning of SuperStAR is
akin to a supervisor for the classifier shown in Fig-
ure 1. SuperStAR detects distribution shifts and
computes a recovery strategy to be applied before
sending an image to a classifier. Determining the
appropriate recovery strategy presents an interest-
ing challenge.

Consider a random variable xc = T(z), where
z ∼ D and T is a semantic preserving transform.
Note that T is generally not invertible. However,
one may possibly choose an element T′ from the
set of semantic preserving transforms S that par-
tially recovers the accuracy drop due to T. It might even be effective to select a sequence of
such transforms: an ordered set T := {Tk,Tk−1, . . .T1} with k ≥ 1, such that S ∋ Ik(x) :=
Tk ◦ Tk−1 ◦ · · · ◦ T1(x).2 Ideally, we wish to find an algorithm which optimizes the following:

I∗k = argminIk R(Ik) , where R(Ik) = err(DIk◦T)− err(D), (1)

with DIk◦T denoting the distribution of Ik ◦ T(z), z ∼ D. The transform Ik is what effectively
reverses an image corruption due to T.

At deployment, when SuperStAR detects a shift in distribution compared to a clean validation
set, it should propose a composition of transforms Ik to minimize the cost outlined in Equation 1.
From the vantage point of classifier C, images transformed using Ik appear to be closer to the home
distribution D. An example result of this is shown in Figure 2.

4. Distribution Shift Recovery is a Markov Decision Process

Our task is to compute a composition of transforms Ik to apply to the corrupted set Vc, sampled
i.i.d from DT, to realize the optimization cost outlined in Equation 1. To this end, we note the
following theorem.

1. For notational convenience, we hereafter denote both a random variable and its realization by a lowercase Latin letter.
2. The order ≺T on T is given by Ti ≺T Tj ⇐⇒ i < j, i, j ∈ N. T0 is assumed to be the identity function.
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Theorem 2 R(Ik) ≤ α·dTV (D,DIk◦T), for some finite α ∈ R and semantic preserving transform
Ik.

Proof Let us denote by d the pdf of DIk◦T and by d′ the pdf of D. We begin by expanding the
definition of R(Ik).

R(Ik) = err(DIk◦T)− err(D)

= Ex1∼DIk◦T,x2∼D [1(C∗(x1) ̸= C(x1))− 1(C∗(x2) ̸= C(x2))]
=

∫
X 1(C∗(x) ̸= C(x))[d(x)− d′(x)]dx

≤
∣∣∫

X (supx∈X 1(C∗(x) ̸= C(x))) [d(x)− d′(x)]dx
∣∣

=
∣∣(supx∈X 1(C∗(x) ̸= C(x)))

∫
X [d(x)− d′(x)]dx

∣∣
≤ |supx∈X 1(C∗(x) ̸= C(x))| · supA∈AX

∣∣∫
A[d(x)− d′(x)]dx

∣∣
= α · dTV (D,DIk◦T),

where α = |supx∈X 1(C∗(x) ̸= C(x))|. The first step assumes X is a continuous space. The rest
follows from expressing the definition of computing expectation in terms of the classifier error.

Thus, for a transform T (possibly a corruption), it is possible for the classifier to recover perfor-
mance if the apparent distribution under Ik ◦ T is close enough to the original distribution D. Then
the optimal Ik is the sequence of semantic preserving transforms that minimize the distance from
D. Equivalently, this can be viewed as a sequence of actions maximizing a reward. More formally,
the task of computing Ik can be formulated as a reactive policy for an MDP, which can be learned
using standard reinforcement learning techniques. In this section, we present this MDP formulation
in the context of an image classification task, but it may be applied in any learning setting.

Definition 3 (MDP) A Markov Decision Process (MDP) is a 6-tuple E = (S,A,P,R, γ, I0),
where S ⊆ Rn is the set of states, A ⊆ Rm is the set of actions, P(s′|s, a) specifies the probability
of transitioning from state s to s′ on action a, R(s, a) is the reward returned when taking action a
from state s, γ ∈ [0, 1) is the discount factor, and I0 is the initial state distribution.

State Representation. The environment has access to a set Vc ⊂ X , which is a set of possibly
corrupted images. A state of the MDP is a compressed representation of this set Vc, capturing the
type of corruptions in an image. Let us assume that this projection is captured by some function FR :
AX → R, where R is the space of representations for a set of images. We want a representation
r = FR(Vc) to be rich enough that a policy can decipher the appropriate choice of action in A, but
also compact enough that it is possible to learn a policy within a few episodes. Typically, a smaller
state space size leads to faster convergence for reinforcement learning algorithms.

In this paper, for a set of images Vc, we select a 3-dimensional state representation that measures
the average brightness, standard deviation, and entropy of the images in Vc. We convert each image
x to grayscale, then obtain the discrete wavelet transform and compute its average brightness B(x),
standard deviation S(x), and entropy E(x). The state representation is an average of all these values
across the images,

FR(Vc) =
1

|Vc|
∑

x∈Vc

[
B(x), S(x), E(x)

]⊤
. (2)

Actions and Transitions. The set of actions A ⊆ S is a set of semantic preserving transforms
from which the learner chooses to maximize some reward. For an example, see the action set

4
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selected for the ImageNet-C benchmark in Appendix E. Hence, capturing Equation 1 as a reward
leads the agent to pick actions that mitigate the current corruption to some extent. Transitions
model the effect of applying a transform from S to a possibly corrupted set Vc. With slight abuse
of notation, we use T(Vc) to denote set {v′ : v′ = T(v), v ∈ Vc}.

Figure 3: Operation of SuperStAR. Starting from
Vc, the algorithm selects a sequence of transforms T
which move Vc closer to the original distribution V.
During the sequence, the orthonormal projections φ(V)
and φ(Vc) are used to compute the Wasserstein distance
Wp(φ(Vc), φ(V)). See Section 6 for details.

Computing Reward. As shown in Figure 3,
computing the reward for a set of images Vc cor-
responds to measuring the distance from a clean
validation set V. Ideally, the distance between
the distributions from which Vc and V are drawn
would be measured, but this is difficult without
knowledge of the source distributions. Instead,
we use an empirical estimate of the Wasserstein
distance (Bonneel et al., 2011) to compute the
distributional distance between sets Vc and V. It
should be noted that a variety of distance func-
tions can be employed here. We explore alterna-
tives in Appendix A.

In practice the policy might not be able to
reduce the W e

p to a level such that the classifier
completely recovers the loss in accuracy. One reason for this is the possible non-existence of the
inverse of the corruption transform. Another possible issue is that a transformation may overly alter
the image such that the classifier performs poorly. Although we can combat against this by ensuring
that actions make incremental changes to the image, this is hard to control. We therefore add a reg-
ularizer to the Wasserstein distance that penalizes excessive changes to the image. This is achieved
using a visual similarity between pairs of images known as ssim (Wang et al., 2004).

Given λ > 0 and 0 ≤ ω < 1, the reward function is given by

R(st, at) = −W e
p (V,F−1

R (st)) + λLS(F−1
R (s0),F−1

R (st+1)), (3)

where,

LS(X,Y) =

{
log(1− ssim(X,Y)), ssim(X,Y) < ω

0 otherwise.
(4)

Note that the regularization hyperparameter λ influences the level of aggression in correction. For
example, selecting a large λ favors actions with minimal influence on the data.

Initial State. At test time, the initial state of the MDP is produced by a random environment
corruption from the set S that the system is subjected to. In reality the designer does not have access
to any of these corrupting transforms. Hence, at training time we train a policy network to reverse
a set of surrogate corruptions from S, with the hope that some of these transfer at inference time to
an unseen set of corruptions. An example surrogate corruption set and selection methodology for
the ImageNet-C benchmark is given in Appendix E. We pick uniformly randomly from a finite set
of Sc ⊂ S of these surrogate corruptions to sample the initial state I0.

