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Abstract 

 

Fine-grained Methods for Using EM Fields Measured Near Computing 

Chips to Evaluate Data Leakage 

 

Vishnuvardhan Venkatramani Iyer, Ph. D. 

The University of Texas at Austin, 2023 

 

Supervisor:  Ali Yilmaz 

 

This thesis presents novel fine-grained methods that show electromagnetic (EM) 

fields measured near chips during computations can be effectively used to evaluate data 

leakage. Several near-field measurement techniques combined with appropriate statistical 

analyses are introduced in the dissertation. The proposed EM side-channel analysis (SCA) 

methods are used to rapidly localize information leakage on the chip, identify optimal 

reusable measurement setups to minimize marginal cost of future evaluations, and infer the 

data values of interest. These methods  are used to perform measurement-based evaluations 

of data leakage from several embedded system applications: (i) Using encryption keys of 

the advanced encryption standard (AES) algorithm as the data of interest, a multi-stage 

measurement protocol is introduced to rapidly identify chip locations which are most likely 

to leak the key, as well as the actual key value; the method was found to be ~2× to ~37× 

faster than alternatives while using them to evaluate the SCA resilience of several baseline 

and hardened implementations of AES; (ii) Assuming processor instructions as the data of 

interest, a hierarchical disassembler is developed to recover the execution trace of programs 

from a general-purpose micro-controller; the method was found to recover ~97% 
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instructions from several application benchmarks; (iii) Using Bluetooth payload as the data 

of interest, vulnerable locations on a Bluetooth Low Energy server implementation are 

isolated, and the data values of the payload are estimated; while the exact data values were 

not found, the Hamming Weight (HW) of test data was identified with 100% accuracy. 

These methods provide feasible alternatives to an exhaustive evaluation where data is 

recovered after measuring all possible computations at every single probe configuration. 

The feasibility of these methods is inherently dependent on the restrictions placed on 

evaluators, i.e., the threat model. Thus, a systematic study of protocols suited for different 

threat models are performed, which also includes the marginal cost comparisons of 

different SCA attack modalities. Finally, the thesis also introduces novel metrics and 

modelling methods that improve potency of side-channel security evaluations. 
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1. Introduction 

Data in computing chips can be leaked unintentionally via EM fields, power 

consumption, temperature, etc. measured on/close to the chip [1]-[11]. These “side 

channels” are potential pathways that attackers can exploit to recover critical data, such as 

encryption keys from cryptographic implementations [5]-[21], rendering the security of 

these chips obsolete. In particular, measurement of EM fields represents a non-invasive 

pathway for attackers to recover data without tampering the device, necessitating effective 

security evaluations to mitigate any potential exploits. The vulnerabilities of various digital 

devices to EM side-channel analysis (SCA) attacks have been repeatedly demonstrated 

over the past decade [1]-[21]. Computations of interest in such devices unintentionally 

influence transitions in digital CMOS logic, resulting in data-dependent switching of 

transistors that affects power consumption and EM emanations [22]. Observed fields can 

be represented as sum of fields generated by the computations of interest, un-correlated 

background computations (henceforth referred to as algorithmic noise), and measurement 

noise [4],[6],[21]. EM SCA setups use appropriate statistical tools to relate observed fields 

to the computations of interest, quantify noise in signals, and deduce the data of interest.  

Conventionally, EM SCA attacks have been performed using large probes that 

aggregate fields from a multitude of on-/off-chip sources, including algorithmic noise from 

those uncorrelated to the computations of interest [6], similar to power SCA attacks, where 

the measured signal is dictated by the aggregate current drawn by the logic blocks (Figs. 

1(a) and (b)). As a result, they typically require many measurements to denoise signals, 

establish sufficient statistical relations with computations of interest, and recover data. 

Furthermore, these are memoryless attacks: previous attacks do not impact future 

evaluations. Such coarse-grained setups are commonly used to evaluate hardware security 

[8], [9], [12], [16] in part because the setups are relatively easy to implement, requiring a 
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single sensor configuration.  In contrast, security evaluations using fine-grained EM SCA 

setups with relatively small probes (Fig. 1(c)) are rare, more elaborate, and potentially more 

potent [9]. These attacks first search for optimal configurations, e.g., locations and 

orientations, of probes that are most sensitive to target signals/least sensitive to noise; they 

then use these configurations to perform appropriate statistical analysis and recover data. 

Because they can localize leakage sources [5]-[7], [9]-[11], e.g., via high-resolution scans, 

these setups can circumvent some countermeasures that are effective against power and 

coarse-grained EM SCA attacks [1].  

While coarse-grained EM SCA attacks are simpler to implement, fine-grained EM 

SCA attacks can be more efficient when used with optimal probe configurations, making 

them more potent than the conventional power/coarse-grained EM SCA attack methods 

[9],[11],[22]; moreover, once identified, these configurations can be reused to minimize 

the cost of future attacks on similar chips. Fine-grained EM SCA attacks’ initial search for 

optimal probe configurations, however, can be rather costly [10] because of the large 

          

   (a)                                              (b)                                            (c) 

Figure 1.1: Setups for power, coarse-grained EM, and fine-grained EM SCA attacks: (a) 

A sensor monitoring the aggregate power use of the chip (via the top-right port). (b) A 10-

mm diameter H-field probe aggregating fields emanated by sources distributed throughout 

the chip. (c) A 1-mm diameter H-field probe scanning the chip surface for vulnerabilities.    
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number of probe configurations that must be evaluated. The cost of fine-grained EM SCA 

attacks can become intractable if chips are evaluated exhaustively with measurements 

corresponding to a multitude of combinations of data values in digital blocks, and these 

signals are collected at all possible probe configurations. This naïve approach is henceforth 

referred to as the “exhaustive search” for optimal configurations. For example, an 

exhaustive search for configurations leaking AES keys in a space of 51×51 locations, 

across 2 orientations (See Chapters 2 and 3), involves performing expensive correlation 

analysis attacks with a large set of encryptions (>105 in some cases [12], [18]) at all 

configurations, following which the most optimal configuration can be identified. 

Similarly, an exhaustive search for information leaking configurations in micro-controllers 

may involve probing the chip with a large configuration space (see Chapter 4) with all 

possible architectural states of the chip’s digital components (>1012 for an 8051 processor 

[54]), such as registers, counters, etc.  

The acquisition costs accrued to perform fine-grained EM SCA attacks can be 

reduced by minimizing the number of configurations measured. Adaptive scan algorithms 

such as greedy [10] or gradient [11] search select probe configurations over multiple scans 

by introducing constraints on the resolution, search area, or the number of measurements 

and discarding non-optimal configurations in each scan. These search algorithms may zero 

in on local minima and cannot guarantee the best probe configuration will be identified, 

unlike the exhaustive search. Measurement costs can also be reduced by pre-supposing that 

information leakage is limited to certain time/frequency samples or locations [5],[23]. In 

[5], the information-leaking frequency was constant across the search space and a small set 

of initial guess configurations were used to rapidly isolate leakage to near decoupling 

capacitors over a test board implementing the advanced encryption standard (AES) 

algorithm. Similarly, in [23], both the time window and frequencies of information leakage 
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were identified, potentially reducing future measurement costs. Such methods are 

contingent on the invariance of information-leaking times/frequencies/locations. This may 

not be the case, however, for certain classes of countermeasures that can change signal 

profiles from encryption to encryption (see Section 3.3.3). Pre-supposing narrow time/ 

frequency/spatial windows to reduce the search space in the presence of such 

countermeasures can erroneously indicate that a system is resilient. Thus, these methods 

have limited utility for evaluating EM SCA attack vulnerabilities of hardened 

implementations. Further, the effectiveness of each method also depends on the restrictions 

placed during evaluations.  

There is an inherent asymmetry between evaluators, who must ensure the module 

is sufficiently secure against all probe configurations, and actual attackers, who must 

ensure it is sufficiently vulnerable to only one probe configuration. The asymmetry is 

amplified when evaluators and actual attackers are subject to different constraints; in 

particular, on their ability to observe or control the module’s inputs, outputs, or internal 

parameters, such as keys. These constraints are formalized in threat models: Actual 

attackers are often restricted to a “black-box threat model” [9], where the module’s output 

and EM fields can be observed for a potentially unlimited number of encryptions but its 

input and internal parameters, such as encryption keys, cannot be accessed. In contrast, 

security evaluators may also be granted partial/full control over the input (a “gray-/white-

box threat model” [9], [11], [19]) and internal chip parameters [21] (a “gold-box threat 

model” [9]). Thus, evaluators may observe the output and EM fields for specially designed 

test cases [21]. When evaluators face fewer restrictions, they can accelerate the security 

evaluation by implementing targeted tests and obtaining statistical indicators of 

information leakage, e.g., via test vector leakage assessment (TVLA) [24], [25] or analysis 

of variance (ANOVA) [4], [6], [19], [21], [26], prior to performing correlation-analysis 
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attacks. Therefore, instead of minimizing the number of configurations probed, the 

acquisition cost is reduced by minimizing the number of signals collected at each 

configuration.  

Once the acquisition cost has been accrued, and optimal measurement 

configurations are identified, the configurations are then used to recover information using 

appropriate statistical methods. Information recovery uses only the reusable optimal 

configurations identified in the initial search, allowing evaluators to perform future 

evaluations at a small marginal cost. The statistical methods used for the initial search for 

configurations, as well as information recovery, depend on the chip functions and the data 

of interest, since the utility of fine-grained EM SCA attacks can range from identifying an 

encryption key from cryptographic modules (Chapters 2 and 3), to disassembling 

instructions implemented by a general purpose processor (Chapter 4). Therefore, fine-

grained EM SCA evaluations can potentially be a powerful tool to validate a system’s 

security and perform non-invasive data recovery, if the cost is feasible.  

1.1 THESIS STATEMENT 

The rich signal content present in EM side-channels leaking from embedded 

systems can be potently utilized by employing fine-grained methods that analyze EM fields 

from several on-chip locations with high scan resolutions. The feasibility and practicality 

of these methods is contingent on an evaluator’s understanding of computations of interest, 

as well as the threat model during evaluation, which can enable the development of 

optimized measurement techniques and statistical methods that aid data recovery using 

these non-invasive EM side-channels. 
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1.2 THESIS CONTRIBUTIONS 

The contributions of this thesis are as follows: 

• Comparison of different SCA attacks [9]: We empirically evaluate the effectiveness 

of coarse- and fine-grained electromagnetic (EM) side-channel analysis (SCA) 

attacks, as well as power SCA attacks on implementations of the AES algorithm, 

subject to different constraints. These constraints/threat models can range from a 

highly restrictive red-box model, where the evaluator is only allowed access to side-

channel signals, to a white-box model, where evaluators can manipulate the input 

data sent to the device. To compare the effects of these constraints on the fine-

grained EM SCA, we develop/suitably adapt search methods for each threat model 

and compute their associated measurement costs.  

• Rapid Evaluation of AES vulnerabilities [21]: We develop a multi-stage 

measurement protocol that identifies optimal measurement configurations—that 

minimize the marginal cost for repeated attacks to extract the data of interest, using 

far fewer measurements than previously demonstrated. We achieve this by 

developing a set of inexpensive characterization measurements based on a gold-

box threat model, where Analysis of Variance (ANOVA) computations are 

performed on high-resolution scans to determine information leaking-locations 

rapidly. The protocol is used to test the resilience of several baseline and hardened 

implementations of AES. 

• EM-based Instruction Disassembler [69]: We develop a hierarchical instruction-

level disassembler that analyzes leakages created via the EM side-channel during 

program execution. The disassembler identifies instruction-dependent features 

using fine-grained EM measurements for a set of optimally designed instruction 

profiling codes to minimize measurement costs. These features are used in the 



 26 

classification phase to disassemble the instructions from several application 

benchmarks, as well as predicting control-flow/ branching in the code. 

• Extensions to existing methods [75],[76]: We improve upon the ANOVA method 

demonstrated for AES in [21], and also extend them to other embedded systems. 

As an example, we demonstrate the method as a data recovery tool from a Bluetooth 

server receiving data. We also present an information-leakage modelling method 

that can potentially predict fields from arbitrary data computations. This is achieved 

by representing EM information leakage as a superposition of leakages from 

individual sources and using a linear combination of data-dependent EM-basis 

functions to predict the same.  

1.3 THESIS ORGANIZATION 

The rest of this dissertation is organized as follows: Chapter 2 presents a 

comprehensive study of SCA attack modalities and compares their effectiveness in 

recovering AES encryption key for several threat models. Chapter 3 presents a multi-stage 

measurement protocol to rapidly evaluate vulnerabilities of AES modules. Chapter 4 

presents a hierarchical disassembler that recovers execution traces from programs running 

on a general purpose micro-controller. Chapter 5 presents methods to model information 

leakage and demonstrates the methods on a general purpose micro-controller and a 

Bluetooth server implementation. Chapter 6 concludes the work.  
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2. Comparison of SCA Attack Modalities1 

This chapter presents a brief background on AES and its vulnerabilities, introduces 

the ANOVA F-statistic for fine-grained EM SCA attacks, summarizes a previously 

proposed measurement protocol, and uses these tools to evaluate AES implementations 

under various constraints. The potency of fine-grained EM SCA attacks are also compared 

to coarse-grained EM and power SCA attack towards the end of the chapter. 

2.1 BACKGROUND ON AES OPERATIONS AND VULNERABILITIES 

This section summarizes the operations performed by an AES implementations and 

a known vulnerability that is exploited in SCA attacks.  

2.1.1 The AES algorithm 

AES, a commonly adopted standard for processor and wireless security, specifies a 

symmetric-key algorithm [27] that uses the same key for encryption and decryption. It is a 

block cipher that groups inputs into fixed 16-byte blocks and can use keys of size 128, 192, 

or 256 bits; the 128-bit implementation is used in this thesis (Fig. 2.1). Each encryption 𝑒 

by AES-128 requires 10 rounds of operations to transform the 16-byte input plaintext 𝐢𝐩𝑒 

to the output ciphertext 𝐨𝐜𝑒
10 using the key 𝐤0 (Fig. 2.1). In each round 𝑟𝑑 ∈ {1,⋯ ,10}, a 

round key 𝐤𝑟𝑑 (generated from the key 𝐤0 via a key-expansion algorithm [25]) is used to 

update the 16-byte output to 𝐨𝐜𝑒
𝑟𝑑 = [𝑜𝑐𝑒

𝑟𝑑,0, ⋯ , 𝑜𝑐𝑒
𝑟𝑑,15]. All AES operations are 

performed byte wise: In each round 𝑟𝑑, first, each byte 𝑏′ ∈ {0,⋯ ,15} of the previous 

round’s output 𝑜𝑐𝑒
𝑟𝑑−1,𝑏′

 is replaced by an intermediate value 𝑖𝑣𝑒
𝑟𝑑,𝑏′

 using a substitution 

 
1 This chapter is partly based on a previous publication: V. Iyer, M. Wang, J. Kulkarni, and A. Yilmaz, “A 

systematic evaluation of EM and power side-channel analysis attacks on AES implementations,” in Proc. 

IEEE ISI, Nov. 2021. 

The author contributed to the formulation, implementation, and measurements presented in this article, as 

well as the writing of this manuscript. 
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box (Sbox). The Sbox transform replaces a byte’s value using a one-to-one non-linear map 

defined by Rijndael's finite field [27]. This step adds “confusion” to the cipher, i.e., for 

fixed input plaintext, minor variations in the key result in large variations in the ciphertext. 

Then, the byte order of 𝑖𝑣𝑒
𝑟𝑑,𝑏′

 is shuffled using the ShiftRows and MixColumns transforms 

to generate 𝑖�̃�𝑒
𝑟𝑑,𝑏

, where 𝑏 ∈ {0,⋯ ,15} is the new position of the byte in the updated 16-

byte array. These steps “diffuse” information in the cipher, i.e., different ordering of the 

bytes in the input plaintext causes large variations in the output ciphertext. Finally, the 

intermediate value is XORed with the key byte 𝑘𝑟𝑑,𝑏 to generate the output byte 𝑜𝑐𝑒
𝑟𝑑,𝑏

. 

The MixColumns operation is skipped in the last round; thus, the last round of AES can be 

represented as  

                   𝑜𝑐𝑒
10,𝑏 = 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠 (𝑆𝑏𝑜𝑥 (𝑜𝑐𝑒

9,𝑏′)) ⨁ 𝑘10,𝑏                              (2.1) 

 

Figure 2.1: Algorithm flow of the 128-bit AES 

 

https://en.wikipedia.org/wiki/Finite_field_arithmetic#Rijndael's_(AES)_finite_field
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If attackers have access to the output and if they know/correctly guess the 10th round 

key 𝐤10—the data of interest for SCA attacks on AES—they can invert Eq. (2.1) as 

                   𝑜𝑐𝑒
9,𝑏′ = 𝑆𝑏𝑜𝑥−1 (𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠−1(𝑘10,𝑏⨁  𝑜𝑐𝑒

10,𝑏)).                      (2.2) 

2.1.2 Vulnerabilities of AES to SCA attacks 

 The fields emanated/power consumed in the final round of AES depend on the key, 

which causes an EM/power side-channel vulnerability [5], [6], [10], [19]. EM/power SCA 

SCA attacks on AES use hypothetical leakage models [28] to correlate observed fields to 

the computations/ processes during the final round of AES. These models abstract the 

sources of emanations in the DUT, such as transistor switching, currents on clock and 

power traces, EM coupling, etc., using simplified quantities. This work employs a byte-

 

Figure 2.2: Byte-wise EM/Power SCA attack flow  
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wise SCA attack (Fig. 2.2), which adopts a Hamming distance (HD) leakage model [21] 

that correlates the observed fields with the HD between 𝑜𝑐𝑒
9,𝑏′

 and 𝑜𝑐𝑒
10,𝑏′

 to disclose 𝑘10,𝑏. 

Byte-wise analysis significantly reduces the complexity of key search [22]. In this attack, 

the  attackers observe 𝑁e encryptions and for each encryption 𝑒 ∈ {1,⋯ ,𝑁e}, they use the 

observed 𝐨𝐜𝑒
10 together with every possible guess 𝑔 ∊ {0,⋯ ,255} for the key byte 𝑘10,𝑏 in 

Eq. (2.2) to compute the corresponding penultimate round value 𝑜𝑐𝑒
9,𝑏′,𝑔

 for each byte 𝑏 ∈

{0,⋯ ,15}. Let 𝐻𝑒
𝑏,𝑔

 denote the HD between 𝑜𝑐𝑒
9,𝑏′,𝑔

 and 𝑜𝑐𝑒
10,𝑏′

 and let the integer array 

𝐇𝑏,𝑔 = [𝐻1
𝑏,𝑔
, ⋯ , 𝐻𝑁e

𝑏,𝑔
] store the HDs for all encryptions; there are 16×256 such arrays.  

 In the fine-grained attack, the attackers also observe the probed fields 𝑉𝑒
𝑝𝑐,𝑡

 at times 

𝑡 during the last round of AES using a multitude of probe configurations 𝑝𝑐—referring to 

the probe’s transverse location 𝑙, height ℎ, and orientation 𝑜 above the DUT. Let the real 

array 𝐕𝑝𝑐,𝑡 = [𝑉1
𝑝𝑐,𝑡, ⋯, 𝑉𝑁e

𝑝𝑐,𝑡] store the probed fields for all encryptions; there are 

𝑁l ×𝑁h ×𝑁o × 𝑁t such arrays. Attackers compute the Pearson correlation coefficient 

      
                                    (a)                                                               (b) 

Figure 2.3:  (a) Probed fields (left) at an optimal configuration observed during the last 

round of AES when the key and the input plaintext are set to 𝐤0 =

𝐤1 and 𝐢𝐩1. (b) The correlation coefficients for all 256 guesses for 𝑘10,0, 

when 𝑁e = 4000 encryptions are observed. The coefficient corresponding to 

the correct guess 𝑔∗ = 19 is shown in blue. 
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𝜌𝐇,𝐕
𝑏,𝑔,𝑝𝑐,𝑡

 between the arrays 𝐇𝑏,𝑔 and 𝐕𝑝𝑐,𝑡 for each key byte 𝑏, guess 𝑔, configuration 𝑝𝑐, 

and time 𝑡 [6], [20]: 

                                             𝜌𝐇,𝐕
𝑏,𝑔,𝑝𝑐,𝑡/𝑓

=
Cov(𝐇𝑏,𝑔,𝐕𝑝𝑐,𝑡/𝑓)

√Var(𝐇𝑏,𝑔)Var(𝐕𝑝𝑐,𝑡/𝑓)
                                      (2.3) 

Attackers can compute the correlation coefficients in Eq. (2.3) using time samples; 

e.g., the probed fields 𝑉1
𝑝𝑐,𝑡

 are shown in Fig. 2.3 (a) for 𝐤1 = [0x00,0x01,⋯ ,0x0F] and 

𝐢𝐩1 = [0x00,0x00,⋯ ,0x00].  The largest correlation coefficient will correspond to the 

correct guess 𝑔∗ = 𝑘10,𝑏 for byte 𝑏 if the leakage model accurately categorizes the 

underlying sources of emanations (after observing a sufficient number of encryptions); e.g., 

the coefficients that result from observing 𝑁e = 4000 encryptions with randomly 

generated input plaintexts are shown in Fig. 2.3 (b).  

In the power SCA or coarse-grained EM SCA attack, the aggregate power 

consumption or EM emanation is recorded during the final round of AES for each 

encryption; the observed signals are stored in the array 𝐏𝑡 of size 𝑁t × 𝑁e for 𝑁t time 

samples. Correlating 𝐏𝑡 with the Hamming distances 𝐇𝑏,𝑔 yields the correlation 

coefficients 𝜌𝐇,𝐏
𝑏,𝑔,𝑡

, for each key-byte 𝑏, guess key 𝑔, and time instant 𝑡. The correct guess 

key value 𝑔∗ is identified similar to the fine-grained EM SCA attack. Once all 16 bytes of 

𝐤10 are disclosed, the AES key-expansion algorithm is inverted to disclose the key 𝐤0, 

which can then be used to decrypt any ciphertext 𝐨𝐜𝑒
10 and recover the corresponding 

plaintext 𝐢𝐩𝑒 from any past or future encryption.  

While the correlation coefficient corresponding to the correct guess stands out in 

Fig. 2.3, it is important to ask if 𝑘10,0 could be disclosed by observing fewer encryptions. 

