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Data-Driven Condition Monitoring for Mooring Systems of a Multi-Float
Wave Energy Converter with Two Configurations

L. Zhang & P. Stansby & S. Draycott
School of Engineering, University of Manchester, M13 9PL, UK

ABSTRACT: Monitoring the condition of mooring systems is essential for the safe operation and timely
maintenance of the wave energy converter. However, mooring dynamics are nonlinearity related to the wave
forcing, and are complicated by its coupling with the wave energy converter. These nonlinear and coupling
effects pose challenges in accurately identifying the condition of the mooring. In this study, we introduce a
data-driven approach for condition monitoring that uses wavelet filtering and dynamic modeling to address
these challenges. Initially, a wavelet filter is applied to separate the low-frequency surge motion, attributed to
the nonlinear and coupling effects, from the surge at the wave frequencies. Then a linear ARX model is used
to build the dynamic relationship between the filtered surge motion and wave surface elevation for monitoring
purposes. The effectiveness of this method is demonstrated through its application to two different mooring
system configurations within a multi-float wave energy converter. Comprehensive testing across eleven wave
conditions confirms the effectiveness of the proposed method.

1 INTRODUCTION

Offshore renewable energy is increasingly recognised
as a key component of global electricity generation in
the coming decades (Pecher and Kofoed 2017). The
reliability of the mooring systems used in these off-
shore energy projects is a major concern. High failure
rates in mooring systems have been reported (Kvitrud
2014). These failures compromise the structural in-
tegrity and operational reliability of offshore energy
systems and also lead to substantial financial losses.
Therefore, condition monitoring of operational moor-
ing systems is highly desirable to detect early faults
and prevent catastrophic failures.

The vast majority of existing work uses simula-
tion models for the purpose of developing and vali-
dating different condition monitoring algorithms. The
popular simulation tools including OrcaFlex, Ansys
and FAST are often used to simulate the mooring
system response under healthy and damaged condi-
tions. The direct comparison of the time or frequency
responses of motions or forces are investigated for
severe failures (such as broken lines) (Chung, Pes-
tana, & Kim 2021). These direct comparison may
be limited to the normal and severely faulty con-
ditions. For continuous monitoring the condition of
the mooring system, neural networks approaches are
popular options (Coraddu, Oneto, Walker, Patryniak,
Prothero, & Collu 2024). These neural networks algo-
rithms have powerful capacities in modelling different

type of time-frequency variations and non-linearity
under different types and severity of faults. However,
most of them often require a large amount of training
data for training and validating condition monitoring
methods. These data may only be available from sim-
ulations. The algorithms developed using simulation
data alone may not work well for real systems due
to the simplification and approximation in the simu-
lation models. Due to the scarcity of data from real
systems, especially in the early stages of deploying
offshore renewable energy, there is limited research
using experimental data collected from physical sys-
tems (Ren, Shi, Venugopal, Zhang, & Li 2024).

In this study, a computationally efficient and cost-
effective data-driven approach is proposed for mon-
itoring the mooring condition using a small amount
of measured wave and surge motion data. The surge
motion mainly includes low frequency and wave fre-
quency parts. Although the surge motion has a typ-
ical nonlinear relationship with the wave input, it is
demonstrated in the paper the the linear relationship
can remain for surge motion in the wave frequency
part. The linear relationship can be well approximated
by a linear dynamic model using limited experimen-
tal data, resulting in low computational loading and
small data requirements. Further, unlike most of ex-
isting work where only simulation data are used, we
evaluate the effectiveness of the proposed method on
a real mooring system from a multi-float wave en-
ergy converter (WEC) M4 using experimental data



under eleven wave conditions (Draycott, Stansby, &
Li 2023).

The paper is structured as follows. Section 2 in-
troduces the proposed method. Section 3 presents ex-
periments and results, followed by brief conclusions
drawn in Section 4.

2 THE PROPOSED METHOD

In this paper, a data-driven condition monitoring
method is proposed for the mooring system of the
wave energy converter M4. It has three steps. First, the
surge motion data is separated into low frequency and
wave frequency parts. Then the relationship between
wave surface elevation and surge motion in the wave
frequencies is built via AutoRegressive with eXoge-
nous inputs (ARX) model. Finally, a statistical indi-
cator is employed to quantify the difference between
the predicted surge from the ARX model and the ac-
tual measured surge, commonly known as the resid-
ual. The proposed method is illustrated in Fig. 1.