Standard RL techniques can be applied to learn a policy π : S → A for the MDP E , which
is a strategy to recover the distribution shift. The value of a state for policy π is the expected
return Rπ(s0), starting from state s0, while executing the policy π at every step, at = π(st).
The optimal policy π∗ maximizes the reward starting from the initial state distribution – i.e., π∗ =
argmaxV I0(π), where V I0(π) = Es0∈I0 [Rπ(s0)].

5
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5. Applying a Learned Policy for Detection and Correction

Algorithm 1 Transformation Selection
Require: Validation set V, corrupted

set Vc, policy π, horizon k, thresh-
olds α, β ∈ (0, 1]

1: w0 ← W̃ (V,Vc)
2: V0 ← Vc

3: T ← { }
4: for i = 1, . . . , k do
5: if Vi is inoperable then
6: return T
7: end if
8: Ti ← π(Vi−1)
9: Vi ← Ti(Vi−1)

10: wi ← W̃ (V,Vi)
11: if wi ≤ αw0 ∨ wi ≥ β wi−1

then
12: return T
13: end if
14: T ← {Ti} ∪ T
15: end for
16: Return T

As described in Section 4, a DNN policy π is trained
at design time such that, given a corrupted set Vc of i.i.d
observations from corrupted distribution DT, the policy
generates a finite composition Ik of k < ∞ transforms
from S. This solves the optimization problem in Equation
1. At design time, we assume the algorithm has access to
a validation set V = {v1, . . . , vn}, where vi is drawn i.i.d
from the training distribution D.

At inference / run-time SuperStAR uses the cor-
rupted set Vc = {vc1, vc2, . . . , vcn} drawn i.i.d from DT,
T ∈ S, and the policy π to select a correcting sequence
T := {Tk,Tk−1, . . .T1}. We fix a maximum horizon
k to keep the algorithm tractable at both learning and de-
ployment. The procedure for selecting sequence T is pre-
sented in Algorithm 1.

In Line 1, Algorithm 1 uses the estimator W̃ to esti-
mate the initial Wasserstein distance. Next, it runs policy
π for k steps (Lines 5−16), where it iteratively applies the
transform picked by the policy to update the corrupted set.
The algorithm uses a lower dimensional state representa-
tion of V for evaluating the policy and for the estimator
W̃ (see Section 4). The algorithm collects and returns this
set of transforms in T .

There are two stopping criteria to prevent the selection of damaging transforms. The first, in
line 5, checks for a minimum condition of operability on the set (see Section 5.1). The second, in
Line 11, guards against overly transforming images to diminishing returns. It also hedges against
the chance that the distribution shift is not semantic preserving, which is always possible in reality.
Hence, we pause the policy when the Wasserstein distance decreases beyond a threshold.

5.1. Minimum Condition for Operability

The optimal policy π∗ selects transformations that maximize the reward function, consisting of some
distance function (e.g., the Wasserstein distance) plus a regularizing factor. The efficacy of such a
policy thus depends on the distance function being a reliable estimate of a classifier’s performance
on the given data. We define an operable corrupted set Vc as follows.

Definition 4 (Operable Set) For some distance function d, classifier f , validation set V, and set of
transformations {Ti}ti=1, a set Vc = {vc1, cc2, . . . , vcn} is operable iff {d(V,Ti(Vc))}ti=1 is negatively
linearly correlated with { 1n

∑n
j=1 1[f(Ti(v

c
j)) = C∗(Ti(v

c
j))]}ti=1.

Since the accuracy of the classifier we wish to adapt is unknown on inference-time data, op-
erability is in practice difficult to evaluate. However, we can instead predict operability from the
state representation FR(Vc) using a simple binary classifier, which is trained on surrogate corrupted
data generated at design time. Label generation can be performed by evaluating the distance func-
tion and accuracies on these surrogate shifts, where Ti(Vc) are variations in the severity of shift

6
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approximating the effect of applying transformations. To evaluate accuracy, the selected classifier
f can be unique from the classifier we wish to adapt. This is motivated by the model collinearity
phenomenon (Mania and Sra, 2020), in which the relative accuracy on different distributions of data
is often the same across multiple classifiers.

6. Dimensionality Reduction

The empirical estimate of the Wasserstein distance converges in sample size to the true Wasserstein
distance slowly in large dimensions (Ramdas et al., 2017). Ideally, by reducing the dimensionality
of the sample data, fewer samples are needed to achieve an accurate estimate of the Wasserstein
distance. We present rigorous theoretical justification that orthonormal projection is a reduction
technique that preserves characteristics of the sample data at a distributional level.

Let m,n ∈ N and p ∈ [1,∞]. Call M(Rn) and M(Rm) the spaces of probability measures on
Rn and Rm, respectively. Denote by Mp(Rn) and Mp(Rm) the spaces of probability measures hav-
ing finite p-th moment on Rn and Rm, respectively (here p =∞ is interpreted in the limiting sense
of essential supremum). For convenience, we consider only probability measures with densities, so
that we do not have to check which measure is absolutely continuous to which other measure (Cai
and Lim, 2022, Section III).

Suppose m ≤ n and consider the Stiefel manifold on m× n matrices with orthonormal rows.

O(m,n) := {V ∈ Rm×n : V V ⊤ = Id}.

For any V ∈ O(m,n) and b ∈ Rm, let

φV,b : Rn → Rm, x 7→ φV,b(x) := V x+ b,

and for any µ ∈ M(Rn), let φV,b(µ) := µ ◦ φ−1
V,b be the pushforward measure. This can be seen

as a projection of µ onto the smaller dimensional space Rm, and we call it a Cai-Lim projection; it
is not unique: it depends on the choice of V and b. Recall then the definition of the p-Wasserstein

distance between µ, ν ∈ Mp(Rn): Wp(µ, ν) :=
[
infγ∈Γ(µ,ν)

∫
R2n ∥x− y∥p2 dγ(x, y)

] 1
p , where

∥ · ∥2 denotes the Euclidean norm and Γ(µ, ν) := {γ ∈ M(R2n) : πn
1 (γ) = ν, πn

2 (γ) = µ} is the
set of couplings between µ and ν, where πn

1 is the projection onto the first n coordinates and πn
2 is

the projection onto the last n coordinates. The following is an important result.

Lemma 5 (Cai and Lim, 2022, Lemma II.1) Let m,n ∈ N and p ∈ [1,∞], and assume m ≤ n.
For any µ, ν ∈Mp(Rn), any V ∈ O(m,n), and any b ∈ Rm, we have that

Wp (φV,b(µ), φV,b(ν)) ≤Wp (µ, ν) .

This can be interpreted as “losing some information” when performing a Cai-Lim projection: in
smaller dimensional spaces, distributions µ and ν seem to be closer than they actually are. This is
an inevitable byproduct of any projection operation. Lemma 5 implies the following corollary.

Corollary 6 Let m,n ∈ N and p ∈ [1,∞], and assume m ≤ n. Consider µ, ν, ρ, ζ ∈ Mp(Rn),
and pick any V ∈ O(m,n) and any b ∈ Rm. Suppose Wp(µ, ν) ≥ Wp(ρ, ζ). Then, there exists
ε > 0 such that if Wp (µ, ν)−Wp (φV,b(µ), φV,b(ν)) ≤ ε, then

Wp (φV,b(µ), φV,b(ν)) ≥Wp (φV,b(ρ), φV,b(ζ)) .

7
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Proof Set ε = Wp (ρ, ζ)−Wp (φV,b(ρ), φV,b(ζ)). The result follows immediately by Lemma 5.

Corollary 6 states the following. If we “do not lose too much information” when performing a
Cai-Lim projection of the two farthest apart distributions, then the inequality Wp(µ, ν) ≥Wp(ρ, ζ)
between the original distribution is preserved between their projections. A more intuitive discussion,
as well as empirical justification, can be found in Appendices B and C.