Indeed, to evaluate side-channel security, the minimum number of measurements necessary 

to disclose all key bytes must be quantified. In the power SCA and coarse-grained EM SCA 
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attack, the minimum number of encryptions needed to disclose a key-byte 𝑏 is defined as 

the “measurements to disclosure” 𝑀𝑇𝐷𝑏 (Fig. 2.4(a)), i.e., when 𝑁e ≥ 𝑀𝑇𝐷
𝑏 , the 

correlation coefficient corresponding to the correct guess 𝑔∗ is sufficiently larger than those 

corresponding to the incorrect guesses. Here, and throughout this thesis, a correlation 

coefficient is considered sufficiently large if its maximum value over all time samples 

crosses the null hypothesis threshold derived from the inverse t-distribution for a 

confidence interval of 99.99% [10],[29]. Therefore, the power/coarse-grained EM SCA 

attacks require a marginal cost of 

                   𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡Pwr/cgEM = min (𝑁e
max, max

𝑏
𝑀𝑇𝐷𝑏,Pwr/cgEM)                    (2.4) 

encryptions to be observed, i.e., they observe more and more encryptions until either all 

bytes are disclosed or a limit on the number of observations, 𝑁e
max, is reached.  

     
                                    (a)                                                               (b) 

Figure 2.4:  Maximum value of (a) power SCA and (b) fine-grained EM SCA correlation 

coefficients for all 256 guesses for 𝑘10,0 as the number of encryptions 

increases. The value corresponding to the correct guess 𝑔∗ = 19 (blue) 

crosses the null hypothesis threshold (dashed) after 𝑀𝑇𝐷0/𝑚𝑀𝑇𝐷0 

measurements. 
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In contrast, fine-grained EM SCA may require a smaller marginal cost if an optimal 

configuration with low MTD is identified. Let 𝑀𝑇𝐷𝑏,𝑝𝑐 denote the minimum number of 

measurements to disclose key byte 𝑏 when using the probe configuration 𝑝𝑐 [10]. Let  

                        𝑝𝑐𝑏,opt = argmin
𝑝𝑐

𝑀𝑇𝐷𝑏,𝑝𝑐 ; 𝑚𝑀𝑇𝐷𝑏 = 𝑀𝑇𝐷𝑏,𝑝𝑐
𝑏,opt

                         (2.5) 

denote the optimal probe configuration to disclose 𝑘10,𝑏 and the minimum number of 

measurements to do so; e.g., in Fig. 2.3, the correct guess for 𝑘10,0 could be identified (Fig 

2.4) by observing time-domain fields only for 𝑚𝑀𝑇𝐷0 ≈ 600 encryptions when using 

𝑝𝑐0,opt , while power SCA required 𝑀𝑇𝐷0 ≈ 3000 to recover the same key byte. 

However, identifying the optimal configurations in fine-grained EM SCA using an 

exhaustive search may become infeasible since it requires  

                                𝐴𝑐𝑞𝑢𝑖𝑠. 𝐶𝑜𝑠𝑡 = 𝑁e
max𝑁l𝑁h𝑁o (exhaustive search)                     (2.6) 

measurements, to perform expensive correlation analyses at all possible configurations.   

2.1.3 Effect of Noise on Correlation Attacks 

The correlation analysis is degraded and EM SCA attacks fail when noise 

obfuscates the target signals—originating from the computation of byte 𝑏 of the output 

ciphertext 𝑜𝑐𝑒
10,𝑏

 in Eq. (2.1)—in the probed fields 𝐕𝑝𝑐,𝑡 [6]. The noise can be categorized 

as measurement noise, which arises from the environment—temperature variations, 

vibrations, equipment sensitivity, drift, variability of supply voltage, input clock jitter, etc. 

[6], [30]—and algorithmic noise, which arises from uncorrelated background 

computations/processes in the DUT [4], [19]. Measurement noise exhibits as variations in 

observed fields when the exact same encryption is repeated [31],[32]. For AES-128, the 

algorithmic noise for the byte 𝑏 computation includes fields that originate from the 

computation of the 15 bytes other than byte 𝑏 of the output ciphertext [19], [24].  
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To analyze the effect of noise, let's decompose the observed fields in the arrays 

𝐕𝑝𝑐,𝑡 into the independent and hypothetical quantities listed in the arrays 𝐓𝑏,𝑝𝑐,𝑡, 𝐁𝑏,𝑝𝑐,𝑡, 

𝐍𝑝𝑐,𝑡 [4], [6]. Here, target signals in 𝐓, algorithmic noise in 𝐁, and measurement noise in 

𝐍 arise from computations involving the data of interest (𝑘10,𝑏), background computations 

in the DUT, and other EM sources, respectively. Then, the time-domain correlation 

coefficient in Eq. (2.3) can be expressed as [6]: 

                         𝜌𝐇,𝐕
𝑏,𝑔,𝑝𝑐,𝑡

=
Cov(𝐇𝑏,𝑔,𝐓𝑏,𝑝𝑐,𝑡)

√Var(𝐇𝑏,𝑔)Var(𝐓𝑏,𝑝𝑐,𝑡)⏟            

𝜌𝐇,𝐓
𝑏,𝑔,𝑝𝑐,𝑡

1

√1+
Var(𝐁𝑏,𝑝𝑐,𝑡)

Var(𝐓𝑏,𝑝𝑐,𝑡)
+
Var(𝐍𝑝𝑐,𝑡)

Var(𝐓𝑏,𝑝𝑐,𝑡)

            (2.7)  

In this representation, the noise-free correlation coefficient 𝜌𝐇,𝐓
𝑏,𝑔,𝑝𝑐,𝑡

 is degraded by 

the variance terms. Probe configurations that have larger ratios Var(𝐓𝑏,𝑝𝑐,𝑡)/Var(𝐁𝑏,𝑝𝑐,𝑡) 

and Var(𝐓𝑏,𝑝𝑐,𝑡)/Var(𝐍𝑝𝑐,𝑡) will yield correlation coefficients 𝜌𝐇,𝐕
𝑏,𝑔,𝑝𝑐,𝑡/𝑓

 closer to the 

noise-free value. The variance ratios in Eq. (2.7) are often combined and represented as 

signal-to-noise ratio in SCA attacks [19],[24].   

Because the entries in the arrays 𝐓, 𝐍, and 𝐁 are unmeasurable hypothetical 

quantities, the ratios of their variances cannot be found exactly. They can be estimated, 

however, from measured fields via ANOVA [4], [6], [19], [24]. The ANOVA F-statistic, 

defined as a ratio of variances, is used for hypothesis testing to determine if a dataset is 

sensitive to variations in a target process. The methodology groups data based on different 

versions of a target process, and compares variance between groups and variance within 

groups, to quantify the dependence of the dataset on the target. Here, the F-statistics are 

used to estimate the two ratios in Eq. (2.7) as [4],[6]: 

                                  
Var(𝐓𝑏,𝑝𝑐,𝑡)

Var(𝐍𝑝𝑐,𝑡)
≈ 𝐹𝑁

𝑏,𝑝𝑐,𝑡 Var(𝐓𝑏,𝑝𝑐,𝑡)

Var(𝐁𝑏,𝑝𝑐,𝑡)
≈ 𝐹𝐵

𝑏,𝑝𝑐,𝑡
                       (2.8) 

The most accurate estimates in Eq. (2.8) require observing all possible variants in 

the relevant computations; e.g., to obtain 𝐹𝐵
𝑏,𝑝𝑐,𝑡

, fields can be measured for up to 
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256 × 256 possible variants in the switch from 𝑜𝑐𝑒
9,𝑏′

 to 𝑜𝑐𝑒
10,𝑏′

 and 25615 × 25615 

possible variants in background computations. Typically, far fewer samples are sufficient; 

e.g., the 𝐹𝐵
𝑏,𝑝𝑐,𝑡

 statistic was previously obtained using 𝑜𝑐𝑒
10,𝑏′ = {0,1, … ,255}, ignoring 

𝑜𝑐𝑒
9,𝑏′

 values, and 4-40 variants in background computations [19],[24].  

2.2 FINE-GRAINED EM SCA ATTACKS SUBJECT TO CONSTRAINTS 

This section summarizes threat models under which evaluators may operate, and 

presents search protocol for each model. Further, the acquisition costs of each protocol is 

also included after each subsection.  

2.2.1 Threat Models 

Threat models, in security literature, define the environment for security 

evaluations, particularly the accessibility to various device parameters. In this chapter, all 

of the threat models assume that the attackers have physical access to the DUT and can 

observe the output ciphertext, but  

 

Figure 2.5: SCA threat models for AES. Unrestricted attackers (gold box) control the key 

and have complete access to device peripherals. The access to the DUT is 

progressively restricted (white, gray, and black box) until attackers have no 

access to inputs and outputs (red box). 
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(1) the most restrictive black-box threat model assumes attackers have no access to inputs;  

(2) a less restrictive gray-box threat model assumes attackers have partial control over 

inputs, i.e., they can repeat inputs but not observe them; and  

(3) the least restrictive white-box threat model assumes attackers have full access to inputs, 

i.e., they can repeat and observe them (the cipher key is unknown).  

Two further threat models are considered to bound these models including (i) a red-box, 

which limits attackers from observing the output ciphertext, and (ii) a gold-box, where 

access is granted to both the input plaintext and key (Fig. 2.5). The gold-box threat model 

is described in detail in Chapter 4. 

2.2.2 Attacking a Red Box: Pre-characterization Phase 

An initial low-cost scan can discard ineffective probe configurations and reduce the 

search space in fine-grained EM SCA attacks. In this scan, 𝑁e
pre

 encryptions are observed 

with each probe configuration 𝑝𝑐. The encryptions can potentially be all different; the only 

constraint is that the same encryption is not repeated 𝑁e
pre
 times for any 𝑝𝑐. Once the 

observed fields are recorded, max
𝑡
STD(𝐕𝑝𝑐,𝑡) is computed for each  𝑝𝑐. Probe 

configurations with the smallest standard deviations, close to the noise floor of 

measurement equipment, can be deemed insensitive to the sources of interest and 

discarded. This pre-characterization requires 

                                        𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡pre = 𝑁l𝑁h𝑁o𝑁e
pre

                                    (2.9) 

encryptions to be observed; here, 𝑁e
pre

≪ 𝑁e
max.  

As the AES input and output are not used, this phase can be considered a fine-

grained EM SCA attack for the red box threat model. While configurations that give rise 

to the largest variations in 𝐕𝑝𝑐,𝑡 are of interest, these variations can stem from not only the 

changes in targeted signal sources (𝐓𝑝𝑐,𝑡) but also measurement noise (𝐍𝑝𝑐,𝑡) and 
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algorithmic noise (𝐁𝑝𝑐,𝑡). In general, attackers cannot use just the signals measured during 

the pre-characterization phase to perform correlation analysis. Instead, this phase enables 

attackers to rapidly judge if potentially exploitable signals exist, reducing the acquisition 

cost of the following measurement protocols. 

2.2.3 Attacking a Black Box 

The black-box threat model, where attackers can observe the outputs but have no 

access to the inputs or the key, is commonly used for side-channel security evaluation. In 

this threat model, statistical methods that can rapidly identify probe configurations 

degraded by noise are unavailable because of the restrictions on the attackers. Search 

 
(a) Phase I 

 
(b) Phase II 

Figure 2.6: The fine-grained EM SCA measurement protocol in the black-box threat 

model. Scans are marked with red and the number of locations and 

encryptions observed in each scan are specified. Phase I scans are performed 

with multiple probe orientations, becoming progressively more expensive, 

while Phase II scans become progressively cheaper. 
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protocols based on correlation analysis [10],[11], including the exhaustive search, can be 

used; here, the method in [10] is implemented.  

The measurement protocol for the black-box threat model is an adaptive scan 

performed in 2 phases: In Phase I (Fig. 2.6(a)), 𝑁scan,I progressively costlier low-resolution 

scans are performed to identify the probe configurations 𝑝𝑐0
𝑏,𝑜𝑝𝑡

 that disclose the key-byte 

𝑏 with 𝑚𝑀𝑇𝐷0
𝑏 measurements. In each scan 𝑠 of Phase I, either the number of locations 

probed 𝑁𝑙,ℎ,𝑜,𝑠,I or number of encryptions observed 𝑁𝑒,𝑠,𝐼 is increased [10],[29]. Then, for 

each key-byte, 𝑁scan,II progressively cheaper scans are performed in Phase II (Fig. 2.6(b)) 

to optimize the configurations found in Phase I. Each scan in Phase II uses only the optimal 

orientations 𝑜0
𝑏,𝑜𝑝𝑡

 at height ℎ0
𝑏,𝑜𝑝𝑡

, restricts the area of the scan near the optimal locations 

in the previous scan 𝑙𝑠−1
𝑏,𝑜𝑝𝑡,and observes only the minimum number of encryptions used to 

disclose the key byte in the previous scan. This requires 

                     𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡Bbox = 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡pre + ∑ ∑ ∑ 𝑁e,𝑠,I𝑁l,h,o,s,I
𝑁o
𝑜=1

𝑁h
ℎ=1

𝑁scan,I

𝑠=1 +

                                                     ∑ ∑ 𝑚𝑀𝑇𝐷𝑠−1
𝑏 𝑁l,s,II

𝑁scan,II

𝑠=1   16
𝑏=1                                         (2.10)  

measurements. In the black-box threat model, this search protocol may converge to local 

minima for MTDs and not identify the most optimal probe configurations [21]. 

 

Figure 2.7: The measurement protocol in Phase I of the gray-box threat model prunes the 

search space by repeating scans, computing 𝐹𝑁
𝑝𝑐,𝑡

, and comparing it to a 

threshold 𝐹𝑁,c. The reduced set of configurations are then evaluated with the 

black-box protocol.   
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2.2.4 Attacking a Gray Box 

The gray-box threat model permits attackers partial control over the input: while 

they cannot modify or observe the plaintexts, attackers can repeat them. This enables signal 

averaging to improve the signal-to-noise ratio. It also enables the use of repeatability 

characterizations and ANOVA F-statistics to prune the search space because probe 

configurations showing low signal variance for repeated encryptions and high signal 

variance for changing encryptions are most likely to disclose the keys [6]. 

The measurement protocol for the gray-box threat model is performed in 3 phases: 

In Phase I (Fig. 2.7), one scan per orientation is performed, where 𝑁e,I encryptions are 

repeated 𝑁r times at 𝑁l,ℎ,𝑜,I locations. For each encryption 𝑒, the sample mean �̅�𝑒
𝑝𝑐,𝑡

 and 

variance 𝑠𝑒
𝑝𝑐,𝑡

 are computed across the repeated measurements and the F-statistic that 

quantifies the effect of measurement noise on signals is estimated as [6] 

                                 𝐹𝑁
𝑝𝑐,𝑡 =

𝑁e,I ×𝑁r×Var(�̅�1
𝑝𝑐,𝑡

,�̅�2
𝑝𝑐,𝑡

,…,�̅�𝑁e,I 
𝑝𝑐,𝑡

)

Mean(𝑠1
𝑝𝑐,𝑡

,𝑠2
𝑝𝑐,𝑡

,…,𝑠𝑁e,I 
𝑝𝑐,𝑡

)
                                  (2.11) 

The computed values are compared to a threshold 𝐹𝑁,c derived from F-distributions 

for a selected confidence level. Configurations with F-values greater than the threshold are 

least affected by measurement noise. This model enables attackers to identify 

configurations significantly degraded by measurement noise (see Eq. (2.7)) and remove 

them from the search after Phase I. Typically, the resolution of the Phase I scan is higher 

than its black-box counterpart as it requires fewer encryptions to be observed. Once 

configurations 𝑝𝑐opt,𝐹𝑁 with high F-values are isolated, phases I and II of the measurement 

protocol for the black-box threat method are performed (Fig. 2.6). This requires 

 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡Gbox = 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡pre + ∑ ∑ 𝑁l,ℎ,𝑜,I𝑁r𝑁e,I
𝑁o
𝑜=1

𝑁h
ℎ=1  +

                                ∑ ∑ ∑ 𝑁e,𝑠,II𝑁l,h,o,s,II
𝑁o
𝑜=1

𝑁h
ℎ=1

𝑁scan,II

𝑠=1 + ∑ ∑ 𝑚𝑀𝑇𝐷𝑠−1
𝑏 𝑁l,s,III

𝑁scan,III

𝑠=1
16
𝑏=1  (2.12) 
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2.2.5 Attacking a White Box 

 The white-box threat model permits attackers complete control over the inputs. The 

measurement protocol is performed in 4 phases (Fig. 2.8): Because the key is unknown, 

Phase I of the protocol for the gray-box threat model is implemented followed by Phase I 

of the protocol for the black-box threat model to recover the key. In these first two phases, 

the protocol prioritizes recovering the key over isolating optimal configurations; this allows 

low-resolution scans to first disclose the key and then further optimize the attack by 

computing the F-statistic 𝐹𝐵
𝑝𝑐,𝑡

. Because each byte of AES is targeted separately, the 

algorithmic noise is assumed to come from uncorrelated computations involving the 

remaining 15 bytes. Although each byte can potentially switch from 256 values in the 

penultimate round to 256 values in the final output, the Hamming distance (HD) of this 

transition reduces the number of combinations from 256×256 to 9 values, from HD0 to 

HD8. This simplification is consistent with the HD leakage model used in Section 2.1 for 

correlation analysis. For each HD𝑖 of a target byte, 𝑁e,III encryptions are performed, where 

uncorrelated bytes are chosen randomly to increase algorithmic noise. The mean �̿�HD𝑖1

𝑝𝑐,𝑡
and 

 

Figure 2.8: The measurement protocol in the white-box threat model initially performs 

Phase I of the protocols used for gray- and black-box threat models. Once the 

key is disclosed, the search space is pruned by computing  𝐹𝐵
𝑝𝑐,𝑡

 statistic byte-

wise and comparing it to a threshold 𝐹𝐵,c. The reduced set of configurations 

are then evaluated using correlation analysis.   
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variance �̅�HD𝑖

𝑝𝑐,𝑡
 are computed on the averaged signals across the changing encryptions, and 

the F-statistic 𝐹𝐵
𝑝𝑐,𝑡

 is estimated as 

                                   𝐹𝐵
𝑝𝑐,𝑡 =

9×𝑁e,III×Var(�̿�HD0
𝑝𝑐,𝑡

,�̿�HD1
𝑝𝑐,𝑡

,⋯,�̿�HD8
𝑝𝑐,𝑡

)

Mean(�̅�HD0
𝑝𝑐,𝑡

,�̅�HD1
𝑝𝑐,𝑡

,⋯,�̅�HD8
𝑝𝑐,𝑡

)
                             (2.13) 

In Phase III, 𝐹𝐵
𝑝𝑐,𝑡

 is estimated in a single high-resolution byte-wise scan using 

configurations identified in Phase II. Comparing the computed values with a threshold 

𝐹𝐵,c derived from F-distributions enables attackers to remove configurations significantly 

degraded by algorithmic noise after Phase III. Phase IV subjects optimal configurations 

𝑝𝑐opt,𝐹𝐵 to correlation analysis. This requires   

𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡Wbox = 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡pre +∑ ∑ 𝑁l,ℎ,𝑜,I𝑁r𝑁e,I
𝑁o
𝑜=1

𝑁h
ℎ=1 +

             ∑ ∑ ∑ 𝑁e,𝑠,II𝑁l,h,o,,s,II
𝑁o
𝑜=1

𝑁h
ℎ=1

𝑁scan,II

𝑠=1 +     ∑ 9𝑁e,III𝑁l,III 
16
𝑏=1 + ∑ 𝑁e,IV𝑁l,IV

16
𝑏=1      (2.14) 

encryptions to be observed. 

2.3 MEASUREMENT RESULTS 

2.3.1 Setup 

Fine-grained EM SCA attacks were implemented on AES-128 implementations 

using a 1-mm diameter H-field probe, at a fixed height ℎ1 = 0.5 mm, to scan an 8×8 mm2 

ASIC [12] and an 18×18 mm2 Artix-7 FPGA [33]. Both chips operated at input clock 

frequency of 20 MHz and supply voltage of 1.1 V. A Keysight DSOS054A oscilloscope 

recorded the signals with a sampling rate of 10 GS/s. Analysis was performed locally on 

the oscilloscope, saving experiment time. The probe was positioned using Riscure’s EM 

probe positioner. The setup allows scanning only in x- and y-orientation, i.e., 𝑁o = 2. The 

search space included 𝑁l = 51 × 51 locations in both orientations. The spatial distributions 

of measured EM signals are shown in Fig. 2.9(a). Coarse-grained EM SCA attacks were 

performed using a 10-mm H-field probe while power attacks were performed using 
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available supply pins on the test boards. Signals captured for power and coarse-grained EM 

SCA attack are shown in Fig. 2.9(b)-(c). 

In addition to an unsecured AES implementation, the ASIC also used a module 

hardened against power and coarse-grained EM SCA attacks by using a power delivery 

mechanism based on the galvanic isolation principle [9], [12]. Galvanic isolation is 

typically used in high-voltage power converters, where the secondary side of the converter 

is separated from the primary side to protect it from potentially damaging transient voltages 

                    

              
(a) Fine-grained EM SCA 

         
                    (b) Coarse-grained EM SCA                          (c) Power SCA         

Figure 2.9: (a) Spatial map of the absolute value of the measured signals using an x-

oriented 1-mm diameter H-field probe at ~12 ns during the last round for the 

FPGA (left) and the secured ASIC (right). 𝑁l= 51×51 locations were probed 

in both cases. (b) EM signal measured by a z-oriented 10-mm diameter H-

field probe positioned at the center of the FPGA. (c) Supply variation of 

FPGA during the last round of AES operations.      
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and currents [12]. Here, the AES core is isolated from the external power supply to protect 

the module from power SCA attacks. Reconfigurable capacitor banks are used to supply 

the necessary charge to perform AES computations. Therefore current signatures and 

ground bounce in the external supply have minimal data-dependent variance. 

2.3.2 Marginal Cost 

First, the marginal costs of EM and power SCA attacks are compared (correlation 

analysis was performed using the optimal probe configurations or the fine-grained EM 

SCA attack) to judge their effectiveness. The number of observations with each attack 

modality was limited to 2 million encryptions; in some cases, the AES key could not be 

extracted within this limit. The observed marginal costs for all the implementations are 

listed in Table 2.1. Table 2.1 shows that the coarse-grained EM SCA attack was the least 

effective SCA modality against all the implementations. Surprisingly, the power SCA 

attack was the most effective against the FPGA (recovering the key with ~2.5× fewer 

Marginal Cost  

DUT  

FPGA 
Baseline 

ASIC 

Secured 

ASIC 

Power 4.20×103  1.00×105 >2.00×106 

Coarse-

Grained EM 
4.58×104  1.48×105 >2.00×106 

Fine-Grained 

EM 
1.05×104 2.65×104 2.80×104 

Table 2.1: Marginal costs of SCA attacks  
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encryptions than the best alternative); this may be because the FPGA and its test board are 

specifically designed and marketed to study power SCA attacks, i.e., they must have 

particularly low-noise outputs suitable for the power attack. The fine-grained EM SCA 

attack required ~3.7× fewer encryptions for the baseline ASIC and >70× times fewer 

encryptions for the secured ASIC compared to the power SCA attack.  

