
Copyright

by

Nicholas D. Laws

2023



The Dissertation Committee for Nicholas D. Laws
certifies that this is the approved version of the following dissertation:

A Bilevel Modeling Methodology to Optimize the Value of

Distributed Energy Resources in Electric Transmission and

Distribution Systems

Committee:

Michael E. Webber, Supervisor

Dongmei Chen, Co-Supervisor

Joseph Beaman

Dragan Djurdjanovic

Adam Warren



A Bilevel Modeling Methodology to Optimize the Value of

Distributed Energy Resources in Electric Transmission and

Distribution Systems

by

Nicholas D. Laws

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

The University of Texas at Austin

December 2023



Acknowledgments

First and foremost I would like to acknowledge my wife Rachel Laws for her

unwavering support in this arduous PhD process.

My proposed work truly stands on the shoulders of giants from NREL, lever-

aging over a decade of research and development related to the REopt platform by

the likes of: Dr. Andy Walker, Dr. Kate Anderson, Dylan Cutler, Dan Olis, and

Emma Elgqvist. At NREL, I would also like to acknowledge Dr. Adam Warren,

Dylan Cutler, and especially Kate Anderson for supporting my growth as a research

engineer at NREL. I am also grateful to Hallie Dunham and Dylan Cutler for pro-

viding valuable feedback and contributions to the development of the methodology

of Research Objective Two.

I am specially grateful to Dr. Michael Webber for welcoming me into the his

research group, as well as his salient advice. I also owe a great debt of gratitude to Dr.

Maggie Chen; without her advice and instruction my research would be less impactful.

Without Dr. Grani Hanasusanto’s expertise Research Objective One would not have

been possible. And, I would like to thank the whole Webber Energy Group, especially

Sarah De Berry-Caperton and Dr. Isabella Gee.

iv



A Bilevel Modeling Methodology to Optimize the Value of

Distributed Energy Resources in Electric Transmission and

Distribution Systems

Nicholas D. Laws, Ph.D.

The University of Texas at Austin, 2023

Supervisor: Michael E. Webber
Co-Supervisor: Dongmei Chen

The transition of electricity generation from a centralized structure to a more

distributed framework in grids across the globe calls for new methods to appropri-

ately value the services that distributed energy resources (DER) can provide. Current

methods for valuing DER services account for the grid operator perspective but typ-

ically ignore DER owner objectives and constraints. The goal of this dissertation is

to develop new methods for valuing distributed energy resources in electricity trans-

mission and distribution systems, with a particular focus on accounting for multiple

perspectives. This goal is achieved by developing a new linearization technique for

bilevel optimization problems that allows modeling energy system optimization prob-

lems at scales that matter. The linearization technique is leveraged to develop a new

framework for valuing distributed energy resources in transmission and distribution

systems. The proposed framework allows for competing perspectives to be modeled.

Furthermore, a new method for creating synthetic electricity price scenarios is devel-

oped and its value demonstrated in a stochastic optimization framework.

The current model for valuing electricity generation in deregulated energy

markets determines prices from an optimal power flow problem whose objective is to
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maximize the social welfare. This work develops a general framework for determining

the spatiotemporal value of DER that includes DER owner objectives in concert with

maximizing the social welfare. The framework is built in a bilevel program that

allows for incorporation of any optimal power flow model as well as replacing the

social welfare objective with any value function, such as the objective of a profit-

oriented DER aggregator. Special attention is placed on linearizing bilinear products

of dispatch and price variables such that the framework can scale to large network

models.

The general framework is leveraged to develop a method to assess the techno-

economic potential of DER for distribution system upgrade deferrals. The state-

of-the-art for valuing DER for distribution system upgrade deferrals is advanced by

accounting for DER owner objectives and constraints in concert with system operator

goals and constraints. A use-case shows how the framework can be leveraged to value

DER for non-wires alternatives. Comparing life cycle costs over 20 years for the

system planner, the results show that by valuing DER for non-wires alternatives the

DSO can avoid upgrading most of the overloaded components as well as achieve a

net present value of nearly $3M relative to the cost of the traditional upgrades. The

results also show that the DSO can achieve an additional $1M in net present value

when valuing privately owned DER relative to a scenario with utility owned batteries.

