
1

Copyright

by

Vishnuvardhan Venkatramani Iyer

2023

2

The Dissertation Committee for Vishnuvardhan Iyer Certifies that this is the

approved version of the following Dissertation:

Fine-grained Methods for Using EM Fields Measured Near Computing

Chips to Evaluate Data Leakage

Committee:

Ali Yilmaz, Supervisor

Andreas Gerstlauer, Co-Supervisor

Michael Orshansky

Jaydeep Kulkarni

Emily Porter

Calvin Chan (CU Boulder)

Fine-grained Methods for Using EM Fields Measured Near Computing

Chips to Evaluate Data Leakage

by

Vishnuvardhan Venkatramani Iyer

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2023

3

 4

Acknowledgements

I would first like to express my sincere gratitude to my advisor Dr. Yilmaz for his

constant encouragement, guidance and support throughout my graduate studies and

research project.

I would also like to thank the remaining members of my dissertation committee:

Dr. Andreas Gerstlauer, Dr. Michael Orshansky, Dr. Jaydeep Kulkarni, Dr. Emily Porter,

and Dr. Calvin Chan, for their feedback. I would like to thank Dr. Gerstlauer and Dr.

Orshansky for their inputs and support during my doctoral studies, as Co-PIs of the NSF

award that funded me. I would also like to thank Dr. Kulkarni and his group for multiple

collaborations, which have also contributed significantly to this work.

Further, I would like to acknowledge my fellow UT collaborators Ge Li, Meizhi

Wang, and Aditya Thimmaiah who have helped in making my research and dissertation

successful. I also learnt a lot from my colleagues in the CEM group, particularly Jon Kelley

and Andrew Maicke. Over the past few years I have had a chance to make some great

friends: Amruth Bhargav, Raghav Thyagarajan, DMS Gautham, Pawan Joshi, Sudhanva

Vasishtha Dhinnessh R, Ali Farshkaran, Kartik Patel, Siddhartha Raman, and others, who

have always been supportive in my endeavors.

Finally, I would like to thank my parents and extended family for their continuous

support and encouragement during my time at UT.

 5

Abstract

Fine-grained Methods for Using EM Fields Measured Near Computing

Chips to Evaluate Data Leakage

Vishnuvardhan Venkatramani Iyer, Ph. D.

The University of Texas at Austin, 2023

Supervisor: Ali Yilmaz

This thesis presents novel fine-grained methods that show electromagnetic (EM)

fields measured near chips during computations can be effectively used to evaluate data

leakage. Several near-field measurement techniques combined with appropriate statistical

analyses are introduced in the dissertation. The proposed EM side-channel analysis (SCA)

methods are used to rapidly localize information leakage on the chip, identify optimal

reusable measurement setups to minimize marginal cost of future evaluations, and infer the

data values of interest. These methods are used to perform measurement-based evaluations

of data leakage from several embedded system applications: (i) Using encryption keys of

the advanced encryption standard (AES) algorithm as the data of interest, a multi-stage

measurement protocol is introduced to rapidly identify chip locations which are most likely

to leak the key, as well as the actual key value; the method was found to be ~2× to ~37×

faster than alternatives while using them to evaluate the SCA resilience of several baseline

and hardened implementations of AES; (ii) Assuming processor instructions as the data of

interest, a hierarchical disassembler is developed to recover the execution trace of programs

from a general-purpose micro-controller; the method was found to recover ~97%

 6

instructions from several application benchmarks; (iii) Using Bluetooth payload as the data

of interest, vulnerable locations on a Bluetooth Low Energy server implementation are

isolated, and the data values of the payload are estimated; while the exact data values were

not found, the Hamming Weight (HW) of test data was identified with 100% accuracy.

These methods provide feasible alternatives to an exhaustive evaluation where data is

recovered after measuring all possible computations at every single probe configuration.

The feasibility of these methods is inherently dependent on the restrictions placed on

evaluators, i.e., the threat model. Thus, a systematic study of protocols suited for different

threat models are performed, which also includes the marginal cost comparisons of

different SCA attack modalities. Finally, the thesis also introduces novel metrics and

modelling methods that improve potency of side-channel security evaluations.

 7

Table of Contents

List of Tables ...11

List of Figures ..12

1. Introduction ..20

1.1 Thesis Statement ...24

1.2 Thesis Contributions ...25

1.3 Thesis Organization ..26

2. Comparison of SCA Attack Modalities ...27

2.1 Background on AES Operations and Vulnerabilities ...27

2.1.1 The AES algorithm ..27

2.1.2 Vulnerabilities of AES to SCA attacks ..29

2.1.3 Effect of Noise on Correlation Attacks..33

2.2 Fine-Grained EM SCA Attacks Subject to Constraints35

2.2.1 Threat Models ..35

2.2.2 Attacking a Red Box: Pre-characterization Phase36

2.2.3 Attacking a Black Box ...37

2.2.4 Attacking a Gray Box ..39

2.2.5 Attacking a White Box ..40

2.3 Measurement Results ..41

2.3.1 Setup ..41

2.3.2 Marginal Cost ..43

2.3.3 Comparison of Fine-grained EM SCA Protocols44

2.3.4 Comparison of Acquisition Costs ..47

 8

2.4 Summary ...48

3. Evaluation of AES using ANOVA F-Statistics ...49

3.1 Measurement Protocol ..49

3.1.1 The Gold-Box Threat Model ...50

3.1.2 Choosing Test Cases to Compute F-statistics50

3.1.3 Stage I: Measurement-Noise-Based Leakage Indicator51

3.1.4 Stage II: Algorithmic-Noise-based Leakage Indicator53

3.1.5 Stage III: ANOVA-Informed Correlation Analysis.............................54

3.2 Measurement Costs and Alternative Methods ..56

3.2.1 Acquisition Cost ..56

3.2.2 Acquisition Time and Storage ...57

3.2.3 Alternative Methods ..58

3.3 Devices Under Test ...61

3.3.1 Baseline AES implementations ...61

3.3.2 AES Implementations with Repeatability Countermeasures62

3.3.3 AES Implementations with Algorithmic Countermeasures.................63

3.3.4 AES Implementations with Physical Design Strategies64

3.4 Baseline Results ..64

3.4.1 Proposed Protocol Results ...65

3.4.2 Cost Comparison to Alternative Methods ...68

3.5 Results For Countermeasures ...72

3.5.1 Countermeasures Increasing Measurement Noise72

3.5.2 Countermeasures Increasing Algorithmic Noise74

 9

3.5.3 Countermeasures Attenuating Target Signals......................................74

3.5.4 Marginal and Acquisition Cost Comparison76

3.6 Summary ...78

4. Fine-Grained EM SCA-Based Instruction Disassembler ..80

4.1 Introduction to SCA-Based Disassemblers...80

4.2 Overview ...84

4.2.1 Relevant work ..84

4.2.2 Proposed Approach ..88

4.3 Background ...89

4.3.1 Measurement Setup..89

4.3.2 Threat Model..91

4.2.3 Hierarchical Grouping of Instructions ...93

4.2.4 Observed Signals’ Dependence on Chip Processes94

4.4 Phase I: Feature Selection ...96

4.4.1 Database Construction ...97

4.4.2 Method for Selecting Features ...98

4.4.3 Selecting the Features ..100

4.5 Phase II: Classification ...102

4.6 Experiments and Results ...104

4.6.1 Feature-Selection Results ..105

4.6.2 Classification Results ...105

4.7 Summary ...108

 10

5. Modelling Information Leakage in EM SCA ..111

5.1 ANOVA For a Generic Computing Chip ...111

5.2 EM SCA Analysis of a BLE Server Using ANOVA112

5.2.1 Background ..113

5.2.2 Measurement Protocol ...114

5.2.3 Measurement Setup..115

5.2.4 Measurement Results ...117

5.3 Data-Dependent EM Profiles as Basis Functions ...119

5.3.1 Representing Data with Binary Basis Vectors120

5.2.2 Data-Dependent EM Basis Functions ..121

5.2.3 Measurement Setup and Results ..123

5.4 Summary ...124

6. Conclusion ...125

Bibliography ..129

 11

List of Tables

Table 2.1: Marginal costs of SCA attacks ..43

Table 3.1: Proposed ANOVA Method’s Costs ..67

Table 3.2: Effectiveness of Countermeasures and the Cost of Evaluation77

Table 4.1: Comparison of relevant work..85

Table 4.2: Instruction Groups ..92

Table 4.3: Results of Benchmark Evaluations ...108

 12

List of Figures

Figure 1.1: Setups for power, coarse-grained EM, and fine-grained EM SCA

attacks: (a) A sensor monitoring the aggregate power use of the chip (via

the top-right port). (b) A 10-mm diameter H-field probe aggregating

fields emanated by sources distributed throughout the chip. (c) A 1-mm

diameter H-field probe scanning the chip surface for vulnerabilities.21

Figure 2.1: Algorithm flow of the 128-bit AES ..28

Figure 2.2: Byte-wise EM/Power SCA attack flow ..29

Figure 2.3: (a) Probed fields (left) at an optimal configuration observed during the

last round of AES when the key and the input plaintext are set to 𝐤0 =

𝐤1and 𝐢𝐩1. (b) The correlation coefficients for all 256 guesses for

𝑘10,0, when 𝑁e = 4000 encryptions are observed. The coefficient

corresponding to the correct guess 𝑔 ∗= 19 is shown in blue.30

Figure 2.4: Maximum value of (a) power SCA and (b) fine-grained EM SCA

correlation coefficients for all 256 guesses for 𝑘10,0 as the number of

encryptions increases. The value corresponding to the correct guess 𝑔 ∗

= 19 (blue) crosses the null hypothesis threshold (dashed) after

𝑀𝑇𝐷0/𝑚𝑀𝑇𝐷0 measurements. ...32

Figure 2.5: SCA threat models for AES. Unrestricted attackers (gold box) control

the key and have complete access to device peripherals. The access to

the DUT is progressively restricted (white, gray, and black box) until

attackers have no access to inputs and outputs (red box).35

 13

Figure 2.6: The fine-grained EM SCA measurement protocol in the black-box threat

model. Scans are marked with red and the number of locations and

encryptions observed in each scan are specified. Phase I scans are

performed with multiple probe orientations, becoming progressively

more expensive, while Phase II scans become progressively cheaper.37

Figure 2.7: The measurement protocol in Phase I of the gray-box threat model

prunes the search space by repeating scans, computing 𝐹𝑁𝑝𝑐, 𝑡, and

comparing it to a threshold 𝐹𝑁, c. The reduced set of configurations are

then evaluated with the black-box protocol. ...38

Figure 2.8: The measurement protocol in the white-box threat model initially

performs Phase I of the protocols used for gray- and black-box threat

models. Once the key is disclosed, the search space is pruned by

computing 𝐹𝐵𝑝𝑐, 𝑡 statistic byte-wise and comparing it to a threshold

𝐹𝐵, c. The reduced set of configurations are then evaluated using

correlation analysis. ..40

Figure 2.9: (a) Spatial map of the absolute value of the measured signals using an x-

oriented 1-mm diameter H-field probe at ~12 ns during the last round for

the FPGA (left) and the secured ASIC (right). 𝑁l= 51×51 locations were

probed in both cases. (b) EM signal measured by a z-oriented 10-mm

diameter H-field probe positioned at the center of the FPGA. (c) Supply

variation of FPGA during the last round of AES operations.42

Figure 2.10: Spatial maps of max𝑡Std(𝐕𝑡, 𝑝𝑐) obtained with the x-oriented probe for

the FPGA (left) and ASIC (right). ..44

 14

Figure 2.11: MTD maps for byte 1 obtained from the black-box search protocol for

the FPGA (left) and ASIC (right) implementations. Scans constrain area

(red and black) and number of measurements progressively to reduce

cost. ...45

Figure 2.12: Spatial map of max𝑡𝐹𝑁𝑝𝑐, 𝑡 and the are used in subsequent analysis

(red) with an x-oriented probe for the FPGA (left) and ASIC (right).46

Figure 2.13: Spatial map of max𝑡𝐹𝐵𝑝𝑐, 𝑡 compared to optimal configurations (star)

for the FPGA (left) and ASIC (right). ...47

Figure 2.14: Reduction of the search space for optimal probe configurations. The

optimal configurations were more rapidly isolated for less restrictive

threat models. ..48

Figure 3.1: Time-domain (left) and frequency-domain (right) 𝐹𝑁0, 𝑝𝑐, 𝑡/𝑓 metric,

evaluated with the probe configuration 𝑝𝑐0, opt. ...52

Figure 3.2: Time-domain (left) and frequency-domain (right) 𝐹𝑁0, 𝑝𝑐, 𝑡/𝑓 metric,

evaluated with the probe configuration 𝑝𝑐0, opt. ...54

Figure 3.3: Flowchart of Stage III of the proposed protocol. ...55

Figure 3.4: Time-domain (left) and frequency-domain (right) TVLA metric,

evaluated with the probe configuration 𝑝𝑐0, opt. ...60

Figure 3.5: Spatial map of (a) time-domain signals at ~8 ns (left) and frequency-

domain signals at ~160 MHz (right) for the FPGA module detailed in

[10], and (b) time-domain signals at ~6 ns (left) and frequency-domain

signals at ~100 MHz (right) for the ASIC module detailed in [18].65

 15

Figure 3.6: Spatial map of (a) time-domain signals at ~8 ns (left) and frequency-

domain signals at ~160 MHz (right) for the FPGA module detailed in

[10], and (b) time-domain signals at ~6 ns (left) and frequency-domain

signals at ~100 MHz (right) for the ASIC module detailed in [18].66

Figure 3.7: Spatial map of (a) time-domain signals at ~8 ns (left) and frequency-

domain signals at ~160 MHz (right) for the FPGA module detailed in

[10], and (b) time-domain signals at ~6 ns (left) and frequency-domain

signals at ~100 MHz (right) for the ASIC module detailed in [18].67

Figure 3.8: Spatial map of max𝑡𝑇𝑝𝑐, 𝑡(left) and max𝑓𝑇𝑝𝑐, 𝑓 (right) for the baseline

(a) FPGA [10] and (b) ASIC [18]. Optimal configurations are shown

with stars. ..68

Figure 3.9: Reduction of search space for the optimal probe configuration in time

(solid) and frequency domain (dashed) for the baseline (a) FPGA [10]

and (b) ASIC [18]. Unlike the exhaustive- and greedy-search protocols,

which emulate correlation analysis by actual attackers with restricted

access, the TVLA and ANOVA protocols accelerate the process by

computing statistical metrics. ..69

Figure 3.10: Spatial map of max𝑡𝐹𝑁0, 𝑝𝑐, 𝑡(left) and max𝑓𝐹𝑁0, 𝑝𝑐, 𝑓 (right) for the

FPGA implementing three countermeasures that increase the

measurement noise. ...71

Figure 3.11: Spatial map of max𝑡𝐹𝑁0, 𝑝𝑐, 𝑡(top-left), max𝑓𝐹𝑁0, 𝑝𝑐, 𝑓 (top-right),

max𝑡𝐹𝐵0, 𝑝𝑐, 𝑡(bottom-left), and max𝑓𝐹𝐵0, 𝑝𝑐, 𝑓(bottom-right) for the

FPGA implementing the masking countermeasure that increases

algorithmic noise. ..73

 16

Figure 3.12: Spatial map of max𝑡𝐹𝑁0, 𝑝𝑐, 𝑡(left) and max𝑓𝐹𝑁0, 𝑝𝑐, 𝑓 (right) for the

three countermeasures attenuating target signals. Optimal

configurations, if present, are shown with stars. ...75

Figure 4.1: Hierarchical grouping of instructions based on length (I), size (II),

operands (III), and functions (IV). ..82

Figure 4.2: Overview of the proposed approach. ..88

Figure 4.3: Measurement setup used for instruction disassembly (top, same as in [4])

and probes used for coarse-grained (bottom-left) and fine-grained

(bottom-right) EM SCA. ...90

Figure 4.4: Space-time distribution of (a) probed fields, and (b) differential signals

derived from them, measured by a y-oriented probe at 51×51 locations

for MOV A, #00 instruction. Spatial maps are plotted at 25 ns and time

variations are plotted at the center location. Each machine cycle is

divided into 6 states and 2 sub-states [51]. ...96

Figure 4.5: The envelopes in stage IV portion of the database (left) are the min-max

bounds of the probed fields for multiple instantiations of each

instruction; here, the SETB C-bit instruction. The instantiations have

different initial conditions of the C-bit (0 and 1) and RAM registers

(0x00 and 0xFF). The envelopes in stage III portion of the database

(right) are the min-max bounds of the envelopes of all instructions that

have the same operand; here, C-bit. ..97

Figure 4.6: Profiling codes instantiate instructions with different operands, under

different machine states. NOP instructions are introduced to keep the

computation of differential signals consistent. ...98

 17

Figure 4.7: Spatial map (top-left) of 𝐷𝑖𝑠𝑡1C, 2C𝑝𝑐, 𝑡 between 1-cycle and 2-cycle

instructions at 𝑡~30 ns and time variation (top-right) at an optimal probe

location (starred). Distance (bottom-left) and envelope (bottom-right)

plots for an optimal time interval showed that instruction classes were

more separable when the difference between the envelope averages

(dashed) increased, particularly at 𝑡~30 and 𝑡~37 ns.101

Figure 4.9: Distance between branch “taken” and “not taken” classes for instruction

(1C, 2B, Off, JNZ) in Stage IV (left), shows that the disassembly can

potentially predict program flow. The spatial map of distance is plotted

at 𝑡~285 ns and the observed fields are plotted at an optimal

configuration (starred). ...102

Figure 4.8: Comparing the classes (1C, 2B, Dir) and (1C, 2B, [Acc, Dir]) in stage III

with 𝐷𝑖𝑠𝑡𝑎, 𝑏𝑝𝑐, 𝑡 (left) and Δ𝐷𝑖𝑠𝑡𝑎, 𝑏𝑝𝑐, 𝑡 (right) shows that they are

more separable when using differential signals. Here, 𝑡~120 ns.102

Figure 4.10: An evaluated signal for instruction (1C,1B,Acc,Inc) correctly shows

large deviation from envelope of 2-cycle instructions at 𝑡~30 ns and

𝑡~37 ns. ...103

Figure 4.11: Example spatial maps of the envelope-to-envelope distances computed

during feature selection phase in stages (a) I (𝑡~30 ns), (b) II

(𝑡~270 ns), (c) III (𝑡~360 ns), and (d) IV (𝑡~70 ns), observed at the

most optimal time instants. The distances between instruction classes are

smaller at lower stages of the hierarchy. ...106

Figure 5.1: (a) Information access flow in the GATT protocol. (b) Flow of data during

a write operation [72]. ...112

 18

Figure 5.2: The near-field measurement setup used for EM SCA attacks.

Experiments are performed on an RA4W1 test board. Near-fields were

sensed using an H-field probe, scanning the chip at a height of 0.5 mm....116

Figure 5.4: Spatial map of max𝑡𝐹𝑁𝑝𝑐, 𝑡 (left) and time plot of the F-statistic (right)

at an optimal configuration (starred). The measurement configuration is

suitable for data recovery if the F-statistic is greater than the threshold

𝐹𝑁, 𝑐 (red). ..117

Figure 5.3: Spatio-temporal distribution of measured signals using an x-oriented

probe. The spatial map is plotted at 𝑡~30 ns and time plot is shown for

an optimal configuration (star) for three clock cycles, each cycle being

~20 ns. ...117

Figure 5.5: Spatial map of max𝑡𝐹𝑁𝑝𝑐, 𝑡 (left) and time plot of the F-statistic (right)

at an optimal configuration (starred). The measurement configuration is

suitable for data recovery if the F-statistic is greater than the threshold

𝐹𝑁, 𝑐 (red). ..118

Figure 5.6: Fine-grained EM SCA attack setup [4] (left) probes the chip at multiple

locations during chip operations. Measurements can be repeated at

multiple probe configurations to generate field maps at a given time

instance (right). ...121

Figure 5.7: (a) Basis functions plotted at the center of the chip in time (left) and

frequency (right) for an x-oriented probe. The derived functions

represent the contribution of each individual bit 𝑖. (b) Performance of the

model for two arbitrarily chosen data values at the center of the chip.122

 19

Figure 5.8: Error observed at the center of the chip (starred) for data value 0xFA in

time (left), and predicted fields for this data value at the same time

instance as the observed field plotted in Fig. 5.6 (t~8 ns).123

 20

1. Introduction

Data in computing chips can be leaked unintentionally via EM fields, power

consumption, temperature, etc. measured on/close to the chip [1]-[11]. These “side

channels” are potential pathways that attackers can exploit to recover critical data, such as

encryption keys from cryptographic implementations [5]-[21], rendering the security of

these chips obsolete. In particular, measurement of EM fields represents a non-invasive

pathway for attackers to recover data without tampering the device, necessitating effective

security evaluations to mitigate any potential exploits. The vulnerabilities of various digital

devices to EM side-channel analysis (SCA) attacks have been repeatedly demonstrated

over the past decade [1]-[21]. Computations of interest in such devices unintentionally

influence transitions in digital CMOS logic, resulting in data-dependent switching of

transistors that affects power consumption and EM emanations [22]. Observed fields can

be represented as sum of fields generated by the computations of interest, un-correlated

background computations (henceforth referred to as algorithmic noise), and measurement

noise [4],[6],[21]. EM SCA setups use appropriate statistical tools to relate observed fields

to the computations of interest, quantify noise in signals, and deduce the data of interest.

Conventionally, EM SCA attacks have been performed using large probes that

aggregate fields from a multitude of on-/off-chip sources, including algorithmic noise from

those uncorrelated to the computations of interest [6], similar to power SCA attacks, where

the measured signal is dictated by the aggregate current drawn by the logic blocks (Figs.

1(a) and (b)). As a result, they typically require many measurements to denoise signals,

establish sufficient statistical relations with computations of interest, and recover data.

Furthermore, these are memoryless attacks: previous attacks do not impact future

evaluations. Such coarse-grained setups are commonly used to evaluate hardware security

[8], [9], [12], [16] in part because the setups are relatively easy to implement, requiring a

 21

single sensor configuration. In contrast, security evaluations using fine-grained EM SCA

setups with relatively small probes (Fig. 1(c)) are rare, more elaborate, and potentially more

potent [9]. These attacks first search for optimal configurations, e.g., locations and

orientations, of probes that are most sensitive to target signals/least sensitive to noise; they

then use these configurations to perform appropriate statistical analysis and recover data.

Because they can localize leakage sources [5]-[7], [9]-[11], e.g., via high-resolution scans,

these setups can circumvent some countermeasures that are effective against power and

coarse-grained EM SCA attacks [1].

While coarse-grained EM SCA attacks are simpler to implement, fine-grained EM

SCA attacks can be more efficient when used with optimal probe configurations, making

them more potent than the conventional power/coarse-grained EM SCA attack methods

[9],[11],[22]; moreover, once identified, these configurations can be reused to minimize

the cost of future attacks on similar chips. Fine-grained EM SCA attacks’ initial search for

optimal probe configurations, however, can be rather costly [10] because of the large

 (a) (b) (c)

Figure 1.1: Setups for power, coarse-grained EM, and fine-grained EM SCA attacks: (a)

A sensor monitoring the aggregate power use of the chip (via the top-right port). (b) A 10-

mm diameter H-field probe aggregating fields emanated by sources distributed throughout

the chip. (c) A 1-mm diameter H-field probe scanning the chip surface for vulnerabilities.

 22

number of probe configurations that must be evaluated. The cost of fine-grained EM SCA

attacks can become intractable if chips are evaluated exhaustively with measurements

corresponding to a multitude of combinations of data values in digital blocks, and these

signals are collected at all possible probe configurations. This naïve approach is henceforth

referred to as the “exhaustive search” for optimal configurations. For example, an

exhaustive search for configurations leaking AES keys in a space of 51×51 locations,

across 2 orientations (See Chapters 2 and 3), involves performing expensive correlation

analysis attacks with a large set of encryptions (>105 in some cases [12], [18]) at all

configurations, following which the most optimal configuration can be identified.

Similarly, an exhaustive search for information leaking configurations in micro-controllers

may involve probing the chip with a large configuration space (see Chapter 4) with all

possible architectural states of the chip’s digital components (>1012 for an 8051 processor

[54]), such as registers, counters, etc.

The acquisition costs accrued to perform fine-grained EM SCA attacks can be

reduced by minimizing the number of configurations measured. Adaptive scan algorithms

such as greedy [10] or gradient [11] search select probe configurations over multiple scans

by introducing constraints on the resolution, search area, or the number of measurements

and discarding non-optimal configurations in each scan. These search algorithms may zero

in on local minima and cannot guarantee the best probe configuration will be identified,

unlike the exhaustive search. Measurement costs can also be reduced by pre-supposing that

information leakage is limited to certain time/frequency samples or locations [5],[23]. In

[5], the information-leaking frequency was constant across the search space and a small set

of initial guess configurations were used to rapidly isolate leakage to near decoupling

capacitors over a test board implementing the advanced encryption standard (AES)

algorithm. Similarly, in [23], both the time window and frequencies of information leakage

 23

were identified, potentially reducing future measurement costs. Such methods are

contingent on the invariance of information-leaking times/frequencies/locations. This may

not be the case, however, for certain classes of countermeasures that can change signal

profiles from encryption to encryption (see Section 3.3.3). Pre-supposing narrow time/

frequency/spatial windows to reduce the search space in the presence of such

countermeasures can erroneously indicate that a system is resilient. Thus, these methods

have limited utility for evaluating EM SCA attack vulnerabilities of hardened

implementations. Further, the effectiveness of each method also depends on the restrictions

placed during evaluations.