Using the exhaustive search to isolate the optimal probe configurations for the fine-

grained EM SCA attack would require ~108 measurements for both implementations, if 

𝑁e
max = 20 000. Next, the results from the search protocols to reduce this cost are reported 

for the FPGA and the secured ASIC (similar acquisition costs were observed for both 

secured and unsecured implementations). 

2.3.3 Comparison of Fine-grained EM SCA Protocols 

 The pre-characterization (Fig. 2.10) was performed using 𝑁e
pre

= 50 encryptions 

for the maximum number of observers on both chips. The signal’s standard deviation 

across the chip was computed and configurations with low variance (< 0.1 mV) were 

      

Figure 2.10: Spatial maps of max
𝑡
Std(𝐕𝑡,𝑝𝑐) obtained with the x-oriented probe for 

the FPGA (left) and ASIC (right). 
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discarded. The pre-characterization showed a significant reduction in the initial search 

space for the ASIC (~40%) compared to the FPGA (~15%). Before implementing the 

protocols, the configurations eliminated by the pre-characterization phase were noted. If a   

scan included such a configuration, that measurement was skipped and the probe was 

positioned at the next configuration. 

The protocol for the black-box threat model (Fig. 2.11) [10], [29] required Nscan,I =

2 Phase I scans for the FPGA, with the second scan requiring 𝑁e,2,II = 6000 encryptions 

per configuration and probed observers on an equally spaced grid of size 11 × 11 over the 

  
(a) Phase I scan 2 

         
(b) Phase II scan 1 

Figure 2.11: MTD maps for byte 1 obtained from the black-box search protocol for the 

FPGA (left) and ASIC (right) implementations. Scans constrain area (red and 

black) and number of measurements progressively to reduce cost. 
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chip. It required  Nscan,I = 2 Phase I scans for the ASIC, where 𝑁e,2,II = 8000 encryptions 

per configuration were used in the second scan. Both implementations required N𝑠can,II =

2 scans to disclose all bytes of the key.  

Attacks using the gray-box protocol first computed F-statistic 𝐹𝑁
𝑝𝑐,𝑡

 for 

configurations within the search space reduced by pre-characterization. To compute the F-

statistic, 𝑁e,I =20 encryptions were repeated 𝑁r = 50 times [6]. As shown in Fig. 2.12, 

comparing the values with the critical threshold 1.6 (confidence level 95%), several non-

optimal configurations were discarded. Phases II and III implemented the black-box search 

protocol over a reduced area, using Nscan,II = 1 and Nscan,III=2 scans.  

Attacks using the white-box protocol started with the pre-characterization and 

Phase I for the gray-box model. Phase II performed a low-resolution scan with 𝑁l,1,II =

6 × 6, in the region marked in Fig. 2.12. Once the final round keys were identified, inputs 

were provided to the chip such that for each variation of Hamming distance switching of 

an output byte, 𝑁e,III = 20 encryptions were generated to compute the 𝐹𝐵
𝑝𝑐,𝑡

 statistic (Fig. 

 

      

Figure 2.12: Spatial map of max
𝑡
𝐹𝑁
𝑝𝑐,𝑡

 and the are used in subsequent analysis (red) with 

an x-oriented probe for the FPGA (left) and ASIC (right). 
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2.13) in Phase III. The statistic was computed at a comparatively finer resolution for the 

FPGA since a larger region was observed to leak information in previous phases. 

2.3.4 Comparison of Acquisition Costs 

The pre-characterization stage required ~2.6×105 encryptions for both AES 

implementations. The acquisition costs were ~9.9×106, ~7.3×106, and ~6.9×106 

(~1.27×107, ~9.8×106, and ~6.8×106) measurements for the FPGA (ASIC) when the black-

, gray-, and white-box threat model was used. The number of probe configurations and the 

accumulation of the acquisition cost at each phase of the search protocols are shown in 

Figs. 2.14(a)-(c). The final acquisition costs are compared to that of the exhaustive 

approach in Fig. 2.14(d). Compared to the exhaustive search, the search protocols for the 

black-, gray-, and white-box threat models showed ~8-10×, ~10-13×, and ~14-15× cost 

reduction. The search protocols for the gray- and white-box threat models required ~1.3- 

1.35× and ~1.5-2× fewer measurements compared to that for the black-box one, 

respectively.  

 

      

Figure 2.13: Spatial map of max
𝑡
𝐹𝐵
𝑝𝑐,𝑡

 compared to optimal configurations (star) for the 

FPGA (left) and ASIC (right). 
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2.4 SUMMARY 

In this chapter, fine-grained EM SCA attacks were systematically compared to 

coarse-grained EM and power SCA attacks. Though fine-grained EM SCA attacks were 

found to be more than 70× effective compared to the alternatives on AES-128, they are 

constrained by the potentially infeasible acquisition cost of the measurements. Various 

threat models were introduced to categorize search protocols that can rapidly isolate 

optimal probe configurations in fine-grained EM SCA attacks. Experiments showed that 

different protocols can reduce the acquisition cost compared to an exhaustive search by ~8-

15×. These protocols enable designers to rapidly evaluate the security of cryptographic 

modules that implement EM and power SCA countermeasures.   

   
                         (a) Black-Box Model                             (b) Gray-Box Model 

 
                      (c) White-Box Model                                (d) Final Cost Comparison 

Figure 2.14: Reduction of the search space for optimal probe configurations. The optimal 

configurations were more rapidly isolated for less restrictive threat models. 
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3. Evaluation of AES using ANOVA F-Statistics2 

This chapter presents a 3-stage measurement protocol to rapidly evaluate fine-

grained EM security for a gold-box threat model. The protocol is used to evaluate the 

resilience of several baseline and hardened implementations of AES in both time and 

frequency domain. Further, the costs of the protocol are compared to several alternatives 

at the end of the chapter.  

3.1 MEASUREMENT PROTOCOL 

This section presents the proposed 3-stage measurement protocol that uses 

ANOVA indicators to evaluate side-channel security. Unlike the methods in Chapter 2, 

here, the protocol is performed using both time samples 𝑡 and frequency samples 𝑓. The 

𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 and 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

 metrics (See Eq. (2.8)) are computed and used to reduce the search 

space in Stages I and II, respectively. The remaining configurations are used to perform 

correlation analysis in Stage III and acquire optimal probe configurations. The acquisition 

cost and measurement time of the proposed protocol are quantified and contrasted to the 

TVLA indictor. All analyses shown in this section were obtained from an attack on the first 

key byte of AES-128, using the Artix-7 FPGA, operated at 20 MHz clock and 1 V supply 

voltage, and the optimal measurement configuration in [10], [20]: a 1-mm diameter H-field 

probe, oriented in the x direction, and located at (9.7, 8, 0.5) mm from the bottom left corner 

of the chip. 

 
2 This chapter is partly based on a previous publication: V. V. Iyer and A.E. Yilmaz, “An ANOVA method 

to rapidly assess information leakage near cryptographic modules,”  IEEE Trans. Electromagn. Compat., 

vol. 64, no. 4, Aug. 2022.   

The author contributed to the formulation, implementation, and measurements presented in this article, as 

well as the writing of this manuscript. 
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3.1.1 The Gold-Box Threat Model 

The proposed method assumes side-channel security evaluators have full control 

over the input and the encryption key of the DUT (a “gold-box threat model” [9]). This 

permits evaluators to not just emulate but enhance correlation-analysis attacks, which are 

applicable even under the highly restrictive black-box threat model [9] but quickly become 

infeasible for fine-grained EM SCA evaluation. In particular, fewer restrictions permit 

evaluators to design targeted tests, estimate the impact of noise, and rapidly identify 

ineffective probe configurations.  

3.1.2 Choosing Test Cases to Compute F-statistics  

To compute each F-statistic, a set of test cases is constructed. Because evaluators 

are permitted to modify the AES encryption key as well as the input plaintext, each 

encryption 𝑒 in the set can use a potentially different plaintext 𝐢𝐩𝑒 and key 𝐤𝑒
0. To construct 

the test cases, all 16 bytes of the ciphertext in the penultimate round are enforced to be 

constant and set to zero for simplicity, i.e., 𝐨𝐜𝑒
9 = [0x00,⋯ ,0x00]. Thus, the HD between 

𝑜𝑐𝑒
9,𝑏′

 and 𝑜𝑐𝑒
10,𝑏′

 is the Hamming weight of 𝑜𝑐𝑒
10,𝑏′

; e.g., 𝑜𝑐𝑒
10,𝑏′ = 0x00 gives HD0 and 

𝑜𝑐𝑒
10,𝑏′ = 0xFF gives HD8. As a result, evaluators can specify test cases (set each plaintext 

𝐢𝐩𝑒 and key 𝐤𝑒
0) by only setting the output ciphertext 𝐨𝐜𝑒

10. Once 𝐨𝐜𝑒
10 is set, the last round 

key 𝐤𝑒
10 is found from Eq. (2.1) as:  

                                           𝑘𝑒
10,𝑏′ = 0x63 ⨁ 𝑜𝑐𝑒

10,𝑏′                                              (3.1) 

This is because each byte in the specified 𝐨𝐜𝑒
9 (0x00) is always mapped to 0x63 by 

AES. Once all 16 bytes of 𝐤𝑒
10 are deduced, the key 𝐤𝑒

0 and plaintext 𝐢𝐩𝑒 corresponding to 

𝐨𝐜𝑒
10 are extracted as detailed in Section 2.1.2. The first two stages of the proposed protocol 

use test cases constructed with this approach.  
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The test cases should be chosen based on the leakage model used in the correlation 

analysis; thus, in this paper, they are chosen using the HD leakage model, where the data 

of interest 𝑘10,𝑏 is disclosed by targeting the switching in the last AES round from 𝑜𝑐𝑒
9,𝑏′

 

to 𝑜𝑐𝑒
10,𝑏′

. Other leakage models may be more suitable depending on the implementation 

and algorithm; e.g., test cases were constructed using Hamming weights in [4] to model 

the fields emanated during data transfer on a processor bus. The HD leakage model used 

in this paper assumes that the target signals arising from computations involving 𝑘10,𝑏 have 

only 9 instead of 256 possible variants {HD0, ⋯ , HD8} corresponding to the HD between 

𝑜𝑐𝑒
9,𝑏′

 and 𝑜𝑐𝑒
10,𝑏′

, all test cases with the same HD yield indistinguishable target signals, 

and test cases that correspond to HD0 and HD8 are extreme variants, whose target signals 

differ the most.  

3.1.3 Stage I: Measurement-Noise-Based Leakage Indicator 

In Stage I, the 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 statistic is evaluated by using test cases that correspond to 

extreme variants for the computations of interest and minimize algorithmic noise; i.e., test 

cases consist of the 2 extreme variants for each byte 𝑏—corresponding to HD0 and HD8 

between 𝑜𝑐𝑒
9,𝑏′

 and 𝑜𝑐𝑒
10,𝑏′

—while the other 15 bytes of 𝐨𝐜𝑒
10 are kept constant and set to 

0x00 (HD0). Because the test case corresponding to  𝐨𝐜e
10 = 𝟎 can be reused as one of the 

extreme variants for each byte and because the remaining test cases are generated by 

changing only one of 16 bytes of 𝐨𝐜e
10 to 0xFF (HD8), a total of 𝑁e,I = 17 plaintext-key 

pairs are used as test cases in Stage I. The HDs for these 17 test cases can be stored in a 

17×16 integer array : 

                                        𝐇I =

[
 
 
 
 
HD0 HD0
HD8 HD0
HD0 HD8

⋯

HD0
HD0
HD0

⋮ ⋱ ⋮
HD0 HD0 ⋯ HD8]

 
 
 
 

                                         (3.2)  
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These 𝑁e,I encryptions are repeated 𝑁r,I times for each possible probe configuration 

and the F-statistic is evaluated as:   

                               𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

=
2𝑁r,I×Var(�̅�HD0

𝑏,𝑝𝑐,𝑡/𝑓
,�̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

)

Mean(𝑠HD0
𝑏,𝑝𝑐,𝑡/𝑓

,𝑠HD8
𝑏,𝑝𝑐,𝑡/𝑓

)
                                      (3.3) 

Here, sample means �̅�HD0/8
𝑏,𝑝𝑐,𝑡/𝑓

 and variances 𝑠HD0/8
𝑏,𝑝𝑐,𝑡/𝑓

 of the probed fields are 

computed across the 𝑁r,I samples. The fields for �̅�HD0
𝑏,𝑝𝑐,𝑡/𝑓

 and 𝑠HD0
𝑏,𝑝𝑐,𝑡/𝑓

 (�̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

 and 

𝑠HD8
𝑏,𝑝𝑐,𝑡/𝑓

) are observed using the test case generated by setting 𝑜𝑐𝑒
10,𝑏′

 to 0x00 (0xFF) and 

all other bytes of 𝐨𝐜e
10 to 0x00, i.e., the test case in row 1 (𝑏′ + 2) of 𝐇I. 

An example of the F-statistic computed using 𝑁r,I = 30 repetitions is shown in Fig. 

3.1. Comparing the data to Fig. 2.3 shows that, 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 is large whenever 𝜌𝐇,𝐕
𝑏,𝑔,𝑝𝑐,𝑡/𝑓

 is 

large but the converse is not true, i.e., the indicator captures the information leakage but 

also overestimates it. The computed F-values are compared to a threshold 𝐹𝑁,𝑐 to generate 

a leakage indicator:  

                             𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟I
𝑏,𝑝𝑐 = {

1         if  max
𝑡/𝑓

𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

≥ 𝐹𝑁,𝑐 

 0        otherwise                         
                   (3.4) 

Only configurations with indicator value 1 are selected for measurements in Stage 

II, i.e., only 𝑁pc,II
𝑏 = ∑ 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟I

𝑏,𝑝𝑐
𝑝𝑐  probe configurations are used.  

 

Figure 3.1:  Time-domain (left) and frequency-domain (right) 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 metric, 

evaluated with the probe configuration 𝑝𝑐0,opt. 
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3.1.4 Stage II: Algorithmic-Noise-based Leakage Indicator 

In Stage II, the 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

 statistic is evaluated by using test cases that correspond to 

extreme variants for both the computations of interest and background computations. Test 

cases consist of the 2 extreme variants for each byte 𝑏, while 14 of the remaining 15 bytes 

of 𝐨𝐜𝑒
10 are kept constant at 0x00 (HD0) and 1 other byte is set to the 2 extreme variants. 

Consider the 32 test cases for byte 𝑏 = 0: In half of these cases, 𝑜𝑐𝑒
10,0

 (byte 0 is not 

impacted by ShiftRows, so 𝑏′ = 𝑏) is 0x00 (HD0) or 0x𝐹𝐹 (HD8); for each half, 𝑁B = 16 

background process variants are generated by setting all or all but one of the remaining 

bytes of 𝐨𝐜e
10 to HD0. The HDs for these 32 test cases can be stored in an integer array of 

size 32×16: 

                             𝐇II
0 =

[
 
 
 
 
 
 
 
 
 
HD0 HD0 HD0 ⋯ HD0
HD0 HD8 HD0 ⋯ HD0
HD0 HD0 HD8 ⋯ HD0
⋮ ⋮ ⋮ ⋱ ⋮

HD0 HD0 HD0 ⋯ HD8
HD8 HD0 HD0 ⋯ HD0
HD8 HD8 HD0 ⋯ HD0
HD8 HD0 HD8 ⋯ HD0
⋮ ⋮ ⋮ ⋱ ⋮

HD8 HD0 HD0 ⋯ HD8]
 
 
 
 
 
 
 
 
 

                                   (3.5) 

Similar test cases and their HD arrays 𝐇II
𝑏  are constructed for all bytes 𝑏. The first 

17 rows of each 𝐇II
𝑏  is a reordering of the 17 test cases in 𝐇I; thus, only 𝑁e,II

𝑏 =15 new 

plaintext-encryption key pairs are needed for each byte in Stage II. Using these test cases, 

the F-statistic is evaluated as 

                                  𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

=
2𝑁B×Var(�̅̅�HD0

𝑏,𝑝𝑐,𝑡/𝑓
,�̅̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

)

Mean(�̅�HD0
𝑏,𝑝𝑐,𝑡/𝑓

,�̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

)
                                   (3.6)   

Here, the sample means �̅̅�HD0/8
𝑏,𝑝𝑐,𝑡/𝑓

 and variances �̅�HD0/8
𝑏,𝑝𝑐,𝑡/𝑓

 are computed across the 

𝑁B samples. The fields for  �̅̅�HD0
𝑏,𝑝𝑐,𝑡/𝑓

 and �̅�HD0
𝑏,𝑝𝑐,𝑡/𝑓

 (�̅̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

 and �̅�HD8
𝑏,𝑝𝑐,𝑡/𝑓

) are observed using 

the test cases in rows 1-16 (17-32) of 𝐇II
𝑏 . Extra bars are used above the sample means and 

variances because the tests are repeated 𝑁r,II times and the probed fields are first averaged 
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over them. The number of repetitions per test case in Stage II can be lower than that in 

Stage I, i.e., 𝑁r,II < 𝑁r,I, in part because configurations most sensitive to measurement 

noise are discarded in Stage I and in part because the goal is to reduce noise rather than 

accurately capture variations in repeated measurements. 

An example of the F-statistic computed with 𝑁r,II = 10 repetitions is shown in Fig. 

3.2. Comparing Figs. 2.3, 3.1, and 3.2, it can be observed that both F-statistics must be 

maximized to successfully disclose the encryption key. Similar to Stage I, the computed F-

values are compared to a threshold 𝐹𝐵,𝑐 to generate a leakage indicator: 

                            𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟II
𝑏,𝑝𝑐 = {

1         if  max
𝑡/𝑓

𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

≥ 𝐹𝐵,𝑐 

 0        otherwise                          
                  (3.7) 

Configurations with indicator value 0 are eliminated at the end of Stage II, i.e., 

only 𝑁pc,III
𝑏 = ∑ 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟II

𝑏,𝑝𝑐 𝑝𝑐 probe config-urations are used in Stage III. The 

thresholds 𝐹𝑁,𝑐 and 𝐹𝐵,𝑐 are derived from F-distributions for a 90% confidence level. 

3.1.5 Stage III: ANOVA-Informed Correlation Analysis 

In Stage III, correlation analysis is performed to identify 𝑝𝑐𝑏,opt by using only the 

probe configurations not eliminated at the end of Stage II. One potential approach, after 

 

Figure 3.2:  Time-domain (left) and frequency-domain (right) 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 metric, 

evaluated with the probe configuration 𝑝𝑐0,opt. 
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collecting 𝑁e measurements, is to repeatedly compute the correlation coefficient in Eq. 

(2.3), starting with 𝑁e encryptions, followed by 𝑁e − 1 encryptions, and so on, until 

𝑀𝑇𝐷𝑏,𝑝𝑐 is identified, i.e., where the coefficient for the correct guess drops below the null 

hypothesis threshold (Fig. 2.4). This requires O(𝑁e) to O(𝑁𝑒
2) operations; alternatively, a 

binary search algorithm can be implemented to identify 𝑀𝑇𝐷𝑏,𝑝𝑐 in O(𝑁e log𝑁e) 

operations [29]. Stage III ends by identifying 𝑚𝑀𝑇𝐷𝑏 and 𝑝𝑐𝑏,opt for each byte 𝑏.  

A naïve approach to ensure 𝑚𝑀𝑇𝐷𝑏 is identified in Stage III is to set 𝑁e = 𝑁e
max, 

a large number of encryptions that ensures all key bytes are disclosed. Alternatively, the F-

values found in Stage II can be used to inform the search and potentially reduce the 

measurement costs of Stage III (Fig. 3.3): In this approach, 𝑁scan,III
𝑏  scans are performed 

for each byte b, using all 𝑁pc,III
𝑏  probe configurations. Before these scans, the probe 

configurations are arranged in descending order of their F-values found in Stage II as 

 

Figure 3.3:  Flowchart of Stage III of the proposed protocol. 

 



 56 

 {𝑝𝑐𝑏,1 , 𝑝𝑐𝑏,2,… , 𝑝𝑐𝑏,𝑁pc,III
𝑏  }. In each scan 𝑠 = 1,… ,𝑁scan,III

𝑏 , an initial estimate of 𝑚𝑀𝑇𝐷𝑏 

is chosen as 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 and 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 encryptions are observed using each configuration 

𝑝𝑐𝑏,𝑖 for 𝑖 =  1, … ,𝑁pc,III
𝑏 . If 𝑀𝑇𝐷𝑏

𝑝𝑐𝑏,𝑖 < 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 for any configuration, the remaining 

configurations are evaluated by reducing 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 to 𝑀𝑇𝐷𝑏
𝑝𝑐𝑏,𝑖 

. The estimate is so 

updated throughout the scan and this process continues until all 𝑁pc,III
𝑏  probe configurations 

are tested. The scans are terminated if 𝑀𝑇𝐷𝑏
𝑝𝑐𝑏,i < 𝑚𝑀𝑇𝐷𝑠

𝑏,est
 for any probe configuration 

and the key was disclosed. Otherwise, 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 is increased to 𝑚𝑀𝑇𝐷𝑠+1
𝑏,est

 and the 

process is repeated until the key is disclosed; e.g., in this work, each scan incremented the 

estimate by 500 encryptions. If the number of encryptions is increased, only the additional 

𝑚𝑀𝑇𝐷𝑠+1
𝑏,est  − 𝑚𝑀𝑇𝐷𝑠

𝑏,est
 encryptions have to be observed because the observations from 

the previous scan can be reused when computing the correlation coefficient. In the best-

case/ minimum-cost scenario, the first configuration tested in the first scan reveals 𝑝𝑐𝑏,opt 

and 𝑚𝑀𝑇𝐷𝑏, while in the worst-case/ maximum-cost scenario, the final configuration at 

the end of the final scan reveals the optimal configuration. Therefore,  𝑚𝑀𝑇𝐷𝑏 ≤ 𝑁e,III
𝑏 ≤

𝑚𝑀𝑇𝐷
𝑁scan,III
𝑏  

𝑏,est
 encryptions are observed with each probe configuration in Stage III.  