Finally, recognizing the need for better representation of the uncertainty in

electricity market prices in energy system models, a novel method for generating re-

alistic, synthetic electricity prices is developed. Several weaknesses in the state-of-the-

art for stochastic price generation methods are addressed: (1) better characterization

of daily and weekly trends is achieved by replacing the mean-reversion component of

the stochastic differential equation with an autoregressive integrated moving average
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process; (2) the conditional probability of consecutive price-spikes, or “jumps”, is

captured for the first time by replacing the traditional Poisson process with a gener-

alized point process inspired by brain neuron models; and (3) a more realistic model

variance is achieved by replacing the static empirical variance with a Markov pro-

cess. The new methodology allows researchers and practitioners to evaluate bidding

strategies for DER in electricity markets. In addition to accurately modeling histor-

ical trends, market behavior that has not been observed can be created by tuning

model parameters. The method is exercised with electricity prices from the US ER-

COT market and a use-case example is provided for bidding an energy storage unit

into the ERCOT market. The results show that accounting for price uncertainty via

the synthetic time-series can increase market profits by as much as 47% over a bidding

strategy that relies on a deterministic price forecast.

vii



Table of Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xii

Chapter 1. Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2. Literature Review 8

2.1 Literature related RO1: To develop a general framework for determin-
ing the spatiotemporal value of DER that includes DER owner costs
and constraints while maximizing the social welfare . . . . . . . . . . 8

2.2 Literature related to RO2: To develop a method to assess the techno-
economic potential of DER for distribution system upgrade deferrals . 12

2.3 Literature related to RO3: To develop a method to generate realistic
synthetic electricity market price scenarios . . . . . . . . . . . . . . . 15

Chapter 3. A general framework for determining the spatiotemporal
value of DER that includes DER owner costs and con-
straints while maximizing the social welfare 19

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Linearization Method with Integer Upper Level Variables . . . 23

3.1.2 Linearization Method with Continuous Upper Level Variables . 29

3.1.2.1 Conditions when AB = Ø . . . . . . . . . . . . . . . . 30

3.1.2.2 Conditions when AB ̸= Ø . . . . . . . . . . . . . . . . 31

3.1.3 A note on separable lower level problems . . . . . . . . . . . . 38

3.2 Use-case examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Simple examples without time indices . . . . . . . . . . . . . . 39

3.2.2 Complex example with separable lower level problem . . . . . . 43

viii



3.2.3 Solution time impact . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 4. A method to assess the techno-economic potential of DER
for distribution system upgrade deferrals 53

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Accounting for Uncertainty . . . . . . . . . . . . . . . . . . . . 61

4.2 Use-case Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 System Planner Problem . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 DER Investor Problem . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 5. A method to generate realistic synthetic electricity market
price scenarios 82

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Summary of the Stochastic Differential Equation . . . . . . . . 86

5.1.2 Mean Reversion Term – ARIMA Modeling . . . . . . . . . . . 87

5.1.3 Diffusion Term . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.4 Jump Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.5 Parameter Weighting . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Use-case Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 6. Conclusions and Future Work 110

6.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendix A. Publications 115

Appendix B. Examples to demonstrate the Algorithms 118

Appendix C. Energy Market Stochastic Optimization Model 121

C.1 Day-ahead market price-quantity stochastic optimization model . . . 121

C.2 Real-time market price-quantity stochastic optimization model . . . . 124

ix



List of Tables

3.1 Sets, indices, parameters, and decision variables for Equation 3.1, the
general bilevel framework. . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Results for the use-case example in Section 3.2.2. Energy purchased and
throughput values are per year. The cost multiplier is applied to the bulk
energy costs only. PV capacities are listed in order of nodes [9, 22, 31, 34,
17]. Battery capacities are listed in order of nodes [2, 7, 24]. . . . . . . . . 48