There is an inherent asymmetry between evaluators, who must ensure the module

is sufficiently secure against all probe configurations, and actual attackers, who must

ensure it is sufficiently vulnerable to only one probe configuration. The asymmetry is

amplified when evaluators and actual attackers are subject to different constraints; in

particular, on their ability to observe or control the module’s inputs, outputs, or internal

parameters, such as keys. These constraints are formalized in threat models: Actual

attackers are often restricted to a “black-box threat model” [9], where the module’s output

and EM fields can be observed for a potentially unlimited number of encryptions but its

input and internal parameters, such as encryption keys, cannot be accessed. In contrast,

security evaluators may also be granted partial/full control over the input (a “gray-/white-

box threat model” [9], [11], [19]) and internal chip parameters [21] (a “gold-box threat

model” [9]). Thus, evaluators may observe the output and EM fields for specially designed

test cases [21]. When evaluators face fewer restrictions, they can accelerate the security

evaluation by implementing targeted tests and obtaining statistical indicators of

information leakage, e.g., via test vector leakage assessment (TVLA) [24], [25] or analysis

of variance (ANOVA) [4], [6], [19], [21], [26], prior to performing correlation-analysis

 24

attacks. Therefore, instead of minimizing the number of configurations probed, the

acquisition cost is reduced by minimizing the number of signals collected at each

configuration.

Once the acquisition cost has been accrued, and optimal measurement

configurations are identified, the configurations are then used to recover information using

appropriate statistical methods. Information recovery uses only the reusable optimal

configurations identified in the initial search, allowing evaluators to perform future

evaluations at a small marginal cost. The statistical methods used for the initial search for

configurations, as well as information recovery, depend on the chip functions and the data

of interest, since the utility of fine-grained EM SCA attacks can range from identifying an

encryption key from cryptographic modules (Chapters 2 and 3), to disassembling

instructions implemented by a general purpose processor (Chapter 4). Therefore, fine-

grained EM SCA evaluations can potentially be a powerful tool to validate a system’s

security and perform non-invasive data recovery, if the cost is feasible.

1.1 THESIS STATEMENT

The rich signal content present in EM side-channels leaking from embedded

systems can be potently utilized by employing fine-grained methods that analyze EM fields

from several on-chip locations with high scan resolutions. The feasibility and practicality

of these methods is contingent on an evaluator’s understanding of computations of interest,

as well as the threat model during evaluation, which can enable the development of

optimized measurement techniques and statistical methods that aid data recovery using

these non-invasive EM side-channels.

 25

1.2 THESIS CONTRIBUTIONS

The contributions of this thesis are as follows:

• Comparison of different SCA attacks [9]: We empirically evaluate the effectiveness

of coarse- and fine-grained electromagnetic (EM) side-channel analysis (SCA)

attacks, as well as power SCA attacks on implementations of the AES algorithm,

subject to different constraints. These constraints/threat models can range from a

highly restrictive red-box model, where the evaluator is only allowed access to side-

channel signals, to a white-box model, where evaluators can manipulate the input

data sent to the device. To compare the effects of these constraints on the fine-

grained EM SCA, we develop/suitably adapt search methods for each threat model

and compute their associated measurement costs.

• Rapid Evaluation of AES vulnerabilities [21]: We develop a multi-stage

measurement protocol that identifies optimal measurement configurations—that

minimize the marginal cost for repeated attacks to extract the data of interest, using

far fewer measurements than previously demonstrated. We achieve this by

developing a set of inexpensive characterization measurements based on a gold-

box threat model, where Analysis of Variance (ANOVA) computations are

performed on high-resolution scans to determine information leaking-locations

rapidly. The protocol is used to test the resilience of several baseline and hardened

implementations of AES.

• EM-based Instruction Disassembler [69]: We develop a hierarchical instruction-

level disassembler that analyzes leakages created via the EM side-channel during

program execution. The disassembler identifies instruction-dependent features

using fine-grained EM measurements for a set of optimally designed instruction

profiling codes to minimize measurement costs. These features are used in the

 26

classification phase to disassemble the instructions from several application

benchmarks, as well as predicting control-flow/ branching in the code.

• Extensions to existing methods [75],[76]: We improve upon the ANOVA method

demonstrated for AES in [21], and also extend them to other embedded systems.

As an example, we demonstrate the method as a data recovery tool from a Bluetooth

server receiving data. We also present an information-leakage modelling method

that can potentially predict fields from arbitrary data computations. This is achieved

by representing EM information leakage as a superposition of leakages from

individual sources and using a linear combination of data-dependent EM-basis

functions to predict the same.

1.3 THESIS ORGANIZATION

The rest of this dissertation is organized as follows: Chapter 2 presents a

comprehensive study of SCA attack modalities and compares their effectiveness in

recovering AES encryption key for several threat models. Chapter 3 presents a multi-stage

measurement protocol to rapidly evaluate vulnerabilities of AES modules. Chapter 4

presents a hierarchical disassembler that recovers execution traces from programs running

on a general purpose micro-controller. Chapter 5 presents methods to model information

leakage and demonstrates the methods on a general purpose micro-controller and a

Bluetooth server implementation. Chapter 6 concludes the work.

 27

2. Comparison of SCA Attack Modalities1

This chapter presents a brief background on AES and its vulnerabilities, introduces

the ANOVA F-statistic for fine-grained EM SCA attacks, summarizes a previously

proposed measurement protocol, and uses these tools to evaluate AES implementations

under various constraints. The potency of fine-grained EM SCA attacks are also compared

to coarse-grained EM and power SCA attack towards the end of the chapter.

2.1 BACKGROUND ON AES OPERATIONS AND VULNERABILITIES

This section summarizes the operations performed by an AES implementations and

a known vulnerability that is exploited in SCA attacks.

2.1.1 The AES algorithm

AES, a commonly adopted standard for processor and wireless security, specifies a

symmetric-key algorithm [27] that uses the same key for encryption and decryption. It is a

block cipher that groups inputs into fixed 16-byte blocks and can use keys of size 128, 192,

or 256 bits; the 128-bit implementation is used in this thesis (Fig. 2.1). Each encryption 𝑒

by AES-128 requires 10 rounds of operations to transform the 16-byte input plaintext 𝐢𝐩𝑒

to the output ciphertext 𝐨𝐜𝑒
10 using the key 𝐤0 (Fig. 2.1). In each round 𝑟𝑑 ∈ {1,⋯ ,10}, a

round key 𝐤𝑟𝑑 (generated from the key 𝐤0 via a key-expansion algorithm [25]) is used to

update the 16-byte output to 𝐨𝐜𝑒
𝑟𝑑 = [𝑜𝑐𝑒

𝑟𝑑,0, ⋯ , 𝑜𝑐𝑒
𝑟𝑑,15]. All AES operations are

performed byte wise: In each round 𝑟𝑑, first, each byte 𝑏′ ∈ {0,⋯ ,15} of the previous

round’s output 𝑜𝑐𝑒
𝑟𝑑−1,𝑏′

 is replaced by an intermediate value 𝑖𝑣𝑒
𝑟𝑑,𝑏′

 using a substitution

1 This chapter is partly based on a previous publication: V. Iyer, M. Wang, J. Kulkarni, and A. Yilmaz, “A

systematic evaluation of EM and power side-channel analysis attacks on AES implementations,” in Proc.

IEEE ISI, Nov. 2021.

The author contributed to the formulation, implementation, and measurements presented in this article, as

well as the writing of this manuscript.

 28

box (Sbox). The Sbox transform replaces a byte’s value using a one-to-one non-linear map

defined by Rijndael's finite field [27]. This step adds “confusion” to the cipher, i.e., for

fixed input plaintext, minor variations in the key result in large variations in the ciphertext.

Then, the byte order of 𝑖𝑣𝑒
𝑟𝑑,𝑏′

 is shuffled using the ShiftRows and MixColumns transforms

to generate 𝑖�̃�𝑒
𝑟𝑑,𝑏

, where 𝑏 ∈ {0,⋯ ,15} is the new position of the byte in the updated 16-

byte array. These steps “diffuse” information in the cipher, i.e., different ordering of the

bytes in the input plaintext causes large variations in the output ciphertext. Finally, the

intermediate value is XORed with the key byte 𝑘𝑟𝑑,𝑏 to generate the output byte 𝑜𝑐𝑒
𝑟𝑑,𝑏

.

The MixColumns operation is skipped in the last round; thus, the last round of AES can be

represented as

 𝑜𝑐𝑒
10,𝑏 = 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠 (𝑆𝑏𝑜𝑥 (𝑜𝑐𝑒

9,𝑏′)) ⨁ 𝑘10,𝑏 (2.1)

Figure 2.1: Algorithm flow of the 128-bit AES

https://en.wikipedia.org/wiki/Finite_field_arithmetic#Rijndael's_(AES)_finite_field

 29

If attackers have access to the output and if they know/correctly guess the 10th round

key 𝐤10—the data of interest for SCA attacks on AES—they can invert Eq. (2.1) as

 𝑜𝑐𝑒
9,𝑏′ = 𝑆𝑏𝑜𝑥−1 (𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠−1(𝑘10,𝑏⨁ 𝑜𝑐𝑒

10,𝑏)). (2.2)

2.1.2 Vulnerabilities of AES to SCA attacks

 The fields emanated/power consumed in the final round of AES depend on the key,

which causes an EM/power side-channel vulnerability [5], [6], [10], [19]. EM/power SCA

SCA attacks on AES use hypothetical leakage models [28] to correlate observed fields to

the computations/ processes during the final round of AES. These models abstract the

sources of emanations in the DUT, such as transistor switching, currents on clock and

power traces, EM coupling, etc., using simplified quantities. This work employs a byte-

Figure 2.2: Byte-wise EM/Power SCA attack flow

 30

wise SCA attack (Fig. 2.2), which adopts a Hamming distance (HD) leakage model [21]

that correlates the observed fields with the HD between 𝑜𝑐𝑒
9,𝑏′

 and 𝑜𝑐𝑒
10,𝑏′

 to disclose 𝑘10,𝑏.

Byte-wise analysis significantly reduces the complexity of key search [22]. In this attack,

the attackers observe 𝑁e encryptions and for each encryption 𝑒 ∈ {1,⋯ ,𝑁e}, they use the

observed 𝐨𝐜𝑒
10 together with every possible guess 𝑔 ∊ {0,⋯ ,255} for the key byte 𝑘10,𝑏 in

Eq. (2.2) to compute the corresponding penultimate round value 𝑜𝑐𝑒
9,𝑏′,𝑔

 for each byte 𝑏 ∈

{0,⋯ ,15}. Let 𝐻𝑒
𝑏,𝑔

 denote the HD between 𝑜𝑐𝑒
9,𝑏′,𝑔

 and 𝑜𝑐𝑒
10,𝑏′

 and let the integer array

𝐇𝑏,𝑔 = [𝐻1
𝑏,𝑔
, ⋯ , 𝐻𝑁e

𝑏,𝑔
] store the HDs for all encryptions; there are 16×256 such arrays.

 In the fine-grained attack, the attackers also observe the probed fields 𝑉𝑒
𝑝𝑐,𝑡

 at times

𝑡 during the last round of AES using a multitude of probe configurations 𝑝𝑐—referring to

the probe’s transverse location 𝑙, height ℎ, and orientation 𝑜 above the DUT. Let the real

array 𝐕𝑝𝑐,𝑡 = [𝑉1
𝑝𝑐,𝑡, ⋯, 𝑉𝑁e

𝑝𝑐,𝑡] store the probed fields for all encryptions; there are

𝑁l ×𝑁h ×𝑁o × 𝑁t such arrays. Attackers compute the Pearson correlation coefficient

 (a) (b)

Figure 2.3: (a) Probed fields (left) at an optimal configuration observed during the last

round of AES when the key and the input plaintext are set to 𝐤0 =

𝐤1 and 𝐢𝐩1. (b) The correlation coefficients for all 256 guesses for 𝑘10,0,

when 𝑁e = 4000 encryptions are observed. The coefficient corresponding to

the correct guess 𝑔∗ = 19 is shown in blue.

 31

𝜌𝐇,𝐕
𝑏,𝑔,𝑝𝑐,𝑡

 between the arrays 𝐇𝑏,𝑔 and 𝐕𝑝𝑐,𝑡 for each key byte 𝑏, guess 𝑔, configuration 𝑝𝑐,

and time 𝑡 [6], [20]:

 𝜌𝐇,𝐕
𝑏,𝑔,𝑝𝑐,𝑡/𝑓

=
Cov(𝐇𝑏,𝑔,𝐕𝑝𝑐,𝑡/𝑓)

√Var(𝐇𝑏,𝑔)Var(𝐕𝑝𝑐,𝑡/𝑓)
 (2.3)

Attackers can compute the correlation coefficients in Eq. (2.3) using time samples;

e.g., the probed fields 𝑉1
𝑝𝑐,𝑡

 are shown in Fig. 2.3 (a) for 𝐤1 = [0x00,0x01,⋯ ,0x0F] and

𝐢𝐩1 = [0x00,0x00,⋯ ,0x00]. The largest correlation coefficient will correspond to the

correct guess 𝑔∗ = 𝑘10,𝑏 for byte 𝑏 if the leakage model accurately categorizes the

underlying sources of emanations (after observing a sufficient number of encryptions); e.g.,

the coefficients that result from observing 𝑁e = 4000 encryptions with randomly

generated input plaintexts are shown in Fig. 2.3 (b).

In the power SCA or coarse-grained EM SCA attack, the aggregate power

consumption or EM emanation is recorded during the final round of AES for each

encryption; the observed signals are stored in the array 𝐏𝑡 of size 𝑁t × 𝑁e for 𝑁t time

samples. Correlating 𝐏𝑡 with the Hamming distances 𝐇𝑏,𝑔 yields the correlation

coefficients 𝜌𝐇,𝐏
𝑏,𝑔,𝑡

, for each key-byte 𝑏, guess key 𝑔, and time instant 𝑡. The correct guess

key value 𝑔∗ is identified similar to the fine-grained EM SCA attack. Once all 16 bytes of

𝐤10 are disclosed, the AES key-expansion algorithm is inverted to disclose the key 𝐤0,

which can then be used to decrypt any ciphertext 𝐨𝐜𝑒
10 and recover the corresponding

plaintext 𝐢𝐩𝑒 from any past or future encryption.

While the correlation coefficient corresponding to the correct guess stands out in

Fig. 2.3, it is important to ask if 𝑘10,0 could be disclosed by observing fewer encryptions.

Indeed, to evaluate side-channel security, the minimum number of measurements necessary

to disclose all key bytes must be quantified. In the power SCA and coarse-grained EM SCA

 32

attack, the minimum number of encryptions needed to disclose a key-byte 𝑏 is defined as

the “measurements to disclosure” 𝑀𝑇𝐷𝑏 (Fig. 2.4(a)), i.e., when 𝑁e ≥ 𝑀𝑇𝐷
𝑏 , the

correlation coefficient corresponding to the correct guess 𝑔∗ is sufficiently larger than those

corresponding to the incorrect guesses. Here, and throughout this thesis, a correlation

coefficient is considered sufficiently large if its maximum value over all time samples

crosses the null hypothesis threshold derived from the inverse t-distribution for a

confidence interval of 99.99% [10],[29]. Therefore, the power/coarse-grained EM SCA

attacks require a marginal cost of

 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡Pwr/cgEM = min (𝑁e
max, max

𝑏
𝑀𝑇𝐷𝑏,Pwr/cgEM) (2.4)

encryptions to be observed, i.e., they observe more and more encryptions until either all

bytes are disclosed or a limit on the number of observations, 𝑁e
max, is reached.

 (a) (b)

Figure 2.4: Maximum value of (a) power SCA and (b) fine-grained EM SCA correlation

coefficients for all 256 guesses for 𝑘10,0 as the number of encryptions

increases. The value corresponding to the correct guess 𝑔∗ = 19 (blue)

crosses the null hypothesis threshold (dashed) after 𝑀𝑇𝐷0/𝑚𝑀𝑇𝐷0

measurements.

 33

In contrast, fine-grained EM SCA may require a smaller marginal cost if an optimal

configuration with low MTD is identified. Let 𝑀𝑇𝐷𝑏,𝑝𝑐 denote the minimum number of

measurements to disclose key byte 𝑏 when using the probe configuration 𝑝𝑐 [10]. Let

 𝑝𝑐𝑏,opt = argmin
𝑝𝑐

𝑀𝑇𝐷𝑏,𝑝𝑐 ; 𝑚𝑀𝑇𝐷𝑏 = 𝑀𝑇𝐷𝑏,𝑝𝑐
𝑏,opt

 (2.5)

denote the optimal probe configuration to disclose 𝑘10,𝑏 and the minimum number of

measurements to do so; e.g., in Fig. 2.3, the correct guess for 𝑘10,0 could be identified (Fig

2.4) by observing time-domain fields only for 𝑚𝑀𝑇𝐷0 ≈ 600 encryptions when using

𝑝𝑐0,opt , while power SCA required 𝑀𝑇𝐷0 ≈ 3000 to recover the same key byte.

However, identifying the optimal configurations in fine-grained EM SCA using an

exhaustive search may become infeasible since it requires

 𝐴𝑐𝑞𝑢𝑖𝑠. 𝐶𝑜𝑠𝑡 = 𝑁e
max𝑁l𝑁h𝑁o (exhaustive search) (2.6)

measurements, to perform expensive correlation analyses at all possible configurations.

2.1.3 Effect of Noise on Correlation Attacks

The correlation analysis is degraded and EM SCA attacks fail when noise

obfuscates the target signals—originating from the computation of byte 𝑏 of the output

ciphertext 𝑜𝑐𝑒
10,𝑏

 in Eq. (2.1)—in the probed fields 𝐕𝑝𝑐,𝑡 [6]. The noise can be categorized

as measurement noise, which arises from the environment—temperature variations,

vibrations, equipment sensitivity, drift, variability of supply voltage, input clock jitter, etc.

[6], [30]—and algorithmic noise, which arises from uncorrelated background

computations/processes in the DUT [4], [19]. Measurement noise exhibits as variations in

observed fields when the exact same encryption is repeated [31],[32]. For AES-128, the

algorithmic noise for the byte 𝑏 computation includes fields that originate from the

computation of the 15 bytes other than byte 𝑏 of the output ciphertext [19], [24].

 34

To analyze the effect of noise, let's decompose the observed fields in the arrays

𝐕𝑝𝑐,𝑡 into the independent and hypothetical quantities listed in the arrays 𝐓𝑏,𝑝𝑐,𝑡, 𝐁𝑏,𝑝𝑐,𝑡,

𝐍𝑝𝑐,𝑡 [4], [6]. Here, target signals in 𝐓, algorithmic noise in 𝐁, and measurement noise in

𝐍 arise from computations involving the data of interest (𝑘10,𝑏), background computations

in the DUT, and other EM sources, respectively. Then, the time-domain correlation

coefficient in Eq. (2.3) can be expressed as [6]:

 𝜌𝐇,𝐕
𝑏,𝑔,𝑝𝑐,𝑡

=
Cov(𝐇𝑏,𝑔,𝐓𝑏,𝑝𝑐,𝑡)

√Var(𝐇𝑏,𝑔)Var(𝐓𝑏,𝑝𝑐,𝑡)⏟

𝜌𝐇,𝐓
𝑏,𝑔,𝑝𝑐,𝑡

1

√1+
Var(𝐁𝑏,𝑝𝑐,𝑡)

Var(𝐓𝑏,𝑝𝑐,𝑡)
+
Var(𝐍𝑝𝑐,𝑡)

Var(𝐓𝑏,𝑝𝑐,𝑡)

 (2.7)

In this representation, the noise-free correlation coefficient 𝜌𝐇,𝐓
𝑏,𝑔,𝑝𝑐,𝑡

 is degraded by

the variance terms. Probe configurations that have larger ratios Var(𝐓𝑏,𝑝𝑐,𝑡)/Var(𝐁𝑏,𝑝𝑐,𝑡)

and Var(𝐓𝑏,𝑝𝑐,𝑡)/Var(𝐍𝑝𝑐,𝑡) will yield correlation coefficients 𝜌𝐇,𝐕
𝑏,𝑔,𝑝𝑐,𝑡/𝑓

 closer to the

noise-free value. The variance ratios in Eq. (2.7) are often combined and represented as

signal-to-noise ratio in SCA attacks [19],[24].

Because the entries in the arrays 𝐓, 𝐍, and 𝐁 are unmeasurable hypothetical

quantities, the ratios of their variances cannot be found exactly. They can be estimated,

however, from measured fields via ANOVA [4], [6], [19], [24]. The ANOVA F-statistic,

defined as a ratio of variances, is used for hypothesis testing to determine if a dataset is

sensitive to variations in a target process. The methodology groups data based on different

versions of a target process, and compares variance between groups and variance within

groups, to quantify the dependence of the dataset on the target. Here, the F-statistics are

used to estimate the two ratios in Eq. (2.7) as [4],[6]:

Var(𝐓𝑏,𝑝𝑐,𝑡)

Var(𝐍𝑝𝑐,𝑡)
≈ 𝐹𝑁

𝑏,𝑝𝑐,𝑡 Var(𝐓𝑏,𝑝𝑐,𝑡)

Var(𝐁𝑏,𝑝𝑐,𝑡)
≈ 𝐹𝐵

𝑏,𝑝𝑐,𝑡
 (2.8)

The most accurate estimates in Eq. (2.8) require observing all possible variants in

the relevant computations; e.g., to obtain 𝐹𝐵
𝑏,𝑝𝑐,𝑡

, fields can be measured for up to

 35

256 × 256 possible variants in the switch from 𝑜𝑐𝑒
9,𝑏′

 to 𝑜𝑐𝑒
10,𝑏′

 and 25615 × 25615

possible variants in background computations. Typically, far fewer samples are sufficient;

e.g., the 𝐹𝐵
𝑏,𝑝𝑐,𝑡

 statistic was previously obtained using 𝑜𝑐𝑒
10,𝑏′ = {0,1, … ,255}, ignoring

𝑜𝑐𝑒
9,𝑏′

 values, and 4-40 variants in background computations [19],[24].

2.2 FINE-GRAINED EM SCA ATTACKS SUBJECT TO CONSTRAINTS

This section summarizes threat models under which evaluators may operate, and

presents search protocol for each model. Further, the acquisition costs of each protocol is

also included after each subsection.

2.2.1 Threat Models

Threat models, in security literature, define the environment for security

evaluations, particularly the accessibility to various device parameters. In this chapter, all

of the threat models assume that the attackers have physical access to the DUT and can

observe the output ciphertext, but

Figure 2.5: SCA threat models for AES. Unrestricted attackers (gold box) control the key

and have complete access to device peripherals. The access to the DUT is

progressively restricted (white, gray, and black box) until attackers have no

access to inputs and outputs (red box).

 36

(1) the most restrictive black-box threat model assumes attackers have no access to inputs;

(2) a less restrictive gray-box threat model assumes attackers have partial control over

inputs, i.e., they can repeat inputs but not observe them; and

(3) the least restrictive white-box threat model assumes attackers have full access to inputs,

i.e., they can repeat and observe them (the cipher key is unknown).

Two further threat models are considered to bound these models including (i) a red-box,

which limits attackers from observing the output ciphertext, and (ii) a gold-box, where

access is granted to both the input plaintext and key (Fig. 2.5). The gold-box threat model

is described in detail in Chapter 4.

2.2.2 Attacking a Red Box: Pre-characterization Phase

An initial low-cost scan can discard ineffective probe configurations and reduce the

search space in fine-grained EM SCA attacks. In this scan, 𝑁e
pre

 encryptions are observed

with each probe configuration 𝑝𝑐. The encryptions can potentially be all different; the only

constraint is that the same encryption is not repeated 𝑁e
pre
 times for any 𝑝𝑐. Once the

observed fields are recorded, max
𝑡
STD(𝐕𝑝𝑐,𝑡) is computed for each 𝑝𝑐. Probe

configurations with the smallest standard deviations, close to the noise floor of

measurement equipment, can be deemed insensitive to the sources of interest and

discarded. This pre-characterization requires

 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡pre = 𝑁l𝑁h𝑁o𝑁e
pre

 (2.9)

encryptions to be observed; here, 𝑁e
pre

≪ 𝑁e
max.

As the AES input and output are not used, this phase can be considered a fine-

grained EM SCA attack for the red box threat model. While configurations that give rise

to the largest variations in 𝐕𝑝𝑐,𝑡 are of interest, these variations can stem from not only the

changes in targeted signal sources (𝐓𝑝𝑐,𝑡) but also measurement noise (𝐍𝑝𝑐,𝑡) and

 37

algorithmic noise (𝐁𝑝𝑐,𝑡). In general, attackers cannot use just the signals measured during

the pre-characterization phase to perform correlation analysis. Instead, this phase enables

attackers to rapidly judge if potentially exploitable signals exist, reducing the acquisition

cost of the following measurement protocols.

2.2.3 Attacking a Black Box

The black-box threat model, where attackers can observe the outputs but have no

access to the inputs or the key, is commonly used for side-channel security evaluation. In

this threat model, statistical methods that can rapidly identify probe configurations

degraded by noise are unavailable because of the restrictions on the attackers. Search

(a) Phase I

(b) Phase II

Figure 2.6: The fine-grained EM SCA measurement protocol in the black-box threat

model. Scans are marked with red and the number of locations and

encryptions observed in each scan are specified. Phase I scans are performed

with multiple probe orientations, becoming progressively more expensive,

while Phase II scans become progressively cheaper.

 38

protocols based on correlation analysis [10],[11], including the exhaustive search, can be

used; here, the method in [10] is implemented.

The measurement protocol for the black-box threat model is an adaptive scan

performed in 2 phases: In Phase I (Fig. 2.6(a)), 𝑁scan,I progressively costlier low-resolution

scans are performed to identify the probe configurations 𝑝𝑐0
𝑏,𝑜𝑝𝑡

 that disclose the key-byte

𝑏 with 𝑚𝑀𝑇𝐷0
𝑏 measurements. In each scan 𝑠 of Phase I, either the number of locations

probed 𝑁𝑙,ℎ,𝑜,𝑠,I or number of encryptions observed 𝑁𝑒,𝑠,𝐼 is increased [10],[29]. Then, for

each key-byte, 𝑁scan,II progressively cheaper scans are performed in Phase II (Fig. 2.6(b))

to optimize the configurations found in Phase I. Each scan in Phase II uses only the optimal

orientations 𝑜0
𝑏,𝑜𝑝𝑡

 at height ℎ0
𝑏,𝑜𝑝𝑡

, restricts the area of the scan near the optimal locations

in the previous scan 𝑙𝑠−1
𝑏,𝑜𝑝𝑡,and observes only the minimum number of encryptions used to

disclose the key byte in the previous scan. This requires

 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡Bbox = 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡pre + ∑ ∑ ∑ 𝑁e,𝑠,I𝑁l,h,o,s,I
𝑁o
𝑜=1

𝑁h
ℎ=1

𝑁scan,I

𝑠=1 +

 ∑ ∑ 𝑚𝑀𝑇𝐷𝑠−1
𝑏 𝑁l,s,II

𝑁scan,II

𝑠=1 16
𝑏=1 (2.10)

measurements. In the black-box threat model, this search protocol may converge to local

minima for MTDs and not identify the most optimal probe configurations [21].