3.2 MEASUREMENT COSTS AND ALTERNATIVE METHODS 

3.2.1 Acquisition Cost 

The acquisition cost of the proposed protocol is the total number of measurements 

in each stage, which is the product of the number of encryptions observed per 

configuration, number of repetitions, and number of configurations probed, i.e.,  

                                     𝐴𝑐𝑞𝑢𝑖𝑠. 𝐶𝑜𝑠𝑡 = 𝑁e,I𝑁r,I𝑁l𝑁h𝑁o +  ∑ 𝑁e,II
𝑏 𝑁r,II𝑁pc,II

𝑏16
𝑏=1  +  

                                                          ∑ 𝑁e,III
𝑏 𝑁pc,III

𝑏16
𝑏=1   (ANOVA)                                          (3.8)  
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Once the acquisition cost is accrued, the marginal cost of future evaluations can be 

reduced by reusing probe configurations 𝑝𝑐𝑏,opt and performing only the minimum number 

of measurements 𝑚𝑀𝑇𝐷𝑏 for each byte. The marginal cost of future evaluations is [10],[9],  

                            𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 =  ∑ 𝑚𝑀𝑇𝐷𝑏16
𝑏=1                                                       (3.9) 

The marginal cost of evaluating a module employing a countermeasure is compared 

to that of a baseline module to quantify the improvement in the EM side-channel security 

of hardened AES modules in this paper. In the most resilient modules, some key bytes may 

potentially not be disclosed [20]. In these cases, to limit the measurement costs of the 

evaluation, the number of encryptions performed per configuration is restricted to be no 

more than 𝑁e
max.  

3.2.2 Acquisition Time and Storage 

The storage requirements and acquisition time can be computed based on the 

acquisition cost and equipment parameters [29]. Each time sample is typically stored as a 

single-precision floating-point number in the oscilloscope. Therefore, the storage 

requirements can be estimated as 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡ANOVA ×𝑁t × 4 bytes, where 𝑁t is the 

number of samples in one clock period. Acquisition time is an equipment-dependent 

quantity; e.g., primitive oscilloscopes generally collect and transfer data to a computer one 

encryption at a time, which can take more time because of the latency associated with each 

transaction. On the other hand, higher-end oscilloscopes can store/transfer several 

𝑁seg measurements, avoiding latency-related issues associated with the acquisition [29]. 

Further, such oscilloscopes have sufficient processing capabilities to perform analysis, 

without needing to transfer data to another computer. As a result, multi-stage protocols, 

where measurements in each stage are decided by results of the previous stage, can be 
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potentially sped up [29].  If 𝑡cap seconds is required to capture each sample, and 𝑡sav 

seconds is required to save each sample, then 

                

𝐴𝑐𝑞. 𝑇𝑖𝑚𝑒I
ANOVA = 𝑁t(𝑡cap + 𝑡sav) × ⌈

𝑁e,I𝑁r,I𝑁l𝑁h𝑁o

𝑁seg
⌉

𝐴𝑐𝑞. 𝑇𝑖𝑚𝑒II
ANOVA = 𝑁t(𝑡cap + 𝑡sav) ×   ∑ ⌈

𝑁e,II
𝑏 𝑁r,II𝑁pc,II

𝑏

𝑁seg
⌉16

𝑏=1               
  

  

    𝐴𝑐𝑞. 𝑇𝑖𝑚𝑒III
ANOVA = 𝑁t(𝑡cap + 𝑡sav) ×  ∑ ⌈

𝑁e,III
𝑏 𝑁pc,III

𝑏

𝑁seg
⌉16

𝑏=1                        
                  

   (3.10) 

seconds are required to perform experiments in each stage of the protocol. In addition to 

acquisition time, evaluators may also need to account for the speed of probe positioning 

[29] and analysis time in each stage. Frequency-domain fields are generated during 

analysis, using the FFT algorithm, which requires a processing time of O(𝑁t log𝑁t) 

seconds for each encryption. While time-domain fields are limited by the clock period, the 

frequency-domain fields can be limited to 𝑁BW samples, corresponding to the limiting 

bandwidth of all equipment [20], to reduce analysis time. At each configuration and 

time/frequency sample, the analysis time needed to compute F-values in Eq. (2.8) is 

O(𝑁B𝑁T) seconds. The MTD identification in stage III requires O(𝑁e,III
𝑏 log𝑁e,III

𝑏 ) seconds 

per sample. 

3.2.3 Alternative Methods 

The proposed protocol is compared to several alternatives in Section 3.4. The 

exhaustive search method (Section 2.1.2) [10], [29] is one potential alternative. It performs 

correlation analysis by observing 𝑁e
max encryptions across the entire search space of probe 

configurations in a single, high-resolution scan. As a result, the exhaustive approach 

requires [10], [29] 

                     𝐴𝑐𝑞𝑢𝑖𝑠. 𝐶𝑜𝑠𝑡 = 𝑁e
max𝑁l𝑁h𝑁o (exhaustive search)                      (3.11) 



 59 

measurements to be observed. A more viable correlation-analysis approach is the greedy-

search adaptive scan protocol implemented in [10], [20], [29] and briefly described in the 

black-box attack in Section 2.2.3. This greedy-search protocol requires [10], 

                     𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡Bbox = 𝐴𝑐𝑞. 𝐶𝑜𝑠𝑡pre + ∑ ∑ ∑ 𝑁e,𝑠,I𝑁l,h,o,s,I
𝑁o
𝑜=1

𝑁h
ℎ=1

𝑁scan,I

𝑠=1 +

                                                     ∑ ∑ 𝑚𝑀𝑇𝐷𝑠−1
𝑏 𝑁l,s,II

𝑁scan,II

𝑠=1   16
𝑏=1    (Greedy Search)           (3.12) 

measurements. Note that this approach can have unlimited cost, e.g., for hardened modules, 

if the number of scans is not bounded. In practice, the acquisition cost of this protocol 

should be bounded by that of the exhaustive search method in Eq. (3.11) by limiting its 

phase I to at most 𝑁e
max encryptions and its phase II to have at most the same resolution as 

the exhaustive search.  

Another alternative is the TVLA method, a commonly used leakage indicator, 

including in the ISO/IEC 17825 standard [34],[35], to evaluate the side-channel resilience 

of crypto-systems [11],[12],[25]. The TVLA method also statistic-ally characterizes the 

probed fields for specially constructed test cases. Here, the DUT is assumed to be a “white 

box” [9], where evaluators can control the inputs to the chip but not the encryption key. It 

uses Welch’s t-test to compare the means of two sets of observed fields—a reference set 

(SetA), where inputs are fixed, and a test set (SetB), where the inputs are randomly 

generated—hypothesizing that information leakage is present if there are significant 

changes in the means of the two sets. In SetA, one plaintext is repeated 𝑁SetA times for a 

fixed key; in SetB, 𝑁SetB randomly generated inputs are encrypted using the same key as 

SetA. Computing the sample means �̅�SetA/SetB
𝑝𝑐,𝑡/𝑓

 and variances 𝑠SetA/SetB
𝑝𝑐,𝑡/𝑓

 across the 

𝑁SetA/𝑁SetB samples, the Welch t-test is evaluated as:  

                                            𝑇𝑝𝑐,𝑡/𝑓 =
�̅�SetB
𝑝𝑐,𝑡/𝑓

−�̅�SetA
𝑝𝑐,𝑡/𝑓

√𝑠SetB
𝑝𝑐,𝑡/𝑓

/𝑁SetB+𝑠SetA
𝑝𝑐,𝑡/𝑓

/𝑁SetA

                                     (3.13) 
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Using the parameters in [11], an example TVLA metric computed for 200 fixed plaintext 

and 200 random plaintext is shown in Fig. 3.4. In addition to accurately indicating leakages 

at ~10 ns/~200 MHz (Fig. 2.3), the TVLA also shows exaggerated leakage at ~40 ns/~300 

MHz. Because test cases are randomized without any restrictions, the TVLA method is 

leakage-model independent  and can be used as a generic approach to analyze side-channel 

leakage; in contrast, the ANOVA approach described in this work constructs test cases 

based on the leakage model used in the correlation analysis. The results of TVLA are not 

necessarily linked, however, to the number of measurements needed to disclose the key 

[11], [23], [35]. Furthermore, results of low-cost TVLA experiments using fewer 

encryptions (𝑁SetA, 𝑁SetB ≈ 200-500) may have limited accuracy [11]. Increasing the 

number of encryptions (𝑁SetA, 𝑁SetB ≈ 20000) to improve accuracy [12] is infeasible for 

fine-grained EM SCA attacks as the acquisition cost would approach the exhaustive search. 

The computed T-statistic can be compared with a threshold 𝑇c to generate another 

indicator: 

                                    𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟TVLA
𝑝𝑐 = {

1         if  max
𝑡/𝑓

𝑇𝑝𝑐,𝑡/𝑓 ≥ 𝑇c 

 0        otherwise                   
                          (3.14) 

 

Figure 3.4:  Time-domain (left) and frequency-domain (right) TVLA metric, evaluated 

with the probe configuration 𝑝𝑐0,opt. 
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Once probe configurations with 0 TVLA indicator values are eliminated, 

correlation analysis is performed only with  𝑁pc,TVLA = ∑ 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟TVLA
𝑝𝑐

𝑝𝑐  configurations. 

An exhaustive search (TVLA+e) would observe 𝑁e
max encryptions at each configuration. 

Alternatively, a TVLA-informed search (TVLA+i) similar to that in Section 3.1.5 can be 

used to reduce the measurement costs. In this approach, 𝑁scan,TVLA
𝑏  scans are performed for 

each byte b and 𝑚𝑀𝑇𝐷𝑏 ≤ 𝑁e,TVLA
𝑏  encryptions are observed with each probe 

configuration. The acquisition cost of these two protocols are 

               

𝐴𝑐𝑞𝑢𝑖𝑠.  𝐶𝑜𝑠𝑡 = (𝑁SetA + 𝑁SetB)𝑁l𝑁h𝑁o +   

                       𝑁e
max𝑁pc,TVLA (TVLA + e)

𝐴𝑐𝑞𝑢𝑖𝑠.  𝐶𝑜𝑠𝑡 = (𝑁SetA + 𝑁SetB)𝑁l𝑁h𝑁o +   

                                     ∑ 𝑁e,TVLA
𝑏 𝑁pc,TVLA

16
𝑏=1  (𝑇𝑉𝐿𝐴 + 𝑖)

                       (3.15) 

3.3 DEVICES UNDER TEST 

This section describes the 9 AES implementations (2 baseline and 7 hardened ones) 

whose vulnerability to EM SCA attacks is evaluated with the proposed protocol. The 

countermeasures in these implementations are separated into three categories representing 

different strategies to secure the chip. The countermeasures tested in this thesis are based 

on existing implementations in [18]-[20], [36],[37].  

3.3.1 Baseline AES implementations 

The first baseline AES module was implemented on an Artix-7 FPGA with 20 mm 

× 20 mm chip size tested on the CW305 evaluation board [33]. The evaluation board, which 

was specifically designed to demonstrate SCA attacks, allowed the clock frequency and 

supply voltage to be changed. As a baseline scenario, the chip was operated at clock 

frequency of 𝑓clk = 20 MHz and supply voltage of 𝑉s = 1 V. This baseline 

implementation is used as a reference to test 3 repeatability countermeasures (Section 
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3.3.2), 1 algorithmic countermeasure (Section 3.3.3), and 1 physical design strategy 

(Section 3.3.4), all implemented on the same FPGA.  

The second baseline AES module was an ASIC with 10 mm × 10 mm chip size 

[36]. The chip was operated at input clock frequency 𝑓clk = 37.5 MHz and supply voltage 

𝑉s = 1.1 V. It is used as a reference for testing 2 physical design strategies implemented 

on the same chip. 

3.3.2 AES Implementations with Repeatability Countermeasures 

Observed fields depend on the DUT’s operating supply voltage and clock 

frequency. Randomly scaling these parameters can create temporal shifts and modify 

amplitudes in observed signals, reducing the repeatability of experiments and increasing 

measurement noise. Three such countermeasures based on EM interference reduction 

techniques [20] are tested in this paper: 

1) Frequency Scaling (FS): Randomizing clock frequency creates delays in the 

circuit and misaligns measurements over multiple encryptions. While this jitter dithers 

time-domain signals [14], frequency-domain EM SCA attacks remain effective against this 

countermeasure. The FS countermeasure was implemented by varying the clock frequency 

in the range 𝑓clk = 20 MHz ± 0.25 MHz. 

2) Voltage Scaling (VS): Voltage scaling desensitizes peak-to-peak amplitudes of 

observed fields to the data being encrypted [15]. This countermeasure obfuscates both 

time- and frequency-domain fields. The VS countermeasure was implemented by varying 

the input supply in the range 𝑉s = 1 V ± 0.05 V. 

3) Voltage-Frequency Scaling (VFS): This countermeasure combines the VS and 

FS countermeasures to provide maximum dithering of fields in both time- and frequency-

domain [16]. The VFS countermeasure was implemented by simultaneously varying the 
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input supply and clock frequency in the ranges selected in the VS and FS countermeasure 

(set 2 in [20]).  

These countermeasures were implemented on the FPGA, using the programmable 

clock and voltage supply, such that 5 fixed states of voltage, frequency, or voltage-

frequency pairs were chosen within the selected ranges. These countermeasures can be 

implemented with relatively low overhead [15], [16].  

3.3.3 AES Implementations with Algorithmic Countermeasures 

Countermeasures artificially introducing algorithmic noise typically introduce 

additional operations/modify data flow in the algorithm. Examples include hiding and 

masking [19], [36], [37], where exploitable intermediate round outputs are modified to 

break correlation with observed fields. A majority of countermeasures in this category for 

AES focus on masking non-linear Sbox operations using novel transformations or changes 

to existing implementations; e.g., in [19], a byte permutation (BP) network that rearranges 

bytes randomly was proposed as a precursor to Sbox operations and AES correctness was 

maintained by using an inverse BP network to re-order bytes at the end of each round. This 

method showed limited resilience improvement (~3.2×) for a black-box threat model [19]. 

Therefore, in addition to the hardened Sbox implementation in [19], a simple Boolean XOR 

operation for linear operation masking [36], [37] is used to hide the intermediate state 

register value in this paper. Here, a random “mask” variable 𝐌𝑚 changes 𝐨𝐜𝑒
9 to masked 

value 𝐨𝐜𝑒,𝑚
9  in the penultimate round. The last round begins with “unmasking” and byte-

order randomization using the BP network. After Sbox operation, bytes are re-ordered with 

the inverse BP network, followed by the shift rows operation. The final operations of AES 

can be summarized as, 
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𝑜𝑐𝑒,𝑚
9,𝑏′ = 𝑜𝑐𝑒

9,𝑏′⨁𝑀𝑚
𝑏′

𝑖�̃�𝑒
10,𝑏 = 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝐵𝑃−1[𝑆𝑏𝑜𝑥(𝐵𝑃[𝑜𝑐𝑒,𝑚

9,𝑏⨁𝑀𝑚
𝑏 ])]) 

𝑜𝑐𝑒,𝑚
10,𝑏 = 𝑖�̃�𝑒

10,𝑏⨁𝑘10,𝑏

               (3.16) 

This countermeasure was implemented on the FPGA using the nominal clock 

frequency and input supply. While it can be an effective countermeasure, masking incurs 

significant area and delay overheads [19]; moreover, it can be vulnerable to higher-order 

attacks [36], [37] outside the scope of this paper, where the mask is attacked first, followed 

by the key.  

3.3.4 AES Implementations with Physical Design Strategies 

These countermeasures minimize data-dependent variations in observed fields by 

implementing dedicated signal attenuation hardware [13], modifying the chip’s physical 

design [18], or shielding the module [17]. These may not be effective at all frequencies of 

interest, can increase packaging costs, or increase the area overhead. In this paper, 3 such 

countermeasures are implemented: In the first one, a 25-𝜇m thick aluminum foil is placed 

over the FPGA to attenuate fields and degrade EM SCA attacks. The other two 

countermeasures are implemented on the ASIC and involve changes to the AES module’s 

power grid. The first design implements a “twisted pair” grid structure [18]; the second one 

uses wider and thicker power rails to shield signals from lower metal layers [18].  

3.4 BASELINE RESULTS 

This section presents the results for the baseline FPGA and ASIC implementations 

of AES-128. The proposed method is compared to alternatives in terms of acquisition costs. 

All spatial maps of fields and computed statistics in this section were obtained with the x-

oriented probe. The setup for the FPGA was already described in Section 2.3.1. The ASIC 

used an additional Arduino interface, which acts as an intermediary during the transfer of 
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plaintext and keys from the main computer. To demonstrate the spatial resolution, maps of 

time- and frequency-domain fields at information leaking time/ frequency samples are 

plotted in Fig. 3.5 for the two DUTs, averaged over 30 repeated measurements. These 

composite images are obtained one pixel/measurement at a time by re-positioning the probe 

and repeating the encryption.  

3.4.1 Proposed Protocol Results 

The Stage I 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 metric was computed by repeating the 𝑁e,I = 17 encryptions 

detailed in Section 3.1.3 𝑁r,I = 30 times. Spatial maps of the maximum 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 are plotted 

 
(a) Baseline FPGA 

 
(b) Baseline ASIC 

Figure 3.5:  Spatial map of (a) time-domain signals at ~8 ns (left) and frequency-

domain signals at ~160 MHz (right) for the FPGA module detailed in [10], 

and (b) time-domain signals at ~6 ns (left) and frequency-domain signals at 

~100 MHz (right) for the ASIC module detailed in [18]. 
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in Fig. 3.6; a large portion of the configurations with high F-values were located inside the 

areas marked with red boxes. Fig. 3.6 shows that frequency-domain analysis discarded 

more configurations in Stage I. The Stage II 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

 metrics were computed by repeating 

the 𝑁e,II
𝑏 = 15 encryptions detailed in Section 3.1.4 𝑁r,II = 10 times and averaging the 

signals. Spatial maps of the maximum 𝐹𝐵
0,𝑝𝑐,𝑡/𝑓

 are shown in Fig. 3.7 only for the areas 

marked with red boxes in Fig. 3.6 for simplicity (high F-ratio configurations outside the 

red boxes were also evaluated in Stage II). Then, configurations whose maximum 

𝐹𝐵
0,𝑝𝑐,𝑡 were larger than 𝐹𝐵,𝑐 were tested in Stage III to find the optimal probe 

 
(a) Baseline FPGA 

 
(b) Baseline ASIC 

Figure 3.6:  Spatial map of (a) time-domain signals at ~8 ns (left) and frequency-

domain signals at ~160 MHz (right) for the FPGA module detailed in [10], 

and (b) time-domain signals at ~6 ns (left) and frequency-domain signals at 

~100 MHz (right) for the ASIC module detailed in [18]. 
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configurations, using at most 𝑁scan,III
𝑏 = 2/3 (6/8) scans in time/frequency domain for the 

baseline FPGA (ASIC). Each scan incremented the estimate 𝑚𝑀𝑇𝐷𝑠
𝑏,est

 by 500. The 

Acquisition Cost 

Baseline FPGA 

Time Domain 
Frequency 

Domain 
 

Stage I (×106) 2.65 2.65 Stage I (×106) 

Stage II (×106) 1.62 1.18 Stage II (×106) 

Stage III (×106) 1.24 1.16 Stage III (×106) 

Table 3.1: Proposed ANOVA Method’s Costs 

 

 

 
(a) Baseline FPGA 

 
(b) Baseline ASIC 

Figure 3.7:  Spatial map of (a) time-domain signals at ~8 ns (left) and frequency-

domain signals at ~160 MHz (right) for the FPGA module detailed in [10], 

and (b) time-domain signals at ~6 ns (left) and frequency-domain signals at 

~100 MHz (right) for the ASIC module detailed in [18]. 
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acquisition costs of the protocol are listed in Table 3.1. The table shows that the time-

domain evaluation required ~1.2× (~1.1×) more measurements than the frequency-domain 

one for the FPGA (ASIC).  

3.4.2 Cost Comparison to Alternative Methods 

Let’s first compare the proposed method for evaluating EM SCA vulnerability to 

emulating correlation-analysis attacks. Using an exhaustive scan, where 𝑁e
max = 20000 

encryptions are observed with every probe configuration in the search space, correlation 

analysis would require ~108 measurements. The acquisition cost can be lowered with 

 
(a) Baseline FPGA 

 
(b) Baseline ASIC 

Figure 3.8:  Spatial map of max
𝑡
𝑇𝑝𝑐,𝑡(left) and max

𝑓
𝑇𝑝𝑐,𝑓 (right) for the baseline (a) 

FPGA [10] and (b) ASIC [18]. Optimal configurations are shown with 

stars. 

 

 



 69 

adaptive scan protocols. Here, the greedy search protocol [10] was implemented with a 

pre-characterization stage: Every probe configuration was used to observe fields for 

𝑁e
pre

= 50 random encryptions and configurations where the standard deviation was < 0.1 

mV were removed from the search space. In Phase I, 𝑁scan,I = 2 (3) scans were performed 

for the FPGA (ASIC) and optimal configurations were identified by using 𝑁e,2,I = 5000 

 
(a) Baseline FPGA 

 
(b) Baseline ASIC 

Figure 3.9:  Reduction of search space for the optimal probe configuration in time 

(solid) and frequency domain (dashed) for the baseline (a) FPGA [10] and 

(b) ASIC [18]. Unlike the exhaustive- and greedy-search protocols, which 

emulate correlation analysis by actual attackers with restricted access, the 

TVLA and ANOVA protocols accelerate the process by computing 

statistical metrics. 
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(𝑁e,2,I = 5000 and 𝑁e,3,I = 8000) encryptions; in phase II, 𝑁scan,II = 2 (2) scans were 

performed for each byte. The final costs of implementing the protocol on the baseline 

FPGA (ASIC) were found to be ~1.0/1.1×107 (~1.6/1.7×107) measurements in 

time/frequency domain. Therefore, the proposed protocol was observed to be ~17-22× 

cheaper than the exhaustive approach and ~2-3× cheaper than the adaptive acquisition 

approach for the baseline cases.  

Next, let’s compare the proposed ANOVA-based method to TVLA-based 

alternatives. Here, TVLA was implemented using 𝑁SetA = 𝑁SetB = 200 encryptions for 

both baseline implementations. Spatial maps of the maximum 𝑇𝑝𝑐,𝑡/𝑓 are shown in Fig. 

3.8. Numerous “false positives” are observed throughout the search space, especially for 

the FPGA. Using the TVLA+e protocol on the FPGA (ASIC) required ~2.6/2.8×107 

(~2.5/2.4×107) measurements in time/frequency domain. The TVLA+i protocol required 

𝑁scan,TVLA
𝑏 = 2/3 (6/8) scans and ~9.9/10.2×106 (~8.8/8.6×106) measurements in 

time/frequency domain. Therefore, the proposed protocol was observed to be ~4-5× 

cheaper than the TVLA+e and ~1.5-2× cheaper than the TVLA+i method for the baseline 

cases.   

All protocols identified similar information-leaking configurations and minimum 

MTDs, although each protocol required different acquisition cost to reach the final result. 