3.3 Decision variables for Problems (3.28) and (3.29). Scalar parameter
values are shown in square brackets and some vector parameters include
source references. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Parameters for Problems (3.28) and (3.29). Scalar parameter values are
shown in square brackets and some vector parameters include source
references. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Sets and indices for Problems (3.28) and (3.29). . . . . . . . . . . . . 51

4.1 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Sets and Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Parameter values for the distribution system planner in the use-case
example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 DER investor baseline parameter values for the use-case example. . . 74

4.6 A summary of the use-case example results for the baseline, BESS
only, and BESS with DER valued as non-wires alternatives. All dollar
values are in millions. (Abbreviations: “LCC” = lifecycle cost, “Trfx”
= transformer, “capex” = capital cost.). The DSO capital costs include
the transformer upgrades, line upgrades, and BESS “capex”. The DSO
operating costs include the cost of bulk energy, demand charges, and
DER energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Use-case example results summary for DER investors with and with-
out the price signal from the DSO. All dollar values are in millions,
total present value. (Abbreviations: “capex” = capital cost, “opex” =
operating cost.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Technical inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Total profits from stochastic optimization models and persistence fore-
cast simulations. The total profits are from simulating 168 days from
2019 with ERCOT day-ahead and average hourly real-time market prices. 98

C.1 Sets, indices, parameters, and decision variables for Equations C.1, C.2
and C.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

x



C.2 Sets, indices, parameters, and decision variables for Equation C.4. . . 127

xi



List of Figures

1.1 The value stack of distributed energy resource (DER) aggregations:
the current paradigm only accounts for DER owner value but many
other value streams are possible when considering the value that DER
can provide for power distribution and transmission system operators.
©NREL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1 Summary of the interactions between the DSO and DER. The DSO
pays DER for energy exported, which can only be accomplished if
DER invest in a system. If it is optimal for DER investors to purchase
a system then they can benefit from the monetary exchange from the
DSO as well as by reducing their cost of energy to meet demand. The
DSO will only send a price signal if it reduces the system operating
costs, including deferring capital investments. . . . . . . . . . . . . . 59

4.2 Summary of the use-case example inputs and outputs used to demon-
strate the method for valuing DER for non-wires alternatives. . . . . 64

4.3 Overview of the IEEE 13 Bus Test System showing the DER and BESS
options as well as the overloaded lines and transformers. Secondary
transformers at buses 634, 646, and 675 have peak loads of 143%,
111%, and 167% as percent of ratings respectively. Overloaded lines
are all assumed to have 110% overloads compared to their capacity
ratings. Graphic by Jeffrey M. Phillips. . . . . . . . . . . . . . . . . . 65

4.4 Case study summary results. See Table 4.6 for a break down of the
upfront capital costs (capex) and the annual operating costs (opex).
The net present value (NPV) is by definition zero in the baseline case. 74

4.5 Upfront capital costs (in year zero) and annual, discounted operating
costs for the DSO in the base case with traditional upgrades. . . . . . 76

4.6 Upfront capital costs (in year zero) and annual, discounted operating
costs for the DSO considering only BESS (no DER). Note the much
higher upfront costs when compared to the base line upfront costs in
Figure 4.5 come with the benefit of lower annual operating costs as
compared to the base scenario. . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Upfront capital costs (in year zero) and annual, discounted operating
costs for the DSO considering BESS and DER for non-wires alter-
natives. The upfront capital costs are comparable to the traditional
upgrade costs and much lower than the upfront costs in the BESS
only scenario shown in Figure 4.6. Also, the annual operating costs
are much lower than the baseline scenario shown in Figure 4.5 and
lower than the BESS only scenario, even with the additional cost of
purchasing DER energy. . . . . . . . . . . . . . . . . . . . . . . . . . 78

xii



5.1 Representative sample of the time series data used to demonstrate the
price generation method. Prices are from ERCOT Day Ahead Market
[91]. Temperature values from [58]. . . . . . . . . . . . . . . . . . . . 100

