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Abstract
Humans can learn individual episodes and generalizable
rules and also successfully retain both kinds of acquired
knowledge over time. In the cognitive science literature,
(1) learning individual episodes and rules and (2) learning
and remembering are often both conceptualized as com-
peting processes that necessitate separate, complemen-
tary learning systems. Inspired by recent research in sta-
tistical learning, we challenge these trade-offs, hypothe-
sizing that they arise from capacity limitations rather than
from the inherent incompatibility of the underlying cogni-
tive processes. Using an associative learning task, we
show that one system with excess representational ca-
pacity can learn and remember both episodes and rules.

Keywords: Remembering, catastrophic forgetting, comple-
mentary learning systems, continual learning

Introduction
In the study of learning, two trade-offs have historically been
observed in the behavior of computational models: (1) be-
tween the abilities to simultaneously learn individual episodes
and generalizable rules and (2) between the abilities to learn
and to remember. For example, connectionist models often
show that (1) memorizing individual episodes leads to a re-
duced ability to learn the rules required to generalize to new
episodes (“overfitting”) (McClelland, McNaughton, & O’Reilly,
1995) and (2) learning in a new task leads to catastrophic for-
getting of what has been learned in previous tasks (McCloskey
& Cohen, 1989). These observations motivated the creation
of dual-system theories, such as the complementary learning
systems model (McClelland et al., 1995), which posit separate
learning systems for learning and remembering episodes and
rules.

Recent research has shown that the trade-off between
learning episodes and rules is not inherent to learning in
computational systems. The computational models in which
these trade-offs were historically observed had limited capac-
ity : They could memorize only a small number of their obser-
vations. Computational systems with excess capacity – which
can recover far more relationships between the features of ob-
servations – have the ability to both memorize and general-
ize, i.e., to learn both episodes and rules (Dubova & Sloman,
2023; Belkin, Hsu, Ma, & Mandal, 2019; Nakkiran et al., 2019;
Davies, Langosco, & Krueger, 2023). In this study, we demon-
strate that excess capacity systems can also overcome the
apparent trade-off between learning and remembering, i.e.,
they can simultaneously successfully learn new episodes and
rules and remember previously-learned episodes and rules.

Methods
Catastrophic forgetting. Human participants in the behav-
ioral test referenced by McClelland et al. (1995) were tasked
with memorizing batches of random word pairings in a blocked
regime (Barnes & Underwood, 1959). During the first block,
participants were presented with a list of words (list A) and

tasked with memorizing arbitrary associations between the
words on list A and the words on another list B (A−B pair-
ings). During the second block, they were presented with a
new word list C and tasked with memorizing arbitrary associ-
ations between the words on list A and on list C (A−C pair-
ings). Over the course of training on the A−C pairings, partic-
ipants were tested on the A−B pairings they learned during
the first block. Participants showed memory interference, but
were still able to retain most of the previously learned asso-
ciations. McCloskey and Cohen (1989) modeled behavior in
this task with a simple connectionist model. This model for-
got nearly all information about the A−B pairings after being
trained on the A−C pairings, a phenomenon they referred to
as catastrophic forgetting.

Model. Inspired by McCloskey and Cohen (1989), we used
a simple multi-layer perceptron architecture with two hidden
layers of equal width.1

Task. We expand on McCloskey and Cohen (1989)’s proce-
dure by changing the data to vary on a continuum from rules
to episodes, so that the dynamics of learning and forgetting
of arbitrary associations between episodes and generalizable
rules can be studied together.

Two sample datasets of 10 5-dimensional samples, Atrain
and Atest , were created by sampling from a Gaussian proba-
bility distribution. These datasets were then passed through
a transformation f . Two target datasets, B and C, were each
formed by taking a weighted sum between the transformed
sample data and a set of random perturbations. A third target
dataset D was created by removing the random perturbations
from C:

Atrain ∼ N (0,1)
Atest ∼ N (0,1)

B = (1−noise) · f (Atrain)+noise · εB
C = (1−noise) · f (Atest)+noise · εC

D = (1−noise) · f (Atest)

where 0 ≤ noise ≤ 1, εB ∼ N (0,1) and εC ∼ N (0,1). f
represents the generalizable rule that characterizes the rela-
tionship between the sample and corresponding target data
(i.e., that characterizes each of the Atrain −B, Atest −C and
Atest −D pairings). The noise parameter controls the amount
of structure in the data: When noise = 0, the task amounts
entirely to learning of the generalizable rule; when noise = 1,
the task amounts entirely to learning arbitrary associations be-
tween the sample data and episodes εB (in the Atrain−B pair-
ings) and εC (in the Atest −C pairings).