All protocols began with the same maximum search space (𝑁o × 𝑁l = 2 × 51 × 51 

configurations), at 0 acquisition cost, and ended with 16 optimal configurations (one for 

each byte) after accruing the acquisition cost of the measurements. The costs of the 

protocols are plotted in Fig. 3.9, along with the reduction of the search space at each 

stage/phase. The search space size at the end of each stage is the sum of remaining possible 

probe configurations identified for each byte. Fig. 3.9 shows that the methods’ 

performances were rather insensitive to whether time- or frequency-domain signals were 
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used and that the proposed protocol outperformed the alternatives for the baseline 

implementations. Whether the same observations apply to hardened implementations is 

presented next.  

 
(a) Frequency Scaling (FS) countermeasure 

 
(b) Voltage Scaling (VS) countermeasure 

 
(c) Voltage-Frequency Scaling (VFS) countermeasure 

Figure 3.10:  Spatial map of max
𝑡
𝐹𝑁
0,𝑝𝑐,𝑡

(left) and max
𝑓
𝐹𝑁
0,𝑝𝑐,𝑓

 (right) for the FPGA 

implementing three countermeasures that increase the measurement noise.  
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3.5 RESULTS FOR COUNTERMEASURES 

This section details the results of evaluations of AES implementations hardened by 

the countermeasures described in Section 3.3 and the measurement setup detailed in 

Section 2.3.1. For each class of countermeasures, spatial maps of 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 and/or 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

 

are shown in Sections 3.5.1-3. Section 3.5.4 presents the costs of evaluating the counter- 

measures along with the improvement in resilience. For countermeasures with 𝑚𝑀𝑇𝐷𝑏 >

𝑁e
max = 20000, the cost of the greedy-search protocol is replaced by the cost of the 

exhaustive scan.    

3.5.1 Countermeasures Increasing Measurement Noise 

The countermeasures FS, VS, and VFS detailed in Section 3.3.2 increase the 

measurement noise in signals. Because they increase variance within repeated 

measurements, these counter-measures should degrade 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

. Spatial maps of the 

maximum 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 are plotted in Fig. 3.10 for the 3 hardened implementations. The results 

can be compared to those for the baseline FPGA in Fig. 3.6; the optimal probe 

configurations were found to be the same in all cases.   

  The FS countermeasure could improve the resilience of the module against time-

domain EM SCA attacks but had negligible impact on frequency-domain ones. Although 

shifts in time domain should not impact the magnitude of signals in frequency domain, 

delaying/hastening the signal still caused some minor variations in the frequency-domain 

EM SCA attack; this is because measurements were time-gated to the nominal clock period 

[20]. The VS countermeasure could improve the resilience of the module against both time- 

and frequency-domain EM SCA attacks, although the impact was more apparent in the 

frequency-domain approach. Voltage scaling affects the fields disproportionately in time 

domain, in particular, more variance was observed around signal peaks, while at other time 

intervals signals were more repeatable [20]. 
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The VFS countermeasure could improve the resilience of the module against both 

time- and frequency-domain EM SCA attacks. Because this countermeasure combines the 

previous two countermeasures, the first two stages of the proposed ANOVA method could 

identify only a few promising configurations with either time- or frequency-domain 

signals. The proposed method required ~7.2/5.5×106, ~6/5.7×106, and ~6.9/7×106 

measurements to identify the optimal probe configurations for the FPGA hardened with 

the FS, VS, and VFS countermeasure in time/frequency domain.  

 
(a) Stage I 

 
(b) Stage II 

Figure 3.11:  Spatial map of max
𝑡
𝐹𝑁
0,𝑝𝑐,𝑡

(top-left), max
𝑓
𝐹𝑁
0,𝑝𝑐,𝑓

 (top-right), 

max
𝑡
𝐹𝐵
0,𝑝𝑐,𝑡

(bottom-left), and max
𝑓
𝐹𝐵
0,𝑝𝑐,𝑓

(bottom-right) for the FPGA 

implementing the masking countermeasure that increases algorithmic noise.  
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3.5.2 Countermeasures Increasing Algorithmic Noise 

The masking countermeasure detailed in Section 3.3.3 increases the algorithmic 

noise. Because it performs additional uncorrelated computations, this countermeasure 

should primarily degrade 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

. Spatial maps of the maximum 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 and 𝐹𝐵
0,𝑝𝑐,𝑡/𝑓

 are 

plotted in Fig. 3.11. Comparing the results to that for the baseline FPGA in Figs. 3.6-3.7 

shows that more configurations were eliminated compared to the baseline at the end of 

Stage I in addition to Stage II, because randomly masking the state register increases signal 

variance for repeated encryptions as well as increasing algorithmic noise from uncorrelated 

computations. More importantly, it was observed at the end of Stage III that none of the 

probe configurations could disclose any key byte after 𝑁e
max encryptions.  

Unlike the adaptive scan protocols, which would potentially need the same number 

of measurements as an exhaustive scan (~108) to reach this conclusion, the proposed 

ANOVA method required only ~8.3/7.6×106 measurements in time/frequency domain.  

3.5.3 Countermeasures Attenuating Target Signals 

The physical design strategies detailed in Section 3.3.4 attenuate the target signals. 

Because they also reduce the variance of the target signals, these countermeasures should 

degrade both 𝐹𝑁
𝑏,𝑝𝑐,𝑡/𝑓

 and 𝐹𝐵
𝑏,𝑝𝑐,𝑡/𝑓

. Spatial maps of the maximum 𝐹𝑁
0,𝑝𝑐,𝑡/𝑓

 are plotted in 

Fig. 3.12, and can be compared with baseline results in Fig. 3.6. 

The shielded FPGA revealed no configurations of interest at the end of Stage I, 

failing to disclose the AES key; this is to be expected as the shield is 3-4 skin depths thick 

at the information leaking frequencies. While the physical design strategies in [18] revealed 

few configurations of interest, these configurations were successful in recovering the key, 

providing limited improvement in resilience. The dense wider power-grid structure 

revealed marginally fewer configurations compared to the twisted power-grid 

countermeasure.   
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The proposed method required ~2.7×106 measurements using both time- and 

 
        (a) Shielding countermeasure for the FPGA 

 
      (b) Twisted power grids counteremeasure for the ASIC 

 
(c) Wider power grids countermeasure for the ASIC 

Figure 3.12:  Spatial map of max
𝑡
𝐹𝑁
0,𝑝𝑐,𝑡

(left) and max
𝑓
𝐹𝑁
0,𝑝𝑐,𝑓

 (right) for the three 

countermeasures attenuating target signals. Optimal configurations, if 

present, are shown with stars.   
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frequency-domain analysis to evaluate the shielding countermeasure. The evaluation of the 

twisted power-grid structure, the time-/frequency-domain analysis required acquisition 

cost of ~6.6/7.3×106 measurements. The evaluation of the dense wider power grid structure 

in time/frequency domain required acquisition cost of ~8/8.1×106 measurements. 

3.5.4 Marginal and Acquisition Cost Comparison 

Next, the effectiviness of the countermeasures are evaluated and the costs of the 

proposed ANOVA method are compared to those of the alternatives when countermeasures 

are present.  

For the baseline FPGA (ASIC), using the optimal configurations identified in Section 3.4, 

the marginal cost of disclosing keys was only ~1.1/1.4×104 (~3.5/4.4×104) measurements 

in time/frequency domain, i.e., disclosing the AES key required ~3× more measurements 

for the ASIC.  

When the FPGA was hardened with the FS, VS, and VFS countermeasures, using the 

optimal configurations identified in Section 3.4.1, the attackers could disclose the AES key 

with ~6.9/1.5×104, ~0.5/1.2×105, and ~1.5/1.7×105 measurements in time/frequency 

domain, respectively. Comparing these marginal costs to those of the baseline FPGA shows 

that these countermeasures improve the module’s resilience to EM SCA attack 

significantly. These are easy to implement counter-measures that require relatively small 

design overhead. 

When the FPGA was hardened with masking or shielding, because no key bytes could be 

disclosed by observing 𝑁e
max encryptions, the marginal cost of disclosing the key was >

16𝑁e
max, i.e., >3.2×105 measurements; thus, these counter-measures improve the module’s 

resilience to EM SCA attack by >30/24× in time/frequency domain. Masking considerably 

improves the security of the chip at the cost of larger area and delay overheads [19]. While 
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a very simplistic shield was used here, practical use of shielding can incur large packaging 

costs [17]. Additionally, incorrect shielding can block higher-frequency contributions to 

measurement noise and potentially reduce the module’s resilience.  

When the ASIC was hardened with twisted and dense wider power grid, using the optimal 

configurations identified in Section 3.5.3, the attackers could disclose the AES key with 

~5.3/5.9×104 and ~8.5/9.2×104 measurements in time/ frequency domain, respectively. For 

DUT 

Improve-

ment over 

Baseline for 

TD/FD 

Attack 

Most 

Effec-

tive 

Attack  

Acquisition Cost of Alternatives 

vs. ANOVA for Most Effective 

Attack  

Adaptive 

Scan 
TVLA+e TVLA+i 

FPGA 

Baseline 

 1×/ 

1× 
TD 1.8× 4.8× 1.8× 

ASIC 

Baseline 

 1×/ 

1× 
TD 2.7× 4.7× 1.6× 

FPGA with 

FS 

 6.3×/ 

1.1× 
FD 2.3× 4.8× 1.8× 

FPGA with 

VS 

 4.7×/ 

8.6× 
TD 3.0× 6.9× 3.6× 

FPGA with 

VFS 

 13.6×/ 

12.1× 
TD 4.3× 6.0× 4.6× 

FPGA with 

Masking* 

 >30×/ 

>24× 
- 13.1× 5.3× 5.3× 

FPGA with 

Shielding* 

 >30×/ 

>24× 
-  37.0× 3.6× 3.6× 

ASIC with 

Twisted 

Power Grid 

 1.5×/ 

1.4× 
TD 1.9× 7.7× 4.3× 

ASIC with   

Wider Power 

Grid 

 2.4×/ 

2.1× 
TD 1.7× 7.1× 4.2× 

 

Table 3.2: Effectiveness of Countermeasures and the Cost of Evaluation  
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these physical design strategies, while no logic blocks were added, implying little to no 

power overhead, layout changes increase the module’s area.  

The resilience of the 9 AES implementations against fine-grained EM SCA attacks 

and the costs of this evaluation are shown in Table 3.2. In Table 3.2, the resilience 

improvement is calculated as the ratio of an implementation’s marginal cost over that of 

the baseline module. The improvement for security evaluation is quantified by dividing the 

acquisition costs of the alternative methods by that of the proposed method. In each case, 

both time- and frequency-domain EM SCA attacks were performed but the acquisition 

costs are compared only for the attack that had the lower marginal cost. 

Table 3.2 shows that among all countermeasures, masking and shielding countermeasures 

were most effective in improving the chip’s security. In all 9 cases, the ANOVA method 

required the fewest measurements to evaluate the EM SCA security of the AES 

implementation. Applying the proposed method was ~1.7-37× cheaper than the adaptive 

scan protocol, ~3.6-7.7× cheaper than the TVLA followed by exhaustive correlation 

analysis, and ~1.6-5.3× cheaper than the TVLA-informed correlation analysis. The 

protocol was particularly efficient when evaluating the most secure implementations.    

3.6 SUMMARY 

In this chapter, an ANOVA-based measurement method was presented to evaluate 

fine-grained EM SCA vulnerability of cryptographic modules. The method was used to 

evaluate 2 baseline and 7 hardened implementations of the AES algorithm against fine-

grained EM SCA attacks. The method is implemented in multiple stages; in the first two 

stages, it eliminates probe configurations posing the lowest risks by estimating the 

contribution of measurement and algorithmic noise in observed fields, in the last stage it 

applies correlation-analysis informed by the risk estimates identified in the previous stages 
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to actually reveal the AES key. The method assumes a gold-box threat model and uses 

specifically chosen inputs and encryption keys in order to evaluate measurement and 

algorithmic noise with few measurements. The (gold-box) ANOVA method required upto 

~37×, ~7.7×, and ~5.3× fewer measurements than the (black-box) greedy-search 

correlation analysis, the (white-box) TVLA followed by exhaustive correlation analysis, 

and the (white-box) TVLA-informed correlation analysis, respectively. The proposed 

method is particularly efficient for evaluating the most secure chips, such as the shielded-

FPGA implementation, where it discards ineffective measurement configurations at a 

relatively low acquisition cost. Thus, it enables rapid empirical evaluation of how effective 

a countermeasure is for hardening a cryptographic module against fine-grained EM SCA 

attacks. 

The proposed method can be used with alternative methods [39]-[40] in Stage III, 

if the set of probe configurations can be sufficiently condensed in Stages I and II. The 

proposed method can also be extended to evaluating other computing systems by suitably 

modifying definitions of target and background processes; e.g., a related ANOVA method 

was used in [4] to evaluate the security of a general-purpose embedded system. Further, it 

can be combined with a powerful pre-characterization method, demonstrated in [41]. 
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4. Fine-Grained EM SCA-Based Instruction Disassembler3 

An instruction-level disassembler, based on analysis of near-field electromagnetic 

(EM) signals emanated during program execution, is demonstrated in this chapter, to 

deduce the instructions of interest and recover the execution trace of programs on general-

purpose microcontrollers. The initial sections of this chapter focus on introducing SCA-

based disassemblers, comparing relevant work, and briefly summarizing the fine-grained 

EM SCA approach. This approach is later elaborated, and demonstration of the 

disassembler on a general-purpose micro-controller is performed towards the end of the 

chapter.  

4.1 INTRODUCTION TO SCA-BASED DISASSEMBLERS  

On-chip computations impact the electromagnetic (EM) fields emanated as well as 

the power consumed by embedded systems [42]-[50], causing information about the 

operations they execute to leak through these side channels. By probing these fields and 

exploiting variations in the measured signals, side-channel analysis (SCA) attacks can non-

invasively recover information about target processes even in embedded processors that 

execute general-purpose programs. At the highest fidelity, EM SCA can potentially 

disassemble a program’s execution trace from a device under test (DUT) at the instruction 

level. Although such instruction-level disassemblers based on power SCA are well 

documented [44]-[46], only a few attempts based on EM SCA are reported in the literature 

[48]-[49]. Disassemblers using relatively large EM [6], or power [3]-[5] probes aggregate 

the fields emanated or power consumed by many/all system components throughout the 

 
3 This chapter is partly based on an accepted publication: V.V. Iyer, A. Thimmiah, M. Orshansky, A. 

Gerstlauer, A. Yilmaz, “A hierarchical classification method for high-accuracy instruction disassembly 

with near-field EM measurements,” in publication. 

The author contributed to the formulation, implementation, and measurements presented in this article, as 

well as the writing of this manuscript. 
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DUT. Thus, any potential features in the measured signals that can distinguish instructions 

are heavily obfuscated by algorithmic noise from uncorrelated processes in addition to 

measurement noise from the environment and the sensor setup [21]. Such coarse-grained 

EM/power SCA setups generally require extensive measurements to quantify and filter out 

noise [44]-[48]. Contrarily, fine-grained EM SCA setups [21], [48], which use relatively 

small probes, are sensitive to the fields emanated by a subset of system components near 

the probes because EM emanations decay rapidly with distance and are polarized. Indeed, 

when probes are appropriately positioned and oriented, fine-grained EM SCA can improve 

the success rate of disassembly [48]. Thus, fine-grained EM SCA attacks first scan for 

effective measurement configurations that have high signal-to-noise ratios and then use 

these low-noise configurations to actually extract information [48], [4]. However, the 

“acquisition cost” of finding optimal configurations in existing fine-grained approaches 

can be prohibitively large [21]. The efficiency of a disassembler directly relates to how 

well the instructions are profiled during the initial acquisition phase, which dictates the 

acquisition cost in terms of measurement time and storage requirements. A naïve profiling 

approach involves instantiating each instruction with all possible combinations of different 

operands, addresses, and data present in architectural registers, such as program counters, 

stack, etc. [44]-[46]. To feasibly profile instructions, conventional SCA-based 

disassemblers typically sub-sample this space of architectural states by randomly 

instantiating instructions several times with different operand values and machine states. 

This approach has limited feasibility for fine-grained EM SCA-based disassemblers 

because of the high acquisition cost of searching a 5-D space of potential optimal 

measurement configurations— the possible probe locations (3-D), orientations (1-D), and 

observation times (1-D) —as the DUT executes many instantiations of each instruction 

[21]; e.g., the setup used in this article would require ~5000 × more signals to be collected 
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compared to using a single probe configuration. The scalability of such methods further 

reduces as the size of the instruction set 𝑁 increases. Indeed, fine-grained EM SCA 

approaches using the random instantiations method for profiling instructions [48] have 

been limited to small instruction sets. Random instantiations may also miss critical corner 

cases which can lead to potential misclassifications in the classification phase.   

In this work, a novel scalable and effective instruction disassembler using fine-

grained EM signals is proposed. As in previous SCA-based disassemblers [44]-[48], the 

proposed method has 2 phases. The feature-selection phase identifies optimal measurement 

configurations and corresponding signal features. After this phase, the classification phase 

identifies instructions from signals measured as the DUT executes an arbitrary code. It 

collects signals using only the selected set of configurations and evaluates them according 

to the features identified in the first phase. To support large instruction sets, the 

disassembly is performed hierarchically; a 4-stage hierarchy—consisting of an 

instruction’s cycle length, size, operands used, and functions implemented (Fig. 4.1)—is 

 

Figure 4.1: Hierarchical grouping of instructions based on length (I), size (II), operands 

(III), and functions (IV).  
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used; and the feature-selection phase is performed bottom-up, while the classification 

phase is performed top-down through the hierarchy. A hierarchical classification allows 

evaluators to identify distinct leakage-mode informed features pertinent to each stage. 

Furthermore, ensuring high classification success rate in upper hierarchical levels enables 

evaluators to still recover key information about the executed instructions even if accuracy 

in separating details on lower levels is reduced.  

The hierarchical classification is combined with a leakage model-informed sub-

sampling of potential architectural states to profile instructions and identify optimal 

features for each stage in a feasible and scalable manner. The feature-selection phase uses 

a Hamming weight (HW) leakage model to design “profiling codes” consisting of a 

condensed set of test instructions such that—if there was no noise and if the leakage model 

was valid—the signals measured as the DUT executes these codes would min-max bound 

the signals that would be measured as the DUT executes all possible instantiations of the 

profiled instructions. The min-max signal envelopes for each instruction class are collected 

and stored in the hierarchical database, as the profiling codes are executed. Configurations 

where pairs of instruction classes can most easily be separated are identified. The signals 

measured at these configurations are the “features” that are used to classify instructions 

using binary classification with majority voting [46] in the next phase.  

        In addition to measured signals, this work also uses novel “differential signals” 

derived from them to improve success rates. These signals capture the impact of an 

instruction on the architectural state over multiple cycles. The capabilities of the 

disassembler are further augmented by assuming branches taken and not-taken as separate 

instruction classes, enabling control-flow prediction.  The proposed method enables high-

resolution measurements at a low acquisition cost, efficiently identifying highly potent 

features within a large search space. As a result of the leakage-model-informed feature 
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selection, and hierarchical classification, improved success rates are observed for 

application benchmarks, compared to alternative methods [45], [48].   

 

The contributions of this work can be summarized as follows: 

- Fine-grained EM SCA-based disassembly is performed by identifying optimal 

probe configurations and corresponding signal envelopes during the feature-

selection phase. 

- In addition to directly probed signals, novel differential signals derived from them 

are used as features. 

- Control-flow leakage prediction is enabled with input-constrained analysis of 

branch instructions.  

- Success rates of ~99% and ~97% are observed when the proposed method is used 

to disassemble test codes and application benchmarks from the Dalton project [14] 

executed by a AT89S51 microcontroller unit implementing the i8051 instruction 

set [51] (𝑁 = 90 instructions). 

4.2 OVERVIEW 

This section reviews previous SCA-based disassemblers and presents an overview 

of the proposed approach. 

4.2.1 Relevant work 

Various SCA-based methods exist for recovering information about target 

processes on embedded systems. Code-monitoring with SCA is most often used to identify 

fixed instruction sequences, separate basic blocks, and predict control flow [42],[43] based 

on some a priori knowledge of an evaluated benchmark. Using SCA to disassemble 
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individual instructions from an arbitrary unknown code as in [44]-[48] is far more 

challenging in part because each instruction impacts a multitude of architectural blocks 

differently. Disassemblers can be compared based on their success rates and their 

acquisition cost. While success rate is simply the ratio of correctly identified instructions 

and total number of executed instructions, the acquisition cost is a function of the number 

of sensor configurations used during profiling 𝑁pc, the number of instantiations performed 

to characterize each instruction �̅�inst, and the number of samples collected for each of these 

measurements 𝑁𝑡. The acquisition cost in this work only accounts for samples stored post 

measurement collection, and does not quantify repeated measurements and averaging 

performed by the oscilloscope software.4  

 
4 Please note that the acquisition cost here only quantifies storage requirements and not 

acquisition time. Acquisition time is related to several setup-dependent factors including 

oscilloscope features, DUT parameters, averaging method, etc., some of which are not 

always available in literature. 

 [44] [47] [48] [46] [49] [64] This Work 

DUT PIC16F 687 
ATMega  

328 
PIC 16F687 

ATMega 

328P 
PIC16F15376 Cortex M0 AT89S51 

# of Instr. (𝑁) 33 2 33 112 50 17 90 

Side-Channel Power 
Coarse-

grained EM 

Fine-grained 

EM 
Power 

Fine-grained 

EM 
Power 

Fine-grained 

EM 

# of 

Samples 

Measured 

per Instr. 