Figure 2.7: The measurement protocol in Phase I of the gray-box threat model prunes the

search space by repeating scans, computing 𝐹𝑁
𝑝𝑐,𝑡

, and comparing it to a

threshold 𝐹𝑁,c. The reduced set of configurations are then evaluated with the

black-box protocol.

 39

2.2.4 Attacking a Gray Box

The gray-box threat model permits attackers partial control over the input: while

they cannot modify or observe the plaintexts, attackers can repeat them. This enables signal

averaging to improve the signal-to-noise ratio. It also enables the use of repeatability

characterizations and ANOVA F-statistics to prune the search space because probe

configurations showing low signal variance for repeated encryptions and high signal

variance for changing encryptions are most likely to disclose the keys [6].

The measurement protocol for the gray-box threat model is performed in 3 phases:

In Phase I (Fig. 2.7), one scan per orientation is performed, where 𝑁e,I encryptions are

repeated 𝑁r times at 𝑁l,ℎ,𝑜,I locations. For each encryption 𝑒, the sample mean �̅�𝑒
𝑝𝑐,𝑡

 and

variance 𝑠𝑒
𝑝𝑐,𝑡

 are computed across the repeated measurements and the F-statistic that

quantifies the effect of measurement noise on signals is estimated as [6]

 𝐹𝑁
𝑝𝑐,𝑡 =

𝑁e,I ×𝑁r×Var(�̅�1
𝑝𝑐,𝑡

,�̅�2
𝑝𝑐,𝑡

,…,�̅�𝑁e,I
𝑝𝑐,𝑡

)

Mean(𝑠1
𝑝𝑐,𝑡

,𝑠2
𝑝𝑐,𝑡

,…,𝑠𝑁e,I
𝑝𝑐,𝑡

)
 (2.11)

The computed values are compared to a threshold 𝐹𝑁,c derived from F-distributions

for a selected confidence level. Configurations with F-values greater than the threshold are

least affected by measurement noise. This model enables attackers to identify

configurations significantly degraded by measurement noise (see Eq. (2.7)) and remove

them from the search after Phase I. Typically, the resolution of the Phase I scan is higher

than its black-box counterpart as it requires fewer encryptions to be observed. Once

configurations 𝑝𝑐opt,𝐹𝑁 with high F-values are isolated, phases I and II of the measurement

protocol for the black-box threat method are performed (Fig. 2.6). This requires

 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡Gbox = 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡pre + ∑ ∑ 𝑁l,ℎ,𝑜,I𝑁r𝑁e,I
𝑁o
𝑜=1

𝑁h
ℎ=1 +

 ∑ ∑ ∑ 𝑁e,𝑠,II𝑁l,h,o,s,II
𝑁o
𝑜=1

𝑁h
ℎ=1

𝑁scan,II

𝑠=1 + ∑ ∑ 𝑚𝑀𝑇𝐷𝑠−1
𝑏 𝑁l,s,III

𝑁scan,III

𝑠=1
16
𝑏=1 (2.12)

 40

2.2.5 Attacking a White Box

 The white-box threat model permits attackers complete control over the inputs. The

measurement protocol is performed in 4 phases (Fig. 2.8): Because the key is unknown,

Phase I of the protocol for the gray-box threat model is implemented followed by Phase I

of the protocol for the black-box threat model to recover the key. In these first two phases,

the protocol prioritizes recovering the key over isolating optimal configurations; this allows

low-resolution scans to first disclose the key and then further optimize the attack by

computing the F-statistic 𝐹𝐵
𝑝𝑐,𝑡

. Because each byte of AES is targeted separately, the

algorithmic noise is assumed to come from uncorrelated computations involving the

remaining 15 bytes. Although each byte can potentially switch from 256 values in the

penultimate round to 256 values in the final output, the Hamming distance (HD) of this

transition reduces the number of combinations from 256×256 to 9 values, from HD0 to

HD8. This simplification is consistent with the HD leakage model used in Section 2.1 for

correlation analysis. For each HD𝑖 of a target byte, 𝑁e,III encryptions are performed, where

uncorrelated bytes are chosen randomly to increase algorithmic noise. The mean �̿�HD𝑖1

𝑝𝑐,𝑡
and

Figure 2.8: The measurement protocol in the white-box threat model initially performs

Phase I of the protocols used for gray- and black-box threat models. Once the

key is disclosed, the search space is pruned by computing 𝐹𝐵
𝑝𝑐,𝑡

 statistic byte-

wise and comparing it to a threshold 𝐹𝐵,c. The reduced set of configurations

are then evaluated using correlation analysis.

 41

variance �̅�HD𝑖

𝑝𝑐,𝑡
 are computed on the averaged signals across the changing encryptions, and

the F-statistic 𝐹𝐵
𝑝𝑐,𝑡

 is estimated as

 𝐹𝐵
𝑝𝑐,𝑡 =

9×𝑁e,III×Var(�̿�HD0
𝑝𝑐,𝑡

,�̿�HD1
𝑝𝑐,𝑡

,⋯,�̿�HD8
𝑝𝑐,𝑡

)

Mean(�̅�HD0
𝑝𝑐,𝑡

,�̅�HD1
𝑝𝑐,𝑡

,⋯,�̅�HD8
𝑝𝑐,𝑡

)
 (2.13)

In Phase III, 𝐹𝐵
𝑝𝑐,𝑡

 is estimated in a single high-resolution byte-wise scan using

configurations identified in Phase II. Comparing the computed values with a threshold

𝐹𝐵,c derived from F-distributions enables attackers to remove configurations significantly

degraded by algorithmic noise after Phase III. Phase IV subjects optimal configurations

𝑝𝑐opt,𝐹𝐵 to correlation analysis. This requires

𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡Wbox = 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡pre +∑ ∑ 𝑁l,ℎ,𝑜,I𝑁r𝑁e,I
𝑁o
𝑜=1

𝑁h
ℎ=1 +

 ∑ ∑ ∑ 𝑁e,𝑠,II𝑁l,h,o,,s,II
𝑁o
𝑜=1

𝑁h
ℎ=1

𝑁scan,II

𝑠=1 + ∑ 9𝑁e,III𝑁l,III
16
𝑏=1 + ∑ 𝑁e,IV𝑁l,IV

16
𝑏=1 (2.14)

encryptions to be observed.

2.3 MEASUREMENT RESULTS

2.3.1 Setup

Fine-grained EM SCA attacks were implemented on AES-128 implementations

using a 1-mm diameter H-field probe, at a fixed height ℎ1 = 0.5 mm, to scan an 8×8 mm2

ASIC [12] and an 18×18 mm2 Artix-7 FPGA [33]. Both chips operated at input clock

frequency of 20 MHz and supply voltage of 1.1 V. A Keysight DSOS054A oscilloscope

recorded the signals with a sampling rate of 10 GS/s. Analysis was performed locally on

the oscilloscope, saving experiment time. The probe was positioned using Riscure’s EM

probe positioner. The setup allows scanning only in x- and y-orientation, i.e., 𝑁o = 2. The

search space included 𝑁l = 51 × 51 locations in both orientations. The spatial distributions

of measured EM signals are shown in Fig. 2.9(a). Coarse-grained EM SCA attacks were

performed using a 10-mm H-field probe while power attacks were performed using

 42

available supply pins on the test boards. Signals captured for power and coarse-grained EM

SCA attack are shown in Fig. 2.9(b)-(c).

In addition to an unsecured AES implementation, the ASIC also used a module

hardened against power and coarse-grained EM SCA attacks by using a power delivery

mechanism based on the galvanic isolation principle [9], [12]. Galvanic isolation is

typically used in high-voltage power converters, where the secondary side of the converter

is separated from the primary side to protect it from potentially damaging transient voltages

(a) Fine-grained EM SCA

 (b) Coarse-grained EM SCA (c) Power SCA

Figure 2.9: (a) Spatial map of the absolute value of the measured signals using an x-

oriented 1-mm diameter H-field probe at ~12 ns during the last round for the

FPGA (left) and the secured ASIC (right). 𝑁l= 51×51 locations were probed

in both cases. (b) EM signal measured by a z-oriented 10-mm diameter H-

field probe positioned at the center of the FPGA. (c) Supply variation of

FPGA during the last round of AES operations.

 43

and currents [12]. Here, the AES core is isolated from the external power supply to protect

the module from power SCA attacks. Reconfigurable capacitor banks are used to supply

the necessary charge to perform AES computations. Therefore current signatures and

ground bounce in the external supply have minimal data-dependent variance.

2.3.2 Marginal Cost

First, the marginal costs of EM and power SCA attacks are compared (correlation

analysis was performed using the optimal probe configurations or the fine-grained EM

SCA attack) to judge their effectiveness. The number of observations with each attack

modality was limited to 2 million encryptions; in some cases, the AES key could not be

extracted within this limit. The observed marginal costs for all the implementations are

listed in Table 2.1. Table 2.1 shows that the coarse-grained EM SCA attack was the least

effective SCA modality against all the implementations. Surprisingly, the power SCA

attack was the most effective against the FPGA (recovering the key with ~2.5× fewer

Marginal Cost

DUT

FPGA
Baseline

ASIC

Secured

ASIC

Power 4.20×103 1.00×105 >2.00×106

Coarse-

Grained EM
4.58×104 1.48×105 >2.00×106

Fine-Grained

EM
1.05×104 2.65×104 2.80×104

Table 2.1: Marginal costs of SCA attacks

 44

encryptions than the best alternative); this may be because the FPGA and its test board are

specifically designed and marketed to study power SCA attacks, i.e., they must have

particularly low-noise outputs suitable for the power attack. The fine-grained EM SCA

attack required ~3.7× fewer encryptions for the baseline ASIC and >70× times fewer

encryptions for the secured ASIC compared to the power SCA attack.

Using the exhaustive search to isolate the optimal probe configurations for the fine-

grained EM SCA attack would require ~108 measurements for both implementations, if

𝑁e
max = 20 000. Next, the results from the search protocols to reduce this cost are reported

for the FPGA and the secured ASIC (similar acquisition costs were observed for both

secured and unsecured implementations).

2.3.3 Comparison of Fine-grained EM SCA Protocols

 The pre-characterization (Fig. 2.10) was performed using 𝑁e
pre

= 50 encryptions

for the maximum number of observers on both chips. The signal’s standard deviation

across the chip was computed and configurations with low variance (< 0.1 mV) were

Figure 2.10: Spatial maps of max
𝑡
Std(𝐕𝑡,𝑝𝑐) obtained with the x-oriented probe for

the FPGA (left) and ASIC (right).

 45

discarded. The pre-characterization showed a significant reduction in the initial search

space for the ASIC (~40%) compared to the FPGA (~15%). Before implementing the

protocols, the configurations eliminated by the pre-characterization phase were noted. If a

scan included such a configuration, that measurement was skipped and the probe was

positioned at the next configuration.

The protocol for the black-box threat model (Fig. 2.11) [10], [29] required Nscan,I =

2 Phase I scans for the FPGA, with the second scan requiring 𝑁e,2,II = 6000 encryptions

per configuration and probed observers on an equally spaced grid of size 11 × 11 over the

(a) Phase I scan 2

(b) Phase II scan 1

Figure 2.11: MTD maps for byte 1 obtained from the black-box search protocol for the

FPGA (left) and ASIC (right) implementations. Scans constrain area (red and

black) and number of measurements progressively to reduce cost.

 46

chip. It required Nscan,I = 2 Phase I scans for the ASIC, where 𝑁e,2,II = 8000 encryptions

per configuration were used in the second scan. Both implementations required N𝑠can,II =

2 scans to disclose all bytes of the key.

Attacks using the gray-box protocol first computed F-statistic 𝐹𝑁
𝑝𝑐,𝑡

 for

configurations within the search space reduced by pre-characterization. To compute the F-

statistic, 𝑁e,I =20 encryptions were repeated 𝑁r = 50 times [6]. As shown in Fig. 2.12,

comparing the values with the critical threshold 1.6 (confidence level 95%), several non-

optimal configurations were discarded. Phases II and III implemented the black-box search

protocol over a reduced area, using Nscan,II = 1 and Nscan,III=2 scans.

Attacks using the white-box protocol started with the pre-characterization and

Phase I for the gray-box model. Phase II performed a low-resolution scan with 𝑁l,1,II =

6 × 6, in the region marked in Fig. 2.12. Once the final round keys were identified, inputs

were provided to the chip such that for each variation of Hamming distance switching of

an output byte, 𝑁e,III = 20 encryptions were generated to compute the 𝐹𝐵
𝑝𝑐,𝑡

 statistic (Fig.

Figure 2.12: Spatial map of max
𝑡
𝐹𝑁
𝑝𝑐,𝑡

 and the are used in subsequent analysis (red) with

an x-oriented probe for the FPGA (left) and ASIC (right).

 47

2.13) in Phase III. The statistic was computed at a comparatively finer resolution for the

FPGA since a larger region was observed to leak information in previous phases.

2.3.4 Comparison of Acquisition Costs

The pre-characterization stage required ~2.6×105 encryptions for both AES

implementations. The acquisition costs were ~9.9×106, ~7.3×106, and ~6.9×106

(~1.27×107, ~9.8×106, and ~6.8×106) measurements for the FPGA (ASIC) when the black-

, gray-, and white-box threat model was used. The number of probe configurations and the

accumulation of the acquisition cost at each phase of the search protocols are shown in

Figs. 2.14(a)-(c). The final acquisition costs are compared to that of the exhaustive

approach in Fig. 2.14(d). Compared to the exhaustive search, the search protocols for the

black-, gray-, and white-box threat models showed ~8-10×, ~10-13×, and ~14-15× cost

reduction. The search protocols for the gray- and white-box threat models required ~1.3-

1.35× and ~1.5-2× fewer measurements compared to that for the black-box one,

respectively.

Figure 2.13: Spatial map of max
𝑡
𝐹𝐵
𝑝𝑐,𝑡

 compared to optimal configurations (star) for the

FPGA (left) and ASIC (right).

 48

2.4 SUMMARY

In this chapter, fine-grained EM SCA attacks were systematically compared to

coarse-grained EM and power SCA attacks. Though fine-grained EM SCA attacks were

found to be more than 70× effective compared to the alternatives on AES-128, they are

constrained by the potentially infeasible acquisition cost of the measurements. Various

threat models were introduced to categorize search protocols that can rapidly isolate

optimal probe configurations in fine-grained EM SCA attacks. Experiments showed that

different protocols can reduce the acquisition cost compared to an exhaustive search by ~8-

15×. These protocols enable designers to rapidly evaluate the security of cryptographic

modules that implement EM and power SCA countermeasures.

 (a) Black-Box Model (b) Gray-Box Model

 (c) White-Box Model (d) Final Cost Comparison

Figure 2.14: Reduction of the search space for optimal probe configurations. The optimal

configurations were more rapidly isolated for less restrictive threat models.

 49

3. Evaluation of AES using ANOVA F-Statistics2

This chapter presents a 3-stage measurement protocol to rapidly evaluate fine-

grained EM security for a gold-box threat model. The protocol is used to evaluate the

resilience of several baseline and hardened implementations of AES in both time and

frequency domain. Further, the costs of the protocol are compared to several alternatives

at the end of the chapter.

3.1 MEASUREMENT PROTOCOL

This section presents the proposed 3-stage measurement protocol that uses

ANOVA indicators to evaluate side-channel security. Unlike the methods in Chapter 2,

here, the protocol is performed using both time samples 𝑡 and frequency samples 𝑓. The

𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 and 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

 metrics (See Eq. (2.8)) are computed and used to reduce the search

space in Stages I and II, respectively. The remaining configurations are used to perform

correlation analysis in Stage III and acquire optimal probe configurations. The acquisition

cost and measurement time of the proposed protocol are quantified and contrasted to the

TVLA indictor. All analyses shown in this section were obtained from an attack on the first

key byte of AES-128, using the Artix-7 FPGA, operated at 20 MHz clock and 1 V supply

voltage, and the optimal measurement configuration in [10], [20]: a 1-mm diameter H-field

probe, oriented in the x direction, and located at (9.7, 8, 0.5) mm from the bottom left corner

of the chip.

2 This chapter is partly based on a previous publication: V. V. Iyer and A.E. Yilmaz, “An ANOVA method

to rapidly assess information leakage near cryptographic modules,” IEEE Trans. Electromagn. Compat.,

vol. 64, no. 4, Aug. 2022.

The author contributed to the formulation, implementation, and measurements presented in this article, as

well as the writing of this manuscript.

 50

3.1.1 The Gold-Box Threat Model

The proposed method assumes side-channel security evaluators have full control

over the input and the encryption key of the DUT (a “gold-box threat model” [9]). This

permits evaluators to not just emulate but enhance correlation-analysis attacks, which are

applicable even under the highly restrictive black-box threat model [9] but quickly become

infeasible for fine-grained EM SCA evaluation. In particular, fewer restrictions permit

evaluators to design targeted tests, estimate the impact of noise, and rapidly identify

ineffective probe configurations.

3.1.2 Choosing Test Cases to Compute F-statistics

To compute each F-statistic, a set of test cases is constructed. Because evaluators

are permitted to modify the AES encryption key as well as the input plaintext, each

encryption 𝑒 in the set can use a potentially different plaintext 𝐢𝐩𝑒 and key 𝐤𝑒
0. To construct

the test cases, all 16 bytes of the ciphertext in the penultimate round are enforced to be

constant and set to zero for simplicity, i.e., 𝐨𝐜𝑒
9 = [0x00,⋯ ,0x00]. Thus, the HD between

𝑜𝑐𝑒
9,𝑏′

 and 𝑜𝑐𝑒
10,𝑏′

 is the Hamming weight of 𝑜𝑐𝑒
10,𝑏′

; e.g., 𝑜𝑐𝑒
10,𝑏′ = 0x00 gives HD0 and

𝑜𝑐𝑒
10,𝑏′ = 0xFF gives HD8. As a result, evaluators can specify test cases (set each plaintext

𝐢𝐩𝑒 and key 𝐤𝑒
0) by only setting the output ciphertext 𝐨𝐜𝑒

10. Once 𝐨𝐜𝑒
10 is set, the last round

key 𝐤𝑒
10 is found from Eq. (2.1) as:

 𝑘𝑒
10,𝑏′ = 0x63 ⨁ 𝑜𝑐𝑒

10,𝑏′ (3.1)

This is because each byte in the specified 𝐨𝐜𝑒
9 (0x00) is always mapped to 0x63 by

AES. Once all 16 bytes of 𝐤𝑒
10 are deduced, the key 𝐤𝑒

0 and plaintext 𝐢𝐩𝑒 corresponding to

𝐨𝐜𝑒
10 are extracted as detailed in Section 2.1.2. The first two stages of the proposed protocol

use test cases constructed with this approach.

 51

The test cases should be chosen based on the leakage model used in the correlation

analysis; thus, in this paper, they are chosen using the HD leakage model, where the data

of interest 𝑘10,𝑏 is disclosed by targeting the switching in the last AES round from 𝑜𝑐𝑒
9,𝑏′

to 𝑜𝑐𝑒
10,𝑏′

. Other leakage models may be more suitable depending on the implementation

and algorithm; e.g., test cases were constructed using Hamming weights in [4] to model

the fields emanated during data transfer on a processor bus. The HD leakage model used

in this paper assumes that the target signals arising from computations involving 𝑘10,𝑏 have

only 9 instead of 256 possible variants {HD0, ⋯ , HD8} corresponding to the HD between

𝑜𝑐𝑒
9,𝑏′

 and 𝑜𝑐𝑒
10,𝑏′

, all test cases with the same HD yield indistinguishable target signals,

and test cases that correspond to HD0 and HD8 are extreme variants, whose target signals

differ the most.

3.1.3 Stage I: Measurement-Noise-Based Leakage Indicator

In Stage I, the 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 statistic is evaluated by using test cases that correspond to

extreme variants for the computations of interest and minimize algorithmic noise; i.e., test

cases consist of the 2 extreme variants for each byte 𝑏—corresponding to HD0 and HD8

between 𝑜𝑐𝑒
9,𝑏′

 and 𝑜𝑐𝑒
10,𝑏′

—while the other 15 bytes of 𝐨𝐜𝑒
10 are kept constant and set to

0x00 (HD0). Because the test case corresponding to 𝐨𝐜e
10 = 𝟎 can be reused as one of the

extreme variants for each byte and because the remaining test cases are generated by

changing only one of 16 bytes of 𝐨𝐜e
10 to 0xFF (HD8), a total of 𝑁e,I = 17 plaintext-key

pairs are used as test cases in Stage I. The HDs for these 17 test cases can be stored in a

17×16 integer array :

 𝐇I =

[

HD0 HD0
HD8 HD0
HD0 HD8

⋯

HD0
HD0
HD0

⋮ ⋱ ⋮
HD0 HD0 ⋯ HD8]

 (3.2)

 52

These 𝑁e,I encryptions are repeated 𝑁r,I times for each possible probe configuration

and the F-statistic is evaluated as:

 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

=
2𝑁r,I×Var(�̅�HD0

𝑏,𝑝𝑐,𝑡/𝑓
,�̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

)

Mean(𝑠HD0
𝑏,𝑝𝑐,𝑡/𝑓

,𝑠HD8
𝑏,𝑝𝑐,𝑡/𝑓

)
 (3.3)

Here, sample means �̅�HD0/8
𝑏,𝑝𝑐,𝑡/𝑓

 and variances 𝑠HD0/8
𝑏,𝑝𝑐,𝑡/𝑓

 of the probed fields are

computed across the 𝑁r,I samples. The fields for �̅�HD0
𝑏,𝑝𝑐,𝑡/𝑓

 and 𝑠HD0
𝑏,𝑝𝑐,𝑡/𝑓

 (�̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

 and

𝑠HD8
𝑏,𝑝𝑐,𝑡/𝑓

) are observed using the test case generated by setting 𝑜𝑐𝑒
10,𝑏′

 to 0x00 (0xFF) and

all other bytes of 𝐨𝐜e
10 to 0x00, i.e., the test case in row 1 (𝑏′ + 2) of 𝐇I.

An example of the F-statistic computed using 𝑁r,I = 30 repetitions is shown in Fig.

3.1. Comparing the data to Fig. 2.3 shows that, 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 is large whenever 𝜌𝐇,𝐕
𝑏,𝑔,𝑝𝑐,𝑡/𝑓

 is

large but the converse is not true, i.e., the indicator captures the information leakage but

also overestimates it. The computed F-values are compared to a threshold 𝐹𝑁,𝑐 to generate

a leakage indicator:

 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟I
𝑏,𝑝𝑐 = {

1 if max
𝑡/𝑓

𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

≥ 𝐹𝑁,𝑐

 0 otherwise
 (3.4)

Only configurations with indicator value 1 are selected for measurements in Stage

II, i.e., only 𝑁pc,II
𝑏 = ∑ 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟I

𝑏,𝑝𝑐
𝑝𝑐 probe configurations are used.

Figure 3.1: Time-domain (left) and frequency-domain (right) 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 metric,

evaluated with the probe configuration 𝑝𝑐0,opt.

 53

3.1.4 Stage II: Algorithmic-Noise-based Leakage Indicator

In Stage II, the 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

 statistic is evaluated by using test cases that correspond to

extreme variants for both the computations of interest and background computations. Test

cases consist of the 2 extreme variants for each byte 𝑏, while 14 of the remaining 15 bytes

of 𝐨𝐜𝑒
10 are kept constant at 0x00 (HD0) and 1 other byte is set to the 2 extreme variants.

Consider the 32 test cases for byte 𝑏 = 0: In half of these cases, 𝑜𝑐𝑒
10,0

 (byte 0 is not

impacted by ShiftRows, so 𝑏′ = 𝑏) is 0x00 (HD0) or 0x𝐹𝐹 (HD8); for each half, 𝑁B = 16

background process variants are generated by setting all or all but one of the remaining

bytes of 𝐨𝐜e
10 to HD0. The HDs for these 32 test cases can be stored in an integer array of

size 32×16:

 𝐇II
0 =

[

HD0 HD0 HD0 ⋯ HD0
HD0 HD8 HD0 ⋯ HD0
HD0 HD0 HD8 ⋯ HD0
⋮ ⋮ ⋮ ⋱ ⋮

HD0 HD0 HD0 ⋯ HD8
HD8 HD0 HD0 ⋯ HD0
HD8 HD8 HD0 ⋯ HD0
HD8 HD0 HD8 ⋯ HD0
⋮ ⋮ ⋮ ⋱ ⋮

HD8 HD0 HD0 ⋯ HD8]

 (3.5)

Similar test cases and their HD arrays 𝐇II
𝑏 are constructed for all bytes 𝑏. The first

17 rows of each 𝐇II
𝑏 is a reordering of the 17 test cases in 𝐇I; thus, only 𝑁e,II

𝑏 =15 new

plaintext-encryption key pairs are needed for each byte in Stage II. Using these test cases,

the F-statistic is evaluated as

 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

=
2𝑁B×Var(�̅̅�HD0

𝑏,𝑝𝑐,𝑡/𝑓
,�̅̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

)

Mean(�̅�HD0
𝑏,𝑝𝑐,𝑡/𝑓

,�̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

)
 (3.6)

Here, the sample means �̅̅�HD0/8
𝑏,𝑝𝑐,𝑡/𝑓

 and variances �̅�HD0/8
𝑏,𝑝𝑐,𝑡/𝑓

 are computed across the

𝑁B samples. The fields for �̅̅�HD0
𝑏,𝑝𝑐,𝑡/𝑓

 and �̅�HD0
𝑏,𝑝𝑐,𝑡/𝑓

 (�̅̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

 and �̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

) are observed using

the test cases in rows 1-16 (17-32) of 𝐇II
𝑏 . Extra bars are used above the sample means and

variances because the tests are repeated 𝑁r,II times and the probed fields are first averaged

 54

over them. The number of repetitions per test case in Stage II can be lower than that in

Stage I, i.e., 𝑁r,II < 𝑁r,I, in part because configurations most sensitive to measurement

noise are discarded in Stage I and in part because the goal is to reduce noise rather than

accurately capture variations in repeated measurements.