7. Related Work

Distribution shifts can make deep learning models act dangerously in the real world (Narasimhamurthy
et al., 2019). Some offline techniques aim to improve classification robustness to distribution shift at
training time. These include data augmentation, which expands the experiences that a model would
be exposed to during training (Hendrycks et al., 2019; Erichson et al., 2022; Verma et al., 2019;
Yun et al., 2019; Kim et al., 2020b; Hendrycks et al., 2020). Another offline approach is domain
adaptation, in which models are adapted to perform well on unlabeled data in some new distribution
(Ben-David et al., 2010; Bousmalis et al., 2017; Hoffman et al., 2018). Offline approaches lack
flexibility to shifts unforeseen at train time, but they can be combined with online methods like
SuperStAR to further improve performance.

Alternate techniques aim to handle distribution shift online. For example, test-time adaptation
methods perform additional training at inference time in response to incoming data (Gandelsman
et al., 2022; Wang et al., 2022; Mummadi et al., 2021). Test time augmentation approaches instead
apply transformations to the input, then ensemble predictions if multiple transformations are applied
(Simonyan and Zisserman, 2014; Krizhevsky et al., 2012; He et al., 2016; Guo et al., 2017; Mum-
madi et al., 2021; Kim et al., 2020a; Lyzhov et al., 2020). In contrast, SuperStAR selects trans-
formations online without querying the model. Furthermore, our work uniquely identifies MDPs
as an equivalent formulation of the transformation selection problem, enabling the application of
standard RL techniques. We further explore related work in Appendix D.

8. Application: ImageNet-C

The ImageNet-C dataset (Hendrycks and Dietterich, 2019) is constructed from ImageNet sam-
ples corrupted by 19 semantic preserving transformations. We deploy the learned policy π in
SuperStAR to correct ImageNet-C corruptions, and we evaluate the accuracies of Resnet-50 clas-
sifiers with and without correction. We evaluate a baseline classifier trained without data augmen-
tation and classifiers trained with data augmentation through AugMix, NoisyMix, DeepAugment,
DeepAugment with Augmix, and Puzzlemix. We also evaluate the ability to generalize outside of
the ImageNet-C benchmark. Experiment details can be found in Appendix E.3

ImageNet-C. Table 1 summarizes the classifier accuracy improvements from applying SuperStAR
to ImageNet-C. For brevity, we exclude from Table 1 shifts for which SuperStAR incurs no change
in accuracy (see Appendix F for full table). Corrections via our SuperStAR algorithm lead to ac-
curacy improvements for a majority of shifts, with maximum improvement of 14.21% (averaged
across all five severity levels). In general accuracy improvements are greater for higher severities
(due to space constraints, per-severity accuracy improvements are shown in Appendix F). Further-
more, when combined with data augmentation, SuperStAR often leads to higher accuracies than

3. Our code can be found at https://github.com/vwlin/SuperStAR.
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Table 1: Average accuracies (%) on each ImageNet-C shift with and without SuperStAR for ResNet-50 classifiers.
Accuracy improvement is denoted by ∆ = R (recovered) − S (shifted). Values are over 5 severity levels with 3 trials
each. ”gaussian” refers to Gaussian noise.

No Data Aug AugMix NoisyMix DeepAugment DeepAug+AugMix PuzzleMix
shift S R ∆ S R ∆ S R ∆ S R ∆ S R ∆ S R ∆
none 74.52 74.52 0.00 75.94 75.94 0.00 76.22 76.22 0.00 75.86 75.86 0.00 75.26 75.26 0.00 75.63 75.63 0.00
gaussian 31.11 43.44 12.33 41.90 50.87 8.98 52.71 55.51 2.80 59.07 59.48 0.41 55.39 61.43 6.05 41.48 46.94 5.46
shot 28.61 42.81 14.21 41.78 50.93 9.15 51.81 55.38 3.57 58.21 58.46 1.24 55.76 62.37 6.61 37.39 45.56 7.77
impulse 26.57 39.36 12.79 38.78 47.49 8.71 50.73 53.37 2.64 58.61 58.38 -0.23 55.16 60.67 5.50 35.28 42.82 7.54
snow 30.51 29.28 -1.13 37.89 36.85 -1.04 43.20 41.52 -1.68 41.71 39.91 -1.80 47.68 46.36 -1.32 39.48 37.74 -1.75
frost 35.16 35.07 -0.09 41.39 41.24 -0.15 50.05 49.46 -0.59 46.87 46.08 -0.78 51.21 50.26 -0.95 46.96 45.75 -1.21
brightness 65.17 65.72 0.55 67.35 68.46 1.11 68.82 69.87 1.05 69.04 69.73 0.69 69.42 70.18 0.76 69.59 69.67 0.08
contrast 35.56 37.69 2.14 48.96 49.85 0.89 50.37 52.74 2.37 44.89 48.23 3.33 56.01 57.40 1.39 50.56 52.87 2.30
speckle 36.09 49.26 13.18 50.61 56.94 6.33 57.67 60.88 3.22 62.21 63.81 1.59 60.93 65.66 4.74 42.24 51.92 9.68
spatter 46.65 46.44 -0.20 53.25 52.93 -0.32 57.63 57.34 -0.29 53.74 53.58 -0.16 57.75 57.61 -0.14 53.27 52.95 -0.32
saturate 59.00 59.17 0.17 61.42 61.89 0.47 63.48 64.00 0.52 64.59 64.81 0.22 65.79 66.12 0.33 65.96 65.60 -0.37

SuperStAR or data augmentation alone. In the cases of no shift and the shifts not shown in Ta-
ble 1, SuperStAR refrains from taking any action and does not affect accuracy. This is examined
further in Appendix G.

Interestingly, for a hyperparameter selection that allows some increase in Wasserstein distance
at each step (β = 1.12), we find that SuperStAR selects a non-trivial 5-action sequence of trans-
formations for contrast shift severity level 5, which incrementally increases the accuracy of the
AugMix classifier. Figure 2 shows a sample image with the applied transformations and resulting
accuracies. The transformations incur a noticeable change in the image.

Generalization beyond ImageNet-C. We also evaluate the ability of SuperStAR to gener-
alize outside of the ImageNet-C benchmark. 1) We construct composite ImageNet-C shifts from
pairs of the ImageNet-C corruptions for which SuperStAR improves accuracy. To each shift, we
reapply our operability classifier and policy network without retraining. Table 2 shows the average
classifier accuracy improvements from SuperStAR. For nearly all shifts, our method improves
classifier accuracy, with a maximum improvement in average accuracy of 9.81% (see Appendix H
for severity level breakdowns). 2) We also apply our method to CIFAR-100-C (Hendrycks and Di-
etterich, 2019), an analagous benchmark to ImageNet-C. We use the pretrained policy network and
retrain only the operability classifier on the surrogate corruptions regenerated for CIFAR-100. We
evaluate on a variety of Wide ResNets trained with data augmentation (AugMix, NoisyMix, and
PuzzleMix) and without (baseline).4 Appendix I contains further details. Table 3 shows the ac-
curacy improvements from applying SuperStAR to CIFAR-100-C. Without any retraining of the
policy network, SuperStAR improves average accuracy by up to 8.25% (see Appendix J for full
table and severity level breakdowns). In some cases, such as impulse noise, our method decreases
accuracy for the classifiers trained with data augmentation, while increasing that of the baseline
classifier. We attribute this to the operability classifier mislabeling such shifts as operable.

Overall, SuperStAR demonstrates an ability to dynamically respond to distribution shift on-
line, selecting context-appropriate actions (or inaction) and significantly improving classification
accuracy on ImageNet-C for a variety of corruptions. In some cases, SuperStAR identifies com-
plex sequences of corrective transformations. We attribute this strong performance largely to our
selection of surrogate shifts (see Appendix K for more discussion). SuperStAR also generalizes
to distribution shifts outside of the ImageNet-C benchmark, without retraining the policy network.