(𝑁pc × 𝑁t ×

�̅�inst) 

~2 × 106 

(1× 1000 ×

2000) 

~2 × 104 

(1× 100 × 

200) 

~1.2 × 108 

(20 ×

2500 ×

2350) 

~1.5 × 105 

(1× 50 ×

3000) 

~3.2 × 107 

(400 × 2000

× 40) 

~1.1 × 107 

(1 × 6000

× 1768) 

~4.7 × 107 

(5200 ×

1000 × 9) 

Success 

(test code) 
~70.1% 100% ~96.2% ~99.0% ~95.0% ~99.0% ~99.3% 

Success 

(application 

code) 

~50.8% – ~87.7% – – ~88.2% ~97.3% 

Table 4.1:  Comparison of relevant work 
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Instruction disassembly based on coarse-grained EM or power SCA setups [44]-

[47] uses a single sensor configuration (𝑁pc = 1)  and requires significant post-processing 

of the signals measured as the DUT executes an extensive set of test instructions. In [44], 

a power SCA-based disassembler, using principal component analysis (PCA) for feature 

selection and a multivariate Gaussian classifier, was proposed to evaluate a small 

instruction set (𝑁 = 33). It correctly recognized ~71% and ~51% of instructions in test 

code and application benchmarks, respectively. The method in [44] assumes some a priori 

knowledge of the code, however, as it applies hidden Markov models to blocks of the 

executed code. In [47], a coarse-grained EM SCA-based disassembler, using PCA with 

frequency-domain signals for feature selection and AdaBoost, support vector machine, and 

other methods for classification, was proposed. It was able to distinguish 2 instructions 

with  a 100% success rate. Unfortunately, the method’s performance for the remaining 

instructions was not evaluated in [47]. A larger instruction set (𝑁 > 100) was evaluated in 

[46] with a power SCA-based disassembler, using Kullback-Leibler (KL) divergence for 

feature selection and quadratic discriminant analysis for classification. The method 

disassembled a test code with ~99% success rate. Although [46] used hierarchical 

classification, included an extra method to improve success rates for application 

benchmarks, and recovered 2 instructions implemented in one such code with 92% success 

rate, the method was not evaluated comprehensively on real-world application 

benchmarks. In [64], an instruction disassembler targeting a Cortex M0 processor was 

proposed, implementing KL divergence for feature selection and classification algorithms 

demonstrated in [46], which was further enhanced by using models based on multi-layer 

perceptron and convolutional neural network. While the method recognized ~99% and 

~88% of instructions in test code and application benchmarks respectively, the disassembly 

was limited to a small subset of the full instruction set (𝑁 = 17). 
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Instruction disassembly based on fine-grained EM SCA was demonstrated in 

[48],[49]. A small instruction set (𝑁 = 33) was evaluated in [48] using linear discriminant 

analysis for feature selection and a k-Nearest Neighbor algorithm for classification. While 

the disassembler recognized ~96% of the instructions in a test code and ~88% of them in 

application benchmarks, the approach in [48] is an invasive method that requires 

decapsulation of the DUT to constrain the search space of configurations during feature 

selection. A similar fine-grained setup in [49] targeted a slightly larger instruction set (𝑁 =

50) by performing bit-level disassembly of opcodes, training quadrature discriminant 

analysis-based classifiers to identify individual bit transitions as instructions are pre-

fetched. Although the disassembler recognized 95% of instructions in test codes, it was not 

evaluated on real benchmarks.  

While the methods proposed in [44]-[49], [26] (Table 4.1) have very high success 

rates when disassembling test codes that follow the same structure/template as the profiling 

codes they use to select features, their success rates either decrease markedly or are 

unknown when disassembling application benchmarks; moreover, the methods in 

[44],[46],[48], [64] which were developed and tested with only limited number of 

instructions, may not scale well as 𝑁, the instruction set’s size, increases. Another issue 

common to the methods in [44]-[49] is that they do not elaborate on the disassembly of 

conditional branches; such branches requires careful consideration during both phases of 

disassembly and can enable the detection of possible transitions to different parts of the 

code and the evaluation of control flow for comprehensive disassembly. Finally, the 

methods in [44]-[48] extensively instantiate instructions with randomized operands, in 

different sequences, etc.; they instantiate each instruction from 200 [47] to 3000 [46] times. 

These methods cannot be directly extended to fine-grained EM SCA because their 

acquisition costs would be infeasibly high, especially if the number of possible instructions 
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and measurement configurations is large. By contrast, our proposed method aims to (i) 

improve the success rate of disassembly for application codes, (ii) identify if branches were 

taken/not taken during execution, and (iii) maintain a feasible acquisition cost even for 

large instruction sets and high-resolution EM probing. 

4.2.2 Proposed Approach 

As mentioned in the Introduction, the proposed method consists of two phases (Fig. 

4.2). In the feature-selection phase, EM fields emanated from the DUT are collected for 

all instructions by designing and using profiling codes that instantiate each instruction for 

multiple specific machine states, chosen according to the HW leakage model [4], [54]. The 

signals are collected with all measurement configurations in a 5-D search space consisting 

of the probe location, probe orientation, and time interval. Next, the min-max bounds of 

signals—directly probed fields, as well as differential signals derived from them—are 

found for each instruction, and these signal envelopes are compiled within a hierarchical 

database. The database stores for each instruction—at the bottom stage of the hierarchy—

real-valued envelopes that are multivariate functions of the measurement configuration, 

 

Figure 4.2:  Overview of the proposed approach. 
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i.e., they are functions of 5 variables. For the upper stages of the hierarchy, instructions are 

grouped using certain instruction attributes (Fig. 4.1), and the database is compiled bottom-

up, i.e., the envelopes for the instruction classes in the upper stages are constructed using 

envelopes for instruction classes compiled in the lower stages.  

Once the database is constructed, it is used to identify optimal measurement 

configurations and features for binary classification. During feature selection, the 

envelopes for each instruction class are compared pairwise (one at a time) to those of other 

classes at the same stage; the comparison identifies 𝑀 configurations, where the pair’s 

signal envelopes are most distant; i.e., these are the optimal values of the 5 variables to 

distinguish the pair from each other. The signals obtained with the optimal measurement 

configurations, i.e., the selected features, and the envelopes of the two classes 

corresponding to them are recorded for use in the next phase. In the classification phase, 

signals measured while the DUT executes arbitrary codes are categorized hierarchically 

starting from the top stage. At each stage, candidate classes are identified given the class 

selected in the previous stage, using binary classification with majority voting [46].  

4.3 BACKGROUND 

This section describes the DUT’s measurement setup, the SCA threat model, the 

hierarchical grouping of the instruction set, and the signals used in the proposed method.  

4.3.1 Measurement Setup 

To demonstrate the proposed method, this article uses the AT89S51 

microcontroller, which implements 111 instructions, differing in function, size, length, 

addressing mode, source and destination operands, etc. [51]. The setup used for the 

measurements is shown in Fig. 4.3. The DUT was operated at 2 MHz. Fields were sensed 
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using a 1-mm H-field probe, positioned at a fixed height of 0.5 mm and various points on 

an equally spaced 51×51 grid over the DUT’s surface (area~8×8 mm2) using Riscure’s 

probe positioner. Measurements were performed using both x- and y- oriented probes. 

Therefore, 𝑁pc =5202 probe configurations were used for constructing the database. 

Signals were collected and analyzed using a Keysight DSOS054A oscilloscope, at a 

sampling rate of 2 GS/s (𝑁t = 1000 samples); the signals were collected 50 times and 

averaged to minimize measurement noise. For comparison and validation, measurements 

using the coarse-grained EM SCA setup were also performed, using a 10-mm H-field 

probe. HEX files for programs, generated using Keil’s 8051 emulator, were uploaded to 

 

 
 

Figure 4.3:  Measurement setup used for instruction disassembly (top, same as in [4]) and 

probes used for coarse-grained (bottom-left) and fine-grained (bottom-right) 

EM SCA. 
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the program memory of the chip using an Arduino as interface. These codes included 

start/end markers to simplify measurements, implemented via a general-purpose I/O pin. 

The probe positioning, data acquisition, and subsequent data storage were automated to 

save experiment time. To reduce storage requirements, samples were saved as single-

precision floating-point numbers in binary file format. More information on the setup can 

be found in [54]. Only 𝑁 = 90 instructions were considered for the following analyses; 

instructions that use external and indirect addressing modes were excluded because such 

instructions are seldom used by compilers for general-purpose codes, unless access to 

external memory is required, and because the focus of this article is on EM emanations 

arising from on-chip switching activity. 

4.3.2 Threat Model 

Different threat models are assumed in the feature-selection and classification 

phase experiments. To allow accurate profiling, limited restrictions are placed on 

evaluators during the first phase. As in previous works [45]-[48], the feature-selection 

phase assumes that evaluators have the ability to control a clone of the DUT, or the DUT 

itself such that they have the ability to send known profiling codes to the device and observe 

the internal architectural state of the microcontroller as each instruction is executed. 

Further, the evaluators are assumed to also have the ability to repeat such codes as many 

times as desired, allowing field measurements to be averaged to minimize measurement 

noise. In contrast to this transparent “white-box” model of the feature-selection phase, a 

more restrictive “gray-box” model [9] is used in the classification phase. In this model, the 

code being executed, the inputs, and the internal operations of the DUT are assumed to be 

not visible to the evaluators but the evaluators are assumed to still have the ability to repeat 

the codes being targeted, similar to the setup used by other fine-grained EM works that 
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combine measurements from multiple locations to increase success rates of disassembling 

Length Size Operands Functions 

1Cycle (51 ins) 1Byte (25 ins) Acc1 INC; DEC; RR; RRC; RL; RLC; SWAP; DA; CPL; 

CLR 

Acc,Reg ADD; ADDC; SUBB; ORL; XRL; ANL; MOV; XCH 

C-bit2 SETB; CLR; CPL 

Reg3 INC; DEC 

Reg,Acc MOV 

No ops. NOP 

2Byte (26 ins) Acc, Imm4 ADD; ADDC; SUBB; ORL; XRL; ANL; MOV 

Acc, Dir ADD; ADDC; ORL; ANL; XRL; SUBB;MOV; XCH 

Dir5 INC; DEC 

C-bit, Bit MOV 

Bit6 CLR; CPL; SETB 

Reg, Imm MOV 

Dir, Acc ORL; ANL; XRL; MOV 

2Cycle (51 ins) 1Byte(5 ins) Acc, Dptr7 MOVC 

Acc, PC8 JMP; MOVC 

No ops. RET;RETI 

2Byte (17 ins) Addr9 ACALL; AJMP 

C, Bit ANL; ORL 

Reg, Off10 DJNZ 

Off JZ; JNZ; JC; JNC; SJMP 

C, /Bit ANL; ORL 

Dir PUSH;POP 

Reg, Dir MOV 

Dir, Reg MOV 

Bit, Cbit MOV 

3Byte (15 ins) Dir, Imm MOV; ANL; ORL; XRL 

Bit, Off JB; JBC; JNB 

Addr LCALL;LJMP 

Acc, Imm, Off CJNE 

Acc, Dir, Off CJNE 

Reg, Imm, Off CJNE 

Dir, Off DJNZ 

Dir, Dir MOV 

Dptr, Imm MOV 

4Cycle (2 ins) 1Byte (2 ins) Acc, B11 MUL;DIV 

1Accumulator, 2 Carry Bit, 3 General Purpose Registers, 4 Immediate Value,5 Direct RAM Address, 6 Register Bit, 7 Data 

Pointer, 8 Program Counter, 9 Branch Address, 10 Branch Offset, 11 B Register 

Table 4.2:  Instruction Groups  
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combine measurements from multiple locations to increase success rates of disassembling 

instructions [48], [49], or identify an instruction’s functional units [55]. 

4.2.3 Hierarchical Grouping of Instructions 

Attempting to directly classify measured signals within a large set of candidate 

instructions increases the odds of misclassification. Hierarchical classification can decrease 

the misclassification risk by reducing the number of possible candidates in each stage, 

assuming the stages in the hierarchy are appropriately chosen for the DUT (poor groupings 

can result in potentially more misclassifications at the upper stages). In [46], a 2-stage 

hierarchy was used: the instructions were separated into 8 groups based on operands and 

into sub-groups based on their function. That grouping is not suitable for microcontrollers 

that have a large number of possible operands (>30 for AT89S51). Instead, in this article, 

2 higher stages, where instructions are grouped according to length and size, are added to 

the hierarchy. In Stages III and IV of the hierarchy, instructions are grouped based on 

operands and their functions as in [46], resulting in 4 stages of hierarchy (Fig. 4.1). These 

4 attributes of each instruction 𝑖𝑛𝑠 are represented with the label ID𝑖𝑛𝑠 = (𝐿, 𝑆, 𝑂𝑝, 𝐹𝑛). 

Here, 𝐿 denotes the length, 𝑆 the size, 𝑂𝑝 the operands, and 𝐹𝑛 the function of the 

instruction i.e., how long it requires to complete execution, the number of bytes fetched 

from program memory for it, the memory locations of the chosen data values in it, and the 

operations it performs, respectively. In AT89S51, instructions require 𝐿 ∈ {1,2,4} cycles 

for execution, are of size 𝑆 ∈ {1,2,3} bytes, have 30 possible operands, and implement 45 

functions. Table 4.2 shows the resulting hierarchy. In the following, cycle lengths and sizes 

are represented with the suffixes C and B; e.g., the label for the 1 cycle 1 byte instruction 

INC Acc is ID𝐼𝑁𝐶 𝐴𝑐𝑐 = (1C, 1B, Acc, INC).  
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4.2.4 Observed Signals’ Dependence on Chip Processes 

Fields Signals collected by a near-field probe above a DUT are functions of 5 

variables in the measurement setup used (Fig. 4.3)  The probe’s configuration 𝑝𝑐—its 

transverse location (𝑥, 𝑦), height ℎ, and orientation 𝑜 relative to the DUT—and the time of 

observation 𝑡. Thus, the probed fields can be represented as 5-dimensional functions 

𝑉(𝑝𝑐, 𝑡). Of course, the measured signal also depends on the processes 𝑝𝑟 that the DUT is 

executing, i.e., the state of the microcontroller. These processes are performed at specific 

time-intervals within a DUT’s machine cycle, localizing features temporally. The 

processes can be abstracted as a combination of a target process 𝑇𝑝𝑟𝑖 and one or more 

background processes 𝐵𝑝𝑟𝑗, where the subscripts 𝑖 and 𝑗 represent versions within these 

processes [9]; e.g., if the entire instruction opcode is considered the target process, then the 

90 target versions are 𝑇𝑝𝑟1 ≡INC Acc, 𝑇𝑝𝑟2 ≡ DEC Acc, …, 𝑇𝑝𝑟90 ≡DIV Acc, B and the 

background processes include data operations in various architectural registers. The 

background processes can be represented using the state of architectural registers 𝑋 ∈

{X1,… X𝑁x}, where each state X𝑘 represents a unique data value in registers (RAM, stack, 

program counter, etc.) and 𝑁x is the number of combinations of register contents. Thus, the 

signals can also be represented as 7-dimensional functions 𝑉(𝑝𝑐, 𝑡, 𝑇𝑝𝑟𝑖, 𝐵𝑝𝑟𝑗). Using the 

notation in [4], a signal’s dependence on measurement configuration and processes 

executed on the DUT are highlighted with super/sub-scripts; e.g.,  𝑉𝑇𝑝𝑟𝑖,𝐵𝑝𝑟𝑗
𝑝𝑐,𝑡

. 

In addition to the probed fields 𝑉𝑇𝑝𝑟𝑖,𝐵𝑝𝑟𝑗
𝑝𝑐,𝑡

, the differential signal  

                                 Δ𝑉𝑇𝑝𝑟𝑖,𝐵𝑝𝑟𝑗
𝑝𝑐,𝑡

= |𝑉𝑇𝑝𝑟𝑖,𝐵𝑝𝑟𝑗
𝑝𝑐,𝑡+∆𝑡

− 𝑉𝑇𝑝𝑟𝑖,𝐵𝑝𝑟𝑗
𝑝𝑐,𝑡

|,                         (4.1) 

is introduced. Here, ∆𝑡 is the product of cycle length 𝐿 of the target process 𝑇𝑝𝑟𝑖 

and clock period 𝑇clk. In this work, the differential signals are computed between the 

corresponding clock cycles of adjacent instructions. While traditional differential side-

channel analysis assumes observed signals in a single clock cycle represents the transition 
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between different machine states, the differential signal introduced in this article computes 

differences in fields over multiple clock cycles, i.e., it captures the change in fields 

measured from before an instruction is executed, to after it is executed. This is a useful 

quantity for separating instructions that modify contents of architectural blocks shared 

across the instruction set, such as program counters, or the pre-fetched architectural 

registers. For instance, the 8051 reserves certain sub-cycles to operate on the accumulator 

or certain RAM registers [51], irrespective of the executed instruction, enabling easier 

identification of instructions impacting these registers with differential signals. Example 

signals are plotted in Fig. 4.4.     

If a single-stage disassembler was used, the target process would be the complete 

instruction opcode. Thus, each version of the target process from 𝑇𝑝𝑟1 to 𝑇𝑝𝑟90 would 

represent a candidate opcode for disassembling the observed signals. The large set of 

candidates poses major issues in feature selection and classification; e.g., a total of 

𝐶2
90 =4005 classifiers are required for binary classification [46]. In contrast, the proposed 

4-stage hierarchical disassembler constructs only 281 classifiers because there are 

relatively small numbers of candidate classes in each stage. What constitutes target and 

background processes, however, changes at each stage of the hierarchy. The target process 

in each stage is a different attribute of the opcode, identified by the label ID𝑖𝑛𝑠 =

(𝐿, 𝑆, 𝑂𝑝, 𝐹𝑛). Because classification in each stage distinguishes instructions based on only 

one attribute, the remaining attributes of the opcode are assumed to be part of the 

background: In Stage I, the target instruction length can take values from the set 𝐿 ∈

{1C, 2C, 4C}. Here 𝐵𝑝𝑟 for 𝐿 = 1 C instructions includes any combination of the 

architectural state 𝑋, and the 51 groups of (1C, 𝑆, 𝑂𝑝, 𝐹𝑛) in Table 4.2. The hierarchy then 

enables independent analysis within each branch in the following stages; e.g., in Stage II, 

the instruction size is analyzed separately for 1C instructions (for which 𝑆 ∈ {1B, 2B}) and 
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2C ones (for which 𝑆 ∈ {1B, 2B, 3B}). Although attributes (𝑆, 𝑂𝑝, 𝐹𝑛) are assumed to be 

“background” processes here, they are still constrained by target process versions being 

evaluated, unlike the state of background architectural registers that is unrestricted.  

4.4 PHASE I: FEATURE SELECTION 

This section details the database construction, the profiling codes, and the feature-

selection method in the first phase of disassembly. 

 

 
(a) Probed Fields 

 

(b) Differential Signals 

Figure 4.4:   Space-time distribution of (a) probed fields, and (b) differential signals derived 

from them, measured by a y-oriented probe at 51×51 locations for MOV A, 

#00 instruction. Spatial maps are plotted at 25 ns and time variations are 

plotted at the center location. Each machine cycle is divided into 6 states and 

2 sub-states [51]. 
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4.4.1 Database Construction  

Each instruction class is characterized by 4 signal envelopes in the database; these 

envelopes are 5-dimensional functions (of 𝑝𝑐, 𝑡). The hierarchical database is constructed 

as follows (see Fig. 4.1 for stage definitions). First, the Stage IV of the database is compiled 

for the 90 instructions. For each instruction 𝑇𝑝𝑟𝑖, multiple instantiations are executed (see 

Section 4.4.2), the EM fields are probed using all possible probe configurations, and the 

min-max envelopes of probed fields and differential signals are stored in the database:  

                         𝐞𝐧𝐯𝑇𝑝𝑟𝑖
𝑝𝑐,𝑡 = [min𝑉 ,max𝑉 ,min Δ𝑉 ,max Δ𝑉]                            (4.2) 

Here, the minima and maxima are found among all instantiations of the instruction, 

i.e., ∀𝐵𝑝𝑟𝑗 ∈ 𝐵𝑝𝑟. Next, these 90 instructions are grouped according to their operand class, 

as per Table 4.2. The envelopes for each of the 35 operand classes in Stage III are 

constructed by computing the min-max bounds of the envelopes of all the instructions with 

that operand. Similarly, Stage II (I) portions of the database are compiled from its Stage III 

(II) portions. Fig. 4.5 shows an example computation of the min-max envelopes.  

 

Figure 4.5:  The envelopes in stage IV portion of the database (left) are the min-max 

bounds of the probed fields for multiple instantiations of each instruction; 

here, the SETB C-bit instruction. The instantiations have different initial 

conditions of the C-bit (0 and 1) and RAM registers (0x00 and 0xFF). The 

envelopes in stage III portion of the database (right) are the min-max bounds 

of the envelopes of all instructions that have the same operand; here, C-bit.   
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4.4.2 Method for Selecting Features 

One approach to finding the signal envelopes is to collect an extensive set of 

signals, e.g., by instantiating the architectural registers 𝑋 with random values. For instance, 

[46] used 3000 such instantiations per instruction for feature selection. While this can 

improve classification accuracy for coarse-grained EM/power SCA setups, the acquisition 

cost for fine-grained EM setups quickly becomes intractable when so many instantiations 

are used: For 𝑁 = 90 instructions, if 𝑁t = 50 time samples of signals are measured as in 

[46] with a single probe configuration (𝑁pc = 1), a total of 13.5 × 106 samples would be 

acquired. If they are measured with the fine-grained EM SCA setup in this work, with 

𝑁pc~5200 probe configurations (Section 4.6), a total of 70 × 109 samples would be 

acquired. Storing these samples as single-precision floating-point numbers would require 

~50 MB of space for the former and ~280 GB for the latter setup. Additional storage may 

 

Figure 4.6:  Profiling codes instantiate instructions with different operands, under different 

machine states. NOP instructions are introduced to keep the computation of 

differential signals consistent.  
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be required during feature selection, e.g., to transform time-domain data to frequency 

domain.  

A smaller set of signals can be collected by modeling the leakage as if it depends 

only on HWs of data in architectural registers, a common approach in processor security 

evaluations [4]; e.g., signals for 256 data values can be bound by those for extreme 

instantiations of data 0x00 (HW 0) and 0xFF (HW 8). Then, the data-dependency of each 

instruction—except conditional branch instructions—can be bound by using at most 4 

instantiations, by setting operands and result to data values 0x00 and 0xFF. For example, 

consider the instruction ADD Acc, Imm. To bound its data dependence, the data values in 

the Accumulator register and the Immediate value in program memory are chosen from the 

set {(0x00,0x00), (0x00,0xFF), (0xFF,0x00), (0xFF,0xFF)}. Further, to improve coverage 

of background processes, all 128 bytes of RAM, including stack registers, are instantiated 

as either 0x00 or 0xFF. Therefore, 8 instantiations are used to characterize each instruction 

in the profiling codes. Code snippets used to profile this instruction are shown in Fig. 4.6. 

In addition to the instruction instantiations, extra instructions are used to support 

measurements, such as a general-purpose pin triggering the oscilloscope for ease of 

experiment.  

         Because conditional branches perform different functions depending on the 

result of the condition evaluation, branches taken and not taken for the same instruction 

are considered as separate classes in Stage IV, i.e., they have the same instruction length, 

size, and operands, but different functions. Introducing 12 additional instruction classes for 

the conditional branch instructions in Table 4.2, control-flow prediction is enabled in the 

final stage of disassembly. Using 16 instantiations for conditional branch instructions and 

8 for other instructions, the proposed profiling codes contain a total of 𝑁�̅�inst = 12 × 16 +

78 × 8 = 816 specially-designed test instructions (in addition to miscellaneous 
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instructions used as markers for measurement, and various instructions needed to clear flag 

registers, data memory, or stack). These profiling codes are used to acquire the following 

total number of samples to construct the database: 

                        𝑁samp = 𝑁�̅�inst𝑁pc𝑁t   (# of Samples Acquired)                       (4.3) 

Here, 𝑁pc is number of probe configurations, 𝑁t is number of time samples, 𝑁 is 

the number of instructions, and �̅�inst is the average number of instantiations used to profile 

each instruction. While 𝑁pc𝑁𝑡 depends on the measurement setup, �̅�inst depends on the 

profiling method.  