An example of the F-statistic computed with 𝑁r,II = 10 repetitions is shown in Fig.

3.2. Comparing Figs. 2.3, 3.1, and 3.2, it can be observed that both F-statistics must be

maximized to successfully disclose the encryption key. Similar to Stage I, the computed F-

values are compared to a threshold 𝐹𝐵,𝑐 to generate a leakage indicator:

 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟II
𝑏,𝑝𝑐 = {

1 if max
𝑡/𝑓

𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

≥ 𝐹𝐵,𝑐

 0 otherwise
 (3.7)

Configurations with indicator value 0 are eliminated at the end of Stage II, i.e.,

only 𝑁pc,III
𝑏 = ∑ 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟II

𝑏,𝑝𝑐 𝑝𝑐 probe config-urations are used in Stage III. The

thresholds 𝐹𝑁,𝑐 and 𝐹𝐵,𝑐 are derived from F-distributions for a 90% confidence level.

3.1.5 Stage III: ANOVA-Informed Correlation Analysis

In Stage III, correlation analysis is performed to identify 𝑝𝑐𝑏,opt by using only the

probe configurations not eliminated at the end of Stage II. One potential approach, after

Figure 3.2: Time-domain (left) and frequency-domain (right) 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 metric,

evaluated with the probe configuration 𝑝𝑐0,opt.

 55

collecting 𝑁e measurements, is to repeatedly compute the correlation coefficient in Eq.

(2.3), starting with 𝑁e encryptions, followed by 𝑁e − 1 encryptions, and so on, until

𝑀𝑇𝐷𝑏,𝑝𝑐 is identified, i.e., where the coefficient for the correct guess drops below the null

hypothesis threshold (Fig. 2.4). This requires O(𝑁e) to O(𝑁𝑒
2) operations; alternatively, a

binary search algorithm can be implemented to identify 𝑀𝑇𝐷𝑏,𝑝𝑐 in O(𝑁e log𝑁e)

operations [29]. Stage III ends by identifying 𝑚𝑀𝑇𝐷𝑏 and 𝑝𝑐𝑏,opt for each byte 𝑏.

A naïve approach to ensure 𝑚𝑀𝑇𝐷𝑏 is identified in Stage III is to set 𝑁e = 𝑁e
max,

a large number of encryptions that ensures all key bytes are disclosed. Alternatively, the F-

values found in Stage II can be used to inform the search and potentially reduce the

measurement costs of Stage III (Fig. 3.3): In this approach, 𝑁scan,III
𝑏 scans are performed

for each byte b, using all 𝑁pc,III
𝑏 probe configurations. Before these scans, the probe

configurations are arranged in descending order of their F-values found in Stage II as

Figure 3.3: Flowchart of Stage III of the proposed protocol.

 56

 {𝑝𝑐𝑏,1 , 𝑝𝑐𝑏,2,… , 𝑝𝑐𝑏,𝑁pc,III
𝑏 }. In each scan 𝑠 = 1,… ,𝑁scan,III

𝑏 , an initial estimate of 𝑚𝑀𝑇𝐷𝑏

is chosen as 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 and 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 encryptions are observed using each configuration

𝑝𝑐𝑏,𝑖 for 𝑖 = 1, … ,𝑁pc,III
𝑏 . If 𝑀𝑇𝐷𝑏

𝑝𝑐𝑏,𝑖 < 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 for any configuration, the remaining

configurations are evaluated by reducing 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 to 𝑀𝑇𝐷𝑏
𝑝𝑐𝑏,𝑖

. The estimate is so

updated throughout the scan and this process continues until all 𝑁pc,III
𝑏 probe configurations

are tested. The scans are terminated if 𝑀𝑇𝐷𝑏
𝑝𝑐𝑏,i < 𝑚𝑀𝑇𝐷𝑠

𝑏,est
 for any probe configuration

and the key was disclosed. Otherwise, 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 is increased to 𝑚𝑀𝑇𝐷𝑠+1
𝑏,est

 and the

process is repeated until the key is disclosed; e.g., in this work, each scan incremented the

estimate by 500 encryptions. If the number of encryptions is increased, only the additional

𝑚𝑀𝑇𝐷𝑠+1
𝑏,est − 𝑚𝑀𝑇𝐷𝑠

𝑏,est
 encryptions have to be observed because the observations from

the previous scan can be reused when computing the correlation coefficient. In the best-

case/ minimum-cost scenario, the first configuration tested in the first scan reveals 𝑝𝑐𝑏,opt

and 𝑚𝑀𝑇𝐷𝑏, while in the worst-case/ maximum-cost scenario, the final configuration at

the end of the final scan reveals the optimal configuration. Therefore, 𝑚𝑀𝑇𝐷𝑏 ≤ 𝑁e,III
𝑏 ≤

𝑚𝑀𝑇𝐷
𝑁scan,III
𝑏

𝑏,est
 encryptions are observed with each probe configuration in Stage III.

3.2 MEASUREMENT COSTS AND ALTERNATIVE METHODS

3.2.1 Acquisition Cost

The acquisition cost of the proposed protocol is the total number of measurements

in each stage, which is the product of the number of encryptions observed per

configuration, number of repetitions, and number of configurations probed, i.e.,

 𝐴𝑐𝑞𝑢𝑖𝑠. 𝐶𝑜𝑠𝑡 = 𝑁e,I𝑁r,I𝑁l𝑁h𝑁o + ∑ 𝑁e,II
𝑏 𝑁r,II𝑁pc,II

𝑏16
𝑏=1 +

 ∑ 𝑁e,III
𝑏 𝑁pc,III

𝑏16
𝑏=1 (ANOVA) (3.8)

 57

Once the acquisition cost is accrued, the marginal cost of future evaluations can be

reduced by reusing probe configurations 𝑝𝑐𝑏,opt and performing only the minimum number

of measurements 𝑚𝑀𝑇𝐷𝑏 for each byte. The marginal cost of future evaluations is [10],[9],

 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 = ∑ 𝑚𝑀𝑇𝐷𝑏16
𝑏=1 (3.9)

The marginal cost of evaluating a module employing a countermeasure is compared

to that of a baseline module to quantify the improvement in the EM side-channel security

of hardened AES modules in this paper. In the most resilient modules, some key bytes may

potentially not be disclosed [20]. In these cases, to limit the measurement costs of the

evaluation, the number of encryptions performed per configuration is restricted to be no

more than 𝑁e
max.

3.2.2 Acquisition Time and Storage

The storage requirements and acquisition time can be computed based on the

acquisition cost and equipment parameters [29]. Each time sample is typically stored as a

single-precision floating-point number in the oscilloscope. Therefore, the storage

requirements can be estimated as 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡ANOVA ×𝑁t × 4 bytes, where 𝑁t is the

number of samples in one clock period. Acquisition time is an equipment-dependent

quantity; e.g., primitive oscilloscopes generally collect and transfer data to a computer one

encryption at a time, which can take more time because of the latency associated with each

transaction. On the other hand, higher-end oscilloscopes can store/transfer several

𝑁seg measurements, avoiding latency-related issues associated with the acquisition [29].

Further, such oscilloscopes have sufficient processing capabilities to perform analysis,

without needing to transfer data to another computer. As a result, multi-stage protocols,

where measurements in each stage are decided by results of the previous stage, can be

 58

potentially sped up [29]. If 𝑡cap seconds is required to capture each sample, and 𝑡sav

seconds is required to save each sample, then

𝐴𝑐𝑞. 𝑇𝑖𝑚𝑒I
ANOVA = 𝑁t(𝑡cap + 𝑡sav) × ⌈

𝑁e,I𝑁r,I𝑁l𝑁h𝑁o

𝑁seg
⌉

𝐴𝑐𝑞. 𝑇𝑖𝑚𝑒II
ANOVA = 𝑁t(𝑡cap + 𝑡sav) × ∑ ⌈

𝑁e,II
𝑏 𝑁r,II𝑁pc,II

𝑏

𝑁seg
⌉16

𝑏=1

 𝐴𝑐𝑞. 𝑇𝑖𝑚𝑒III
ANOVA = 𝑁t(𝑡cap + 𝑡sav) × ∑ ⌈

𝑁e,III
𝑏 𝑁pc,III

𝑏

𝑁seg
⌉16

𝑏=1

 (3.10)

seconds are required to perform experiments in each stage of the protocol. In addition to

acquisition time, evaluators may also need to account for the speed of probe positioning

[29] and analysis time in each stage. Frequency-domain fields are generated during

analysis, using the FFT algorithm, which requires a processing time of O(𝑁t log𝑁t)

seconds for each encryption. While time-domain fields are limited by the clock period, the

frequency-domain fields can be limited to 𝑁BW samples, corresponding to the limiting

bandwidth of all equipment [20], to reduce analysis time. At each configuration and

time/frequency sample, the analysis time needed to compute F-values in Eq. (2.8) is

O(𝑁B𝑁T) seconds. The MTD identification in stage III requires O(𝑁e,III
𝑏 log𝑁e,III

𝑏) seconds

per sample.

3.2.3 Alternative Methods

The proposed protocol is compared to several alternatives in Section 3.4. The

exhaustive search method (Section 2.1.2) [10], [29] is one potential alternative. It performs

correlation analysis by observing 𝑁e
max encryptions across the entire search space of probe

configurations in a single, high-resolution scan. As a result, the exhaustive approach

requires [10], [29]

 𝐴𝑐𝑞𝑢𝑖𝑠. 𝐶𝑜𝑠𝑡 = 𝑁e
max𝑁l𝑁h𝑁o (exhaustive search) (3.11)

 59

measurements to be observed. A more viable correlation-analysis approach is the greedy-

search adaptive scan protocol implemented in [10], [20], [29] and briefly described in the

black-box attack in Section 2.2.3. This greedy-search protocol requires [10],

 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡Bbox = 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡pre + ∑ ∑ ∑ 𝑁e,𝑠,I𝑁l,h,o,s,I
𝑁o
𝑜=1

𝑁h
ℎ=1

𝑁scan,I

𝑠=1 +

 ∑ ∑ 𝑚𝑀𝑇𝐷𝑠−1
𝑏 𝑁l,s,II

𝑁scan,II

𝑠=1 16
𝑏=1 (Greedy Search) (3.12)

measurements. Note that this approach can have unlimited cost, e.g., for hardened modules,

if the number of scans is not bounded. In practice, the acquisition cost of this protocol

should be bounded by that of the exhaustive search method in Eq. (3.11) by limiting its

phase I to at most 𝑁e
max encryptions and its phase II to have at most the same resolution as

the exhaustive search.

Another alternative is the TVLA method, a commonly used leakage indicator,

including in the ISO/IEC 17825 standard [34],[35], to evaluate the side-channel resilience

of crypto-systems [11],[12],[25]. The TVLA method also statistic-ally characterizes the

probed fields for specially constructed test cases. Here, the DUT is assumed to be a “white

box” [9], where evaluators can control the inputs to the chip but not the encryption key. It

uses Welch’s t-test to compare the means of two sets of observed fields—a reference set

(SetA), where inputs are fixed, and a test set (SetB), where the inputs are randomly

generated—hypothesizing that information leakage is present if there are significant

changes in the means of the two sets. In SetA, one plaintext is repeated 𝑁SetA times for a

fixed key; in SetB, 𝑁SetB randomly generated inputs are encrypted using the same key as

SetA. Computing the sample means �̅�SetA/SetB
𝑝𝑐,𝑡/𝑓

 and variances 𝑠SetA/SetB
𝑝𝑐,𝑡/𝑓

 across the

𝑁SetA/𝑁SetB samples, the Welch t-test is evaluated as:

 𝑇𝑝𝑐,𝑡/𝑓 =
�̅�SetB
𝑝𝑐,𝑡/𝑓

−�̅�SetA
𝑝𝑐,𝑡/𝑓

√𝑠SetB
𝑝𝑐,𝑡/𝑓

/𝑁SetB+𝑠SetA
𝑝𝑐,𝑡/𝑓

/𝑁SetA

 (3.13)

 60

Using the parameters in [11], an example TVLA metric computed for 200 fixed plaintext

and 200 random plaintext is shown in Fig. 3.4. In addition to accurately indicating leakages

at ~10 ns/~200 MHz (Fig. 2.3), the TVLA also shows exaggerated leakage at ~40 ns/~300

MHz. Because test cases are randomized without any restrictions, the TVLA method is

leakage-model independent and can be used as a generic approach to analyze side-channel

leakage; in contrast, the ANOVA approach described in this work constructs test cases

based on the leakage model used in the correlation analysis. The results of TVLA are not

necessarily linked, however, to the number of measurements needed to disclose the key

[11], [23], [35]. Furthermore, results of low-cost TVLA experiments using fewer

encryptions (𝑁SetA, 𝑁SetB ≈ 200-500) may have limited accuracy [11]. Increasing the

number of encryptions (𝑁SetA, 𝑁SetB ≈ 20000) to improve accuracy [12] is infeasible for

fine-grained EM SCA attacks as the acquisition cost would approach the exhaustive search.

The computed T-statistic can be compared with a threshold 𝑇c to generate another

indicator:

 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟TVLA
𝑝𝑐 = {

1 if max
𝑡/𝑓

𝑇𝑝𝑐,𝑡/𝑓 ≥ 𝑇c

 0 otherwise
 (3.14)

Figure 3.4: Time-domain (left) and frequency-domain (right) TVLA metric, evaluated

with the probe configuration 𝑝𝑐0,opt.

 61

Once probe configurations with 0 TVLA indicator values are eliminated,

correlation analysis is performed only with 𝑁pc,TVLA = ∑ 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟TVLA
𝑝𝑐

𝑝𝑐 configurations.

An exhaustive search (TVLA+e) would observe 𝑁e
max encryptions at each configuration.

Alternatively, a TVLA-informed search (TVLA+i) similar to that in Section 3.1.5 can be

used to reduce the measurement costs. In this approach, 𝑁scan,TVLA
𝑏 scans are performed for

each byte b and 𝑚𝑀𝑇𝐷𝑏 ≤ 𝑁e,TVLA
𝑏 encryptions are observed with each probe

configuration. The acquisition cost of these two protocols are

𝐴𝑐𝑞𝑢𝑖𝑠. 𝐶𝑜𝑠𝑡 = (𝑁SetA + 𝑁SetB)𝑁l𝑁h𝑁o +

 𝑁e
max𝑁pc,TVLA (TVLA + e)

𝐴𝑐𝑞𝑢𝑖𝑠. 𝐶𝑜𝑠𝑡 = (𝑁SetA + 𝑁SetB)𝑁l𝑁h𝑁o +

 ∑ 𝑁e,TVLA
𝑏 𝑁pc,TVLA

16
𝑏=1 (𝑇𝑉𝐿𝐴 + 𝑖)

 (3.15)

3.3 DEVICES UNDER TEST

This section describes the 9 AES implementations (2 baseline and 7 hardened ones)

whose vulnerability to EM SCA attacks is evaluated with the proposed protocol. The

countermeasures in these implementations are separated into three categories representing

different strategies to secure the chip. The countermeasures tested in this thesis are based

on existing implementations in [18]-[20], [36],[37].

3.3.1 Baseline AES implementations

The first baseline AES module was implemented on an Artix-7 FPGA with 20 mm

× 20 mm chip size tested on the CW305 evaluation board [33]. The evaluation board, which

was specifically designed to demonstrate SCA attacks, allowed the clock frequency and

supply voltage to be changed. As a baseline scenario, the chip was operated at clock

frequency of 𝑓clk = 20 MHz and supply voltage of 𝑉s = 1 V. This baseline

implementation is used as a reference to test 3 repeatability countermeasures (Section

 62

3.3.2), 1 algorithmic countermeasure (Section 3.3.3), and 1 physical design strategy

(Section 3.3.4), all implemented on the same FPGA.

The second baseline AES module was an ASIC with 10 mm × 10 mm chip size

[36]. The chip was operated at input clock frequency 𝑓clk = 37.5 MHz and supply voltage

𝑉s = 1.1 V. It is used as a reference for testing 2 physical design strategies implemented

on the same chip.

3.3.2 AES Implementations with Repeatability Countermeasures

Observed fields depend on the DUT’s operating supply voltage and clock

frequency. Randomly scaling these parameters can create temporal shifts and modify

amplitudes in observed signals, reducing the repeatability of experiments and increasing

measurement noise. Three such countermeasures based on EM interference reduction

techniques [20] are tested in this paper:

1) Frequency Scaling (FS): Randomizing clock frequency creates delays in the

circuit and misaligns measurements over multiple encryptions. While this jitter dithers

time-domain signals [14], frequency-domain EM SCA attacks remain effective against this

countermeasure. The FS countermeasure was implemented by varying the clock frequency

in the range 𝑓clk = 20 MHz ± 0.25 MHz.

2) Voltage Scaling (VS): Voltage scaling desensitizes peak-to-peak amplitudes of

observed fields to the data being encrypted [15]. This countermeasure obfuscates both

time- and frequency-domain fields. The VS countermeasure was implemented by varying

the input supply in the range 𝑉s = 1 V ± 0.05 V.

3) Voltage-Frequency Scaling (VFS): This countermeasure combines the VS and

FS countermeasures to provide maximum dithering of fields in both time- and frequency-

domain [16]. The VFS countermeasure was implemented by simultaneously varying the

 63

input supply and clock frequency in the ranges selected in the VS and FS countermeasure

(set 2 in [20]).

These countermeasures were implemented on the FPGA, using the programmable

clock and voltage supply, such that 5 fixed states of voltage, frequency, or voltage-

frequency pairs were chosen within the selected ranges. These countermeasures can be

implemented with relatively low overhead [15], [16].

3.3.3 AES Implementations with Algorithmic Countermeasures

Countermeasures artificially introducing algorithmic noise typically introduce

additional operations/modify data flow in the algorithm. Examples include hiding and

masking [19], [36], [37], where exploitable intermediate round outputs are modified to

break correlation with observed fields. A majority of countermeasures in this category for

AES focus on masking non-linear Sbox operations using novel transformations or changes

to existing implementations; e.g., in [19], a byte permutation (BP) network that rearranges

bytes randomly was proposed as a precursor to Sbox operations and AES correctness was

maintained by using an inverse BP network to re-order bytes at the end of each round. This

method showed limited resilience improvement (~3.2×) for a black-box threat model [19].

Therefore, in addition to the hardened Sbox implementation in [19], a simple Boolean XOR

operation for linear operation masking [36], [37] is used to hide the intermediate state

register value in this paper. Here, a random “mask” variable 𝐌𝑚 changes 𝐨𝐜𝑒
9 to masked

value 𝐨𝐜𝑒,𝑚
9 in the penultimate round. The last round begins with “unmasking” and byte-

order randomization using the BP network. After Sbox operation, bytes are re-ordered with

the inverse BP network, followed by the shift rows operation. The final operations of AES

can be summarized as,

 64

𝑜𝑐𝑒,𝑚
9,𝑏′ = 𝑜𝑐𝑒

9,𝑏′⨁𝑀𝑚
𝑏′

𝑖�̃�𝑒
10,𝑏 = 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝐵𝑃−1[𝑆𝑏𝑜𝑥(𝐵𝑃[𝑜𝑐𝑒,𝑚

9,𝑏⨁𝑀𝑚
𝑏])])

𝑜𝑐𝑒,𝑚
10,𝑏 = 𝑖�̃�𝑒

10,𝑏⨁𝑘10,𝑏

 (3.16)

This countermeasure was implemented on the FPGA using the nominal clock

frequency and input supply. While it can be an effective countermeasure, masking incurs

significant area and delay overheads [19]; moreover, it can be vulnerable to higher-order

attacks [36], [37] outside the scope of this paper, where the mask is attacked first, followed

by the key.

3.3.4 AES Implementations with Physical Design Strategies

These countermeasures minimize data-dependent variations in observed fields by

implementing dedicated signal attenuation hardware [13], modifying the chip’s physical

design [18], or shielding the module [17]. These may not be effective at all frequencies of

interest, can increase packaging costs, or increase the area overhead. In this paper, 3 such

countermeasures are implemented: In the first one, a 25-𝜇m thick aluminum foil is placed

over the FPGA to attenuate fields and degrade EM SCA attacks. The other two

countermeasures are implemented on the ASIC and involve changes to the AES module’s

power grid. The first design implements a “twisted pair” grid structure [18]; the second one

uses wider and thicker power rails to shield signals from lower metal layers [18].

3.4 BASELINE RESULTS

This section presents the results for the baseline FPGA and ASIC implementations

of AES-128. The proposed method is compared to alternatives in terms of acquisition costs.

All spatial maps of fields and computed statistics in this section were obtained with the x-

oriented probe. The setup for the FPGA was already described in Section 2.3.1. The ASIC

used an additional Arduino interface, which acts as an intermediary during the transfer of

 65

plaintext and keys from the main computer. To demonstrate the spatial resolution, maps of

time- and frequency-domain fields at information leaking time/ frequency samples are

plotted in Fig. 3.5 for the two DUTs, averaged over 30 repeated measurements. These

composite images are obtained one pixel/measurement at a time by re-positioning the probe

and repeating the encryption.

3.4.1 Proposed Protocol Results

The Stage I 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 metric was computed by repeating the 𝑁e,I = 17 encryptions

detailed in Section 3.1.3 𝑁r,I = 30 times. Spatial maps of the maximum 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 are plotted

(a) Baseline FPGA

(b) Baseline ASIC

Figure 3.5: Spatial map of (a) time-domain signals at ~8 ns (left) and frequency-

domain signals at ~160 MHz (right) for the FPGA module detailed in [10],

and (b) time-domain signals at ~6 ns (left) and frequency-domain signals at

~100 MHz (right) for the ASIC module detailed in [18].

 66

in Fig. 3.6; a large portion of the configurations with high F-values were located inside the

areas marked with red boxes. Fig. 3.6 shows that frequency-domain analysis discarded

more configurations in Stage I. The Stage II 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

 metrics were computed by repeating

the 𝑁e,II
𝑏 = 15 encryptions detailed in Section 3.1.4 𝑁r,II = 10 times and averaging the

signals. Spatial maps of the maximum 𝐹𝐵
0,𝑝𝑐,𝑡/𝑓

 are shown in Fig. 3.7 only for the areas

marked with red boxes in Fig. 3.6 for simplicity (high F-ratio configurations outside the

red boxes were also evaluated in Stage II). Then, configurations whose maximum

𝐹𝐵
0,𝑝𝑐,𝑡 were larger than 𝐹𝐵,𝑐 were tested in Stage III to find the optimal probe

(a) Baseline FPGA

(b) Baseline ASIC

Figure 3.6: Spatial map of (a) time-domain signals at ~8 ns (left) and frequency-

domain signals at ~160 MHz (right) for the FPGA module detailed in [10],

and (b) time-domain signals at ~6 ns (left) and frequency-domain signals at

~100 MHz (right) for the ASIC module detailed in [18].

 67

configurations, using at most 𝑁scan,III
𝑏 = 2/3 (6/8) scans in time/frequency domain for the

baseline FPGA (ASIC). Each scan incremented the estimate 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 by 500. The

Acquisition Cost

Baseline FPGA

Time Domain
Frequency

Domain

Stage I (×106) 2.65 2.65 Stage I (×106)

Stage II (×106) 1.62 1.18 Stage II (×106)

Stage III (×106) 1.24 1.16 Stage III (×106)

Table 3.1: Proposed ANOVA Method’s Costs

(a) Baseline FPGA

(b) Baseline ASIC

Figure 3.7: Spatial map of (a) time-domain signals at ~8 ns (left) and frequency-

domain signals at ~160 MHz (right) for the FPGA module detailed in [10],

and (b) time-domain signals at ~6 ns (left) and frequency-domain signals at

~100 MHz (right) for the ASIC module detailed in [18].

 68

acquisition costs of the protocol are listed in Table 3.1. The table shows that the time-

domain evaluation required ~1.2× (~1.1×) more measurements than the frequency-domain

one for the FPGA (ASIC).

3.4.2 Cost Comparison to Alternative Methods

Let’s first compare the proposed method for evaluating EM SCA vulnerability to

emulating correlation-analysis attacks. Using an exhaustive scan, where 𝑁e
max = 20000

encryptions are observed with every probe configuration in the search space, correlation

analysis would require ~108 measurements. The acquisition cost can be lowered with

(a) Baseline FPGA

(b) Baseline ASIC

Figure 3.8: Spatial map of max
𝑡
𝑇𝑝𝑐,𝑡(left) and max

𝑓
𝑇𝑝𝑐,𝑓 (right) for the baseline (a)

FPGA [10] and (b) ASIC [18]. Optimal configurations are shown with

stars.

 69

adaptive scan protocols. Here, the greedy search protocol [10] was implemented with a

pre-characterization stage: Every probe configuration was used to observe fields for

𝑁e
pre

= 50 random encryptions and configurations where the standard deviation was < 0.1

mV were removed from the search space. In Phase I, 𝑁scan,I = 2 (3) scans were performed

for the FPGA (ASIC) and optimal configurations were identified by using 𝑁e,2,I = 5000

(a) Baseline FPGA

(b) Baseline ASIC

Figure 3.9: Reduction of search space for the optimal probe configuration in time

(solid) and frequency domain (dashed) for the baseline (a) FPGA [10] and

(b) ASIC [18]. Unlike the exhaustive- and greedy-search protocols, which

emulate correlation analysis by actual attackers with restricted access, the

TVLA and ANOVA protocols accelerate the process by computing

statistical metrics.

 70

(𝑁e,2,I = 5000 and 𝑁e,3,I = 8000) encryptions; in phase II, 𝑁scan,II = 2 (2) scans were

performed for each byte. The final costs of implementing the protocol on the baseline

FPGA (ASIC) were found to be ~1.0/1.1×107 (~1.6/1.7×107) measurements in

time/frequency domain. Therefore, the proposed protocol was observed to be ~17-22×

cheaper than the exhaustive approach and ~2-3× cheaper than the adaptive acquisition

approach for the baseline cases.