5.2 Initial arrival rate probabilities (top row) and conditional intensity
functions (bottom row), shown for two days in 2019 (August 30th in
left column and November 2nd in right column). Probabilities are
derived empirically from the previous 30 days of price samples. . . . . 101

5.3 Hinton diagram of an example Markov chain transition matrix for spike
intensity. The axes are integer price bins. Individual square sizes and
darkness represent the probability of transition from one price bin to
another. Rows of probabilities sum to one and are sampled uniformly.
The zeroth row is sampled first for every set of price spikes to determine
the bin for the first price spike. . . . . . . . . . . . . . . . . . . . . . 102

5.4 Synthetic pricing traces (thin grey lines) and realized price (thick blue
line) for August 15th of 2019. . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Synthetic pricing traces (thin grey lines) and realized pricing (thick
blue line) for July 15th of 2019. . . . . . . . . . . . . . . . . . . . . . 103

5.6 Synthetic pricing traces (thin grey lines) and realized pricing (thick
blue line) for December 14th of 2019. . . . . . . . . . . . . . . . . . . 104

5.7 First moment (mean) of the synthetic pricing compared to realized
prices. The synthetic pricing mean is shown for four cases: two look-
back windows (30 and 180 day, or ”win30” and ”win180” in the leg-
end) and two weighting functions (prior days and average price, or
”daysprior” and ”priceavgs” in the legend). . . . . . . . . . . . . . . . 105

5.8 Second moment (standard deviation) of synthetic pricing compared to
realized prices. The synthetic pricing mean is shown for four cases:
two look-back windows (30 and 180 day, or ”win30” and ”win180” in
the legend) and two weighting functions (prior days and average price,
or ”daysprior” and ”priceavgs” in the legend). . . . . . . . . . . . . . 106

5.9 Simulation horizon for the real-time market model simulation, which is
designed to reflect the ERCOT market. Day-ahead bids are due by 10
AM in the operating day and are cleared by the 14th hour. The real-
time market model horizon shrinks and grows to reflect the knowledge
of cleared day-ahead market quantities. . . . . . . . . . . . . . . . . . 107

5.10 Comparison of realized price, persistence forecast, and stochastic price
scenarios in the day-ahead market on July 7th, 2019. . . . . . . . . . 108

5.11 Comparison of realized price, persistence forecast, and stochastic price
scenarios in the real-time market on July 7th, 2019. . . . . . . . . . . 109

xiii



Acronyms

ARIMA auto-regressive integrated moving average

BESS battery energy storage systems
BTM behind-the-meter

DER distributed energy resources
DLMP distributed locational marginal pricing
DSO distribution system operator

ERCOT Electric Reliability Council of Texas

FERC Federal Energy Regulatory Committee

IEEE Institute of Electrical and Electronics Engi-
neers

LMP locational marginal pricing

NWA non-wires alternatives

PV photovoltaic

SDE stochastic differential equation

xiv



Chapter 1

Introduction

1.1 Overview

The over-arching objective of this dissertation is to develop methods for the op-

timal integration of distributed energy resources (DER) into electric transmission and

distribution systems. Examples of DER include community solar photovoltaic (PV)

generators as well as residential rooftop PV systems; grid-interactive energy stor-

age including controllable electric vehicle charging infrastructure; and dispatchable

building loads such as aggregated smart thermostats. Current models for optimal grid

planning and operations take a single perspective, typically minimizing the total cost

of operations for the grid operator. This work advances the state-of-the art for power

system planning and operations by developing scalable methods for multi-perspective

optimization of power systems. A general linearization technique for bilevel opti-

mization programs is developed to make problems at scales that matter tractable.

Leveraging the linearization technique, a new bilevel optimization framework is de-

veloped for incorporating DER owner perspectives into power system planning tools,

thereby allowing power system planners to find least-cost solutions that incentivize

DER integration that benefits the system as well as DER investors. Lastly, a new

method for generating realistic, stochastic electricity price time-series is developed to

improve the representation of price uncertainty in power system models.