4. DeepAugment and DeepAugment with Augmix are not evaluated on CIFAR-100 in the original publications.
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Table 2: Average accuracies (%) on each composite ImageNet-C shift with and without SuperStAR for ResNet-50
classifiers. Composites are combinations of Gaussian noise (GN), shot noise (ShN), impulse noise (IN), speckle noise
(SpN) with brightness (B), contrast (C), saturate (S). Accuracy improvement is denoted ∆ = R (recovered)−S (shifted).
Values are over 5 severity levels with 3 trials each.

No Data Aug AugMix NoisyMix DeepAugment DeepAug+AugMix PuzzleMix
shift S R ∆ S R ∆ S R ∆ S R ∆ S R ∆ S R ∆
GN + B 23.75 30.65 6.90 29.03 37.20 8.17 42.87 44.37 1.50 51.29 49.80 -1.49 43.03 52.17 9.11 33.25 35.15 1.90
GN + C 22.39 22.39 0.00 29.40 29.40 0.00 35.96 35.96 0.00 34.00 34.00 0.00 41.31 41.31 0.00 32.46 32.46 0.00
GN + S 19.35 26.37 7.02 26.65 33.43 6.79 37.13 38.50 1.37 42.83 44.50 1.68 42.41 50.82 8.41 28.96 30.98 2.02
IN + B 22.03 30.08 8.04 29.62 37.91 8.29 43.66 45.89 2.24 52.47 52.90 0.43 44.14 53.95 9.81 32.13 35.65 3.52
IN + C 18.41 18.41 0.00 25.89 25.89 0.00 33.05 33.05 0.00 31.61 31.61 0.00 39.72 39.72 0.00 26.27 26.27 0.00
IN + S 17.59 24.61 7.02 25.24 30.37 5.12 34.23 36.07 1.84 40.96 42.34 1.37 43.58 49.05 5.47 25.74 29.37 3.62
ShN + B 22.32 30.08 7.76 28.38 35.82 7.44 40.26 41.64 1.38 49.44 47.65 -1.79 41.38 50.61 9.23 31.84 33.63 1.79
ShN + C 21.13 21.03 -0.10 28.36 27.94 -0.42 35.22 34.98 -0.24 34.26 33.96 -0.30 41.05 40.76 -0.29 30.13 30.26 0.13
ShN + S 18.49 26.03 7.54 27.33 33.74 6.40 37.58 39.11 1.52 42.47 44.84 2.37 44.04 51.26 7.22 26.33 30.03 3.70
SpN + B 27.20 32.43 5.23 32.64 38.55 5.91 43.60 45.64 2.05 52.77 52.37 -0.41 45.82 52.99 7.17 35.80 37.81 2.01
SpN + C 24.00 24.18 0.18 32.70 32.58 -0.12 39.21 39.57 0.36 36.30 36.98 0.68 44.19 44.49 0.30 33.40 33.74 0.34
SpN + C 23.80 31.36 7.56 35.87 40.22 4.35 45.04 45.98 0.93 47.64 50.87 3.23 50.25 55.98 5.72 30.55 35.94 5.39

Table 3: Average accuracies (%) on each CIFAR-100-C shift with and without SuperStAR for Wide ResNet classi-
fiers. Accuracy improvement is denoted by ∆ = R (recovered) − S (shifted). Values are over 5 severity levels with 3
trials each.

No Data Aug AugMix NoisyMix PuzzleMix
shift S R ∆ S R ∆ S R ∆ S R ∆
none 81.13 81.13 0.00 76.28 76.28 0.00 81.29 81.29 0.00 84.01 84.01 0.00
gaussian noise 21.12 26.81 5.70 47.89 51.07 3.18 65.91 66.34 0.43 20.87 28.18 7.31
shot noise 29.96 36.34 6.38 55.69 58.24 2.55 70.39 70.72 0.33 31.12 39.37 8.25
impulse noise 19.21 26.09 6.88 59.68 59.09 -0.59 79.72 76.08 -3.64 37.18 37.01 -0.17
glass blur 20.68 26.61 5.93 54.08 56.09 2.00 58.82 60.48 1.66 31.07 37.62 6.55
speckle noise 31.58 35.76 4.18 58.11 59.33 1.23 71.67 71.57 -0.09 33.96 38.94 4.98
spatter 61.23 62.23 1.00 72.28 71.25 -1.02 78.11 77.44 -0.67 79.73 78.90 -0.83
saturate 68.82 68.88 0.06 64.52 64.77 0.25 69.83 70.21 0.39 72.93 72.99 0.05

Finally, we note that although promising, SuperStAR is limited in its speed of response and its
reliance on appropriately selected actions and surrogate corruptions. We further discuss these limi-
tations and more in Appendix L.

9. Conclusion

In this work we presented SuperStAR, which uses control for learned models to detect and recover
from distribution shift. SuperStAR uses the Wasserstein distance (with a theoretically-sound ap-
proach for dimensionality reduction using orthonormal projections) to detect distribution shifts and
select recovery actions from a library of image correction techniques. We formulate this action se-
lection problem as a Markov decision process, and we train the policy for computing actions using
reinforcement learning. To hedge against harmful actions, we employ a binary classifier to check
a minimum condition for our method to operate on corrupted data. We applied our approach to
various classifiers on the ImageNet-C dataset, and we obtained significant accuracy improvements
when compared to the classifiers alone. Finally, we showed that SuperStAR generalizes to com-
posite ImageNet-C shifts and CIFAR-100-C with no retraining of the policy. Expansion of the
action library and additional tuning can lead to further improvements on these benchmarks.
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Appendix A. Alternative Distance Functions

Although we employ the Wasserstein distance to estimate the distance between a clean validation
set of images and a corrupted set, a variety of alternatives can be used instead. For example, another
natural choice for measuring the distance between two distributions is an f -divergence, such as the
popular Total Variation (TV) distance, Kullback-Leibler (KL) divergence, and Jensen-Shannon (JS)
divergence. In these cases, orthonormal projection can again be applied for dimensionality reduc-
tion, as equivalents to Proposition 6 hold for f -divergences (Cai and Lim, 2022). We note, however,
that the TV distance, KL divergence, and JS divergence saturate when comparing distributions with
disjoint supports, leading to potentially uninformative rewards when training the policy network.
More reading on the TV distance, KL divergence, and JS divergence compared to the Wasserstein
distance can be found in Arjovsky et al. (2017).

The previously mentioned methods for estimating the distance between two sets of images rely
solely on the data itself, agnostic of the model performing inference on said data. While such
distance functions lend flexibility across models and modalities, they fail to capitalize on infor-
mation the model itself can provide. An alternative ”distance function” that exploits the model
is Agreement-on-the-Line (ALine-D), an approach for estimating the accuracy of a classifier on
out-of-distribution data (Baek et al., 2022). ALine-D builds on the empirical observation that
many models exhibit strong linear correlation between in-distribution (ID) accuracy and out-of-
distribution (OOD) accuracy (Miller et al., 2021). Combined with a similar phenomenon for the
agreement among an ensemble of models on ID and OOD data, ALine-D estimates the accuracy of
any ensemble member on OOD data, given only accuracies on ID data and agreements on ID/OOD
data. This estimate can in turn be used to devise a distance function for use in our reward func-
tion, although incurring an additional computational burden from the evaluation of the ensemble.
Ultimately, despite the benefits of ALine-D, we prioritize generalizability and instead select the
Wasserstein distance.
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Appendix B. An Intuitive View of Orthonormal Projection for the Wasserstein
Distance

As discussed in the main text, we show that orthonormal projection is a reduction technique that
preserves characteristics of the sample data at a distributional level. An intuitive motivation for this
arises from a metric we refer to as the Cai-Lim distance (Cai and Lim, 2022).