2.1 Signal separation

Wavelet filtering is used to separate the surge motion
signal into low frequency and wave frequency compo-
nents. A common method in wavelet filtering is mul-
tiple level decomposition. At each level decomposi-
tion, the signal is split using selected high-pass and
low-pass filters, labeled as h and l, respectively. These
filters are determined by the chosen wavelet mother
function. The high-pass and low-pass filters operate
through convolutions and are then downsampled by a
factor of 2. For the first level of decomposition, the
raw surge signal s is split into a detailed part D1 and
an approximation part A1, which are given as (Mallat
1999)

D1(q) =
∑
n

s(n)h(n− 2q), q = 1, . . . ,
N

2
(1)

and

A1(q) =
∑
n

s(n)l(n− 2q), q = 1, . . . ,
N

2
. (2)

where u(n) is the measured raw surge data at sample
n, n= 1, . . . ,N . D1 contains the detailed coefficients,
and A1 comprises the approximation coefficients. The
approximation component A1 can then be further de-
composed into a new set of detailed and approxima-
tion components, D2 and A2, respectively, referred to
as the level 2 decomposition. This process can con-
tinue. At the jth level, the decomposition is described
by

Dj(q) =
∑
n

Aj−1(n)h(n− 2q) (3)

and

Aj(q) =
∑
n

Aj−1(n)l(n− 2q). (4)

A 3-level wavelet decomposition example is shown
in Fig. 2. For a wavelet transform up to J levels, the
resulting coefficients are given by

[AJ , DJ , DJ−1, . . . , D1]. (5)

where the approximation coefficients A1 capture the
lowest frequency range the approximation coeffi-
cients while the rest for detailed coefficients cover the
middle and high frequency ranges. Since surge mo-
tion is characterised by low frequencies and the wave
frequencies (middle to high frequencies), the infor-
mation for each component is captured within these
decomposed results. When selecting an appropriate
decomposition level J , it is possible to ensure that
AJ covers the low-frequency range. Meanwhile, the
remaining detailed components capture the wave fre-
quency components. Therefore, to separate surge at
wave frequencies, one would use only the detailed co-
efficients [D1, . . . ,DJ ], while setting all approxima-
tion coefficients AJ to zero. Then we can use recon-
struction to get the time series data of surge motion at
the wave frequencies. The reconstruction is executed
in a backward manner using layer-by-layer approach.
At the jth level, the reconstruction is given by

Aj(q) =
∑
n

Aj−1(n)l(q− 2n)

+
∑
n

Dj−1(n)h(q− 2n).

(6)

2.2 ARX modeling

Since the relationship between surface elevation and
surge motion at wave frequencies is predominantly
linear, we employ a linear ARX model for the identi-
fication of the mooring system. The general formula-
tion of the ARX model is given by (Ljung 1999)

y(n) =a1y(n− 1) + ...+ amy(n−m)

+ b1u(n− 1) + ...+ blu(n− l) + ξ(n)
(7)

where the pair set {u(n), y(n)} represents input
(wave surface elevation) and output (the surge motion
at wave frequencies) at time interval n, n = 1, . . . ,N ,
N being the size of the training data set. l and m rep-
resent the largest input and output lags, respectively.
ξ(n) denotes the error. This ARX model indicates that
past input and output values have an effect on the cur-
rent output value and can be used jointly to predict the
future output.
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Figure 1: The flowchart diagram of the proposed method
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Figure 2: Results from a 3-level wavelet decomposition

Since the structure of the ARX model is a linear
superposition of a set of input and output variables
from the past, it can be formulated as (Ljung 1999)

y(n) = p(n)Θ+ ξ(n) (8)

where p(n) = [y(n− 1), . . . , y(n−m), u(n− 1), . . . ,
u(n− l)] is the ARX model regression vector and
Θ = [a1, . . . , am, b1, . . . , bl]

T is the unknown weight-
ing parameter vector to be optimised. The model (8)
can be further rewritten in the matrix form as

y = PΘ+Ξ (9)

where y = [y(n), y(n+ 1), . . . , y(N)]T represents the
output vector, P = [p(n),p(n + 1), . . . ,p(N)]T rep-
resents the regression matrix and Ξ = [ξ(n), ξ(n +
1), . . . , ξ(N)]T is the residual vector. Construction of
the ARX models often involves minimising the root
mean square error (RMSE).