Next, let’s compare the proposed ANOVA-based method to TVLA-based

alternatives. Here, TVLA was implemented using 𝑁SetA = 𝑁SetB = 200 encryptions for

both baseline implementations. Spatial maps of the maximum 𝑇𝑝𝑐,𝑡/𝑓 are shown in Fig.

3.8. Numerous “false positives” are observed throughout the search space, especially for

the FPGA. Using the TVLA+e protocol on the FPGA (ASIC) required ~2.6/2.8×107

(~2.5/2.4×107) measurements in time/frequency domain. The TVLA+i protocol required

𝑁scan,TVLA
𝑏 = 2/3 (6/8) scans and ~9.9/10.2×106 (~8.8/8.6×106) measurements in

time/frequency domain. Therefore, the proposed protocol was observed to be ~4-5×

cheaper than the TVLA+e and ~1.5-2× cheaper than the TVLA+i method for the baseline

cases.

All protocols identified similar information-leaking configurations and minimum

MTDs, although each protocol required different acquisition cost to reach the final result.

All protocols began with the same maximum search space (𝑁o × 𝑁l = 2 × 51 × 51

configurations), at 0 acquisition cost, and ended with 16 optimal configurations (one for

each byte) after accruing the acquisition cost of the measurements. The costs of the

protocols are plotted in Fig. 3.9, along with the reduction of the search space at each

stage/phase. The search space size at the end of each stage is the sum of remaining possible

probe configurations identified for each byte. Fig. 3.9 shows that the methods’

performances were rather insensitive to whether time- or frequency-domain signals were

 71

used and that the proposed protocol outperformed the alternatives for the baseline

implementations. Whether the same observations apply to hardened implementations is

presented next.

(a) Frequency Scaling (FS) countermeasure

(b) Voltage Scaling (VS) countermeasure

(c) Voltage-Frequency Scaling (VFS) countermeasure

Figure 3.10: Spatial map of max
𝑡
𝐹𝑁
0,𝑝𝑐,𝑡

(left) and max
𝑓
𝐹𝑁
0,𝑝𝑐,𝑓

 (right) for the FPGA

implementing three countermeasures that increase the measurement noise.

 72

3.5 RESULTS FOR COUNTERMEASURES

This section details the results of evaluations of AES implementations hardened by

the countermeasures described in Section 3.3 and the measurement setup detailed in

Section 2.3.1. For each class of countermeasures, spatial maps of 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 and/or 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

are shown in Sections 3.5.1-3. Section 3.5.4 presents the costs of evaluating the counter-

measures along with the improvement in resilience. For countermeasures with 𝑚𝑀𝑇𝐷𝑏 >

𝑁e
max = 20000, the cost of the greedy-search protocol is replaced by the cost of the

exhaustive scan.

3.5.1 Countermeasures Increasing Measurement Noise

The countermeasures FS, VS, and VFS detailed in Section 3.3.2 increase the

measurement noise in signals. Because they increase variance within repeated

measurements, these counter-measures should degrade 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

. Spatial maps of the

maximum 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 are plotted in Fig. 3.10 for the 3 hardened implementations. The results

can be compared to those for the baseline FPGA in Fig. 3.6; the optimal probe

configurations were found to be the same in all cases.

 The FS countermeasure could improve the resilience of the module against time-

domain EM SCA attacks but had negligible impact on frequency-domain ones. Although

shifts in time domain should not impact the magnitude of signals in frequency domain,

delaying/hastening the signal still caused some minor variations in the frequency-domain

EM SCA attack; this is because measurements were time-gated to the nominal clock period

[20]. The VS countermeasure could improve the resilience of the module against both time-

and frequency-domain EM SCA attacks, although the impact was more apparent in the

frequency-domain approach. Voltage scaling affects the fields disproportionately in time

domain, in particular, more variance was observed around signal peaks, while at other time

intervals signals were more repeatable [20].

 73

The VFS countermeasure could improve the resilience of the module against both

time- and frequency-domain EM SCA attacks. Because this countermeasure combines the

previous two countermeasures, the first two stages of the proposed ANOVA method could

identify only a few promising configurations with either time- or frequency-domain

signals. The proposed method required ~7.2/5.5×106, ~6/5.7×106, and ~6.9/7×106

measurements to identify the optimal probe configurations for the FPGA hardened with

the FS, VS, and VFS countermeasure in time/frequency domain.

(a) Stage I

(b) Stage II

Figure 3.11: Spatial map of max
𝑡
𝐹𝑁
0,𝑝𝑐,𝑡

(top-left), max
𝑓
𝐹𝑁
0,𝑝𝑐,𝑓

 (top-right),

max
𝑡
𝐹𝐵
0,𝑝𝑐,𝑡

(bottom-left), and max
𝑓
𝐹𝐵
0,𝑝𝑐,𝑓

(bottom-right) for the FPGA

implementing the masking countermeasure that increases algorithmic noise.

 74

3.5.2 Countermeasures Increasing Algorithmic Noise

The masking countermeasure detailed in Section 3.3.3 increases the algorithmic

noise. Because it performs additional uncorrelated computations, this countermeasure

should primarily degrade 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

. Spatial maps of the maximum 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 and 𝐹𝐵
0,𝑝𝑐,𝑡/𝑓

 are

plotted in Fig. 3.11. Comparing the results to that for the baseline FPGA in Figs. 3.6-3.7

shows that more configurations were eliminated compared to the baseline at the end of

Stage I in addition to Stage II, because randomly masking the state register increases signal

variance for repeated encryptions as well as increasing algorithmic noise from uncorrelated

computations. More importantly, it was observed at the end of Stage III that none of the

probe configurations could disclose any key byte after 𝑁e
max encryptions.

Unlike the adaptive scan protocols, which would potentially need the same number

of measurements as an exhaustive scan (~108) to reach this conclusion, the proposed

ANOVA method required only ~8.3/7.6×106 measurements in time/frequency domain.

3.5.3 Countermeasures Attenuating Target Signals

The physical design strategies detailed in Section 3.3.4 attenuate the target signals.

Because they also reduce the variance of the target signals, these countermeasures should

degrade both 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 and 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

. Spatial maps of the maximum 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 are plotted in

Fig. 3.12, and can be compared with baseline results in Fig. 3.6.

The shielded FPGA revealed no configurations of interest at the end of Stage I,

failing to disclose the AES key; this is to be expected as the shield is 3-4 skin depths thick

at the information leaking frequencies. While the physical design strategies in [18] revealed

few configurations of interest, these configurations were successful in recovering the key,

providing limited improvement in resilience. The dense wider power-grid structure

revealed marginally fewer configurations compared to the twisted power-grid

countermeasure.

 75

The proposed method required ~2.7×106 measurements using both time- and

 (a) Shielding countermeasure for the FPGA

 (b) Twisted power grids counteremeasure for the ASIC

(c) Wider power grids countermeasure for the ASIC

Figure 3.12: Spatial map of max
𝑡
𝐹𝑁
0,𝑝𝑐,𝑡

(left) and max
𝑓
𝐹𝑁
0,𝑝𝑐,𝑓

 (right) for the three

countermeasures attenuating target signals. Optimal configurations, if

present, are shown with stars.

 76

frequency-domain analysis to evaluate the shielding countermeasure. The evaluation of the

twisted power-grid structure, the time-/frequency-domain analysis required acquisition

cost of ~6.6/7.3×106 measurements. The evaluation of the dense wider power grid structure

in time/frequency domain required acquisition cost of ~8/8.1×106 measurements.

3.5.4 Marginal and Acquisition Cost Comparison

Next, the effectiviness of the countermeasures are evaluated and the costs of the

proposed ANOVA method are compared to those of the alternatives when countermeasures

are present.

For the baseline FPGA (ASIC), using the optimal configurations identified in Section 3.4,

the marginal cost of disclosing keys was only ~1.1/1.4×104 (~3.5/4.4×104) measurements

in time/frequency domain, i.e., disclosing the AES key required ~3× more measurements

for the ASIC.

When the FPGA was hardened with the FS, VS, and VFS countermeasures, using the

optimal configurations identified in Section 3.4.1, the attackers could disclose the AES key

with ~6.9/1.5×104, ~0.5/1.2×105, and ~1.5/1.7×105 measurements in time/frequency

domain, respectively. Comparing these marginal costs to those of the baseline FPGA shows

that these countermeasures improve the module’s resilience to EM SCA attack

significantly. These are easy to implement counter-measures that require relatively small

design overhead.

When the FPGA was hardened with masking or shielding, because no key bytes could be

disclosed by observing 𝑁e
max encryptions, the marginal cost of disclosing the key was >

16𝑁e
max, i.e., >3.2×105 measurements; thus, these counter-measures improve the module’s

resilience to EM SCA attack by >30/24× in time/frequency domain. Masking considerably

improves the security of the chip at the cost of larger area and delay overheads [19]. While

 77

a very simplistic shield was used here, practical use of shielding can incur large packaging

costs [17]. Additionally, incorrect shielding can block higher-frequency contributions to

measurement noise and potentially reduce the module’s resilience.

When the ASIC was hardened with twisted and dense wider power grid, using the optimal

configurations identified in Section 3.5.3, the attackers could disclose the AES key with

~5.3/5.9×104 and ~8.5/9.2×104 measurements in time/ frequency domain, respectively. For

DUT

Improve-

ment over

Baseline for

TD/FD

Attack

Most

Effec-

tive

Attack

Acquisition Cost of Alternatives

vs. ANOVA for Most Effective

Attack

Adaptive

Scan
TVLA+e TVLA+i

FPGA

Baseline

 1×/

1×
TD 1.8× 4.8× 1.8×

ASIC

Baseline

 1×/

1×
TD 2.7× 4.7× 1.6×

FPGA with

FS

 6.3×/

1.1×
FD 2.3× 4.8× 1.8×

FPGA with

VS

 4.7×/

8.6×
TD 3.0× 6.9× 3.6×

FPGA with

VFS

 13.6×/

12.1×
TD 4.3× 6.0× 4.6×

FPGA with

Masking*

 >30×/

>24×
- 13.1× 5.3× 5.3×

FPGA with

Shielding*

 >30×/

>24×
- 37.0× 3.6× 3.6×

ASIC with

Twisted

Power Grid

 1.5×/

1.4×
TD 1.9× 7.7× 4.3×

ASIC with

Wider Power

Grid

 2.4×/

2.1×
TD 1.7× 7.1× 4.2×

Table 3.2: Effectiveness of Countermeasures and the Cost of Evaluation

 78

these physical design strategies, while no logic blocks were added, implying little to no

power overhead, layout changes increase the module’s area.

The resilience of the 9 AES implementations against fine-grained EM SCA attacks

and the costs of this evaluation are shown in Table 3.2. In Table 3.2, the resilience

improvement is calculated as the ratio of an implementation’s marginal cost over that of

the baseline module. The improvement for security evaluation is quantified by dividing the

acquisition costs of the alternative methods by that of the proposed method. In each case,

both time- and frequency-domain EM SCA attacks were performed but the acquisition

costs are compared only for the attack that had the lower marginal cost.

Table 3.2 shows that among all countermeasures, masking and shielding countermeasures

were most effective in improving the chip’s security. In all 9 cases, the ANOVA method

required the fewest measurements to evaluate the EM SCA security of the AES

implementation. Applying the proposed method was ~1.7-37× cheaper than the adaptive

scan protocol, ~3.6-7.7× cheaper than the TVLA followed by exhaustive correlation

analysis, and ~1.6-5.3× cheaper than the TVLA-informed correlation analysis. The

protocol was particularly efficient when evaluating the most secure implementations.

3.6 SUMMARY

In this chapter, an ANOVA-based measurement method was presented to evaluate

fine-grained EM SCA vulnerability of cryptographic modules. The method was used to

evaluate 2 baseline and 7 hardened implementations of the AES algorithm against fine-

grained EM SCA attacks. The method is implemented in multiple stages; in the first two

stages, it eliminates probe configurations posing the lowest risks by estimating the

contribution of measurement and algorithmic noise in observed fields, in the last stage it

applies correlation-analysis informed by the risk estimates identified in the previous stages

 79

to actually reveal the AES key. The method assumes a gold-box threat model and uses

specifically chosen inputs and encryption keys in order to evaluate measurement and

algorithmic noise with few measurements. The (gold-box) ANOVA method required upto

~37×, ~7.7×, and ~5.3× fewer measurements than the (black-box) greedy-search

correlation analysis, the (white-box) TVLA followed by exhaustive correlation analysis,

and the (white-box) TVLA-informed correlation analysis, respectively. The proposed

method is particularly efficient for evaluating the most secure chips, such as the shielded-

FPGA implementation, where it discards ineffective measurement configurations at a

relatively low acquisition cost. Thus, it enables rapid empirical evaluation of how effective

a countermeasure is for hardening a cryptographic module against fine-grained EM SCA

attacks.

The proposed method can be used with alternative methods [39]-[40] in Stage III,

if the set of probe configurations can be sufficiently condensed in Stages I and II. The

proposed method can also be extended to evaluating other computing systems by suitably

modifying definitions of target and background processes; e.g., a related ANOVA method

was used in [4] to evaluate the security of a general-purpose embedded system. Further, it

can be combined with a powerful pre-characterization method, demonstrated in [41].

 80

4. Fine-Grained EM SCA-Based Instruction Disassembler3

An instruction-level disassembler, based on analysis of near-field electromagnetic

(EM) signals emanated during program execution, is demonstrated in this chapter, to

deduce the instructions of interest and recover the execution trace of programs on general-

purpose microcontrollers. The initial sections of this chapter focus on introducing SCA-

based disassemblers, comparing relevant work, and briefly summarizing the fine-grained

EM SCA approach. This approach is later elaborated, and demonstration of the

disassembler on a general-purpose micro-controller is performed towards the end of the

chapter.

4.1 INTRODUCTION TO SCA-BASED DISASSEMBLERS

On-chip computations impact the electromagnetic (EM) fields emanated as well as

the power consumed by embedded systems [42]-[50], causing information about the

operations they execute to leak through these side channels. By probing these fields and

exploiting variations in the measured signals, side-channel analysis (SCA) attacks can non-

invasively recover information about target processes even in embedded processors that

execute general-purpose programs. At the highest fidelity, EM SCA can potentially

disassemble a program’s execution trace from a device under test (DUT) at the instruction

level. Although such instruction-level disassemblers based on power SCA are well

documented [44]-[46], only a few attempts based on EM SCA are reported in the literature

[48]-[49]. Disassemblers using relatively large EM [6], or power [3]-[5] probes aggregate

the fields emanated or power consumed by many/all system components throughout the

3 This chapter is partly based on an accepted publication: V.V. Iyer, A. Thimmiah, M. Orshansky, A.

Gerstlauer, A. Yilmaz, “A hierarchical classification method for high-accuracy instruction disassembly

with near-field EM measurements,” in publication.

The author contributed to the formulation, implementation, and measurements presented in this article, as

well as the writing of this manuscript.

 81

DUT. Thus, any potential features in the measured signals that can distinguish instructions

are heavily obfuscated by algorithmic noise from uncorrelated processes in addition to

measurement noise from the environment and the sensor setup [21]. Such coarse-grained

EM/power SCA setups generally require extensive measurements to quantify and filter out

noise [44]-[48]. Contrarily, fine-grained EM SCA setups [21], [48], which use relatively

small probes, are sensitive to the fields emanated by a subset of system components near

the probes because EM emanations decay rapidly with distance and are polarized. Indeed,

when probes are appropriately positioned and oriented, fine-grained EM SCA can improve

the success rate of disassembly [48]. Thus, fine-grained EM SCA attacks first scan for

effective measurement configurations that have high signal-to-noise ratios and then use

these low-noise configurations to actually extract information [48], [4]. However, the

“acquisition cost” of finding optimal configurations in existing fine-grained approaches

can be prohibitively large [21]. The efficiency of a disassembler directly relates to how

well the instructions are profiled during the initial acquisition phase, which dictates the

acquisition cost in terms of measurement time and storage requirements. A naïve profiling

approach involves instantiating each instruction with all possible combinations of different

operands, addresses, and data present in architectural registers, such as program counters,

stack, etc. [44]-[46]. To feasibly profile instructions, conventional SCA-based

disassemblers typically sub-sample this space of architectural states by randomly

instantiating instructions several times with different operand values and machine states.

This approach has limited feasibility for fine-grained EM SCA-based disassemblers

because of the high acquisition cost of searching a 5-D space of potential optimal

measurement configurations— the possible probe locations (3-D), orientations (1-D), and

observation times (1-D) —as the DUT executes many instantiations of each instruction

[21]; e.g., the setup used in this article would require ~5000 × more signals to be collected

 82

compared to using a single probe configuration. The scalability of such methods further

reduces as the size of the instruction set 𝑁 increases. Indeed, fine-grained EM SCA

approaches using the random instantiations method for profiling instructions [48] have

been limited to small instruction sets. Random instantiations may also miss critical corner

cases which can lead to potential misclassifications in the classification phase.

In this work, a novel scalable and effective instruction disassembler using fine-

grained EM signals is proposed. As in previous SCA-based disassemblers [44]-[48], the

proposed method has 2 phases. The feature-selection phase identifies optimal measurement

configurations and corresponding signal features. After this phase, the classification phase

identifies instructions from signals measured as the DUT executes an arbitrary code. It

collects signals using only the selected set of configurations and evaluates them according

to the features identified in the first phase. To support large instruction sets, the

disassembly is performed hierarchically; a 4-stage hierarchy—consisting of an

instruction’s cycle length, size, operands used, and functions implemented (Fig. 4.1)—is

Figure 4.1: Hierarchical grouping of instructions based on length (I), size (II), operands

(III), and functions (IV).

All Instructions

1 Cycle 2 Cycle Cycle

1 Byte 2 Byte 1 Byte 3 Byte2 Byte 1 Byte

Sources, Destination, Addressing

Instruction Operations

I

II

III

IV

Stage

 83

used; and the feature-selection phase is performed bottom-up, while the classification

phase is performed top-down through the hierarchy. A hierarchical classification allows

evaluators to identify distinct leakage-mode informed features pertinent to each stage.

Furthermore, ensuring high classification success rate in upper hierarchical levels enables

evaluators to still recover key information about the executed instructions even if accuracy

in separating details on lower levels is reduced.

The hierarchical classification is combined with a leakage model-informed sub-

sampling of potential architectural states to profile instructions and identify optimal

features for each stage in a feasible and scalable manner. The feature-selection phase uses

a Hamming weight (HW) leakage model to design “profiling codes” consisting of a

condensed set of test instructions such that—if there was no noise and if the leakage model

was valid—the signals measured as the DUT executes these codes would min-max bound

the signals that would be measured as the DUT executes all possible instantiations of the

profiled instructions. The min-max signal envelopes for each instruction class are collected

and stored in the hierarchical database, as the profiling codes are executed. Configurations

where pairs of instruction classes can most easily be separated are identified. The signals

measured at these configurations are the “features” that are used to classify instructions

using binary classification with majority voting [46] in the next phase.

 In addition to measured signals, this work also uses novel “differential signals”

derived from them to improve success rates. These signals capture the impact of an

instruction on the architectural state over multiple cycles. The capabilities of the

disassembler are further augmented by assuming branches taken and not-taken as separate

instruction classes, enabling control-flow prediction. The proposed method enables high-

resolution measurements at a low acquisition cost, efficiently identifying highly potent

features within a large search space. As a result of the leakage-model-informed feature

 84

selection, and hierarchical classification, improved success rates are observed for

application benchmarks, compared to alternative methods [45], [48].

The contributions of this work can be summarized as follows:

- Fine-grained EM SCA-based disassembly is performed by identifying optimal

probe configurations and corresponding signal envelopes during the feature-

selection phase.

- In addition to directly probed signals, novel differential signals derived from them

are used as features.

- Control-flow leakage prediction is enabled with input-constrained analysis of

branch instructions.

- Success rates of ~99% and ~97% are observed when the proposed method is used

to disassemble test codes and application benchmarks from the Dalton project [14]

executed by a AT89S51 microcontroller unit implementing the i8051 instruction

set [51] (𝑁 = 90 instructions).

4.2 OVERVIEW

This section reviews previous SCA-based disassemblers and presents an overview

of the proposed approach.

4.2.1 Relevant work

Various SCA-based methods exist for recovering information about target

processes on embedded systems. Code-monitoring with SCA is most often used to identify

fixed instruction sequences, separate basic blocks, and predict control flow [42],[43] based

on some a priori knowledge of an evaluated benchmark. Using SCA to disassemble

 85

individual instructions from an arbitrary unknown code as in [44]-[48] is far more

challenging in part because each instruction impacts a multitude of architectural blocks

differently. Disassemblers can be compared based on their success rates and their

acquisition cost. While success rate is simply the ratio of correctly identified instructions

and total number of executed instructions, the acquisition cost is a function of the number

of sensor configurations used during profiling 𝑁pc, the number of instantiations performed

to characterize each instruction �̅�inst, and the number of samples collected for each of these

measurements 𝑁𝑡. The acquisition cost in this work only accounts for samples stored post

measurement collection, and does not quantify repeated measurements and averaging

performed by the oscilloscope software.4

4 Please note that the acquisition cost here only quantifies storage requirements and not

acquisition time. Acquisition time is related to several setup-dependent factors including

oscilloscope features, DUT parameters, averaging method, etc., some of which are not

always available in literature.

 [44] [47] [48] [46] [49] [64] This Work

DUT PIC16F 687
ATMega

328
PIC 16F687

ATMega

328P
PIC16F15376 Cortex M0 AT89S51

of Instr. (𝑁) 33 2 33 112 50 17 90

Side-Channel Power
Coarse-

grained EM

Fine-grained

EM
Power

Fine-grained

EM
Power

Fine-grained

EM

of

Samples

Measured

per Instr.

(𝑁pc × 𝑁t ×

�̅�inst)

~2 × 106

(1× 1000 ×

2000)

~2 × 104

(1× 100 ×

200)

~1.2 × 108

(20 ×

2500 ×

2350)

~1.5 × 105

(1× 50 ×

3000)

~3.2 × 107

(400 × 2000

× 40)

~1.1 × 107

(1 × 6000

× 1768)

~4.7 × 107

(5200 ×

1000 × 9)

Success

(test code)
~70.1% 100% ~96.2% ~99.0% ~95.0% ~99.0% ~99.3%

Success

(application

code)

~50.8% – ~87.7% – – ~88.2% ~97.3%

Table 4.1: Comparison of relevant work

 86

Instruction disassembly based on coarse-grained EM or power SCA setups [44]-

[47] uses a single sensor configuration (𝑁pc = 1) and requires significant post-processing

of the signals measured as the DUT executes an extensive set of test instructions. In [44],

a power SCA-based disassembler, using principal component analysis (PCA) for feature

selection and a multivariate Gaussian classifier, was proposed to evaluate a small

instruction set (𝑁 = 33). It correctly recognized ~71% and ~51% of instructions in test

code and application benchmarks, respectively. The method in [44] assumes some a priori

knowledge of the code, however, as it applies hidden Markov models to blocks of the

executed code. In [47], a coarse-grained EM SCA-based disassembler, using PCA with

frequency-domain signals for feature selection and AdaBoost, support vector machine, and

other methods for classification, was proposed. It was able to distinguish 2 instructions

with a 100% success rate. Unfortunately, the method’s performance for the remaining

instructions was not evaluated in [47]. A larger instruction set (𝑁 > 100) was evaluated in

[46] with a power SCA-based disassembler, using Kullback-Leibler (KL) divergence for

feature selection and quadratic discriminant analysis for classification. The method

disassembled a test code with ~99% success rate. Although [46] used hierarchical

classification, included an extra method to improve success rates for application

benchmarks, and recovered 2 instructions implemented in one such code with 92% success

rate, the method was not evaluated comprehensively on real-world application

benchmarks. In [64], an instruction disassembler targeting a Cortex M0 processor was

proposed, implementing KL divergence for feature selection and classification algorithms

demonstrated in [46], which was further enhanced by using models based on multi-layer

perceptron and convolutional neural network. While the method recognized ~99% and

~88% of instructions in test code and application benchmarks respectively, the disassembly

was limited to a small subset of the full instruction set (𝑁 = 17).

 87

Instruction disassembly based on fine-grained EM SCA was demonstrated in

[48],[49]. A small instruction set (𝑁 = 33) was evaluated in [48] using linear discriminant

analysis for feature selection and a k-Nearest Neighbor algorithm for classification. While

the disassembler recognized ~96% of the instructions in a test code and ~88% of them in

application benchmarks, the approach in [48] is an invasive method that requires

decapsulation of the DUT to constrain the search space of configurations during feature

selection. A similar fine-grained setup in [49] targeted a slightly larger instruction set (𝑁 =

50) by performing bit-level disassembly of opcodes, training quadrature discriminant

analysis-based classifiers to identify individual bit transitions as instructions are pre-

fetched. Although the disassembler recognized 95% of instructions in test codes, it was not

evaluated on real benchmarks.

While the methods proposed in [44]-[49], [26] (Table 4.1) have very high success

rates when disassembling test codes that follow the same structure/template as the profiling

codes they use to select features, their success rates either decrease markedly or are

unknown when disassembling application benchmarks; moreover, the methods in

[44],[46],[48], [64] which were developed and tested with only limited number of

instructions, may not scale well as 𝑁, the instruction set’s size, increases. Another issue

common to the methods in [44]-[49] is that they do not elaborate on the disassembly of

conditional branches; such branches requires careful consideration during both phases of

disassembly and can enable the detection of possible transitions to different parts of the

code and the evaluation of control flow for comprehensive disassembly. Finally, the

methods in [44]-[48] extensively instantiate instructions with randomized operands, in

different sequences, etc.; they instantiate each instruction from 200 [47] to 3000 [46] times.

These methods cannot be directly extended to fine-grained EM SCA because their

acquisition costs would be infeasibly high, especially if the number of possible instructions

 88

and measurement configurations is large. By contrast, our proposed method aims to (i)

improve the success rate of disassembly for application codes, (ii) identify if branches were

taken/not taken during execution, and (iii) maintain a feasible acquisition cost even for

large instruction sets and high-resolution EM probing.