We assume the same preliminaries as in Section 6 of the main text. Now denote by

Φ−(µ, d) := {β ∈M(Rm) : φV,b(µ) = β,

for some V ∈ O(d, n), b ∈ Rm}

the set of Cai-Lim projections of µ onto Rm. We call Cai-Lim distance between µ ∈ Mp(Rn) and
ν ∈ Mp(Rm), m ≤ n, the smallest p-Wasserstein distance between ν and a Cai-Lim projection of
µ onto Rm, for some p ∈ [1,∞]. That is,

WCL
p (µ, ν) := inf

β∈Φ−(µ,d)
Wp (β, ν) . (5)

We note that Cai-Lim distance is closely related to Monge and Kantorovich’s formulations of the
optimal transport problem (subsection B.1 below). A generalization of the Wasserstein distance,
the Cai-Lim distance allows for measurements of distance between distributions of different dimen-
sions. It follows directly from (5) that when an orthonormal projection is applied, ν = φV,0(µ), the
Cai-Lim distance is trivially zero, WCL

p (µ, ν) = 0. This suggests that the orthonormal projection
preserves information about the distance between two distributions.

B.1. Cai-Lim Distance and Optimal Transport

Monge’s formulation of the optimal transport problem can be formulated as follows. Let X ,Y be
two separable metric Radon spaces. Let c : X × Y → [0,∞] be a Borel-measurable function.
Given probability measures µ on X and ν on Y , Monge’s formulation of the optimal transportation
problem is to find a transport map T : X → Y that realizes the infimum

inf
T⋆(µ)=ν

∫
X
c(x, T (x)) dµ(x), (6)

where T⋆(µ) ≡ µ ◦ T−1 is the pushforward of µ by T .
Monge’s formulation of the optimal transportation problem can be ill-posed, because sometimes

there is no T satisfying T⋆(µ) = ν. Equation (6) can be improved by adopting Kantorovich’s
formulation of the optimal transportation problem, which is to find a probability measure γ ∈
Γ(µ, ν) that attains the infimum

inf
γ∈Γ(µ,ν)

∫
X×Y

c(x, y) dγ(x, y), (7)

where Γ(µ, ν) is the set of joint probability measures on X ×Y whose marginals are µ on X and ν
on Y . A minimizer for this problem always exists when the cost function c is lower semi-continuous
and Γ(µ, ν) is a tight collection of measures.
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Our Cai-Lim distance formulation, Equation (5), can be written as

inf
β∈Φ−(µ,d)

[(
inf

γ∈Γ(β,ν)

∫
R2d

∥x− y∥p2 dγ(x, y)
)1/p

]
. (8)

Therefore, (8) is a combination of (6) and (7). To see this, notice that X = Y = Rd, and (x, y) 7→
c(x, y) = ∥x− y∥p2, for some p ∈ [1,∞]. Hence, the inner part of (8) corresponds to Kantorovich’s
formulation of the optimal transportation problem. The outer inf , instead, has a Mongenian flavor to
it. With this, we mean that the probability measure β must be the one minimizing the p-Wasserstein
distance between ν and all the elements in the set Φ−(µ, d) of Cai-Lim projections of µ onto Rd,
d ≤ n. Because

Φ−(µ, d) := {β ∈M(Rm) : φV,b(µ) = β, for some V ∈ O(d, n), b ∈ Rm},

and φV,b(µ) ≡ φ−1
V,b⋆

(µ) := µ ◦φ−1
V,b is the pushforward of µ by φ−1

V,b, this reminds us (heuristically)
of Monge’s formulation. The fact that (8) has a solution is guaranteed by Cai and Lim (2022,
Section II).

Some further references can be found at Kantorovič (2004); Villani (2009).
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Appendix C. Empirical Evaluation of Orthonormal Projection

Figures 4, 5, and 6 compare the empirical Wasserstein distance using orthonomal projection to
Gaussian random projection and sparse random projection when MNIST is perturbed with additive
Gaussian noise, additive impulse noise, and Gaussian blur, respectively. We find that orthonormal
projection better preserves distributional information than the alternatives.

Figure 4: Empirical Wasserstein distance between MNIST and MNIST with varied levels of additive Gaus-
sian noise, measured over a range of sample sizes. Curves are taken over 5 trials. MNIST samples are
downsampled to 24×24, flattened, and projected to 50 dimensions. Orthonormal projection better preserves
distributional information than Gaussian random projection and sparse random projection.
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Figure 5: Empirical Wasserstein distance between MNIST and MNIST with varied levels of additive im-
pulse noise, measured over a range of sample sizes. Curves are taken over 5 trials. MNIST samples are
downsampled to 24×24, flattened, and projected to 50 dimensions. Orthonormal projection better preserves
distributional information than Gaussian random projection and sparse random projection.
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Figure 6: Empirical Wasserstein distance between MNIST and MNIST with varied levels of Gaussian blur,
measured over a range of sample sizes. Curves are taken over 5 trials. MNIST samples are downsampled
to 24×24, flattened, and projected to 50 dimensions. Orthonormal projection better preserves distributional
information than Gaussian random projection and sparse random projection.
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Appendix D. Related Work

Offline approaches for classification robustness. Most common among offline approaches are
data augmentation techniques, which expand the experiences that a model would be exposed to
during training. AugMix (Hendrycks et al., 2019) applies a set of transformations (e.g., rotation,
translation, shear, etc.) to distort the original image. NoisyMix (Erichson et al., 2022) further
injects noises into the augmented examples. ManifoldMix (Verma et al., 2019) also uses a data aug-
mentation approach, but focuses on generating examples from a lower-dimensional latent manifold.
Other notable work in the recent literature includes CutMix (Yun et al., 2019), PuzzleMix (Kim
et al., 2020b), and DeepAugment (Hendrycks et al., 2020). Another offline approach is domain
adaptation, in which models are trained on data from one distribution (i.e., source data) are adapted
to perform well on unlabeled data in some other distribution (i.e., target data) (Ben-David et al.,
2010). Among the many domain adaptation techniques, input-level translation is most similar to
our work. These techniques attempt to move the source distribution closer to the target distribu-
tion by augmenting the source data in the input or feature space (Bousmalis et al., 2017; Hoffman
et al., 2018). Finally, a related but distinct offline technique for classification robustness is adver-
sarial training (Goodfellow et al., 2014), which aims to improve robustness to adversarial examples
rather than distribution shift. In contrast to these offline approaches, our online technique allows for
greater flexibility to distribution shifts unforeseen at train time. However, our method can be used
in concert with offline approaches to further improve performance on corrupted samples.

Online approaches for classification robustness. A broad literature adjust for distribution
shift at inference time. Test-time adaptation methods, for example, perform additional training at
inference time to adapt models to incoming unlabeled data Gandelsman et al. (2022); Wang et al.
(2022); Mummadi et al. (2021). A major challenge of such approaches is the generation of reliable
pseudo-labels, especially for data under distribution shift.

Other online approaches, including ours, require no additional training of the model. Test time
augmentation methods, for example, apply a set of transformations separately to the input, then
ensemble the model’s predictions on the different transformations of the data (Simonyan and Zis-
serman, 2014; Krizhevsky et al., 2012; He et al., 2016; Guo et al., 2017; Mummadi et al., 2021).
In addition to the added complexity, a key disadvantage of this method is that the same transforma-
tions are applied to every input seen online. To overcome this, other techniques select the single
best transformation among several candidates based on the model’s performance on these candi-
dates (Kim et al., 2020a; Lyzhov et al., 2020). Our method similarly selects transformations online
and dynamically, but can do so without querying the model. Hence, when transformations are se-
lected, they can be applied to any model to improve performance. Furthermore, our work uniquely
identifies MDPs as an equivalent formulation of the transformation selection problem, allowing for
the application of standard reinforcement learning techniques.

Distribution shift detection. Out-of-distribution shift detection has gained significant inter-
est as more machine learning models are deployed into safety critical systems (Kaur et al., 2022;
Hendrycks and Gimpel, 2018; Lee et al., 2018). In (Rabanser et al., 2019), various approaches to
dimensionality reduction are explored and empirical results demonstrating the benefit to distribution
shift detection are presented. Our work expands on these observations and utilizes a theoretically
sound approach of using orthogonal projections for dimensionality reduction.