RMSE =

√√√√ 1

n

N∑
n=1

(y(n)− p(n)Θ)2 (10)

using least squares methods. When an ARX model
is constructed under healthy conditions, the residuals
between the predicted and measured surge motions
can be used to differentiate between healthy and dam-
aged conditions. The residual under a healthy condi-
tion, denoted as Ξh, differs from that under a dam-
aged condition, Ξd. A basic method for evaluation is
the calculation of RMSE values. Additionally, in this
paper, the statistical Mann-Whitney rank test is em-
ployed to distinguish the differences in the distribu-
tions of the two sets of residuals (Mann & Whitney
1947).

3 EXPERIMENTS AND RESULTS

In this study, the M4 WEC system is composed of five
floats: one bow float, two mid floats, and two stern

floats. Two different mooring configurations, named
as Configuration 1 and Configuration 2, are used to
emulate the normal and abnormal conditions, respec-
tively. Configuration 1 has a 0.2 m diameter hemi-
spherical buoy weighing 1.25 kg, connected to the
seabed with three elastic cables and connected to the
bow float with one elastic cable, as shown in Fig. 3
and Fig. 4. Configuration 2, as shown in Fig. 5 and
Fig. 6, features a smaller buoy, 0.15 m in diameter
and weighing 0.21 kg, also connected with three elas-
tic cables. The mooring cable consisted of two latex
rubber (exercise) bands in series in the lower part (1.2
m length total) with an inelastic nylon cord to the
buoy. The nominal stiffness is 65 N/m with nonlin-
earity (Draycott, Stansby, & Li 2023). It was found
that compared to Configuration 1, the mooring forces
of Configuration 2 at the wave frequencies were re-
duced but the low-frequency forces were not, making
them suitable for validating condition monitoring al-
gorithms designed for change detection.
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Figure 3: Top view of the layout of the M4 WEC and mooring
configuration 1
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Figure 4: Side-on view of the layout of the M4 WEC and moor-
ing configuration 1

Our experiments were conducted in the ocean basin
at the University of Plymouth, UK. Fig. 7 shows the
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Figure 5: Top view of the layout of the M4 WEC and mooring
configuration 2
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Figure 6: Side-on view of the layout of the M4 WEC and moor-
ing configuration 2. h = 2 m is the water depth.

M4 WEC and its mooring system in the wave basin
experiment. The experiments were carried out under
eleven irregular wave conditions with different wave
heights Hs and peak periods Tp. Specifically, four dif-
ferent levels of significant wave heights Hs (0.06 m,
0.09 m, 0.13 m and 0.16 m) and three peak wave peri-
ods Tp (1.2, 1.4 and 1.8 s) were considered, and their
combinations are detailed in Table 1. The experiments
were carried out at a depth of 2 m and each wave con-
dition was tested for a duration of 35 min (2100 s).
The 6 DoF M4 motions were recorded using a Qual-
isys camera system.
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Figure 7: A photo of the layout of the M4 WEC and its mooring
system in the wave basin

Our previous work demonstrated that pitch motion
exhibits a linear relationship with wave surface ele-
vation (Zhang, Draycott, & Stansby 2024). In con-
trast, surge motion is affected by mooring force and
exhibits a nonlinear relationship with wave surface el-
evation. However, after separating the wave frequency

Table 1: Wave conditions for 11 cases based on JONSWAP spec-
tra. All cases have peak enhancement factor γ = 3.3.