4.2.2 Proposed Approach

As mentioned in the Introduction, the proposed method consists of two phases (Fig.

4.2). In the feature-selection phase, EM fields emanated from the DUT are collected for

all instructions by designing and using profiling codes that instantiate each instruction for

multiple specific machine states, chosen according to the HW leakage model [4], [54]. The

signals are collected with all measurement configurations in a 5-D search space consisting

of the probe location, probe orientation, and time interval. Next, the min-max bounds of

signals—directly probed fields, as well as differential signals derived from them—are

found for each instruction, and these signal envelopes are compiled within a hierarchical

database. The database stores for each instruction—at the bottom stage of the hierarchy—

real-valued envelopes that are multivariate functions of the measurement configuration,

Figure 4.2: Overview of the proposed approach.

Profiling codes

Arbitrary codes

EM Signals

EM Signals

Software

Disassembly

Database

Construction

Hierarchical

Database
Stage I Length

Stage II Size

Stage III Operand

Stage IV Function

Feature

Selection
Feature Selection Phase

Classification Phase

Hierarchical

Classification

Validation

Features

Optimal Configurations

Accuracy

Predicted Output

 89

i.e., they are functions of 5 variables. For the upper stages of the hierarchy, instructions are

grouped using certain instruction attributes (Fig. 4.1), and the database is compiled bottom-

up, i.e., the envelopes for the instruction classes in the upper stages are constructed using

envelopes for instruction classes compiled in the lower stages.

Once the database is constructed, it is used to identify optimal measurement

configurations and features for binary classification. During feature selection, the

envelopes for each instruction class are compared pairwise (one at a time) to those of other

classes at the same stage; the comparison identifies 𝑀 configurations, where the pair’s

signal envelopes are most distant; i.e., these are the optimal values of the 5 variables to

distinguish the pair from each other. The signals obtained with the optimal measurement

configurations, i.e., the selected features, and the envelopes of the two classes

corresponding to them are recorded for use in the next phase. In the classification phase,

signals measured while the DUT executes arbitrary codes are categorized hierarchically

starting from the top stage. At each stage, candidate classes are identified given the class

selected in the previous stage, using binary classification with majority voting [46].

4.3 BACKGROUND

This section describes the DUT’s measurement setup, the SCA threat model, the

hierarchical grouping of the instruction set, and the signals used in the proposed method.

4.3.1 Measurement Setup

To demonstrate the proposed method, this article uses the AT89S51

microcontroller, which implements 111 instructions, differing in function, size, length,

addressing mode, source and destination operands, etc. [51]. The setup used for the

measurements is shown in Fig. 4.3. The DUT was operated at 2 MHz. Fields were sensed

 90

using a 1-mm H-field probe, positioned at a fixed height of 0.5 mm and various points on

an equally spaced 51×51 grid over the DUT’s surface (area~8×8 mm2) using Riscure’s

probe positioner. Measurements were performed using both x- and y- oriented probes.

Therefore, 𝑁pc =5202 probe configurations were used for constructing the database.

Signals were collected and analyzed using a Keysight DSOS054A oscilloscope, at a

sampling rate of 2 GS/s (𝑁t = 1000 samples); the signals were collected 50 times and

averaged to minimize measurement noise. For comparison and validation, measurements

using the coarse-grained EM SCA setup were also performed, using a 10-mm H-field

probe. HEX files for programs, generated using Keil’s 8051 emulator, were uploaded to

Figure 4.3: Measurement setup used for instruction disassembly (top, same as in [4]) and

probes used for coarse-grained (bottom-left) and fine-grained (bottom-right)

EM SCA.

 91

the program memory of the chip using an Arduino as interface. These codes included

start/end markers to simplify measurements, implemented via a general-purpose I/O pin.

The probe positioning, data acquisition, and subsequent data storage were automated to

save experiment time. To reduce storage requirements, samples were saved as single-

precision floating-point numbers in binary file format. More information on the setup can

be found in [54]. Only 𝑁 = 90 instructions were considered for the following analyses;

instructions that use external and indirect addressing modes were excluded because such

instructions are seldom used by compilers for general-purpose codes, unless access to

external memory is required, and because the focus of this article is on EM emanations

arising from on-chip switching activity.

4.3.2 Threat Model

Different threat models are assumed in the feature-selection and classification

phase experiments. To allow accurate profiling, limited restrictions are placed on

evaluators during the first phase. As in previous works [45]-[48], the feature-selection

phase assumes that evaluators have the ability to control a clone of the DUT, or the DUT

itself such that they have the ability to send known profiling codes to the device and observe

the internal architectural state of the microcontroller as each instruction is executed.

Further, the evaluators are assumed to also have the ability to repeat such codes as many

times as desired, allowing field measurements to be averaged to minimize measurement

noise. In contrast to this transparent “white-box” model of the feature-selection phase, a

more restrictive “gray-box” model [9] is used in the classification phase. In this model, the

code being executed, the inputs, and the internal operations of the DUT are assumed to be

not visible to the evaluators but the evaluators are assumed to still have the ability to repeat

the codes being targeted, similar to the setup used by other fine-grained EM works that

 92
combine measurements from multiple locations to increase success rates of disassembling

Length Size Operands Functions

1Cycle (51 ins) 1Byte (25 ins) Acc1 INC; DEC; RR; RRC; RL; RLC; SWAP; DA; CPL;

CLR

Acc,Reg ADD; ADDC; SUBB; ORL; XRL; ANL; MOV; XCH

C-bit2 SETB; CLR; CPL

Reg3 INC; DEC

Reg,Acc MOV

No ops. NOP

2Byte (26 ins) Acc, Imm4 ADD; ADDC; SUBB; ORL; XRL; ANL; MOV

Acc, Dir ADD; ADDC; ORL; ANL; XRL; SUBB;MOV; XCH

Dir5 INC; DEC

C-bit, Bit MOV

Bit6 CLR; CPL; SETB

Reg, Imm MOV

Dir, Acc ORL; ANL; XRL; MOV

2Cycle (51 ins) 1Byte(5 ins) Acc, Dptr7 MOVC

Acc, PC8 JMP; MOVC

No ops. RET;RETI

2Byte (17 ins) Addr9 ACALL; AJMP

C, Bit ANL; ORL

Reg, Off10 DJNZ

Off JZ; JNZ; JC; JNC; SJMP

C, /Bit ANL; ORL

Dir PUSH;POP

Reg, Dir MOV

Dir, Reg MOV

Bit, Cbit MOV

3Byte (15 ins) Dir, Imm MOV; ANL; ORL; XRL

Bit, Off JB; JBC; JNB

Addr LCALL;LJMP

Acc, Imm, Off CJNE

Acc, Dir, Off CJNE

Reg, Imm, Off CJNE

Dir, Off DJNZ

Dir, Dir MOV

Dptr, Imm MOV

4Cycle (2 ins) 1Byte (2 ins) Acc, B11 MUL;DIV

1Accumulator, 2 Carry Bit, 3 General Purpose Registers, 4 Immediate Value,5 Direct RAM Address, 6 Register Bit, 7 Data

Pointer, 8 Program Counter, 9 Branch Address, 10 Branch Offset, 11 B Register

Table 4.2: Instruction Groups

 93

combine measurements from multiple locations to increase success rates of disassembling

instructions [48], [49], or identify an instruction’s functional units [55].

4.2.3 Hierarchical Grouping of Instructions

Attempting to directly classify measured signals within a large set of candidate

instructions increases the odds of misclassification. Hierarchical classification can decrease

the misclassification risk by reducing the number of possible candidates in each stage,

assuming the stages in the hierarchy are appropriately chosen for the DUT (poor groupings

can result in potentially more misclassifications at the upper stages). In [46], a 2-stage

hierarchy was used: the instructions were separated into 8 groups based on operands and

into sub-groups based on their function. That grouping is not suitable for microcontrollers

that have a large number of possible operands (>30 for AT89S51). Instead, in this article,

2 higher stages, where instructions are grouped according to length and size, are added to

the hierarchy. In Stages III and IV of the hierarchy, instructions are grouped based on

operands and their functions as in [46], resulting in 4 stages of hierarchy (Fig. 4.1). These

4 attributes of each instruction 𝑖𝑛𝑠 are represented with the label ID𝑖𝑛𝑠 = (𝐿, 𝑆, 𝑂𝑝, 𝐹𝑛).

Here, 𝐿 denotes the length, 𝑆 the size, 𝑂𝑝 the operands, and 𝐹𝑛 the function of the

instruction i.e., how long it requires to complete execution, the number of bytes fetched

from program memory for it, the memory locations of the chosen data values in it, and the

operations it performs, respectively. In AT89S51, instructions require 𝐿 ∈ {1,2,4} cycles

for execution, are of size 𝑆 ∈ {1,2,3} bytes, have 30 possible operands, and implement 45

functions. Table 4.2 shows the resulting hierarchy. In the following, cycle lengths and sizes

are represented with the suffixes C and B; e.g., the label for the 1 cycle 1 byte instruction

INC Acc is ID𝐼𝑁𝐶 𝐴𝑐𝑐 = (1C, 1B, Acc, INC).

 94

4.2.4 Observed Signals’ Dependence on Chip Processes

Fields Signals collected by a near-field probe above a DUT are functions of 5

variables in the measurement setup used (Fig. 4.3) The probe’s configuration 𝑝𝑐—its

transverse location (𝑥, 𝑦), height ℎ, and orientation 𝑜 relative to the DUT—and the time of

observation 𝑡. Thus, the probed fields can be represented as 5-dimensional functions

𝑉(𝑝𝑐, 𝑡). Of course, the measured signal also depends on the processes 𝑝𝑟 that the DUT is

executing, i.e., the state of the microcontroller. These processes are performed at specific

time-intervals within a DUT’s machine cycle, localizing features temporally. The

processes can be abstracted as a combination of a target process 𝑇𝑝𝑟𝑖 and one or more

background processes 𝐵𝑝𝑟𝑗, where the subscripts 𝑖 and 𝑗 represent versions within these

processes [9]; e.g., if the entire instruction opcode is considered the target process, then the

90 target versions are 𝑇𝑝𝑟1 ≡INC Acc, 𝑇𝑝𝑟2 ≡ DEC Acc, …, 𝑇𝑝𝑟90 ≡DIV Acc, B and the

background processes include data operations in various architectural registers. The

background processes can be represented using the state of architectural registers 𝑋 ∈

{X1,… X𝑁x}, where each state X𝑘 represents a unique data value in registers (RAM, stack,

program counter, etc.) and 𝑁x is the number of combinations of register contents. Thus, the

signals can also be represented as 7-dimensional functions 𝑉(𝑝𝑐, 𝑡, 𝑇𝑝𝑟𝑖, 𝐵𝑝𝑟𝑗). Using the

notation in [4], a signal’s dependence on measurement configuration and processes

executed on the DUT are highlighted with super/sub-scripts; e.g., 𝑉𝑇𝑝𝑟𝑖,𝐵𝑝𝑟𝑗
𝑝𝑐,𝑡

.

In addition to the probed fields 𝑉𝑇𝑝𝑟𝑖,𝐵𝑝𝑟𝑗
𝑝𝑐,𝑡

, the differential signal

 Δ𝑉𝑇𝑝𝑟𝑖,𝐵𝑝𝑟𝑗
𝑝𝑐,𝑡

= |𝑉𝑇𝑝𝑟𝑖,𝐵𝑝𝑟𝑗
𝑝𝑐,𝑡+∆𝑡

− 𝑉𝑇𝑝𝑟𝑖,𝐵𝑝𝑟𝑗
𝑝𝑐,𝑡

|, (4.1)

is introduced. Here, ∆𝑡 is the product of cycle length 𝐿 of the target process 𝑇𝑝𝑟𝑖

and clock period 𝑇clk. In this work, the differential signals are computed between the

corresponding clock cycles of adjacent instructions. While traditional differential side-

channel analysis assumes observed signals in a single clock cycle represents the transition

 95

between different machine states, the differential signal introduced in this article computes

differences in fields over multiple clock cycles, i.e., it captures the change in fields

measured from before an instruction is executed, to after it is executed. This is a useful

quantity for separating instructions that modify contents of architectural blocks shared

across the instruction set, such as program counters, or the pre-fetched architectural

registers. For instance, the 8051 reserves certain sub-cycles to operate on the accumulator

or certain RAM registers [51], irrespective of the executed instruction, enabling easier

identification of instructions impacting these registers with differential signals. Example

signals are plotted in Fig. 4.4.

If a single-stage disassembler was used, the target process would be the complete

instruction opcode. Thus, each version of the target process from 𝑇𝑝𝑟1 to 𝑇𝑝𝑟90 would

represent a candidate opcode for disassembling the observed signals. The large set of

candidates poses major issues in feature selection and classification; e.g., a total of

𝐶2
90 =4005 classifiers are required for binary classification [46]. In contrast, the proposed

4-stage hierarchical disassembler constructs only 281 classifiers because there are

relatively small numbers of candidate classes in each stage. What constitutes target and

background processes, however, changes at each stage of the hierarchy. The target process

in each stage is a different attribute of the opcode, identified by the label ID𝑖𝑛𝑠 =

(𝐿, 𝑆, 𝑂𝑝, 𝐹𝑛). Because classification in each stage distinguishes instructions based on only

one attribute, the remaining attributes of the opcode are assumed to be part of the

background: In Stage I, the target instruction length can take values from the set 𝐿 ∈

{1C, 2C, 4C}. Here 𝐵𝑝𝑟 for 𝐿 = 1 C instructions includes any combination of the

architectural state 𝑋, and the 51 groups of (1C, 𝑆, 𝑂𝑝, 𝐹𝑛) in Table 4.2. The hierarchy then

enables independent analysis within each branch in the following stages; e.g., in Stage II,

the instruction size is analyzed separately for 1C instructions (for which 𝑆 ∈ {1B, 2B}) and

 96

2C ones (for which 𝑆 ∈ {1B, 2B, 3B}). Although attributes (𝑆, 𝑂𝑝, 𝐹𝑛) are assumed to be

“background” processes here, they are still constrained by target process versions being

evaluated, unlike the state of background architectural registers that is unrestricted.

4.4 PHASE I: FEATURE SELECTION

This section details the database construction, the profiling codes, and the feature-

selection method in the first phase of disassembly.

(a) Probed Fields

(b) Differential Signals

Figure 4.4: Space-time distribution of (a) probed fields, and (b) differential signals derived

from them, measured by a y-oriented probe at 51×51 locations for MOV A,

#00 instruction. Spatial maps are plotted at 25 ns and time variations are

plotted at the center location. Each machine cycle is divided into 6 states and

2 sub-states [51].

 97

4.4.1 Database Construction

Each instruction class is characterized by 4 signal envelopes in the database; these

envelopes are 5-dimensional functions (of 𝑝𝑐, 𝑡). The hierarchical database is constructed

as follows (see Fig. 4.1 for stage definitions). First, the Stage IV of the database is compiled

for the 90 instructions. For each instruction 𝑇𝑝𝑟𝑖, multiple instantiations are executed (see

Section 4.4.2), the EM fields are probed using all possible probe configurations, and the

min-max envelopes of probed fields and differential signals are stored in the database:

 𝐞𝐧𝐯𝑇𝑝𝑟𝑖
𝑝𝑐,𝑡 = [min𝑉 ,max𝑉 ,min Δ𝑉 ,max Δ𝑉] (4.2)

Here, the minima and maxima are found among all instantiations of the instruction,

i.e., ∀𝐵𝑝𝑟𝑗 ∈ 𝐵𝑝𝑟. Next, these 90 instructions are grouped according to their operand class,

as per Table 4.2. The envelopes for each of the 35 operand classes in Stage III are

constructed by computing the min-max bounds of the envelopes of all the instructions with

that operand. Similarly, Stage II (I) portions of the database are compiled from its Stage III

(II) portions. Fig. 4.5 shows an example computation of the min-max envelopes.

Figure 4.5: The envelopes in stage IV portion of the database (left) are the min-max

bounds of the probed fields for multiple instantiations of each instruction;

here, the SETB C-bit instruction. The instantiations have different initial

conditions of the C-bit (0 and 1) and RAM registers (0x00 and 0xFF). The

envelopes in stage III portion of the database (right) are the min-max bounds

of the envelopes of all instructions that have the same operand; here, C-bit.

 98

4.4.2 Method for Selecting Features

One approach to finding the signal envelopes is to collect an extensive set of

signals, e.g., by instantiating the architectural registers 𝑋 with random values. For instance,

[46] used 3000 such instantiations per instruction for feature selection. While this can

improve classification accuracy for coarse-grained EM/power SCA setups, the acquisition

cost for fine-grained EM setups quickly becomes intractable when so many instantiations

are used: For 𝑁 = 90 instructions, if 𝑁t = 50 time samples of signals are measured as in

[46] with a single probe configuration (𝑁pc = 1), a total of 13.5 × 106 samples would be

acquired. If they are measured with the fine-grained EM SCA setup in this work, with

𝑁pc~5200 probe configurations (Section 4.6), a total of 70 × 109 samples would be

acquired. Storing these samples as single-precision floating-point numbers would require

~50 MB of space for the former and ~280 GB for the latter setup. Additional storage may

Figure 4.6: Profiling codes instantiate instructions with different operands, under different

machine states. NOP instructions are introduced to keep the computation of

differential signals consistent.

 99

be required during feature selection, e.g., to transform time-domain data to frequency

domain.

A smaller set of signals can be collected by modeling the leakage as if it depends

only on HWs of data in architectural registers, a common approach in processor security

evaluations [4]; e.g., signals for 256 data values can be bound by those for extreme

instantiations of data 0x00 (HW 0) and 0xFF (HW 8). Then, the data-dependency of each

instruction—except conditional branch instructions—can be bound by using at most 4

instantiations, by setting operands and result to data values 0x00 and 0xFF. For example,

consider the instruction ADD Acc, Imm. To bound its data dependence, the data values in

the Accumulator register and the Immediate value in program memory are chosen from the

set {(0x00,0x00), (0x00,0xFF), (0xFF,0x00), (0xFF,0xFF)}. Further, to improve coverage

of background processes, all 128 bytes of RAM, including stack registers, are instantiated

as either 0x00 or 0xFF. Therefore, 8 instantiations are used to characterize each instruction

in the profiling codes. Code snippets used to profile this instruction are shown in Fig. 4.6.

In addition to the instruction instantiations, extra instructions are used to support

measurements, such as a general-purpose pin triggering the oscilloscope for ease of

experiment.

 Because conditional branches perform different functions depending on the

result of the condition evaluation, branches taken and not taken for the same instruction

are considered as separate classes in Stage IV, i.e., they have the same instruction length,

size, and operands, but different functions. Introducing 12 additional instruction classes for

the conditional branch instructions in Table 4.2, control-flow prediction is enabled in the

final stage of disassembly. Using 16 instantiations for conditional branch instructions and

8 for other instructions, the proposed profiling codes contain a total of 𝑁�̅�inst = 12 × 16 +

78 × 8 = 816 specially-designed test instructions (in addition to miscellaneous

 100

instructions used as markers for measurement, and various instructions needed to clear flag

registers, data memory, or stack). These profiling codes are used to acquire the following

total number of samples to construct the database:

 𝑁samp = 𝑁�̅�inst𝑁pc𝑁t (# of Samples Acquired) (4.3)

Here, 𝑁pc is number of probe configurations, 𝑁t is number of time samples, 𝑁 is

the number of instructions, and �̅�inst is the average number of instantiations used to profile

each instruction. While 𝑁pc𝑁𝑡 depends on the measurement setup, �̅�inst depends on the

profiling method.

4.4.3 Selecting the Features

Feature selection identifies optimal measurement configurations where envelopes

(and therefore signals) are easily separable when compared pairwise. Here, as well as in

Section 4.5, the process is presented for two instruction classes 𝑎 and 𝑏 at the same stage

of the hierarchy. First, the “average distance” between the pairs’ envelopes is computed

 𝐷𝑖𝑠𝑡𝑎,𝑏
𝑝𝑐,𝑡 =

|(𝐞𝐧𝐯𝑎
𝑝𝑐,𝑡[1]+𝐞𝐧𝐯𝑎

𝑝𝑐,𝑡[2])−(𝐞𝐧𝐯𝑏
𝑝𝑐,𝑡[1]+𝐞𝐧𝐯𝑏

𝑝𝑐,𝑡[2])|

2
 (4.4)

While feature selection in Stages II-IV directly uses this quantity, a pre-processing

step is required in Stage I because signals with different time lengths are compared. It is

assumed that the first cycle of multi-cycle instructions is similar to a single-cycle

instruction, due to the presence of opcode fetch-related processes. Consequently, in Stage

I feature selection, signals for multi-cycle instructions are partitioned into multiple single-

cycle windows, similar to [44]. The partitioned windows are then compared separately to

single-cycle instructions, assuming the cycles that follow the first cycle will show sufficient

differences to allow their length-based classification. Fig. 4.7 shows an example of the

distance between single-cycle instructions and the second cycle of two-cycle instructions.

The distance Δ𝐷𝑖𝑠𝑡𝑎,𝑏
𝑝𝑐,𝑡

 between the differential signal envelopes is computed similarly. As

 101

demonstrated in Fig. 4.8, some instruction classes are potentially more separable using

differential signals. Prediction of a program’s control flow can be achieved in Stage IV of

the disassembly, as shown in Fig. 4.9.

Next, optimal measurement configurations that maximize the distance between

signal envelopes are identified. For each pairwise comparison, 𝑀 = 10 optimal probe

configurations—5 each for direct and differential signals—and the corresponding 10

optimal time instances are stored in the arrays 𝐩𝐜𝑎,𝑏
opt

 and 𝐭𝑎,𝑏
opt

. The signals at these optimal

measurement configurations are the selected features that will be compared with the stored

envelopes to classify instructions.

Figure 4.7: Spatial map (top-left) of 𝐷𝑖𝑠𝑡1C,2C
𝑝𝑐,𝑡

 between 1-cycle and 2-cycle instructions at

𝑡~30 ns and time variation (top-right) at an optimal probe location (starred).

Distance (bottom-left) and envelope (bottom-right) plots for an optimal time

interval showed that instruction classes were more separable when the

difference between the envelope averages (dashed) increased, particularly at

𝑡~30 and 𝑡~37 ns.

 102

4.5 PHASE II: CLASSIFICATION

During classification, the probed field 𝑉
𝑝𝑐,𝑡

 and differential signal 𝛥𝑉
𝑝𝑐,𝑡

 are

compared to the signal envelopes in the database. The deviation of evaluated signals from

the envelopes of candidate classes 𝑎 and 𝑏 in the database are computed as

 𝐷𝑒𝑣𝑎/𝑏
𝑝𝑐,𝑡 = Max{𝑉 − 𝐞𝐧𝐯𝑎/𝑏

𝑝𝑐,𝑡[2], 0} + Max{𝐞𝐧𝐯𝑎/𝑏
𝑝𝑐,𝑡[1] − 𝑉, 0} (4.5)

Figure 4.8: Comparing the classes (1C, 2B, Dir) and (1C, 2B, [Acc, Dir]) in stage III with

𝐷𝑖𝑠𝑡𝑎,𝑏
𝑝𝑐,𝑡

 (left) and Δ𝐷𝑖𝑠𝑡𝑎,𝑏
𝑝𝑐,𝑡

 (right) shows that they are more separable when

using differential signals. Here, 𝑡~120 ns.

Figure 4.9: Distance between branch “taken” and “not taken” classes for instruction

(1C, 2B, Off, JNZ) in Stage IV (left), shows that the disassembly can

potentially predict program flow. The spatial map of distance is plotted at

𝑡~285 ns and the observed fields are plotted at an optimal configuration

(starred).

 103

This metric is 0 if the evaluated signal is within the stored envelope. The deviation of a

probed field from the envelopes in Fig. 4.7 is shown in Fig. 4.10. A corresponding metric

Δ𝐷𝑒𝑣𝑎/𝑏
𝑝𝑐,𝑡

 is computed for the differential signals.

During binary classification, the net deviation of the evaluated signal from the two

candidates 𝑎 and 𝑏 is computed only with the 𝑀 optimal measurement configurations for

separating them:

 𝑁𝑒𝑡𝐷𝑒𝑣𝑎/𝑏 = ∑ 𝐷𝑒𝑣
𝑎/𝑏

 𝐩𝐜𝑎,𝑏
opt

[𝑚],𝐭𝑎/𝑏
opt

[𝑚]𝑀/2
𝑚=1 + ∑ Δ𝐷𝑒𝑣

𝑎/𝑏

 𝐩𝐜𝑎,𝑏
opt

[𝑚],𝐭𝑎,𝑏
opt

[𝑚]𝑀
𝑚=𝑀/2+1 (4.6)

The instruction class with the smaller net deviation is considered the more likely

candidate for the evaluated signal. To classify among multiple candidates, the binary

classification is implemented with a majority voting method [5]:

𝑣𝑜𝑡𝑒𝑎,𝑏 = {

+1, if 𝑁𝑒𝑡𝐷𝑒𝑣𝑎 ≥ 𝑁𝑒𝑡𝐷𝑒𝑣𝑏
−1, if 𝑁𝑒𝑡𝐷𝑒𝑣𝑎 < 𝑁𝑒𝑡𝐷𝑒𝑣𝑏

 𝑎∗ = argmax
𝑎

∑ 𝑣𝑜𝑡𝑒𝑎,𝑏
𝑁c
𝑏=1 (𝑏≠𝑎)

 (4.7)

Here, 𝑎∗ is the most likely candidate class and 𝑁c is the number of candidate classes.

Figure 4.10: An evaluated signal for instruction (1C,1B,Acc,Inc) correctly shows large

deviation from envelope of 2-cycle instructions at 𝑡~30 ns and 𝑡~37 ns.

 104

4.6 EXPERIMENTS AND RESULTS

To test the proposed disassembler, first, each instruction is instantiated 100 times

with random operand values. In this test set, each instruction is padded with a NOP

instruction, and before the instantiations the RAM registers are cleared, similar to the

profiling codes shown in Fig. 4.6. A total of 10200 instructions are evaluated in this test

set. This evaluation is similar to the test sets that follow the templates of profiling codes,

used in [44]-[48]. For conditional branch instructions, two separate test sets are used for

the branch “taken” and “not-taken” cases. The operands in both cases are randomized with

constraints, to ensure the functions are correctly executed; e.g., for the jump-if-not-zero

instruction’s branch “taken” case, the operand is allowed to take all values other than 0.