Deep learning for image restoration. Deep learning approaches for image restoration and re-
covery from corruption are well studied in the literature and exhaustive review is beyond the scope
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of this paper. Most of these approaches focus on a specific corruption type or a set of corruptions.
For example, Zhang et al. (2017) approaches Gaussian denoising by constructing denoising convo-
lutional feed-forward networks. For a recent survey of deep blurring approaches and comprehensive
approaches targeting multiple sets of noises we refer to Zhang et al. (2022); Ledig et al. (2017); Za-
mir et al. (2021, 2020, 2022). Such approaches utilize a generative model to restore information
lost due to a low resolution. These methods are limited in recovery and can result in image arti-
facts which degrade classification performance. Here, we attempt to alleviate such limitations by
using a composition of transformations which are selected automatically depending on the context.
Additionally, the performance can be enhanced with additional image transformations in the action
library (see Section 8).

22



DC4L: DISTRIBUTION SHIFT RECOVERY VIA DATA-DRIVEN CONTROL FOR DEEP LEARNING MODELS

Appendix E. Experimental Details

E.1. Surrogate Corruptions

Since in practice the corrupting transformations present at test time are unknown to the designer,
we select surrogate corruptions for training the operability classifier and the policy network. To
maximize generalization, we select six surrogate corruptions which subject the images to a broad
set of transformations and influence each dimension of their state representations. Each serves to
increase or decrease one of entropy, brightness, or standard deviation. Below, we describe each of
the corruptions in greater detail.

Uniform Noise. We use additive uniform noise, Uniform(a, b), as a representative of shifts
that increase the entropy of the image. We select b = −a ∈ {0.14, 0.22, 0.32, 0.40, 0.90} to gener-
ate five severity levels of uniform noise shift.

Median Blur. We use median blur as a representative of shifts that decrease the entropy of the
image. We select a square kernel size k ∈ {2, 3, 4, 5, 6} to generate five severity levels of median
blur shift.

γ Correction (Type A). We adjust the γ value of the images, with γ > 1, to create a representa-
tive of shifts that increase the average brightness of the image. We select γ ∈ {1.4, 1.7, 2.0, 2.5, 3.0}
to generate five severity levels of this γ correction.

γ Correction (Type B). We adjust the γ value of the images, with γ < 1, to create a representa-
tive of shifts that decrease the average brightness of the image. We select γ ∈ {0.9, 0.8, 0.7, 0.6, 0.5}
to generate five severity levels of this γ correction.

Sigmoid Correction (Type A). We perform sigmoid correction to create a representative of
shifts that increase the standard deviation of the image. We select cutoff 0.5 and gain g ∈ {7, 8, 9, 10, 11}
to generate five severity levels of this sigmoid correction.

Sigmoid Correction (Type B). We perform sigmoid correction to create a representative of
shifts that decrease the standard deviation of the image. We select cutoff 0.5 and gain g ∈ {7, 6, 5, 4, 3}
to generate five severity levels of this sigmoid correction.

Figure 7 shows samples of images under these surrogate corruptions. We now describe the
criteria used to select the parameters of each corruption listed above for five severity levels. Given
a random sample Vc of the surrogate corrupted data and a random sample V of ImageNet data, we
select the parameter for severity level 5 (strongest) such that∣∣∣∣FR(Vc)i − FR(V)i

FR(V)i

∣∣∣∣ ∈ [0.3, 1.0], (9)

where FR(X)i denotes the ith index of FR(X). We use i = 2 for uniform noise and median blur,
i = 0 for γ correction type A/B, and i = 1 for sigmoid correction type A/B. For the severity levels
1-4, we select parameters such that there is large variation in FR(X)i across the five severity levels.
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Figure 7: Sample images from ImageNet subjected to surrogate corruptions.

E.2. Operability Classifier.

On the surrogate corruptions, we train a binary decision tree with depth of 8 selected by a hyperpa-
rameter sweep, and using Gini index as the split criterion. For label generation, we use a ResNet-50
classifier trained without data augmentation. The resulting classifier has an AUROC of 0.80 on a
held out set of surrogate corrupted data. Of the six surrogate shifts, the operability classifier usu-
ally picks data under median blur data as inoperable and uniform noise data as operable. A full
evaluation of the operability classifier is shown in Table 4.

Table 4: Percentage of images that the operability classifier labels as inoperable for surrogate and ImageNet-
C shifts. Shifts gamma type A and gamma type B refer to γ correction with γ > 1 and γ < 1, respectively.
Shifts sigmoid type A and sigmoid type B refer to sigmoid correction with parameters that increase and
decrease the standard deviation of the image, respectively. In general, the classifier labels blur-type shifts as
inoperable most often. Conversely, the classifier labels noise-type shifts as operable most often.

Surrogates ImageNet-C
shift % inoperable shift % inoperable
uniform noise 0.01 gaussian noise 0.004
median blur 48.69 shot noise 0.02
gamma type A 8.72 impulse noise 0.009
gamma type B 12.56 defocus blur 80.35
sigmoid type A 7.10 glass blur 70.22
sigmoid type B 15.57 motion blur 63.86

zoom blur 66.76
snow 0.18
frost 0.23
fog 30.18
brightness 6.99
contrast 1.77
elastic 23.09
pixelate 43.83
jpeg 41.63
speckle noise 0.03
gaussian blur 76.21
spatter 2.26
saturate 10.31

E.3. Policy Network.

Similar to the operability classifier, the policy network must be trained on surrogate corruptions
selected at design time. However, when selecting surrogates for the policy network, we must addi-
tionally limit the size of the state space that must be explored to avoid convergence issues. Thus,
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we select a subset of the six surrogate shifts previously described, consisting of two shifts with low
inoperability rates, uniform noise and γ correction with γ > 1.

We manually select an action library A of eight correcting transforms, which aim to address
both of these surrogate shifts. For each transform, we select weak parameters to guard against sin-
gle actions with irreversibly destructive effect. Simultaneously, this allows SuperStAR to adapt
accordingly to the noise severity. To target uniform noise, we include several denoising actions.
These are a denoising convolutional neural network from the MATLAB Deep Learning Toolbox,
a bilateral filter with filter size 2, wavelet denoising with BayesShrink thresholding (Chang et al.,
2000), and wavelet denoising with VisuShrink thresholding (Donoho and Johnstone, 1994). To tar-
get γ correction, we include three Contrast Limited Adaptive Histogram Equalization (CLAHE)
actions. Broadly, CLAHE applies histogram equalization over small tiles in the image, while lim-
iting the allowable amount of contrast change. Our selected three CLAHE transformations, are
CLAHE with (tile size, limit) of (2,1), (2,2), and (6,1). Finally, we include in A an action that does
not enact any transformation, allowing for inaction in the presence of benign corruptions.

We train a deep neural network policy π with actions A and surrogate corruptions defined above.
Sequences are limited to five actions, but a shorter sequence may occur based on the stopping criteria
in Algorithm 1. We choose our stopping condition threshold to be α = 0.9 and β = 0.995. For
the estimation of Wasserstein distances, we convert images to grayscale and project them to 5000
dimensions using a randomly generated orthonormal matrix. We select the reward hyperparameters
λ = 20 and ω = 0.994. The neural network policy π is trained using the advantage actor critic
algorithm. For both the actor and critic network, we employ a linear ReLU network with two
hidden layers of 128 and 256 units. We train the actor and critic networks until convergence (about
1600 episodes) with learning rate 10−4, learning frequency 1, discount factor 0.9, and exploration
rate decaying exponentially from 0.9 to 0.1 according the rule 0.90.07∗(episode+1).

The training curves are shown in Figure 8.