4.4.3 Selecting the Features 

Feature selection identifies optimal measurement configurations where envelopes 

(and therefore signals) are easily separable when compared pairwise. Here, as well as in 

Section 4.5, the process is presented for two instruction classes 𝑎 and 𝑏 at the same stage 

of the hierarchy. First, the “average distance” between the pairs’ envelopes is computed  

                       𝐷𝑖𝑠𝑡𝑎,𝑏
𝑝𝑐,𝑡 =

|(𝐞𝐧𝐯𝑎
𝑝𝑐,𝑡[1]+𝐞𝐧𝐯𝑎

𝑝𝑐,𝑡[2])−(𝐞𝐧𝐯𝑏
𝑝𝑐,𝑡[1]+𝐞𝐧𝐯𝑏

𝑝𝑐,𝑡[2])|

2
                       (4.4) 

While feature selection in Stages II-IV directly uses this quantity, a pre-processing 

step is required in Stage I because signals with different time lengths are compared. It is 

assumed that the first cycle of multi-cycle instructions is similar to a single-cycle 

instruction, due to the presence of opcode fetch-related processes. Consequently, in Stage 

I feature selection, signals for multi-cycle instructions are partitioned into multiple single-

cycle windows, similar to [44]. The partitioned windows are then compared separately to 

single-cycle instructions, assuming the cycles that follow the first cycle will show sufficient 

differences to allow their length-based classification. Fig. 4.7 shows an example of the 

distance between single-cycle instructions and the second cycle of two-cycle instructions. 

The distance Δ𝐷𝑖𝑠𝑡𝑎,𝑏
𝑝𝑐,𝑡

 between the differential signal envelopes is computed similarly. As 
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demonstrated in Fig. 4.8, some instruction classes are potentially more separable using 

differential signals. Prediction of a program’s control flow can be achieved in Stage IV of 

the disassembly, as shown in Fig. 4.9. 

Next, optimal measurement configurations that maximize the distance between 

signal envelopes are identified. For each pairwise comparison, 𝑀 = 10 optimal probe 

configurations—5 each for direct and differential signals—and the corresponding 10 

optimal time instances are stored in the arrays 𝐩𝐜𝑎,𝑏
opt

 and  𝐭𝑎,𝑏
opt

. The signals at these optimal 

measurement configurations are the selected features that will be compared with the stored 

envelopes to classify instructions. 

 

Figure 4.7:  Spatial map (top-left) of 𝐷𝑖𝑠𝑡1C,2C
𝑝𝑐,𝑡

 between 1-cycle and 2-cycle instructions at 

𝑡~30 ns and time variation (top-right) at an optimal probe location (starred). 

Distance (bottom-left) and envelope (bottom-right) plots for an optimal time 

interval showed that instruction classes were more separable when the 

difference between the envelope averages (dashed) increased, particularly at 

𝑡~30 and 𝑡~37 ns.    
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4.5 PHASE II: CLASSIFICATION 

During classification, the probed field 𝑉
𝑝𝑐,𝑡

 and differential signal 𝛥𝑉
𝑝𝑐,𝑡

 are 

compared to the signal envelopes in the database. The deviation of evaluated signals from 

the envelopes of candidate classes 𝑎 and 𝑏 in the database are computed as                          

                  𝐷𝑒𝑣𝑎/𝑏
𝑝𝑐,𝑡 = Max{𝑉 − 𝐞𝐧𝐯𝑎/𝑏

𝑝𝑐,𝑡[2], 0} + Max{𝐞𝐧𝐯𝑎/𝑏
𝑝𝑐,𝑡[1] − 𝑉, 0}                     (4.5) 

 

Figure 4.8:  Comparing the classes (1C, 2B, Dir) and (1C, 2B, [Acc, Dir]) in stage III with 

𝐷𝑖𝑠𝑡𝑎,𝑏
𝑝𝑐,𝑡

 (left) and Δ𝐷𝑖𝑠𝑡𝑎,𝑏
𝑝𝑐,𝑡

 (right) shows that they are more separable when 

using differential signals. Here, 𝑡~120 ns.   

 

Figure 4.9:  Distance between branch “taken” and “not taken” classes for instruction 

(1C, 2B, Off, JNZ) in Stage IV (left), shows that the disassembly can 

potentially predict program flow. The spatial map of distance is plotted at 

𝑡~285 ns and the observed fields are plotted at an optimal configuration 

(starred). 
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This metric is 0 if the evaluated signal is within the stored envelope. The deviation of a 

probed field from the envelopes in Fig. 4.7 is shown in Fig. 4.10. A corresponding metric 

Δ𝐷𝑒𝑣𝑎/𝑏
𝑝𝑐,𝑡

 is computed for the differential signals.  

During binary classification, the net deviation of the evaluated signal from the two 

candidates 𝑎 and 𝑏 is computed only with the 𝑀 optimal measurement configurations for 

separating them: 

   𝑁𝑒𝑡𝐷𝑒𝑣𝑎/𝑏 = ∑ 𝐷𝑒𝑣
𝑎/𝑏

 𝐩𝐜𝑎,𝑏
opt

[𝑚],𝐭𝑎/𝑏
opt

[𝑚]𝑀/2
𝑚=1 +   ∑ Δ𝐷𝑒𝑣

𝑎/𝑏

 𝐩𝐜𝑎,𝑏
opt

[𝑚],𝐭𝑎,𝑏
opt

[𝑚]𝑀
𝑚=𝑀/2+1              (4.6) 

The instruction class with the smaller net deviation is considered the more likely 

candidate for the evaluated signal. To classify among multiple candidates, the binary 

classification is implemented with a majority voting method [5]:  

                      
𝑣𝑜𝑡𝑒𝑎,𝑏 = {

+1, if 𝑁𝑒𝑡𝐷𝑒𝑣𝑎 ≥ 𝑁𝑒𝑡𝐷𝑒𝑣𝑏
−1, if 𝑁𝑒𝑡𝐷𝑒𝑣𝑎 < 𝑁𝑒𝑡𝐷𝑒𝑣𝑏

       𝑎∗ = argmax
𝑎

∑ 𝑣𝑜𝑡𝑒𝑎,𝑏
𝑁c
𝑏=1 (𝑏≠𝑎)

                                       (4.7) 

Here, 𝑎∗ is the most likely candidate class and 𝑁c is the number of candidate classes. 

 

 

 

 

 

Figure 4.10:  An evaluated signal for instruction (1C,1B,Acc,Inc) correctly shows large 

deviation from envelope of 2-cycle instructions at 𝑡~30 ns and 𝑡~37 ns.    
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4.6 EXPERIMENTS AND RESULTS 

To test the proposed disassembler, first, each instruction is instantiated 100 times 

with random operand values. In this test set, each instruction is padded with a NOP 

instruction, and before the instantiations the RAM registers are cleared, similar to the 

profiling codes shown in Fig. 4.6. A total of 10200 instructions are evaluated in this test 

set. This evaluation is similar to the test sets that follow the templates of profiling codes, 

used in [44]-[48]. For conditional branch instructions, two separate test sets are used for 

the branch “taken” and “not-taken” cases. The operands in both cases are randomized with 

constraints, to ensure the functions are correctly executed; e.g., for the jump-if-not-zero 

instruction’s branch “taken” case, the operand is allowed to take all values other than 0.  

Second, a more robust and complete evaluation of the proposed disassembler is 

performed by using a set of 4 application codes from Dalton benchmarks [53], which are 

specifically designed to optimize the performance of 8051 cores: the greatest common 

divisor (GCD), Fibonacci (FIB), sort, and square root (SQRT) codes. As their names 

indicate, the codes compute the GCD of two numbers, generate the first 10 Fibonacci 

numbers, sort 10 specified integers in ascending order, and find the square root of a 

specified floating-point number. The compiled codes were first disassembled using KIEL’s 

8051 emulator, providing a reference assembly code to judge the accuracy of the proposed 

disassembler.  

Third, the potency of fine-grained EM SCA approach is evaluated by implementing 

the proposed feature-selection and classification methodology using a coarse-grained EM 

SCA setup (with a relatively large probe [47]) and comparing the success rates of the two 

approaches. Here, the measurement configurations are optimized only over the time 

dimension as there is a single fixed probe location and orientation.  
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4.6.1 Feature-Selection Results 

To construct the database with the proposed profiling codes, a total of 𝑁samp =

𝑁�̅�inst𝑁pc𝑁t  = 816 × 5202 × 1000~4.2 × 10
9 samples (after they were averaged 50 

times by the oscilloscope) were acquired. For comparison, consider applying the methods 

presented in [44]-[47] directly to the presented fine-grained EM SCA setup: Assuming 𝑁pc 

and 𝑁 are the same as in this work, but using the same �̅�inst and 𝑁t values as in the previous 

works, the methods would require ~222× [44], ~17× [46], ~2.2× [47], and ~650× [48] more 

samples than the proposed method.  

Results for feature selection phase are exemplified in Fig. 4.11, which shows that 

the envelope-to-envelope distances reduce across space and time at the lower stages of the 

hierarchy. This behavior is expected for well-designed hierarchies that progressively refine 

the granularity of recovered instruction. It was also observed that the spatio-temporal 

distributions of distances for each stage were different, i.e., each stage of the hierarchy 

impacted the probed fields differently. Further, it was observed that features for all 

classifiers were limited to the region marked with white in Fig. 4.11. Consequently, 

measurements for the classification phase were limited to this region (25×25 locations).  

4.6.2 Classification Results 

First, the test codes with 100 randomized instantiations of each instruction were 

disassembled and the recovered results were compared to the reference assembly code line 

by line. The accuracy is then simply computed as a ratio of correctly recovered instructions 

to the total number of instructions. The success rate of the disassembly was 10130 out of 

10200 instructions (~99.3%). Evaluating accuracy stage-wise showed that the 

disassembled instructions had 100% accuracy for all instructions in Stages I-III, i.e., all 

misclassifications were in Stage IV. Therefore, the incorrectly recovered instructions still 
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contained some relevant information. It was also observed that all conditional branches 

were correctly identified, including if the branch was taken or not. Such high success rates 

are to be expected because these codes follow a similar template to the profiling codes.  

        Results for the disassembly of application benchmarks are shown in Table 4.3. 

The total accuracy for the fine-grained setup was found to be ~97%, with less than ±2% 

variation among the 4 benchmarks. Similar to the evaluation of the test codes, no 

 
                                         (a) 𝐷𝑖𝑠𝑡𝐿1,𝐿2

𝑝𝑐,𝑡
                           (b) 𝐷𝑖𝑠𝑡(L1,S1),(L1,S2)

𝑝𝑐,𝑡
 

  

 

                                      (c) 𝐷𝑖𝑠𝑡(L1,S1,Op1),(L1,S1,Op2)
𝑝𝑐,𝑡

            (d) 𝐷𝑖𝑠𝑡(L1,S1,Op1,Fn1),(L1,S1,Op1,Fn2)
𝑝𝑐,𝑡

 

Figure 4.11:  Example spatial maps of the envelope-to-envelope distances computed during 

feature selection phase in stages (a) I (𝑡~30 ns),         (b) II (𝑡~270 ns), (c) III 

(𝑡~360 ns), and (d) IV (𝑡~70 ns), observed at the most optimal time instants. 

The distances between instruction classes are smaller at lower stages of the 

hierarchy. 
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misclassifications were observed in the first three stages, and a 100% accuracy was 

observed in identifying conditional branch instructions. While a slight decrease in the 

disassembly accuracy was observed for the benchmarks, the difference is minimal 

compared to the disassemblers demonstrated in [44] and [48]. Finally, the most 

misidentified instruction for both test codes and benchmarks was the ADDC Acc, Reg, 

commonly misclassified as instruction ADD Acc, Reg (misclassified in 22 out of 123 

instances).  Potential reasons for the misclassification have to do with the close functional 

relation between the ADD and ADDC (i.e., add with carry) instructions, since in the 

absence of a carry bit, identical operations are performed by the microarchitecture. The 

opcodes of these instructions in the ISA are also very similar, including how they are 

decoded. Similar misclassifications were also observed for rotate and rotate with carry 

instructions that only differ minimally in functionality and operation. However, these 

instructions are not frequently used by the compiler thereby limiting inaccuracies and 

misclassification rates in large benchmarks. 

        The disassembler implemented using the coarse-grained EM SCA only 

showed a success rate of ~70% disassembling test codes and ~65% accuracy disassembling 

the benchmarks (Table 4.3). Contrary to the fine-grained measurement setup, 

misclassifications were observed in Stages II, III, and IV. Clearly, the fine-grained EM 

SCA setup resulted in a more potent disassembler. An example demonstrating the 

differences between database envelopes for the fine-grained and coarse-grained EM setups 

are shown in Fig. 4.12. It was observed that envelopes from the fine-grained setup were 

narrower and had sharper signal variations compared to the envelopes from the coarse-

grained setup. Consequently the min-max envelopes predicted by the coarse-grained setup 

overlap for multiple classes at selected configurations leading to misclassifications, even 

when distance predicted between instruction classes is high (Fig. 4.12). Further, the overlap 
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is also observed to increase in the coarse-grained case, as the classification moves to the 

lower hierarchical levels.  

While the choice of MCU significantly simplified the feature selection and 

classification phases, parts of the proposed work may be extended to more complex 

systems. For instance, the feature selection phase in heavily pipelined processors can be 

split into two sub-phases: The first sub-phase can implement the feature-selection 

methodology described in Section 4.3, using few select instructions padded with NOPs 

(Section 4.3.1). Once a sufficiently small set of potent probe configurations are identified, 

the NOP instructions can be replaced with randomized instructions and operands, similar 

to the methodology proposed for the power SCA disassembler in [64]. Various feature 

selection and classification strategies used by power SCA disassembler can therefore be 

extended to fine-grained EM SCA. However, this is only feasible once an initial 

characterization, such as the low-cost feature selection proposed in this work, reduces the 

large search space of potent probe configurations across the chip.  

4.7 SUMMARY 

A fine-grained EM SCA based disassembler was proposed to recover instructions 

executed on a general-purpose micro-controller. The proposed method uses a hierarchical 

 

Benchmark 
Code Size 

(bytes) 

# of 

Instructions 

Fine-Grained 

EM 

Coarse-

Grained EM 

# of Correct 

Instructions 

Accuracy 

(%) 

GCD 55 111 108 ~97.3 

FIB 303 804 794 ~98.7 

sort 572 2665 2556 ~95.9 

SQRT 1167 2006 1972 ~98.3 

Table 4.3:  Results of Benchmark Evaluations 
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framework to improve feature selection and classification. It identifies optimal 

measurement configurations that distinguish instruction classes in the first phase by (i) 

executing model-based profiling codes to efficiently collect probed fields in a database, (ii) 

finding envelopes that bound the probed fields and, a novel quantity, differential signals 

derived from them. In the second phase, measured signals with these optimal measurement 

configurations are classified by comparing them to the signal envelopes of instruction 

classes one pair at a time. The comparisons were performed by quantifying the deviation 

of the measured signals from the signal envelopes. The proposed disassembler was shown 

to successfully and feasibly recover ~97% to ~99% instructions from application 

benchmarks and test codes executed on an AT89S51 microcontroller. Further, all 

conditional branch executions were correctly identified, enabling control-flow leakage 

prediction. It was also observed that the fine-grained EM SCA was significantly more 

potent compared to a coarse-grained EM SCA analysis.  

        The proposed disassembler can potentially detect malware within basic blocks 

[56], as well as those impacting control flow integrity [57]-[59]. Combined with 

appropriate tools quantifying vulnerabilities in side channels [54], [60], [62], the 

disassembler can further enable programmers to optimize programs to minimize leakage. 

Finally, the instruction level granularity of the disassembler enables detection of small-

scale hardware trojans that are more challenging to address compared to malicious code 

[63].     

        The DUT used in this article simplifies the disassembly significantly because 

of its low-complex multi-cycle architecture; additional work is required to extend the 

proposed work to more complex embedded processors. For instance, in [64], randomized 

instructions were introduced based on the number of pipeline stages, while profiling 

individual instruction classes. A similar extension can be proposed for the fine-grained 
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disassembler in this work; e.g., the feature-selection phase in heavily-pipelined processors 

can be split into two sub-phases: The first sub-phase can implement the feature-selection 

methodology, using a few select instructions padded with NOPs (Section 4.4.2). Once a 

sufficiently small set of potent probe configurations are identified, the NOP instructions 

can be replaced with randomized instructions and operands for reduction, depending on the 

number of pipeline stages. Additional datasets can also be created for groups with a large 

number of instructions, to improve their disassembly, similar to [64].  

        The disassembly can be improved further by recovering data values of 

operands [4], in addition to instructions. There is also potential to improve disassembly 

with higher-resolution probes. A more optimal method of combining features from 

multiple configurations can also reduce misclassifications, with the potential to re-examine 

predicted results and observe anomalies. Further, differential signals are a novel quantity 

that requires further exploration, potentially being used to observe changes across multiple 

pipeline stages as the instruction is executed, adding a new dimension to the analysis. 

Finally, imposing more restrictions on evaluators in the classification phase, similar to 

generic black-box testing threat models, may necessitate the use of more potent post-

processing techniques in combination with some of the aforementioned potential 

improvements to the setup. Code monitoring through instruction disassembly presents a 

non-invasive pathway to detect intrusions, and therefore evaluate embedded hardware 

security. 
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5. Modelling Information Leakage in EM SCA5 

This chapter presents methods to model information leakage via EM side-channels 

and uses them to evaluate complex embedded systems. The first part of the chapter extends 

the ANOVA methodology presented for AES in Chapter 2 to generic embedded systems. 

This method is used to evaluate vulnerabilities in a server implementation of the Bluetooth 

low energy protocol. The final section of the chapter introduces data-dependent EM basis 

functions to model side-channel leakage. 

5.1 ANOVA FOR A GENERIC COMPUTING CHIP 

The analysis presented in Section 2.1.4 can be extended for any generic embedded 

computing chip. By assuming independence of target and background signal quantities, 

ANOVA can potentially be used to evaluate complex embedded systems. Let the array 

𝐕𝑝𝑐,𝑡 list all the measured signals corresponding to all possible combinations of processes 

in a chip. Each observed signal in the array, 𝑉
Tpr𝑖,Bpr𝑗

𝑘,𝑟

𝑝𝑐,𝑡
, can be decomposed into three 

independent, abstract signals 𝑇Tpr𝑖
𝑝𝑐,𝑡

, 𝑁𝑟
𝑝𝑐,𝑡

, and 𝐵
Bpr𝑗

𝑘
𝑘,𝑝𝑐,𝑡

. Here, 𝑇Tpr𝑖
𝑝𝑐,𝑡

  and 𝐵
Bpr𝑗

𝑘
𝑘,𝑝𝑐,𝑡

 represent the 

contribution of the target and background processes  Tpr𝑖 and Bpr𝑗
𝑘 to the observed signal, 

whereas 𝑁𝑟
𝑝𝑐,𝑡 represents the effect of measurement-to-measurement variations. In 

information-revealing measurement configurations, the observed signal will depend 

strongly on 𝑇Tpr𝑖
𝑝𝑐,𝑡

 and will be insensitive to 𝑁𝑟
𝑝𝑐,𝑡

 and 𝐵
Bpr𝑗

𝑘
𝑝𝑐,𝑡

 . If the quantities𝑇Tpr𝑖
𝑝𝑐,𝑡

, 𝑁𝑟
𝑝𝑐,𝑡

, 

and 𝐵
Bpr𝑗

𝑘
𝑝𝑐,𝑡

 are listed in the arrays 𝐓𝑝𝑐,𝑡, 𝐍𝑝𝑐,𝑡, and 𝐁𝑘,𝑝𝑐,𝑡, for 𝑁b background processes, 

their variances are related as 

 
5 This chapter is partly based on two previous publications:  

(i) V.V. Iyer and A.E. Yilmaz, “Estimating near-field signals emanated by embedded systems using data-

dependent EM profiles as basis functions,” in Proc. USNC-URSI Rad. Sci. Meet, July 2023. 

(ii) V.V. Iyer and A. Yilmaz, “EM side-channel analysis of data leakage near embedded bluetooth low 

energy modules,” in Proc. WAMICON, April 2023. 

The author contributed to the formulation, implementation, and measurements presented in this article, as 

well as the writing of these manuscripts. 
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Var(𝐕𝑝𝑐,𝑡)

Var(𝐓𝑝𝑐,𝑡)
= 1 +

Var(𝐍𝑝𝑐,𝑡)

Var(𝐓𝑝𝑐,𝑡)⏟    

1 𝐹𝑁
𝑝𝑐,𝑡

⁄

+ ∑
Var(𝐁𝑘,𝑝𝑐,𝑡)

Var(𝐓𝑝𝑐,𝑡)⏟      

1 𝐹𝐵
𝑘,𝑝𝑐,𝑡

⁄

𝑁b
𝑘=1                              (5.1) 

As shown previously in Section 2.1, the ratios can be estimated using ANOVA F-statistics. 

The choice of target and background vary on the computations and data of interest; e.g., in 

the AES case, a single byte is the data of interest, and remaining 15 byte computations 

contribute to algorithmic noise. In this chapter, an example demonstrating the usage of the 

ANOVA F-statistic for data-recovery from a BLE module is presented. 

5.2 EM SCA ANALYSIS OF A BLE SERVER USING ANOVA 

This section presents an overview of BLE modules, potential vulnerabilities, the 

method used to evaluate the implementation and the measurement results of the 

evaluations.  

 
                                               (a)                                                     (b) 

Figure 5.1: (a) Information access flow in the GATT protocol. (b) Flow of data during a 

write operation [72].    
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5.2.1 Background 

Bluetooth low energy (BLE) is a commonly used wireless communication standard 

in low-power applications [71]. Once paired, BLE devices can communicate via the GATT 

protocol (Fig. 5.1(a)): A peripheral GATT server offers various services and 

characteristics, whose attributes are locally indexed on the embedded device.  These 

attributes are accessed by a paired GATT client, which can read, write, or send requested 

data using appropriate mechanisms as per the BLE 5.0 standard [71]. In this work, the 

computations performed by the GATT server as it receives and processes data written to a 

specific characteristic in a chosen service are the computations of interest and the values 

actually written to the characteristic are the data of interest. Thus, data corresponding to 

the service and characteristic handles, as well as those introduced by various layers in the 

protocol stack, are extraneous.   