Second, a more robust and complete evaluation of the proposed disassembler is

performed by using a set of 4 application codes from Dalton benchmarks [53], which are

specifically designed to optimize the performance of 8051 cores: the greatest common

divisor (GCD), Fibonacci (FIB), sort, and square root (SQRT) codes. As their names

indicate, the codes compute the GCD of two numbers, generate the first 10 Fibonacci

numbers, sort 10 specified integers in ascending order, and find the square root of a

specified floating-point number. The compiled codes were first disassembled using KIEL’s

8051 emulator, providing a reference assembly code to judge the accuracy of the proposed

disassembler.

Third, the potency of fine-grained EM SCA approach is evaluated by implementing

the proposed feature-selection and classification methodology using a coarse-grained EM

SCA setup (with a relatively large probe [47]) and comparing the success rates of the two

approaches. Here, the measurement configurations are optimized only over the time

dimension as there is a single fixed probe location and orientation.

 105

4.6.1 Feature-Selection Results

To construct the database with the proposed profiling codes, a total of 𝑁samp =

𝑁�̅�inst𝑁pc𝑁t = 816 × 5202 × 1000~4.2 × 10
9 samples (after they were averaged 50

times by the oscilloscope) were acquired. For comparison, consider applying the methods

presented in [44]-[47] directly to the presented fine-grained EM SCA setup: Assuming 𝑁pc

and 𝑁 are the same as in this work, but using the same �̅�inst and 𝑁t values as in the previous

works, the methods would require ~222× [44], ~17× [46], ~2.2× [47], and ~650× [48] more

samples than the proposed method.

Results for feature selection phase are exemplified in Fig. 4.11, which shows that

the envelope-to-envelope distances reduce across space and time at the lower stages of the

hierarchy. This behavior is expected for well-designed hierarchies that progressively refine

the granularity of recovered instruction. It was also observed that the spatio-temporal

distributions of distances for each stage were different, i.e., each stage of the hierarchy

impacted the probed fields differently. Further, it was observed that features for all

classifiers were limited to the region marked with white in Fig. 4.11. Consequently,

measurements for the classification phase were limited to this region (25×25 locations).

4.6.2 Classification Results

First, the test codes with 100 randomized instantiations of each instruction were

disassembled and the recovered results were compared to the reference assembly code line

by line. The accuracy is then simply computed as a ratio of correctly recovered instructions

to the total number of instructions. The success rate of the disassembly was 10130 out of

10200 instructions (~99.3%). Evaluating accuracy stage-wise showed that the

disassembled instructions had 100% accuracy for all instructions in Stages I-III, i.e., all

misclassifications were in Stage IV. Therefore, the incorrectly recovered instructions still

 106

contained some relevant information. It was also observed that all conditional branches

were correctly identified, including if the branch was taken or not. Such high success rates

are to be expected because these codes follow a similar template to the profiling codes.

 Results for the disassembly of application benchmarks are shown in Table 4.3.

The total accuracy for the fine-grained setup was found to be ~97%, with less than ±2%

variation among the 4 benchmarks. Similar to the evaluation of the test codes, no

 (a) 𝐷𝑖𝑠𝑡𝐿1,𝐿2

𝑝𝑐,𝑡
 (b) 𝐷𝑖𝑠𝑡(L1,S1),(L1,S2)

𝑝𝑐,𝑡

 (c) 𝐷𝑖𝑠𝑡(L1,S1,Op1),(L1,S1,Op2)
𝑝𝑐,𝑡

 (d) 𝐷𝑖𝑠𝑡(L1,S1,Op1,Fn1),(L1,S1,Op1,Fn2)
𝑝𝑐,𝑡

Figure 4.11: Example spatial maps of the envelope-to-envelope distances computed during

feature selection phase in stages (a) I (𝑡~30 ns), (b) II (𝑡~270 ns), (c) III

(𝑡~360 ns), and (d) IV (𝑡~70 ns), observed at the most optimal time instants.

The distances between instruction classes are smaller at lower stages of the

hierarchy.

 107

misclassifications were observed in the first three stages, and a 100% accuracy was

observed in identifying conditional branch instructions. While a slight decrease in the

disassembly accuracy was observed for the benchmarks, the difference is minimal

compared to the disassemblers demonstrated in [44] and [48]. Finally, the most

misidentified instruction for both test codes and benchmarks was the ADDC Acc, Reg,

commonly misclassified as instruction ADD Acc, Reg (misclassified in 22 out of 123

instances). Potential reasons for the misclassification have to do with the close functional

relation between the ADD and ADDC (i.e., add with carry) instructions, since in the

absence of a carry bit, identical operations are performed by the microarchitecture. The

opcodes of these instructions in the ISA are also very similar, including how they are

decoded. Similar misclassifications were also observed for rotate and rotate with carry

instructions that only differ minimally in functionality and operation. However, these

instructions are not frequently used by the compiler thereby limiting inaccuracies and

misclassification rates in large benchmarks.

 The disassembler implemented using the coarse-grained EM SCA only

showed a success rate of ~70% disassembling test codes and ~65% accuracy disassembling

the benchmarks (Table 4.3). Contrary to the fine-grained measurement setup,

misclassifications were observed in Stages II, III, and IV. Clearly, the fine-grained EM

SCA setup resulted in a more potent disassembler. An example demonstrating the

differences between database envelopes for the fine-grained and coarse-grained EM setups

are shown in Fig. 4.12. It was observed that envelopes from the fine-grained setup were

narrower and had sharper signal variations compared to the envelopes from the coarse-

grained setup. Consequently the min-max envelopes predicted by the coarse-grained setup

overlap for multiple classes at selected configurations leading to misclassifications, even

when distance predicted between instruction classes is high (Fig. 4.12). Further, the overlap

 108

is also observed to increase in the coarse-grained case, as the classification moves to the

lower hierarchical levels.

While the choice of MCU significantly simplified the feature selection and

classification phases, parts of the proposed work may be extended to more complex

systems. For instance, the feature selection phase in heavily pipelined processors can be

split into two sub-phases: The first sub-phase can implement the feature-selection

methodology described in Section 4.3, using few select instructions padded with NOPs

(Section 4.3.1). Once a sufficiently small set of potent probe configurations are identified,

the NOP instructions can be replaced with randomized instructions and operands, similar

to the methodology proposed for the power SCA disassembler in [64]. Various feature

selection and classification strategies used by power SCA disassembler can therefore be

extended to fine-grained EM SCA. However, this is only feasible once an initial

characterization, such as the low-cost feature selection proposed in this work, reduces the

large search space of potent probe configurations across the chip.

4.7 SUMMARY

A fine-grained EM SCA based disassembler was proposed to recover instructions

executed on a general-purpose micro-controller. The proposed method uses a hierarchical

Benchmark
Code Size

(bytes)

of

Instructions

Fine-Grained

EM

Coarse-

Grained EM

of Correct

Instructions

Accuracy

(%)

GCD 55 111 108 ~97.3

FIB 303 804 794 ~98.7

sort 572 2665 2556 ~95.9

SQRT 1167 2006 1972 ~98.3

Table 4.3: Results of Benchmark Evaluations

 109

framework to improve feature selection and classification. It identifies optimal

measurement configurations that distinguish instruction classes in the first phase by (i)

executing model-based profiling codes to efficiently collect probed fields in a database, (ii)

finding envelopes that bound the probed fields and, a novel quantity, differential signals

derived from them. In the second phase, measured signals with these optimal measurement

configurations are classified by comparing them to the signal envelopes of instruction

classes one pair at a time. The comparisons were performed by quantifying the deviation

of the measured signals from the signal envelopes. The proposed disassembler was shown

to successfully and feasibly recover ~97% to ~99% instructions from application

benchmarks and test codes executed on an AT89S51 microcontroller. Further, all

conditional branch executions were correctly identified, enabling control-flow leakage

prediction. It was also observed that the fine-grained EM SCA was significantly more

potent compared to a coarse-grained EM SCA analysis.

 The proposed disassembler can potentially detect malware within basic blocks

[56], as well as those impacting control flow integrity [57]-[59]. Combined with

appropriate tools quantifying vulnerabilities in side channels [54], [60], [62], the

disassembler can further enable programmers to optimize programs to minimize leakage.

Finally, the instruction level granularity of the disassembler enables detection of small-

scale hardware trojans that are more challenging to address compared to malicious code

[63].

 The DUT used in this article simplifies the disassembly significantly because

of its low-complex multi-cycle architecture; additional work is required to extend the

proposed work to more complex embedded processors. For instance, in [64], randomized

instructions were introduced based on the number of pipeline stages, while profiling

individual instruction classes. A similar extension can be proposed for the fine-grained

 110

disassembler in this work; e.g., the feature-selection phase in heavily-pipelined processors

can be split into two sub-phases: The first sub-phase can implement the feature-selection

methodology, using a few select instructions padded with NOPs (Section 4.4.2). Once a

sufficiently small set of potent probe configurations are identified, the NOP instructions

can be replaced with randomized instructions and operands for reduction, depending on the

number of pipeline stages. Additional datasets can also be created for groups with a large

number of instructions, to improve their disassembly, similar to [64].

 The disassembly can be improved further by recovering data values of

operands [4], in addition to instructions. There is also potential to improve disassembly

with higher-resolution probes. A more optimal method of combining features from

multiple configurations can also reduce misclassifications, with the potential to re-examine

predicted results and observe anomalies. Further, differential signals are a novel quantity

that requires further exploration, potentially being used to observe changes across multiple

pipeline stages as the instruction is executed, adding a new dimension to the analysis.

Finally, imposing more restrictions on evaluators in the classification phase, similar to

generic black-box testing threat models, may necessitate the use of more potent post-

processing techniques in combination with some of the aforementioned potential

improvements to the setup. Code monitoring through instruction disassembly presents a

non-invasive pathway to detect intrusions, and therefore evaluate embedded hardware

security.

 111

5. Modelling Information Leakage in EM SCA5

This chapter presents methods to model information leakage via EM side-channels

and uses them to evaluate complex embedded systems. The first part of the chapter extends

the ANOVA methodology presented for AES in Chapter 2 to generic embedded systems.

This method is used to evaluate vulnerabilities in a server implementation of the Bluetooth

low energy protocol. The final section of the chapter introduces data-dependent EM basis

functions to model side-channel leakage.

5.1 ANOVA FOR A GENERIC COMPUTING CHIP

The analysis presented in Section 2.1.4 can be extended for any generic embedded

computing chip. By assuming independence of target and background signal quantities,

ANOVA can potentially be used to evaluate complex embedded systems. Let the array

𝐕𝑝𝑐,𝑡 list all the measured signals corresponding to all possible combinations of processes

in a chip. Each observed signal in the array, 𝑉
Tpr𝑖,Bpr𝑗

𝑘,𝑟

𝑝𝑐,𝑡
, can be decomposed into three

independent, abstract signals 𝑇Tpr𝑖
𝑝𝑐,𝑡

, 𝑁𝑟
𝑝𝑐,𝑡

, and 𝐵
Bpr𝑗

𝑘
𝑘,𝑝𝑐,𝑡

. Here, 𝑇Tpr𝑖
𝑝𝑐,𝑡

 and 𝐵
Bpr𝑗

𝑘
𝑘,𝑝𝑐,𝑡

 represent the

contribution of the target and background processes Tpr𝑖 and Bpr𝑗
𝑘 to the observed signal,

whereas 𝑁𝑟
𝑝𝑐,𝑡 represents the effect of measurement-to-measurement variations. In

information-revealing measurement configurations, the observed signal will depend

strongly on 𝑇Tpr𝑖
𝑝𝑐,𝑡

 and will be insensitive to 𝑁𝑟
𝑝𝑐,𝑡

 and 𝐵
Bpr𝑗

𝑘
𝑝𝑐,𝑡

 . If the quantities𝑇Tpr𝑖
𝑝𝑐,𝑡

, 𝑁𝑟
𝑝𝑐,𝑡

,

and 𝐵
Bpr𝑗

𝑘
𝑝𝑐,𝑡

 are listed in the arrays 𝐓𝑝𝑐,𝑡, 𝐍𝑝𝑐,𝑡, and 𝐁𝑘,𝑝𝑐,𝑡, for 𝑁b background processes,

their variances are related as

5 This chapter is partly based on two previous publications:

(i) V.V. Iyer and A.E. Yilmaz, “Estimating near-field signals emanated by embedded systems using data-

dependent EM profiles as basis functions,” in Proc. USNC-URSI Rad. Sci. Meet, July 2023.

(ii) V.V. Iyer and A. Yilmaz, “EM side-channel analysis of data leakage near embedded bluetooth low

energy modules,” in Proc. WAMICON, April 2023.

The author contributed to the formulation, implementation, and measurements presented in this article, as

well as the writing of these manuscripts.

 112

Var(𝐕𝑝𝑐,𝑡)

Var(𝐓𝑝𝑐,𝑡)
= 1 +

Var(𝐍𝑝𝑐,𝑡)

Var(𝐓𝑝𝑐,𝑡)⏟

1 𝐹𝑁
𝑝𝑐,𝑡

⁄

+ ∑
Var(𝐁𝑘,𝑝𝑐,𝑡)

Var(𝐓𝑝𝑐,𝑡)⏟

1 𝐹𝐵
𝑘,𝑝𝑐,𝑡

⁄

𝑁b
𝑘=1 (5.1)

As shown previously in Section 2.1, the ratios can be estimated using ANOVA F-statistics.

The choice of target and background vary on the computations and data of interest; e.g., in

the AES case, a single byte is the data of interest, and remaining 15 byte computations

contribute to algorithmic noise. In this chapter, an example demonstrating the usage of the

ANOVA F-statistic for data-recovery from a BLE module is presented.

5.2 EM SCA ANALYSIS OF A BLE SERVER USING ANOVA

This section presents an overview of BLE modules, potential vulnerabilities, the

method used to evaluate the implementation and the measurement results of the

evaluations.

 (a) (b)

Figure 5.1: (a) Information access flow in the GATT protocol. (b) Flow of data during a

write operation [72].

 113

5.2.1 Background

Bluetooth low energy (BLE) is a commonly used wireless communication standard

in low-power applications [71]. Once paired, BLE devices can communicate via the GATT

protocol (Fig. 5.1(a)): A peripheral GATT server offers various services and

characteristics, whose attributes are locally indexed on the embedded device. These

attributes are accessed by a paired GATT client, which can read, write, or send requested

data using appropriate mechanisms as per the BLE 5.0 standard [71]. In this work, the

computations performed by the GATT server as it receives and processes data written to a

specific characteristic in a chosen service are the computations of interest and the values

actually written to the characteristic are the data of interest. Thus, data corresponding to

the service and characteristic handles, as well as those introduced by various layers in the

protocol stack, are extraneous.

As shown in Fig. 5.1(b), once a GATT client antenna sends signals encapsulating

the data of interest to the server, the analog circuits and the link layer decode the

information and send it to the CPU using a system bus. These decoded signals trigger the

“event” corresponding to the chosen service and characteristic, and the data of interest are

sent to the appropriate memory location from where they are handled as per functions

defined in the software application. The movement of data between registers, via buses,

creates vulnerabilities that can be exploited by fine-grained EM SCA attacks [4], [41].

Fine-grained EM SCA attacks are generally implemented in two phases. Phase I

has two goals: (i) Identify optimal measurement configurations, where on-chip processes

related to the computations of interest contribute most to the signals—or equivalently,

where measurement and algorithmic noise have minimal impact [41]. This requires

repeating the computations of interest using a few carefully chosen data while collecting

signals with numerous (ineffective) measurement configurations; e.g., instructions

 114

executed by a microcontroller were extracted by an EM SCA approach in [70] by

identifying 10 optimal probe configurations per instruction pair out of 5.2 × 103 possible

configurations. (ii) Construct a database of signals to be referenced in Phase II for data

recovery. These signals are collected with only the optimal probe configurations,

potentially by executing the computations of interest with additional data. In Phase II, the

optimal probe configurations are monitored and the data of interest are recovered by

referencing the database. The specific methods used in this work are detailed next.

5.2.2 Measurement Protocol

Information leakage via the EM side channel is generally abstracted using leakage

models such as HW and Hamming Distance (HD) [4], [41], [70]. Recently, computing the

ANOVA F-statistic on EM signals corresponding to data with extreme HW/ HD was found

to be a rapid, low-cost method for isolating near-field vulnerabilities [41]. Here, to identify

optimal measurement configurations, a similar approach is used in Phase I, which requires

repeatedly measuring signals as the same exact computations are executed. Therefore, in

the following, the probed signals are denoted as 𝑉𝑝𝑟,𝑟
𝑝𝑐,𝑡

 ; they are functions of not just the

probe configuration 𝑝𝑐, which represents the probe’s location, orientation, and height, the

measurement time 𝑡, and the processes performed by the chip 𝑝𝑟, but also the repetition 𝑟

as each signal contains varying levels of measurement noise [4].

Phase I starts with the evaluator pairing a client to the peripheral GATT server. The

evaluator may then select a specific service and characteristic offered by the server, and

write a value to the characteristic. Assuming this value has a size of 1 byte, the data with

the minimum and maximum HW of 0 (0x00) and 8 (0xFF) are chosen. Both data values

are written 𝑁r times while the signals near the chip operating the GATT server are

measured. Because the chosen service and characteristic are fixed for each write operation,

 115

the only variation in measured signals comes from variation in the written value and

measurement noise. To quantify the impact of this noise at each measurement

configuration, the sample mean �̅�HW0/8

𝑝𝑐,𝑡
and sample variance 𝑠HW0/8

𝑝𝑐,𝑡
 of the 𝑁r measured

signals (𝑉𝑝𝑟,1
𝑝𝑐,𝑡, ⋯ , 𝑉𝑝𝑟,𝑁r

𝑝𝑐,𝑡
) are computed. Then, the F-statistic is computed as [41],

 𝐹𝑁
𝑝𝑐,𝑡 =

2𝑁r×Var(�̅�HW0

𝑝𝑐,𝑡
,�̅�HW8

𝑝𝑐,𝑡
)

Mean(𝑠HW0

𝑝𝑐,𝑡
,𝑠HW8

𝑝𝑐,𝑡
)

 (5.2)

Notice that only signals corresponding to the data with extreme HW values (HW 0 and 8)

are collected and analyzed here. Next, the computed F-statistic is compared to a critical

value 𝐹𝑁,c—effective configurations have F-statistic 𝐹𝑁
𝑝𝑐,𝑡 > 𝐹𝑁,c—derived from F-

distributions for a confidence interval of 99.99% [41] to judge the potency of the

measurement configuration using null-hypothesis testing.

Phase I ends with the evaluator identifying the optimal probe configuration 𝑝𝑐opt =

argmax
𝑝𝑐

 𝐹𝑁
𝑝𝑐,𝑡

and constructing the database: The evaluator uses the GATT client to write

data spanning all HWs to the GATT server 𝑁r times while probing the fields with 𝑝𝑐opt.

The database stores a single reference signal—the average of the 𝑁r collected signals—for

each HW.

Next, the EM fields near the chip operating the GATT server are probed with 𝑝𝑐opt

while arbitrary data values are written to it either by the evaluator’s GATT client or an

independent one, without any repetition. Measured signals for the test data are compared

to the reference signals to identify the best fit as the reference signal with the minimum

average distance from the test signal when 𝐹𝑁
𝑝𝑐opt,𝑡 > 𝐹𝑁,c.

5.2.3 Measurement Setup

The setup shown in Fig. 5.2 was used for the measurements. A Cortex M4 processor

in the RA4W1 BLE development board [71], operating at 48 MHz, was used as the device

under test. A Nokia C01 smartphone was used as the evaluator’s client in Phase I. The

 116

GATT browser installed in the smartphone paired with the server and accessed the services

and characteristics provided by the demo application installed in the board [72]. The

service chosen was the Renesas LED Switch Service, the characteristic selected was the

LED Blink Rate, and the allowed values to be written ranged from 0x00 to 0xFF. To

simplify measurements, markers were included within the software implementing the BLE

operation to trigger a Keysight MSOS054A oscilloscope, sampling at 10 GS/s. The oscillo-

scope was also used to store and analyze data. A Riscure probe station was used to position

a 1-mm diameter H-field probe from Langer in 41×41 locations over the 8×8 mm2 chip

surface. Measurements were performed in x and y orientations of the probe at a height of

0.5 mm above the chip. Bluetooth transfers from the smartphone application were

automated using the Android debug bridge. Phase II used both the Nokia smartphone and

a OnePlus Nord N20 smartphone as a client, both using the same Bluetooth service and

characteristic.

Figure 5.2: The near-field measurement setup used for EM SCA attacks. Experiments are

performed on an RA4W1 test board. Near-fields were sensed using an H-field

probe, scanning the chip at a height of 0.5 mm.

 117

5.2.4 Measurement Results

A total of 3362 probe configurations were used to observe signals for 1290 clock

cycles, used by the BLE protocol to set the LED blink rate. The write operations were

repeated 𝑁r = 10 times at each probe configuration. By replicating these operations at each

location, at the end of a scan, the evaluator can generate composite signal maps (Fig. 5.3).

Phase I took ~40 hours to complete, primarily due to bottlenecks in the automation of

Bluetooth data transfer. Storage requirements for these measurements were ~65 GB. Phase

I results are shown in Fig. 5.4 for an x-oriented probe. The threshold 𝐹𝑁,c was set to be ~40.

Although signals were measured for ~1300 clock cycles, only 2 clock cycles were found

Figure 5.3: Spatio-temporal distribution of measured signals using an x-oriented probe.

The spatial map is plotted at 𝑡~30 ns and time plot is shown for an optimal

configuration (star) for three clock cycles, each cycle being ~20 ns.

Figure 5.4: Spatial map of max
𝑡
𝐹𝑁
𝑝𝑐,𝑡

 (left) and time plot of the F-statistic (right) at an

optimal configuration (starred). The measurement configuration is suitable

for data recovery if the F-statistic is greater than the threshold 𝐹𝑁,𝑐 (red).

 118

to be optimal time-intervals for data leakage. Further, about 750 effective probe

configurations were identified across both orientations, close to the top-right and bottom-

left regions of the chip. The optimal probe configuration 𝑝𝑐opt was an x-oriented probe at

location (4, 6, 0.5) mm. Using this optimal configuration, the database of reference signals

was constructed for the data values 0x00 (HW 0), 0x01 (HW 1), 0x03 (HW 2), 0x07 (HW

3), 0x0F (HW 4), 0x1F (HW 5), 0x3F (HW 6), 0x7F (HW 7), and 0xFF (HW 8).

A total of 256 test values were sent to the GATT server, covering all 8-bit binary

numbers. These values were written by the evaluator’s client used in Phase I, as well as the

other client. The experiments were repeated 5 times for both clients. Comparing the

measured signals to the reference signals, the HW of the test values were identified (Fig.

5.5) with success rates ranging from ~98.1% to ~99.2% for both the evaluator’s client and

the other client, across the 5 repeated experiments. The high success rate for both clients

indicates that the data leak is due to chip processes and computations in the Bluetooth

GATT server related to the service and characteristic, which are independent of the client

connected to it. This implies that once attackers profile certain characteristics in the GATT

Figure 5.5: Spatial map of max
𝑡
𝐹𝑁
𝑝𝑐,𝑡

 (left) and time plot of the F-statistic (right) at an

optimal configuration (starred). The measurement configuration is suitable

for data recovery if the F-statistic is greater than the threshold 𝐹𝑁,𝑐 (red).

 119

server, they no longer require access to the communication channel, and may monitor fields

near the server to recover information from any other connected device.

The proposed method could be extended to isolate configurations related to other

BLE services, such as read or notify. Because such attacks do not rely on eavesdropping

of the communication channel, they are harder to mitigate using robust authentication

methods.

5.3 DATA-DEPENDENT EM PROFILES AS BASIS FUNCTIONS

Previously, EM SCA methods utilized leakage models that abstract sources of

leakage such as data-bus transfer, switching in registers, etc. using simplified quantities

[4], [21], [54]. These models essentially reduce observed signals for multiple data values

into a small number of “signal profiles”, where the profiling is based on the properties of

data being computed during observation. For example, EM SCA on simple

microcontrollers have assumed that emanated fields are linearly dependent on the number

of bits with value 1 in data, i.e., the observed fields are dependent on the Hamming Weight

(HW) of the data value in data bus or registers [4], [21]. Here, the data with same HWs,

such as 0x01 and 0x02 (both have HW 1), are assumed to have the same signal profile. The

profiles can be constructed by using a single value conforming to the leakage model, or by

averaging signals for a few values. This simplification is sufficient for analysis if variance

of observed signals assigned to the same profile is much smaller than the variance among

signal profiles. Such profiles can have limited accuracy, however, when representing large

number of data values; e.g., in an 8-bit processor, a single profile constructed for data with

HW 4 represents 70 different data values. Further, assuming the same leakage models are

used for concurrently operating buses and registers, there may be a large difference

between aggregated profiled signals and the actual signal [75].

 120

This section introduces a novel approach that improves upon existing leakage

models to synthesize near-field signals for arbitrary data values using the fewest possible

measurements. These measurements are performed to derive basis functions, which are

then linearly combined to generate fields at multiple near-field probe configurations. The

method, evaluation and results are summarized next.