Figure 8: Reinforcement learning training curves, averaged with a moving window of 200 episodes. Values
shown are the reward at episode termination.
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Appendix F. Full Experimental Results for SuperStAR on ImageNet-C Shifts

Table 5: Average accuracies (%) on each ImageNet-C shift with and without SuperStARfor ResNet-50
classifiers. Accuracy improvement is denoted by ∆ = R (recovered)− S (shifted). Values are over 5 severity
levels with 3 trials each.

No Data Aug AugMix NoisyMix DeepAugment DeepAug+AugMix PuzzleMix
shift S R ∆ S R ∆ S R ∆ S R ∆ S R ∆ S R ∆
none 74.52 74.52 0.00 75.94 75.94 0.00 76.22 76.22 0.00 75.86 75.86 0.00 75.26 75.26 0.00 75.63 75.63 0.00
gaussian noise 31.11 43.44 12.33 41.90 50.87 8.98 52.71 55.51 2.80 59.07 59.48 0.41 55.39 61.43 6.05 41.48 46.94 5.46
shot noise 28.61 42.81 14.21 41.78 50.93 9.15 51.81 55.38 3.57 58.21 58.46 1.24 55.76 62.37 6.61 37.39 45.56 7.77
impulse noise 26.57 39.36 12.79 38.78 47.49 8.71 50.73 53.37 2.64 58.61 58.38 -0.23 55.16 60.67 5.50 35.28 42.82 7.54
defocus blur 35.21 35.21 0.00 44.48 44.48 0.00 44.72 44.72 0.00 48.10 48.10 0.00 55.52 55.52 0.00 38.02 38.02 0.00
glass blur 25.55 25.55 0.00 32.97 32.97 0.00 35.71 35.71 0.00 38.39 38.39 0.00 44.45 44.45 0.00 25.71 25.71 0.00
motion blur 36.25 36.25 0.00 49.63 49.63 0.00 49.53 49.53 0.00 45.46 45.46 0.00 57.56 57.56 0.00 39.29 39.29 0.00
zoom blur 36.27 36.27 0.00 47.45 47.45 0.00 47.16 47.16 0.00 39.84 39.84 0.00 50.54 50.54 0.00 39.85 39.85 0.00
snow 30.51 29.28 -1.13 37.89 36.85 -1.04 43.20 41.52 -1.68 41.71 39.91 -1.80 47.68 46.36 -1.32 39.48 37.74 -1.75
frost 35.16 35.07 -0.09 41.39 41.24 -0.15 50.05 49.46 -0.59 46.87 46.08 -0.78 51.21 50.26 -0.95 46.96 45.75 -1.21
fog 42.79 42.79 0.00 44.97 44.97 0.00 51.34 51.34 0.00 49.88 49.88 0.00 54.46 54.46 0.00 55.62 55.62 0.00
brightness 65.17 65.72 0.55 67.35 68.46 1.11 68.82 69.87 1.05 69.04 69.73 0.69 69.42 70.18 0.76 69.59 69.67 0.08
contrast 35.56 37.69 2.14 48.96 49.85 0.89 50.37 52.74 2.37 44.89 48.23 3.33 56.01 57.40 1.39 50.56 52.87 2.30
elastic 43.24 43.24 0.00 50.18 50.18 0.00 51.02 51.02 0.00 50.35 50.35 0.00 53.26 53.26 0.00 43.31 43.31 0.00
pixelate 45.51 45.51 0.00 57.25 57.25 0.00 54.23 54.23 0.00 64.31 64.31 0.00 67.31 67.31 0.00 49.03 49.03 0.00
jpeg 52.47 52.47 0.00 58.49 58.49 0.00 61.85 61.85 0.00 56.99 56.99 0.00 61.31 61.31 0.00 56.83 56.83 0.00
speckle noise 36.09 49.26 13.18 50.61 56.94 6.33 57.67 60.88 3.22 62.21 63.81 1.59 60.93 65.66 4.74 42.24 51.92 9.68
gaussian blur 38.08 38.08 0.00 47.17 47.17 0.00 47.30 47.30 0.00 51.93 51.93 0.00 57.53 57.53 0.00 41.07 41.07 0.00
spatter 46.65 46.44 -0.20 53.25 52.93 -0.32 57.63 57.34 -0.29 53.74 53.58 -0.16 57.75 57.61 -0.14 53.27 52.95 -0.32
saturate 59.00 59.17 0.17 61.42 61.89 0.47 63.48 64.00 0.52 64.59 64.81 0.22 65.79 66.12 0.33 65.96 65.60 -0.37

Figure 9: Accuracy improvements for increasing severity evaluated on classifiers trained with a) no data
augmentation, b) AugMix, c) NoisyMix, d) DeepAugment, e) DeepAugment and AugMix, and f) PuzzleMix.
In general, performance improvements are more pronounced for greater severities of corruption.
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Appendix G. Inaction for Select Shifts

As noted in the main text, SuperStAR refrains from taking action when no shift is present and for
a variety of ImageNet-C shifts. This inaction occurs due to a combination of both our operability
classifier and our stopping conditions in Algorithm 1. For example, blur-type shifts are frequently
labeled as inoperable: over 80% of defocus blur images are inoperable, and similarly for other blur-
type shifts (see Appendix E). We also observe that inaction can at times be overly conservative. An
example case is fog shift, where an appropriate action exists (e.g., CLAHE), yet no action is taken.
We now explore this inaction on fog shift further.

Although SuperStAR chooses to take no action on fog shift, there exists an appropriate action
for this shift. In fact, Contrast Limited Adaptive Histogram Equalization (CLAHE) can achieve
a 4.15% accuracy improvement, averaged across all five severity levels, on the AugMix classifier.
Further, if allowed to take the full 5-step sequence of actions, SuperStAR would initially select a
CLAHE action to correct for fog shift. This is supported by Figure 10, which shows that samples
from fog shift have a state representation similar to those from our surrogate γ correction (with
γ > 1) shift and other ImageNet-C shifts for which CLAHE is a strong correction (i.e., bright-
ness, contrast, and saturate), leading SuperStAR to select a similar action for fog shift. However,
SuperStAR uses stopping conditions that can prematurely terminate its procedure. The nature
of fog corruption is such that, after taking the first action, SuperStAR decides to terminate the
process. We speculate that this can be improved by using larger batch sizes for the validation set,
which would allow for a more accurate estimate of the Wasserstein distance. Simultaneously, this
would come at a higher computational cost for training the RL policy.

Figure 10: K-means clustering of sampled state representations for brightness, contrast, and saturate shifts
from ImageNet-C, fog shift from ImageNet-C, and our surrogates. 100 samples were taken from each shift.
K = 2 clusters were chosen by selecting K from the range [1, 10] via the elbow method. The projection onto
the entropy and average brightness dimensions of the state representation is shown. Samples from fog shift
are clustered with those from the γ correction, brightness, contrast, and saturate shifts.
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Appendix H. Full Experimental Results for SuperStAR on Composite ImageNet-C
Shifts

Figure 11: Accuracy improvements on composite ImageNet-C shifts for increasing severity evaluated on
ImageNet classifiers trained with a) no data augmentation, b) AugMix, c) NoisyMix, d) DeepAugment, e)
DeepAugment and AugMix, and f) PuzzleMix.
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Appendix I. Experimental Details for CIFAR-100-C

For the CIFAR-100-C benchmark, we retrain only the operability classifier. We train on the same
six surrogates, regenerated for CIFAR-100. For label generation, we use a Wide ResNet with
depth 28 and widening factor 10 (WRN-28-10) trained on CIFAR-100 without data augmenta-
tion (Zagoruyko and Komodakis, 2016). The resulting operability classifier has an AUROC of
0.73 on a held out set of surrogate data. Predictions made by the operability classifier on surrogate
and CIFAR-100-C shifts are shown in Table 6. Lastly, we update our stopping condition parameters
to α = 0.9, β = 0.972.