Capacity. Our key manipulation was the capacity of each
model we tested. The capacity of a model is defined as the
minimum number of hidden nodes needed to fully memorize
a given dataset. Constrained capacity models have fewer
hidden nodes than required to memorize the data they are

1Find our code at: https://github.com/TheLemonPig/ECLvsCLS



Figure 1: Temporal plots for mean classification accuracy over
training (the noise level is fixed at 25%). Left: The episode
(top) or rule (bottom) for Atrain − B is learned. Right: The
episode Atrain −C is learned (green lines) while the episode
(top) or rule (bottom) for Atrain −B is being forgotten.

presented with. Sufficient capacity models have just enough
nodes to memorize the data they are presented with. Excess
capacity models have more nodes than required to memorize
the data they are presented with.

We tested models with capacities of .5, 1, 10 and 100 times
the capacity needed to fully memorize the datasets (con-
strained, sufficient, excess and excess capacity, respectively).

Training. During Block 1, the models were trained to asso-
ciate Atrain with B, which involves learning both the rule f and
the arbitrary component of the episodes, εB. During Block 1,
we also tested the models’ abilities to generalize from Atest
to C. During Block 2, the models were trained to associate
Atrain with C. During Block 2, we also tested the models’
abilities to recall the Atrain − B pairings and to predict the
Atest −D pairings, which capture the models’ abilities to re-
member episodes and rules, respectively (we test learning of
the rule on the basis of performance on the Atest −D pair-
ings in order to isolate error from failure to learn f from error
caused by the noise added to C).

The models were optimized with Stochastic Gradient De-
scent using a mean squared error loss function (learning rate
= 0.01). All models were trained until convergence, defined
as a rate of decrease in loss going below 1×10−5 per 5,000
epochs. We ran all simulations 100 times.

Figure 2: Final averaged mean results after training on Block
1 and 2 respectively, with varying levels of noise. Left of the
dashed line: constrained capacity; Dashed line: sufficient ca-
pacity, Right of the dashed line: excess capacity. Error bars
show standard errors.

Results
Consistent with prior literature (e.g., Belkin et al. (2019);
Nakkiran et al. (2019)), in all cases, the models with excess
capacity were better able than models with constrained and
sufficient capacity to learn both episodes and rules (Fig. 2).
The difference between the mean classification accuracy of all
models was statistically significant (p < 0.001) for both learn-
ing episodes, defined by the t-test of the means between each
pair of models, at the end of training. In other words, there
was not a consistent trade-off between learning episodes and
learning rules in the excess capacity regime.

Consistent with prior work on catastrophic forgetting,
models with constrained and sufficient capacity exhibited
only a limited ability to retain prior knowledge when having
to learn a new set of interfering associations. The models
with excess capacity were better able to retain knowledge
of both episodes and rules (Figs. 1 and 2). All pairwise
comparisons between the means of performance of excess
vs. constrained/sufficient capacity models were significant at
the p < .001 level.

Conclusion
Our results demonstrate the in-principle ability of one compu-
tational learning system to both learn and remember episodes



and rules. By challenging the traditional view of learning and
remembering episodes and rules as inherently competing pro-
cesses, this work opens new avenues for understanding the
flexibility and nuance of cognitive function by exploring the
properties of learning in different capacity regimes. Our find-
ings also have important implications for the study of contin-
ual learning, transfer learning, and the development of more
advanced cognitive architectures (Mannering & Jones, 2021;
van de Ven, Soures, & Kudithipudi, 2024; Achille, Rovere,
& Soatto, 2019; Sherman, Turk-Browne, & Goldfarb, 2023;
Schapiro, Turk-Browne, Botvinick, & Norman, 2017; Liu et al.,
2022).
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