As shown in Fig. 5.1(b), once a GATT client antenna sends signals encapsulating 

the data of interest to the server, the analog circuits and the link layer decode the 

information and send it to the CPU using a system bus. These decoded signals trigger the 

“event” corresponding to the chosen service and characteristic, and the data of interest are 

sent to the appropriate memory location from where they are handled as per functions 

defined in the software application. The movement of data between registers, via buses, 

creates vulnerabilities that can be exploited by fine-grained EM SCA attacks [4], [41].   

Fine-grained EM SCA attacks are generally implemented in two phases. Phase I 

has two goals: (i) Identify optimal measurement configurations, where on-chip processes 

related to the computations of interest contribute most to the signals—or equivalently, 

where measurement and algorithmic noise have minimal impact [41]. This requires 

repeating the computations of interest using a few carefully chosen data while collecting 

signals with numerous (ineffective) measurement configurations; e.g., instructions 
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executed by a microcontroller were extracted by an EM SCA approach in [70] by 

identifying 10 optimal probe configurations per instruction pair out of 5.2 × 103  possible 

configurations. (ii) Construct a database of signals to be referenced in Phase II for data 

recovery. These signals are collected with only the optimal probe configurations, 

potentially by executing the computations of interest with additional data. In Phase II, the 

optimal probe configurations are monitored and the data of interest are recovered by 

referencing the database. The specific methods used in this work are detailed next. 

5.2.2 Measurement Protocol 

Information leakage via the EM side channel is generally abstracted using leakage 

models such as HW and Hamming Distance (HD) [4], [41], [70]. Recently, computing the 

ANOVA F-statistic on EM signals corresponding to data with extreme HW/ HD was found 

to be a rapid, low-cost method for isolating near-field vulnerabilities [41]. Here, to identify 

optimal measurement configurations, a similar approach is used in Phase I, which requires 

repeatedly measuring signals as the same exact computations are executed. Therefore, in 

the following, the probed signals are denoted as 𝑉𝑝𝑟,𝑟
𝑝𝑐,𝑡

 ; they are functions of not just the 

probe configuration 𝑝𝑐, which represents the probe’s location, orientation, and height, the 

measurement time 𝑡, and the processes performed by the chip 𝑝𝑟, but also the repetition 𝑟 

as each signal contains varying levels of measurement noise [4].  

Phase I starts with the evaluator pairing a client to the peripheral GATT server. The 

evaluator may then select a specific service and characteristic offered by the server, and 

write a value to the characteristic. Assuming this value has a size of 1 byte, the data with 

the minimum and maximum HW of 0 (0x00) and 8 (0xFF) are chosen. Both data values 

are written 𝑁r times while the signals near the chip operating the GATT server are 

measured. Because the chosen service and characteristic are fixed for each write operation, 
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the only variation in measured signals comes from variation in the written value and 

measurement noise. To quantify the impact of this noise at each measurement 

configuration, the sample mean �̅�HW0/8

𝑝𝑐,𝑡
and sample variance 𝑠HW0/8

𝑝𝑐,𝑡
 of the 𝑁r measured 

signals (𝑉𝑝𝑟,1
𝑝𝑐,𝑡, ⋯ , 𝑉𝑝𝑟,𝑁r

𝑝𝑐,𝑡
) are computed. Then, the F-statistic is computed as [41],  

                                         𝐹𝑁
𝑝𝑐,𝑡 =

2𝑁r×Var(�̅�HW0

𝑝𝑐,𝑡
,�̅�HW8

𝑝𝑐,𝑡
)

Mean(𝑠HW0

𝑝𝑐,𝑡
,𝑠HW8

𝑝𝑐,𝑡
)

                                         (5.2) 

Notice that only signals corresponding to the data with extreme HW values (HW 0 and 8) 

are collected and analyzed here. Next, the computed F-statistic is compared to a critical 

value 𝐹𝑁,c—effective configurations have F-statistic  𝐹𝑁
𝑝𝑐,𝑡 > 𝐹𝑁,c—derived from F-

distributions for a confidence interval of 99.99% [41] to judge the potency of the 

measurement configuration using null-hypothesis testing.  

Phase I ends with the evaluator identifying the optimal probe configuration 𝑝𝑐opt =

argmax
𝑝𝑐

 𝐹𝑁
𝑝𝑐,𝑡

and constructing the database: The evaluator uses the GATT client to write 

data spanning all HWs to the GATT server 𝑁r times while probing the fields with 𝑝𝑐opt. 

The database stores a single reference signal—the average of the 𝑁r collected signals—for 

each HW. 

Next, the EM fields near the chip operating the GATT server are probed with 𝑝𝑐opt 

while arbitrary data values are written to it either by the evaluator’s GATT client or an 

independent one, without any repetition. Measured signals for the test data are compared 

to the reference signals to identify the best fit as the reference signal with the minimum 

average distance from the test signal when  𝐹𝑁
𝑝𝑐opt,𝑡 > 𝐹𝑁,c. 

5.2.3 Measurement Setup 

The setup shown in Fig. 5.2 was used for the measurements. A Cortex M4 processor 

in the RA4W1 BLE development board [71], operating at 48 MHz, was used as the device 

under test. A Nokia C01 smartphone was used as the evaluator’s client in Phase I. The 
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GATT browser installed in the smartphone paired with the server and accessed the services 

and characteristics provided by the demo application installed in the board [72]. The 

service chosen was the Renesas LED Switch Service, the characteristic selected was the 

LED Blink Rate, and the allowed values to be written ranged from 0x00 to 0xFF. To 

simplify measurements, markers were included within the software implementing the BLE 

operation to trigger a Keysight MSOS054A oscilloscope, sampling at 10 GS/s. The oscillo-

scope was also used to store and analyze data. A Riscure probe station was used to position 

a 1-mm diameter H-field probe from Langer in 41×41 locations over the 8×8 mm2 chip 

surface. Measurements were performed in x and y orientations of the probe at a height of 

0.5 mm above the chip. Bluetooth transfers from the smartphone application were 

automated using the Android debug bridge. Phase II used both the Nokia smartphone and 

a OnePlus Nord N20 smartphone as a client, both using the same Bluetooth service and 

characteristic.  

 

Figure 5.2:  The near-field measurement setup used for EM SCA attacks. Experiments are 

performed on an RA4W1 test board. Near-fields were sensed using an H-field 

probe, scanning the chip at a height of 0.5 mm. 
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5.2.4 Measurement Results 

A total of 3362 probe configurations were used to observe signals for 1290 clock 

cycles, used by the BLE protocol to set the LED blink rate. The write operations were 

repeated 𝑁r = 10 times at each probe configuration. By replicating these operations at each 

location, at the end of a scan, the evaluator can generate composite signal maps (Fig. 5.3). 

Phase I took ~40 hours to complete, primarily due to bottlenecks in the automation of 

Bluetooth data transfer. Storage requirements for these measurements were ~65 GB. Phase 

I results are shown in Fig. 5.4 for an x-oriented probe. The threshold 𝐹𝑁,c was set to be ~40. 

Although signals were measured for ~1300 clock cycles, only 2 clock cycles were found 

 

Figure 5.3:  Spatio-temporal distribution of measured signals using an x-oriented probe. 

The spatial map is plotted at 𝑡~30 ns and time plot is shown for an optimal 

configuration (star) for three clock cycles, each cycle being ~20 ns. 

 

 

Figure 5.4:  Spatial map of max
𝑡
𝐹𝑁
𝑝𝑐,𝑡

 (left) and time plot of the F-statistic (right) at an 

optimal configuration (starred). The measurement configuration is suitable 

for data recovery if the F-statistic is greater than the threshold 𝐹𝑁,𝑐 (red). 
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to be optimal time-intervals for data leakage. Further, about 750 effective probe 

configurations were identified across both orientations, close to the top-right and bottom-

left regions of the chip. The optimal probe configuration 𝑝𝑐opt was an x-oriented probe at 

location (4, 6, 0.5) mm. Using this optimal configuration, the database of reference signals 

was constructed for the data values 0x00 (HW 0), 0x01 (HW 1), 0x03 (HW 2), 0x07 (HW 

3), 0x0F (HW 4), 0x1F (HW 5), 0x3F (HW 6), 0x7F (HW 7), and 0xFF (HW 8).  

A total of 256 test values were sent to the GATT server, covering all 8-bit binary 

numbers. These values were written by the evaluator’s client used in Phase I, as well as the 

other client. The experiments were repeated 5 times for both clients. Comparing the 

measured signals to the reference signals, the HW of the test values were identified (Fig. 

5.5) with success rates ranging from ~98.1% to ~99.2% for both the evaluator’s client and 

the other client, across the 5 repeated experiments. The high success rate for both clients 

indicates that the data leak is due to chip processes and computations in the Bluetooth 

GATT server related to the service and characteristic, which are independent of the client 

connected to it. This implies that once attackers profile certain characteristics in the GATT 

 

Figure 5.5:  Spatial map of max
𝑡
𝐹𝑁
𝑝𝑐,𝑡

 (left) and time plot of the F-statistic (right) at an 

optimal configuration (starred). The measurement configuration is suitable 

for data recovery if the F-statistic is greater than the threshold 𝐹𝑁,𝑐 (red). 
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server, they no longer require access to the communication channel, and may monitor fields 

near the server to recover information from any other connected device.  

The proposed method could be extended to isolate configurations related to other 

BLE services, such as read or notify. Because such attacks do not rely on eavesdropping 

of the communication channel, they are harder to mitigate using robust authentication 

methods.  

5.3 DATA-DEPENDENT EM PROFILES AS BASIS FUNCTIONS  

Previously, EM SCA methods utilized leakage models that abstract sources of 

leakage such as data-bus transfer, switching in registers, etc. using simplified quantities 

[4], [21], [54]. These models essentially reduce observed signals for multiple data values 

into a small number of “signal profiles”, where the profiling is based on the properties of 

data being computed during observation. For example, EM SCA on simple 

microcontrollers have assumed that emanated fields are linearly dependent on the number 

of bits with value 1 in data, i.e., the observed fields are dependent on the Hamming Weight 

(HW) of the data value in data bus or registers [4], [21]. Here, the data with same HWs, 

such as 0x01 and 0x02 (both have HW 1), are assumed to have the same signal profile. The 

profiles can be constructed by using a single value conforming to the leakage model, or by 

averaging signals for a few values. This simplification is sufficient for analysis if variance 

of observed signals assigned to the same profile is much smaller than the variance among 

signal profiles. Such profiles can have limited accuracy, however, when representing large 

number of data values; e.g., in an 8-bit processor, a single profile constructed for data with 

HW 4 represents 70 different data values. Further, assuming the same leakage models are 

used for concurrently operating buses and registers, there may be a large difference 

between aggregated profiled signals and the actual signal [75].    
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This section introduces a novel approach that improves upon existing leakage 

models to synthesize near-field signals for arbitrary data values using the fewest possible 

measurements. These measurements are performed to derive basis functions, which are 

then linearly combined to generate fields at multiple near-field probe configurations. The 

method, evaluation and results are summarized next. 

5.3.1 Representing Data with Binary Basis Vectors 

As Any n-bit binary data of interest can be considered an ordered sequence of n 

elements represented as a vector 𝐚 = [𝑎𝑛, … , 𝑎1]
T, from most- to least-significant bit, 

where 𝑎𝑖 is an element of the binary field 𝔽2. The vector 𝐚 can also be represented using 

the canonical basis vectors 𝐞𝑖 = [𝑒𝑖
1, 𝑒𝑖

2, … , 𝑒𝑖
𝑛]T, where 𝑒𝑖

𝑗
= 1 if 𝑖 = 𝑗 and 0 otherwise,  

as 

                               𝐚 = 𝑎1𝐞1⊕𝑎2𝐞2⊕…⊕𝑎𝑛𝐞𝑛,                                         (5.3)                        

where ⊕ represents the XOR operation. Typically, profiling EM signals for SCA 

involves using data with different HWs. To link the data representation in (2) to the HW 

leakage model, a different (non-orthogonal) set of basis vectors 𝐛𝑖 = [𝑏𝑖
1, 𝑏𝑖

2, … , 𝑏𝑖
𝑛]T are 

used, where 𝑏𝑖
𝑗
= 1 if 𝑖 ≤ 𝑗  and 0 otherwise; here, each 𝐛𝑖 has a different HW. These basis 

vectors can be used to express the vector 𝐚 as, 

      
                            𝐚 = 𝐛0⊕𝑎1(𝐛1⊕𝐛0) ⊕ 𝑎2(𝐛2⊕𝐛1) 

                         ⊕ 𝑎3(𝐛3⊕𝐛2) …⊕ 𝑎𝑛(𝐛𝑛⊕𝐛𝑛−1)     
                             (5.4) 

where 𝐛0 is the null vector with all entries valued 0.   

Assuming the vector 𝐚 represents the n-bit binary data of interest used for 

computations by the processor, let the signals measured during these computations at each 

probe configuration 𝑝𝑐—combination of location (𝑥, 𝑦), orientation 𝑜, and height 𝑧—and 

time instance 𝑡/frequency 𝑓, be denoted by the signal 𝑉𝐚(𝑥, 𝑦, 𝑧, 𝑜, 𝑡/𝑓). If linear 

superposition were applicable, the measured signals could be expressed exactly by linearly 
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combining the signals 𝑉𝐛0 , 𝑉𝐛1 , … , 𝑉𝐛𝑛; these signals are measured at each measurement 

configuration (𝑝𝑐, 𝑡/𝑓) by setting the data of interest to the corresponding basis vector.  

5.2.2 Data-Dependent EM Basis Functions 

The signal of interest 𝑉𝐚 can thus be estimated as, 

                      
𝑉𝐚  ≈ 𝑉𝐛0 + ∑ 𝑎𝑖(𝑉𝐛𝑖 − 𝑉𝐛𝑖−1)

𝑛
𝑖=1

                     = 𝑉𝐛0(𝑝𝑐, 𝑡) + ∑ 𝑎𝑖𝑔𝑖(𝑝𝑐, 𝑡)
𝑛
𝑖=1            

,                       (5.5) 

where 𝑔1, 𝑔2, … , 𝑔𝑛 are the proposed data-dependent basis functions at each 

measurement configuration. The choice of basis functions in (5.5) reflects the physical 

significance of the XOR operation and the null vector. While the XOR operation represents 

both addition and subtraction in the 𝔽2 binary field, this is not extendable to the basis 

functions that are used to represent the observed fields. Further, both binary values 0 and 

1 contribute to the observed fields, implying both must be accounted for while estimating 

the fields for a given data value. This necessitates the introduction of the null vector in 

(5.4) and the corresponding EM signal. Next, it is hypothesized that, despite the underlying 

non-linear nature of the digital blocks, the EM signals measured for binary data can be 

 

Figure 5.6:  Fine-grained EM SCA attack setup [4] (left) probes the chip at multiple 

locations during chip operations. Measurements can be repeated at multiple 

probe configurations to generate field maps at a given time instance (right). 
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expressed as a linear combination of signal contributions for each individual bit; as a result, 

signals for any arbitrary n-bit data can be estimated using only n+1 measurements.  

Although such assumptions can be extended to signals 𝑉𝐞𝑖 for the canonical basis 

vectors in (5.1), there are differences between a processor’s handling of data 𝐞𝑖 and 𝐛𝑖, 

even for the same instructions. This is because processors perform background 

computations on such data to set certain flag bits depending on their values; e.g., the parity 

flag is set as 1 if odd number of bit values are 1. Since vectors 𝐞𝑖 produce similar flag bits, 

they prove less potent in replicating background processes, and consequently their 

corresponding signals, for arbitrary data, compared to those derived from HW models.    

 
(a) 

 
(b) 

Figure 5.7:   (a) Basis functions plotted at the center of the chip in time (left) and frequency 

(right) for an x-oriented probe. The derived functions represent the 

contribution of each individual bit 𝑖. (b) Performance of the model for two 

arbitrarily chosen data values at the center of the chip. 
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5.2.3 Measurement Setup and Results 

The setup used for measurements in this article is shown in Fig. 5.6 and detailed in 

[4],[41]. The proposed method was evaluated on an 8-bit Intel i8051 micro-controller; thus, 

𝑛 = 8. Near-field scans were performed at 𝑁l = 51 × 51 locations for 2 orientations (x- 

and y-orientations) and 1 height (~0.5 mm above the chip surface). Measurements were 

limited to a time-interval where fields are dependent on output data values [4],[54]. Fields 

were observed at each probe configuration as the chip performed the MOV instruction, 

which moves data from program memory to the accumulator register. Results from the 

experiment are shown in Figs. 5.7-5.8. The predicted and measured fields showed good 

agreement at several configurations, particularly those identified as optimal to leak output-

related information, close to the center of the chip. Error between the predicted and 

measured signals were primarily observed when fields varied sharply over space 

(comparing field maps in Fig. 5.6 and Fig. 5.8) and time (comparing signals in Fig. 5.7(b) 

and the error plot in Fig. 5.8). This is due to small sub-sample time delays between 

signals 𝑉𝐛𝑖, which introduces small error in (5.5) that aggregates to create the discrepancies. 

cost.  

 

Figure 5.8:  Error observed at the center of the chip (starred) for data value 0xFA in time 

(left), and predicted fields for this data value at the same time instance as 

the observed field plotted in Fig. 5.6 (t~8 ns). 
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5.4 SUMMARY 

Two approaches were presented to model information leakage and evaluate 

computing chips. The first approach used signal variances to isolate information leakage 

on-chip, which is further processed to recover information. This approach is suited to 

common side-channel inversion problems involving data recovery. The approach was 

demonstrated to evaluate the vulnerabilities of a BLE server implementation. 

The second approach was chosen to improve upon leakage models that are 

commonly used in SCA attacks. This modelling approach is used to accurately synthesize 

spatio-temporal near-fields dependent on data computed on chip. The proposed approach 

“separates” sources of information leaking signals as basis functions, linearly combining 

them appropriately to predict observed signals. The method can be combined with those 

existing in literature, such as [3], to improve SCA-based evaluations. The low-cost method 

requires only n+1 measurements to estimate 2n signals, making it extendable to processors 

with larger registers. Further, basis functions for multiple processes can potentially be 

superposed to generate fields for heavily pipelined processors. While presented for a 

forward problem in this chapter (i.e., predicting fields from few select functions), there is 

potential to use them as a foundation for side-channel data recovery, which requires further 

work.  
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6. Conclusion 

This dissertation presented several methods to effectively evaluate the 

electromagnetic security of embedded computing chips, primarily targeted at addressing 

their vulnerability to fine-grained EM SCA attacks. The original contributions of the 

dissertation can be briefly summarized as: (i) comprehensively comparing the effectiveness 

of different SCA attack modalities, (ii) implementing a multi-stage ANOVA-based 

measurement protocol to rapidly analyze AES chip vulnerabilities, (iii) developing a 

hierarchical disassembler to recover execution trace of programs, and (iv) introducing 

leakage modeling methods and using them to evaluate complex systems. 

Chapter 2 presented a systematic comparison between different SCA attack 

modalities. The effectiveness of coarse- and fine-grained electromagnetic EM SCA attacks, 

as well as power SCA attacks, were empirically evaluated on implementations of the AES 

algorithm. While the effectiveness of the attacks were compared based on the marginal 

costs required to identify the AES key, the acquisition costs of the fine-grained EM SCA 

attacks were also analyzed thoroughly, by evaluating the AES implementations under 

various constraints (i.e., threat models). Various search methods were developed, tailored 

to different threat models, to effectively evaluate the chip’s security and compare potency 

of different SCA attack modalities.  

Chapter 3 presented a multi-stage measurement protocol based on the ANOVA F-

statistic to rapidly evaluate an AES module’s security. The F-statistic and correlation-based 

attacks were linked by assuming the independence of target, background, and measurement 

noise signals in side-channel measurements. The work detailed the associated costs of 

implementing the protocol and compared it with existing alternatives. Additionally the 

protocol’s effectiveness was demonstrated on several baseline and hardened AES modules.  
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The performance of the protocol could be improved further by adding an additional pre-

characterization stage as proposed in [41].  

Chapter 4 presented a hierarchical instruction-level disassembler that analyzes 

leakages via the EM side-channel created during program execution. The disassembler 

used a database constructed bottom-up at each hierarchical level, using specially designed 

execution codes. The classification is performed top-down across the hierarchy using 

binary classification with majority voting. The disassembler was contrasted with several 

previously proposed works based on the acquisition costs and accuracy of disassembly. 

Differential signals were introduced as a novel metric to improve side-channel analysis. 

The disassembler could be improved and extended to more complex processors by 

introducing additional stages with randomized operands as proposed in [64]. 

Finally, Chapter 5 presented methods to link information leakage and observed 

signals, and examples of how they can be used to implement complex systems. The first 

method assumed independence of target signals and algorithmic and measurement noise, 

and utilized this to evaluate a BLE server implementation. The second method linked data 

and fields through spatio-temporal basis functions that are linearly superposed to predict 

signals from a general-purpose micro-controller. The second approach requires further 

exploration to utilize it more effectively for forward and inverse problems in EM side-

channel analysis. 

The work presented in this dissertation opens future research avenues that include 

security evaluations in complex system-on-chip modules, malware detection, root-cause 

analysis of side-channel leakage, and improving side-channel signal modelling for 

simulation-based tools. For instance, systems with multiple integrated components can be 

analyzed by treating each component as an independent source of EM emanations [54]. 

Using methods described in this dissertation, potentially in combination with more 
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powerful statistical tools, sources contributing to information leakage can be isolated 

within each block/sub-block. Further, basis functions can be built for individual leaking 

sources that may be superposed to isolate the data-dependent signal components. 

Deviations in these components can potentially be used for monitoring programs. Using 

binary basis functions in such cases can also result in a feasible number of 

measurements\simulations to be performed during analysis, which may otherwise increase 

as an exponential with the addition of each sub-block if not optimized [73], [74]. The 

granularity of data recovery from SCA attacks may also benefit from using finer probe 

resolutions; e.g., there is a possibility of recovering exact data values instead of limiting 

the attack to recovering data HWs. The extension of these evaluations for different threat 

models also requires further work. For instance, in restricted white/gray box scenarios, 

where internal variables of a processor such as counters and flag registers cannot be 

accessed, evaluators may need to consider these contributions separately as extraneous 

algorithmic noise, unless they perform sufficient number of measurements to characterize 

them and correlate them to the executed instructions. For even more restrictive black/red 

models, it is possible that evaluators may only be limited to basic blocks of code, without 

the ability to perform instruction-by-instruction analysis. While this dissertation studied 

measurement protocols for various threat models, it was limited to SCA attacks on AES 

modules. A similar study of trade-offs between protocols for various threat models, in 

terms of acquisition cost, and accuracy and granularity of data recovery, may also be 

performed for general embedded systems.   
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