For evaluation, we reuse the WRN-28-10. We also evaluate on WRNs trained with AugMix
(WRN-40-2), NoisyMix (WRN-28-4), and PuzzleMix (WRN-28-10).

Table 6: Percentage of images that the operability classifier labels as inoperable for surrogate and CIFAR-
100-C shifts. Shifts gamma type A and gamma type B refer to γ correction with γ > 1 and γ < 1, respec-
tively. Shifts sigmoid type A and sigmoid type B refer to sigmoid correction with parameters that increase
and decrease the standard deviation of the image, respectively. In general, the classifier labels blur-type shifts
as (with the exception of glass blur) inoperable most often. Conversely, the classifier labels noise-type shifts
as operable most often.

Surrogates CIFAR-100-C
shift % inoperable shift % inoperable
uniform noise 0.002 gaussian noise 0.004
median blur 43.88 shot noise 0.03
gamma type A 6.72 impulse noise 1.65
gamma type B 11.30 defocus blur 44.34
sigmoid type A 7.05 glass blur 2.59
sigmoid type B 15.09 motion blur 37.62

zoom blur 45.73
snow 3.42
frost 1.90
fog 25.83
brightness 9.41
contrast 20.97
elastic 24.73
pixelate 26.80
jpeg 15.39
speckle noise 0.04
gaussian blur 51.42
spatter 4.70
saturate 10.63
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Appendix J. Full Experimental Results for SuperStAR on CIFAR-100-C Shifts

Table 7: Average accuracies (%) on each CIFAR-100-C shift with and without SuperStAR for Wide
ResNet classifiers. Accuracy improvement is denoted by ∆ = R (recovered)− S (shifted). Values are over 5
severity levels with 3 trials each.

No Data Aug AugMix NoisyMix PuzzleMix
shift S R ∆ S R ∆ S R ∆ S R ∆
none 81.13 81.13 0.00 76.28 76.28 0.00 81.29 81.29 0.00 84.01 84.01 0.00
gaussian noise 21.12 26.81 5.70 47.89 51.07 3.18 65.91 66.34 0.43 20.87 28.18 7.31
shot noise 29.96 36.34 6.38 55.69 58.24 2.55 70.39 70.72 0.33 31.12 39.37 8.25
impulse noise 19.21 26.09 6.88 59.68 59.09 -0.59 79.72 76.08 -3.64 37.18 37.01 -0.17
defocus blur 64.44 64.44 0.00 73.42 73.42 0.00 78.23 78.23 0.00 69.92 69.92 0.00
glass blur 20.68 26.61 5.93 54.08 56.09 2.00 58.82 60.48 1.66 31.07 37.62 6.55
motion blur 60.25 60.25 0.00 70.46 70.46 0.00 74.73 74.73 0.00 66.14 66.14 0.00
zoom blur 59.58 59.58 0.00 71.83 71.83 0.00 76.71 76.71 0.00 65.10 65.10 0.00
snow 59.07 59.07 0.00 65.83 65.83 0.00 71.83 71.83 0.00 70.99 70.99 0.00
frost 54.35 54.35 0.00 63.69 63.69 0.00 71.00 71.00 0.00 65.21 65.21 0.00
fog 71.25 71.25 0.00 66.59 66.59 0.00 72.84 72.84 0.00 77.21 77.21 0.00
brightness 76.94 76.94 0.00 73.50 73.50 0.00 78.32 78.32 0.00 80.13 80.13 0.00
contrast 62.97 62.97 0.00 65.25 65.25 0.00 68.03 68.03 0.00 72.88 72.88 0.00
elastic 64.23 64.23 0.00 68.09 68.09 0.00 73.43 73.43 0.00 68.58 68.58 0.00
pixelate 54.28 54.28 0.00 63.54 63.54 0.00 70.46 70.46 0.00 52.34 52.34 0.00
jpeg 50.40 50.40 0.00 62.11 62.11 0.00 69.24 69.24 0.00 51.71 51.71 0.00
speckle noise 31.58 35.76 4.18 58.11 59.33 1.23 71.67 71.57 -0.09 33.96 38.94 4.98
gaussian blur 54.11 54.11 0.00 71.48 71.48 0.00 76.74 76.74 0.00 61.11 61.11 0.00
spatter 61.23 62.23 1.00 72.28 71.25 -1.02 78.11 77.44 -0.67 79.73 78.90 -0.83
saturate 68.82 68.88 0.06 64.52 64.77 0.25 69.83 70.21 0.39 72.93 72.99 0.05

Figure 12: Accuracy improvements on CIFAR-100-C for increasing severity evaluated on CIFAR-100 clas-
sifiers trained with a) no data augmentation, b) AugMix, c) NoisyMix, d) PuzzleMix.
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Appendix K. Effect of Surrogate Shifts on SuperStAR Performance

Here we examine the how our choice of surrogate image corruptions impacted SuperStAR perfor-
mance. Figure 13 shows the projected state representations for 100 samples of our best performing
shifts and each surrogate shift, sorted into K = 2 clusters by K-means clustering. The value of
K was selected from the range [1, 9] via the elbow method. We see that samples from ImageNet-C
noise-type shifts are in the same cluster as those from our uniform noise shift. Likewise, brightness,
contrast, and saturate are clustered with our γ correction shift. Thus, SuperStAR generalizes well
from the surrogates to these ImageNet-C shifts.

Figure 13: K-means clustering of sampled state representations for best-performing shifts from ImageNet-C
and our surrogates (projected onto two dimensions). The surrogate shifts are clustered with the appropriate
ImageNet-C shifts.
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Appendix L. Limitations of SuperStAR

In this supplementary section, we explore the limitations of SuperStAR in greater detail.
Action Library. One important limitation of SuperStAR is the technique’s reliance on an

appropriate selection of the action library. Since the policy network selects corrective actions from
this library, by design our method can only recover from distribution shifts targeted by the action
library. For example, for the ImageNet-C benchmark, our action library caters to noise-related and
γ-level-related distribution shifts. The result is that SuperStAR overlwhelmingly performs better
on these types of ImageNet-C shifts, in contrast to blur-related, weather-related, and corruption-
related shifts. Furthermore, it is not feasible to simply select a large, comprehensive action library,
as this prohibitively increases the search space that must be traversed by the reinforcement learning
algorithm.

Surrogate Corruptions. Much like the action library, the selection of surrogate corruptions can
pose a challenge in implementing SuperStAR. Our method hinges on the reinforcement learning
agent interpolating knowledge about the surrogate corruptions to apply to the test-time corruptions
(e.g., ImageNet-C or CIFAR-100-C). If there is large deviation between the set of surrogate corrup-
tions and the set of test-time corruptions, the successful application of knowledge to the test data is
less likely. However, this is a natural consequence of any data-driven solution, and the flexibility
lent by using an offline approach mitigates this challenge.

Responsiveness. To estimate the Wasserstein distance in our reinforcement learning reward
function, our method requires a set of data samples already subject to distribution shift. In high
dimensions, the sample complexity of this estimate grows (Ramdas et al., 2017). Even with dimen-
sionality reduction techniques, a large sample size may be required, as the reduction in dimensions
cannot be so large as to lose essential information in the data. In these cases, the responsiveness of
SuperStAR may be limited in speed, as SuperStAR must wait for a large number of samples to
begin adapting and recovering from distribution shift. We note that a quick response time is not an
essential requirement in our setting, as we assume that when distribution shift arises, it persists for
a certain duration of time. This is not a stringent assumption for the naturally occurring distribution
shifts we consider in this work.

Theoretical Guarantees. Since our method views the end model we wish to adapt as a black
box, we can make no theoretical guarantees on how SuperStAR affects the class-wise performance
of the model. However, we provide theoretical guarantees (see Theorem 2) that selecting transfor-
mations that minimize the distance between the training distribution and the corrupted distribution
in turn minimizes the overall loss in performance on the corrupted data after correction.
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