5.3.1 Representing Data with Binary Basis Vectors

As Any n-bit binary data of interest can be considered an ordered sequence of n

elements represented as a vector 𝐚 = [𝑎𝑛, … , 𝑎1]
T, from most- to least-significant bit,

where 𝑎𝑖 is an element of the binary field 𝔽2. The vector 𝐚 can also be represented using

the canonical basis vectors 𝐞𝑖 = [𝑒𝑖
1, 𝑒𝑖

2, … , 𝑒𝑖
𝑛]T, where 𝑒𝑖

𝑗
= 1 if 𝑖 = 𝑗 and 0 otherwise,

as

 𝐚 = 𝑎1𝐞1⊕𝑎2𝐞2⊕…⊕𝑎𝑛𝐞𝑛, (5.3)

where ⊕ represents the XOR operation. Typically, profiling EM signals for SCA

involves using data with different HWs. To link the data representation in (2) to the HW

leakage model, a different (non-orthogonal) set of basis vectors 𝐛𝑖 = [𝑏𝑖
1, 𝑏𝑖

2, … , 𝑏𝑖
𝑛]T are

used, where 𝑏𝑖
𝑗
= 1 if 𝑖 ≤ 𝑗 and 0 otherwise; here, each 𝐛𝑖 has a different HW. These basis

vectors can be used to express the vector 𝐚 as,

 𝐚 = 𝐛0⊕𝑎1(𝐛1⊕𝐛0) ⊕ 𝑎2(𝐛2⊕𝐛1)

 ⊕ 𝑎3(𝐛3⊕𝐛2) …⊕ 𝑎𝑛(𝐛𝑛⊕𝐛𝑛−1)
 (5.4)

where 𝐛0 is the null vector with all entries valued 0.

Assuming the vector 𝐚 represents the n-bit binary data of interest used for

computations by the processor, let the signals measured during these computations at each

probe configuration 𝑝𝑐—combination of location (𝑥, 𝑦), orientation 𝑜, and height 𝑧—and

time instance 𝑡/frequency 𝑓, be denoted by the signal 𝑉𝐚(𝑥, 𝑦, 𝑧, 𝑜, 𝑡/𝑓). If linear

superposition were applicable, the measured signals could be expressed exactly by linearly

 121

combining the signals 𝑉𝐛0 , 𝑉𝐛1 , … , 𝑉𝐛𝑛; these signals are measured at each measurement

configuration (𝑝𝑐, 𝑡/𝑓) by setting the data of interest to the corresponding basis vector.

5.2.2 Data-Dependent EM Basis Functions

The signal of interest 𝑉𝐚 can thus be estimated as,

𝑉𝐚 ≈ 𝑉𝐛0 + ∑ 𝑎𝑖(𝑉𝐛𝑖 − 𝑉𝐛𝑖−1)

𝑛
𝑖=1

 = 𝑉𝐛0(𝑝𝑐, 𝑡) + ∑ 𝑎𝑖𝑔𝑖(𝑝𝑐, 𝑡)
𝑛
𝑖=1

, (5.5)

where 𝑔1, 𝑔2, … , 𝑔𝑛 are the proposed data-dependent basis functions at each

measurement configuration. The choice of basis functions in (5.5) reflects the physical

significance of the XOR operation and the null vector. While the XOR operation represents

both addition and subtraction in the 𝔽2 binary field, this is not extendable to the basis

functions that are used to represent the observed fields. Further, both binary values 0 and

1 contribute to the observed fields, implying both must be accounted for while estimating

the fields for a given data value. This necessitates the introduction of the null vector in

(5.4) and the corresponding EM signal. Next, it is hypothesized that, despite the underlying

non-linear nature of the digital blocks, the EM signals measured for binary data can be

Figure 5.6: Fine-grained EM SCA attack setup [4] (left) probes the chip at multiple

locations during chip operations. Measurements can be repeated at multiple

probe configurations to generate field maps at a given time instance (right).

 122

expressed as a linear combination of signal contributions for each individual bit; as a result,

signals for any arbitrary n-bit data can be estimated using only n+1 measurements.

Although such assumptions can be extended to signals 𝑉𝐞𝑖 for the canonical basis

vectors in (5.1), there are differences between a processor’s handling of data 𝐞𝑖 and 𝐛𝑖,

even for the same instructions. This is because processors perform background

computations on such data to set certain flag bits depending on their values; e.g., the parity

flag is set as 1 if odd number of bit values are 1. Since vectors 𝐞𝑖 produce similar flag bits,

they prove less potent in replicating background processes, and consequently their

corresponding signals, for arbitrary data, compared to those derived from HW models.

(a)

(b)

Figure 5.7: (a) Basis functions plotted at the center of the chip in time (left) and frequency

(right) for an x-oriented probe. The derived functions represent the

contribution of each individual bit 𝑖. (b) Performance of the model for two

arbitrarily chosen data values at the center of the chip.

 123

5.2.3 Measurement Setup and Results

The setup used for measurements in this article is shown in Fig. 5.6 and detailed in

[4],[41]. The proposed method was evaluated on an 8-bit Intel i8051 micro-controller; thus,

𝑛 = 8. Near-field scans were performed at 𝑁l = 51 × 51 locations for 2 orientations (x-

and y-orientations) and 1 height (~0.5 mm above the chip surface). Measurements were

limited to a time-interval where fields are dependent on output data values [4],[54]. Fields

were observed at each probe configuration as the chip performed the MOV instruction,

which moves data from program memory to the accumulator register. Results from the

experiment are shown in Figs. 5.7-5.8. The predicted and measured fields showed good

agreement at several configurations, particularly those identified as optimal to leak output-

related information, close to the center of the chip. Error between the predicted and

measured signals were primarily observed when fields varied sharply over space

(comparing field maps in Fig. 5.6 and Fig. 5.8) and time (comparing signals in Fig. 5.7(b)

and the error plot in Fig. 5.8). This is due to small sub-sample time delays between

signals 𝑉𝐛𝑖, which introduces small error in (5.5) that aggregates to create the discrepancies.

cost.

Figure 5.8: Error observed at the center of the chip (starred) for data value 0xFA in time

(left), and predicted fields for this data value at the same time instance as

the observed field plotted in Fig. 5.6 (t~8 ns).

 124

5.4 SUMMARY

Two approaches were presented to model information leakage and evaluate

computing chips. The first approach used signal variances to isolate information leakage

on-chip, which is further processed to recover information. This approach is suited to

common side-channel inversion problems involving data recovery. The approach was

demonstrated to evaluate the vulnerabilities of a BLE server implementation.

The second approach was chosen to improve upon leakage models that are

commonly used in SCA attacks. This modelling approach is used to accurately synthesize

spatio-temporal near-fields dependent on data computed on chip. The proposed approach

“separates” sources of information leaking signals as basis functions, linearly combining

them appropriately to predict observed signals. The method can be combined with those

existing in literature, such as [3], to improve SCA-based evaluations. The low-cost method

requires only n+1 measurements to estimate 2n signals, making it extendable to processors

with larger registers. Further, basis functions for multiple processes can potentially be

superposed to generate fields for heavily pipelined processors. While presented for a

forward problem in this chapter (i.e., predicting fields from few select functions), there is

potential to use them as a foundation for side-channel data recovery, which requires further

work.

 125

6. Conclusion

This dissertation presented several methods to effectively evaluate the

electromagnetic security of embedded computing chips, primarily targeted at addressing

their vulnerability to fine-grained EM SCA attacks. The original contributions of the

dissertation can be briefly summarized as: (i) comprehensively comparing the effectiveness

of different SCA attack modalities, (ii) implementing a multi-stage ANOVA-based

measurement protocol to rapidly analyze AES chip vulnerabilities, (iii) developing a

hierarchical disassembler to recover execution trace of programs, and (iv) introducing

leakage modeling methods and using them to evaluate complex systems.

Chapter 2 presented a systematic comparison between different SCA attack

modalities. The effectiveness of coarse- and fine-grained electromagnetic EM SCA attacks,

as well as power SCA attacks, were empirically evaluated on implementations of the AES

algorithm. While the effectiveness of the attacks were compared based on the marginal

costs required to identify the AES key, the acquisition costs of the fine-grained EM SCA

attacks were also analyzed thoroughly, by evaluating the AES implementations under

various constraints (i.e., threat models). Various search methods were developed, tailored

to different threat models, to effectively evaluate the chip’s security and compare potency

of different SCA attack modalities.

Chapter 3 presented a multi-stage measurement protocol based on the ANOVA F-

statistic to rapidly evaluate an AES module’s security. The F-statistic and correlation-based

attacks were linked by assuming the independence of target, background, and measurement

noise signals in side-channel measurements. The work detailed the associated costs of

implementing the protocol and compared it with existing alternatives. Additionally the

protocol’s effectiveness was demonstrated on several baseline and hardened AES modules.

 126

The performance of the protocol could be improved further by adding an additional pre-

characterization stage as proposed in [41].

Chapter 4 presented a hierarchical instruction-level disassembler that analyzes

leakages via the EM side-channel created during program execution. The disassembler

used a database constructed bottom-up at each hierarchical level, using specially designed

execution codes. The classification is performed top-down across the hierarchy using

binary classification with majority voting. The disassembler was contrasted with several

previously proposed works based on the acquisition costs and accuracy of disassembly.

Differential signals were introduced as a novel metric to improve side-channel analysis.

The disassembler could be improved and extended to more complex processors by

introducing additional stages with randomized operands as proposed in [64].

Finally, Chapter 5 presented methods to link information leakage and observed

signals, and examples of how they can be used to implement complex systems. The first

method assumed independence of target signals and algorithmic and measurement noise,

and utilized this to evaluate a BLE server implementation. The second method linked data

and fields through spatio-temporal basis functions that are linearly superposed to predict

signals from a general-purpose micro-controller. The second approach requires further

exploration to utilize it more effectively for forward and inverse problems in EM side-

channel analysis.

The work presented in this dissertation opens future research avenues that include

security evaluations in complex system-on-chip modules, malware detection, root-cause

analysis of side-channel leakage, and improving side-channel signal modelling for

simulation-based tools. For instance, systems with multiple integrated components can be

analyzed by treating each component as an independent source of EM emanations [54].

Using methods described in this dissertation, potentially in combination with more

 127

powerful statistical tools, sources contributing to information leakage can be isolated

within each block/sub-block. Further, basis functions can be built for individual leaking

sources that may be superposed to isolate the data-dependent signal components.

Deviations in these components can potentially be used for monitoring programs. Using

binary basis functions in such cases can also result in a feasible number of

measurements\simulations to be performed during analysis, which may otherwise increase

as an exponential with the addition of each sub-block if not optimized [73], [74]. The

granularity of data recovery from SCA attacks may also benefit from using finer probe

resolutions; e.g., there is a possibility of recovering exact data values instead of limiting

the attack to recovering data HWs. The extension of these evaluations for different threat

models also requires further work. For instance, in restricted white/gray box scenarios,

where internal variables of a processor such as counters and flag registers cannot be

accessed, evaluators may need to consider these contributions separately as extraneous

algorithmic noise, unless they perform sufficient number of measurements to characterize

them and correlate them to the executed instructions. For even more restrictive black/red

models, it is possible that evaluators may only be limited to basic blocks of code, without

the ability to perform instruction-by-instruction analysis. While this dissertation studied

measurement protocols for various threat models, it was limited to SCA attacks on AES

modules. A similar study of trade-offs between protocols for various threat models, in

terms of acquisition cost, and accuracy and granularity of data recovery, may also be

performed for general embedded systems.

 128

 129

Bibliography

[1] M. Vuagnoux and S. Pasini, “An improved technique to discover compromising

electromagnetic emanations,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp.

121-126, July 2010.

[2] A. Zajic and M. Prvulovic, “Experimental demonstration of electro-magnetic

information leakage from modern processor-memory systems,” IEEE Trans.

Electromagn. Compat., vol. 56, no. 4, pp. 885-893, Aug. 2014.

[3] F. Werner et al., “A method for efficient localization of magnetic field sources

excited by execution of instructions in a processor,” IEEE Trans. Electromagn.

Compat., vol. 60, no. 3, pp. 613-622, June 2018.

[4] V. V. Iyer and A. E. Yılmaz, “Using the ANOVA F-statistic to isolate information-

revealing near-field measurement configurations for Embedded Systems,” in Proc.

IEEE Int. Symp. Electromagn. Compat., Aug. 2021.

[5] Y.-I. Hayashi et al., “Efficient evaluation of EM radiation associated with

information leakage from cryptographic devices,” IEEE Trans. Electromagn.

Compat., vol. 55, no. 3, pp. 555–563, Jun. 2013.

[6] V. V. Iyer and A. E. Yilmaz, “Using the ANOVA F-statistic to rapidly identify

near-field vulnerabilities of cryptographic modules,” in Proc. IEEE Int. Microw.

Symp., June 2021.

[7] L. Sauvage, S. Guilley, and Y. Mathieu, “Electromagnetic radiations of fpgas: High

spatial resolution cartography and attack on a cryptographic module,” ACM Trans.

Reconfigurable Technol. Syst., 2009.

[8] M. Alam et al. “One&Done a single-decryption EM-based attack on OpenSSL’s

constant-time blinded RSA,” in Proc. USENIX, pp.585-602, Aug 2018.

[9] V. Iyer, M. Wang, J. Kulkarni, and A. Yilmaz, “A systematic evaluation of EM and

power side-channel analysis attacks on AES implementations,” in Proc. IEEE ISI,

Nov. 2021.

[10] V. V. Iyer and A. E. Yilmaz, “An adaptive acquisition approach to localize

electromagnetic information leakage from cryptographic modules,” in Proc. IEEE

Texas Wireless Symp., Mar. 2019.

[11] J. Danial, D. Das, S. Ghosh, A. Raychowdhury, and S. Sen, “SCNIFFER low-cost,

automated, efficient electromagnetic side-channel sniffing,” IEEE Access, vol. 8,

pp. 173414-173427, Sep. 2020.

[12] M. Wang et al., “Galvanically isolated, power and electromagnetic side-channel

attack resilient secure AES core with integrated charge pump based power

management,” in Proc. IEEE CICC, Apr. 2021.

https://ieeexplore.ieee.org/abstract/document/8732510
https://ieeexplore.ieee.org/abstract/document/8732510

 130

[13] D. Das, M. Nath, B. Chatterjee, S. Ghosh, and S. Sen, “STELLAR a generic EM

side-channel attack protection through ground-up root-cause analysis,” in Proc.

IEEE HOST, May 2019.

[14] J.-S. Coron and I. Kizhvatov, An Efficient Method for Random Delay Generation

in Embedded Software, CHES, Berlin: Springer, 2009, vol. 5747.

[15] C. Sui, J. Wu, Y. Shi, Y. Kim, and M. Choi, “Random dynamic voltage scaling

design to enhance security of NCL S-box,” in Proc. IEEE MWSCAS, Aug. 2011.

[16] A. Singh et al., “Improved power/EM side-channel attack resistance of 128-bit AES

engines with random fast voltage dithering,” IEEE J. Solid-State Circ., vol. 54, pp.

569–583, Feb. 2019.

[17] M. Yamaguchi et al., “Development of an on-chip micro shielded-loop probe to

evaluate performance of magnetic film to protect a crypto-graphic LSI from

electromagnetic analysis,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp.

103–108, Jul. 2010.

[18] M. Wang et al., “Physical design strategies for mitigating fine-grained

electromagnetic side channel attacks,” in Proc. IEEE CICC, Apr. 2021.

[19] G. Li, V. Iyer, and M. Orshansky, “Securing AES against localized EM attacks

through spatial randomization of dataflow,” in Proc. IEEE HOST, May 2019.

[20] V. Iyer, A. Thimmaiah and A. Yilmaz, “Testing the resilience of cryptographic

modules against fine-grained time- and frequency-domain EM side-channel

analysis attacks,” in Proc. IEEE ICEAA, Aug 2021.

[21] V. V. Iyer and A.E. Yilmaz, “An ANOVA method to rapidly assess information

leakage near cryptographic modules,” IEEE Trans. Electromagn. Compat., vol. 64,

no. 4, Aug. 2022.

[22] A. Kumar, C. Scarborough, A. E. Yilmaz, and M. Orshansky, “Efficient simulation

of EM side-channel attack resilience,” in Proc. ICCAD, pp. 123 – 130, Nov. 2017.

[23] D. Fujimoto et al., “On-chip power noise measurements of cryptographic VLSI

circuits and interpretation for side-channel analysis,” in Proc. IEEE Int. Symp. on

Electromagn. Compat., pp. 405–410, Sep. 2013.

[24] G. Becker, ‘‘Test vector leakage assessment (TVLA) methodology in practice,’’ in

Proc. Int. Cryptograph. Module Conf., Sep 2013.

[25] C. Whitnall and E. Oswald, “A cautionary note regarding the usage of leakage

detection tests in security evaluation”, Cryptology ePrint Archive, Rep. 2019/703,

2019.

[26] F. Unterstein et al., “Dissecting leakage resilient prfs with multivariate localized

em attacks,” in Proc. COSADE, Jul. 2017.

 131

[27] NIST FIPS Pub. “197 Advanced encryption standard (aes)”. Federal information

processing standards publication, 197(441):0311, 2001.

[28] I. Buhan, L. Batina, Y. Yarom, and P. Schaumont, “SoK design tools for side-

channel-aware implementations.” Jun. 2021. Available ArXiv abs/2104.08593.

[29] V. V. Iyer, “An adaptive measurement protocol for fine-grained electromagnetic

side-channel analysis of cryptographic modules,” M.S. thesis, Univ. of Texas,

Austin, Aug. 2019.

[30] K. A. Remley et al., “Millimeter-wave modulated-signal and error-cector-

magnitude measurement with uncertainty,” IEEE Trans. Microw. Theory Tech.,

vol. 63, no. 5, pp. 1710-1720, May 2015.

[31] K. Freiberger, H. Enzinger, and C. Vogel, "A noise power ratio measurement

method for accurate estimation of the error vector magnitude," IEEE Trans.

Microw. Theory Tech., vol. 65, no. 5, pp. 1632-1645, May 2017.

[32] B. F. Jamroz et al., “Accurate monte carlo uncertainty analysis for multiple

measurements of microwave systems,” in Proc. IEEE MTT-S Int. Microw. Symp.,

Jun. 2016.

[33] ChipWhisperer, Github Repository [online], available:

https://github.com/newaetech/chipwhisperer

[34] Information Technology Standard, “Security techniques – testing methods for the

mitigation of non-invasive attack classes against cryptographic modules,”

International Organization for Standardization, Geneva, CH, 2016.

[35] C. Whitnall and E. Oswald, “A critical analysis of ISO 17825 (’Testing Methods

for the mitigation of non-invasive attack classes against cryptographic modules’),”

in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., Dec. 2019, pp. 256–284.

[36] M. Nassar, Y. Souissi, S. Guilley, J.-L.Danger, “RSM a small and fast

countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs,” in

Proc. DATE, Mar. 2012, pp.1173-1178.

[37] M.-L. Akkar and C. Giraud, An Implementation of DES and AES Secure against

Some Attacks, CHES, ser. LNCS, LNCS, Ed.,. Springer, May 2001, pp. 309–318.

[38] Aoki laboratory, Tohoku University, Japan [online], available:

http://www.aoki.ecei.tohoku.ac.jp/crypto/web/cores.html

[39] R. Gilmore, N. Hanley, and M. O'Neill, “Neural network based attack on a masked

implementation of AES,” in Proc. ICCAD, pp. 106 – 111, Nov. 2015.

[40] T. Kubota et al., “Deep learning side-channel attack against hardware

implementations of AES,” Microprocessors and Microsystems, vol. 87, Nov. 2021.

https://github.com/newaetech/chipwhisperer
http://www.aoki.ecei.tohoku.ac.jp/crypto/web/cores.html

 132

[41] V. V. Iyer and A. E. Yilmaz, “Rapid pre-Characterization of fine-grained EM side-

channel (in)vulnerability of AES modules,” in Proc. USNC/URSI Rad. Sci. Meet.,

July 2022.

[42] Y. Liu et al., “On Code Execution Tracking via Power Side-Channel,” in Proc.

ACM SIGSAC, Oct. 2016.

[43] R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso, “Zero-overhead

profiling via EM emanations,” in Proc. ACM ISSTA, July 2016.

[44] T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a side channel based

disassembler,” Trans. comput. sci., vol. 10, pp. 78-99, Jan. 2010.

[45] Msgna M., Markantonakis K., Mayes K., Precise Instruction-Level Side Channel

Profiling of Embedded Processors, Lecture Notes in Computer Science, Cham,

Switzerland:Springer 2014, vol. 8434.

[46] J. Park, X. Xu, Y. Jin, D. Forte and M. Tehranipoor, “Power-based Side-Channel

Instruction-level Disassembler,” in Proc. ACM/IEEE DAC, June 2018.

[47] V. M. Vaidyan and A. Tyagi, “Instruction level disassembly through

electromagnetic side-chanel: machine learning classification approach with

reduced combinatorial complexity,” in Proc. ACM SPML, Oct. 2020.

[48] D. Strobel, F. Bache, D. Oswald, F. Schellenberg, and C. Paar,“ Scandalee a side-

channel-based disassembler using local electromagnetic emanations,” in Proc.

DATE, Mar. 2015.

[49] V. Cristiani, , M. Lecomte,, T. Hiscock, “A Bit-Level Approach to Side Channel

Based Disassembling” in Proc. CARDIS, Nov. 2019.

[50] E. Peeters, F.-X. Standaert, and J.-J. Quisquater, “Power and electromagnetic

analysis improved model, consequences and comparisons”, Integr. VLSI J., vol.

40, pp. 52-60, Jan. 2007.

[51] J. Wharton, “An Introduction to the Intel MCS-51 Single-Chip Microcomputer

Family,” Intel Corporation, Application Note AP-69, May 1980.

[52] ATMEL, “8-bit microcontroller with 4K bytes in-system programmable flash,”

AT89S51 datasheet, June 2008.

[53] Dalton Project, “Benchmark applications for synthesizeable VHDL model”, i8051

Benchmarks. [Online] Available:

http://www.ann.ece.ufl.edu/i8051/i8051benchmarks/index.html

[54] A. Thimmaiah, V. V. Iyer, A. Gerstlauer, M. Orshansky, “High-level simulation

of embedded software vulnerabilities to EM side-channel attacks,” in Proc.

SAMOS, July 2022.

https://drive.google.com/uc?export=download&id=0B9rh9tVI0J5mZTFmZjRjZTItNDQ0Yy00MDFlLTgzZTgtM2I3MzVkMTliNTFl
https://drive.google.com/uc?export=download&id=0B9rh9tVI0J5mZTFmZjRjZTItNDQ0Yy00MDFlLTgzZTgtM2I3MzVkMTliNTFl
http://www.ann.ece.ufl.edu/i8051/i8051benchmarks/index.html

 133

[55] J. Maillard, T. Hiscock, M. Lecomte and C. Clavier, “Towards fine-grained side-

channel instruction disassembly on a system-on-chip,” in proceedings of the 25th

Euromicro Conference on Digital System Design, pp. 472-479, 2022.

[56] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “EDDIE: EM-

Based Detection of Deviations in Program Execution,” in Proc. ISCA, pp. 333–346,

2017. https://doi.org/10.1145/3079856.3080223

[57] N. Carlini and D. Wagner, “ROP is still dangerous breaking modern defenses,” in

Proc. USENIX, Aug. 2014.

[58] L. Davi, A.-R. Sadeghi, and M. Winandy. “ROP defender: a detection tool to

defend against return-oriented programming attacks,” in Proc. ACM ICSS, pp. 40–

51, 2011.

[59] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented programming: a

new class of code-reuse attack,” in Proc. ASIACCS, 30–40, 2011.

https://doi.org/10.1145/1966913.1966919

[60] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-flow

bending: on the effectiveness of control-flow integrity,” in Proc. USENIX 161–176,

2015.

[61] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-channel

vulnerability factor: a metric for measuring information leakage,” in Proc. ISCA.

IEEE Computer Society, USA, 106–117, 2012.

[62] R.Callan, A. Zajić, and M. Prvulovic. “A Practical Methodology for Measuring the

Side-Channel Signal Available to the Attacker for Instruction-Level Events,” in

Proc. IEEE/ACM International Symposium on Microarchitecture, IEEE Computer

Society, 242–254, 2014. https://doi.org/10.1109/MICRO.2014.39

[63] H. Gao, Q. Li, Y. Zhu, Y. Liu, “Code-controlled hardware trojan horse”, in Proc.

ICICA, Communications in Computer and Information Science, vol 308.

Springer,2012. doi: 10.1007/978-3-642-34041-3_26.

[64] J. Van Geest, and I. Buhan, “A side-channel-based disassembler for the ARM-

Cortex M0,” in Proc. Applied Cryptography and Network Security Workshops:

ACNS, June 2022.

[65] D. Agrawal, B. Archambeult, J.R. Rao, and Rohatgi, P., “The EM side-channel (s):

attacks and assessment methodologies,” in Proc. CHES, Aug. 2002.

[66] R. Wang, H. Wang, and E. Dubrova, “Far field EM side-channel attack on AES

using deep learning,” in Proc. ACM ASHES, Nov. 2020.

[67] G. Camurati et al., “Screaming channels when electromagnetic side channels meet

radio transceivers,” in Proc. ACM SIGSAC CCS, Oct. 2018.

https://doi.org/10.1145/3079856.3080223

 134

[68] A. S. Khader and D. Lai, “Preventing man-in-the-middle attack in Diffie-Hellman

key exchange protocol,” in Proc. IEEE ICT, Apr. 2015.

[69] V.V. Iyer, A. Thimmiah, M. Orshansky, A. Gerstlauer, A. Yilmaz, “A hierarchical

classification method for high-accuracy instruction disassembly with near-field EM

measurements,” in ACM TECS.

[70] M. Woolley, “Bluetooth core specification version 5.0,” Bluetooth SIG.

[71] Renesas Electronics, “Renesas RA W1 Group Datasheet”, R01DS0359EJ0100

Rev.1.00, Mar. 2021.

[72] Renesas Electronics, “Renesas RA W1 Group BLE Sample Application”,

R01AN5402EJ0107 Rev.1.07, Oct. 2022.

[73] C. Thuillet, P. Andouard and O. Ly, “A smart card power analysis simulator," in

Proc. IEEE ICCSE, Aug. 2009.

[74] N. Veshchikov, “SILK: high level of abstraction leakage simulator for side channel

analysis,” in Proc. ACM PPREW-4 Dec. 2014.

[75] V.V. Iyer and A.E. Yilmaz, “Estimating near-field signals emanated by embedded

systems using data-dependent EM profiles as basis functions,” in Proc. USNC-

URSI Rad. Sci. Meet, July 2023.

[76] V.V. Iyer and A. Yilmaz, “EM side-channel analysis of data leakage near embedded

bluetooth low energy modules,” in Proc. WAMICON, April 2023.