Case Hs (m) Tp (s) Case Hs (m) Tp (s)
1 0.06 1.2 7 0.13 1.2
2 0.06 1.4 8 0.13 1.4
3 0.06 1.8 9 0.13 1.8
4 0.09 1.2 10 0.16 1.4
5 0.09 1.4 11 0.16 1.8
6 0.09 1.8

surge from the low frequency surge, the relationship
with wave surface elevation input becomes predomi-
nantly linear. In this study, wave filtering techniques
are employed for signal separation. Specifically, the
dB4 mother wavelet function and a four-layer wavelet
decomposition are used (Mallat 1999). This approach
effectively distinguishes the wave frequency surge
motion from the low frequency surge across all ex-
amined eleven wave conditions. An example of the
separation results under case 1 is illustrated in Fig. 8.
Panels (a) and (b) display the raw surge motion time
series and its spectra, respectively. Panels (c) and (d)
depict the low frequency surge and its spectra, respec-
tively, while panels (e) and (f) present the wave fre-
quency surge motion and its spectra, respectively. The
results effectively demonstrate that wavelet filtering
can successfully differentiate these components due
to their distinct frequency ranges.
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Figure 8: Time series and spectra of raw and separated surge
under Case 1 wave condition

The ARX models are trained using the Configu-



ration 1 data under each of the eleven wave condi-
tions, producing eleven ARX models. The input of the
training data is the surface elevation and the output
of the training data is the surge motion at the wave
frequencies. The total amount of the data is 2100 s
*8Hz=16800. 70% of the data is used for training
and the remaining 30% for validation. Different ARX
model orders are compared, and the final model is
chosen when both SSE of training and validation is
minimised. The modelling process is fast, taking only
minutes for all cases. The eleven models are used to
predict the surge motion in both Configuration 1 and
Configuration 2. The prediction results are shown in
Fig. 9 and Fig. 10. It is evident that the results from
Configuration 1 are generally better than those from
Configuration 2 across all eleven cases. Configuration
1, which is considered a normal and healthy condi-
tion, is used for training the models. This training ef-
fectively captures the essential dynamics of Config-
uration 1, resulting in accurate predictions. On the
other hand, Configuration 2 simulates an artificial
damaged condition as it varies slightly from Configu-
ration 1. The ARX models, originally developed un-
der healthy conditions, are applied to both normal and
damaged states. The residuals, namely the differences
between the predicted and actual surge motions, can
serve as a basis for condition monitoring. Notably, the
larger differences in predicted versus measured surge
motions under damaged conditions can be used to de-
tect changes in health status.

To further examine the results, the distributions of
the residuals between the model predicted surge and
measured surge are compared in Fig. 11. Both config-
urations have bell-curve or normal distributions. Con-
figuration 1 has narrower bell curves while Config-
uration 2 has flatter bell curves across all the eleven
cases although a few cases may have similar distri-
butions (such as Case 6) with Configuration 1. Al-
though the visual differences for these distributions
are observed, the manual approach is not preferred in
practice. The RMSE results are compared and listed
in Table 3. In all the scenarios, Configuration 1 pro-
duces smaller RMSE values compared to Configura-
tion 2. Finally, the Mann-Whitney rank test is used
to quantify and compare residuals in all eleven cases.
When the p-value is below a specified threshold, it
suggests a significant difference between two residual
distributions. Otherwise, if the p-value exceeds this
threshold, there is no statistically significant differ-
ence between them. By adopting the widely accepted
p-value threshold of 0.05, it is observed that there is
one failed detection and the successful detection ratio
is 10/11, over 90%, demonstrating the effectiveness of
the proposed method. Moreover, this statistical detec-
tion process is fully automated, eliminating the need
for trial-and-error in setting fault thresholds.
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Figure 9: Time series of predicted and measured surge from Con-
figurations 1 and 2 for Cases 1-6

4 CONCLUSION

In this paper, a fast and cost-effective data-driven
method is proposed for condition monitoring of moor-
ing systems of a multi-float wave energy converter.
First, the proposed method separates the wave fre-
quency component from the total surge motions, al-
lowing for linear relationship analysis under differ-
ent wave conditions. Then ARX models and statis-
tical results are used to distinguish between normal
and altered conditions. The effectiveness of the pro-
posed method has been validated using real experi-
mental data under eleven wave cases. This study has
focused on one representative damage condition and
future work will explore a range of damage cases.
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Figure 10: Time series of predicted and measured surge from
Configurations 1 and 2 for Cases 7-11
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