1



1.2 Motivation

With electric vehicle adoption and load electrification accelerating and ex-

pected to grow significantly in the coming decade electricity system planners oper-

ators are facing a rapidly changing load. Additionally, new government actions like

Federal Energy Regulatory Committee (FERC) Order 2222 and the Inflation Reduc-

tion Act are encouraging investment in DER, which further challenge the traditionally

centralized electricity system model. How to model DER and grid-interactive loads

in planning and operational frameworks remains an open question; modeling them

poorly can leave us with expensive decisions that we regret as well as discourage

cost-efficient operations. However, by leveraging advanced energy system modeling

methods such as those developed in this thesis, transmission and distribution sys-

tem operators can optimally plan, control, and value distributed energy resources,

including flexible loads.

Since the restructuring of electricity markets began in the early 1980s [1] and

the introduction of locational marginal pricing into large scale power markets in the

1990s researchers have investigated electricity market design optimization problems.

From a market participant point-of-view one of the most critical terms in a problem

is the price signal (typically in $/MWh) from the market operator multiplied by the

energy delivered (MWh) by the participant, which together represent the participant’s

income in a bulk energy market. When both the price signal and energy delivered

are decision variables in a mathematical program then the problem becomes bilinear.

In many electricity markets the price signal to market participants (or gener-

ators) is determined as the marginal price of the load balance constraint at any given

network node at any given time step. The objective of the market model is to mini-

mize the total cost of energy, which is a proxy for maximizing the social welfare. In
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electricity market models the social welfare is typically determined as the benefit to

demand minus the total cost of generation. Demand benefits are not captured in prac-

tice, though they might include values for reliability or the social cost of carbon for

example. The constraints of the market model typically represent an approximation

to the power flow equations and take generator cost functions as input.

Equilibrium models allow simulating the electricity market and participant

behavior by including the power flow constraints and multiple, competing objective

functions. Bilevel or Stackelberg Game formulations are common in electricity market

models that include participant objectives, which are typically to maximize profits.

The literature has provided a few use-case specific examples for linearizing the bilinear

terms of concern, but has not addressed the general conditions necessary for the

linearization. In Research Objective 1 a general method for linearizing the

bilinear terms of the price signal and energy delivered is presented, which

facilitates the development of a general framework for determining the

spatiotemporal value of DER that accounts for DER owner and system

operator objectives. To my knowledge the proposed framework is the first to

develop a compensation mechanism for grid support from DER that includes the

DER owner perspective while accounting for the social welfare.

DER owned by retail customers, or behind-the-meter (BTM) DER, are ex-

pected to drive $110 billion of investment in the US over 2020-2024, primarily driven

by PV rooftop panel systems, adding over 70 GW of capacity for a total expected

capacity of 387 GW in 2025 [2].1 Furthermore, BTM storage energy capacity is ex-

pected to grow from 0.7 GWh to 6.2 GWh in 2025, primarily in the form of lithium-ion

batteries [2]. An emerging, high value proposition for DER is distribution system up-

1As of March 2020 the US electricity grid had a total capacity of 1,200 GW [3].
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grade deferral by leveraging DER for non-wires alternatives (NWA). Since Federal

Energy Regulatory Commission (FERC) Order 1000 [4] bulk power markets have

seen widespread acceptance that strategically located generators can provide NWA

to traditional “wires” updgrades, such as replacing overly burdened lines or trans-

formers with higher capacity components. With the growing adoption of DER many

have argued that customer-sited DER can also provide NWA for distribution system

upgrades [5]. However, most distribution system operators (DSO), which are respon-

sible for the long-term planning and short-term operation of the distribution system,

do not have a way to value the benefits of DER [6].

Used intelligently, DER can support voltage management, relieve capacity

constrained lines or transformers, and avoid power back-feed while increasing hosting

capacity. The state-of-the-art for evaluating DER as NWA for distribution system

upgrades assumes that customer-sited DER will provide the utility’s required ser-

vices when called upon – and does not account for the DER owner perspective, where

the customer may be using the DER to reduce her/his utility bill [7] or increase

their energy resilience by meeting critical loads during grid outages [8]. Figure 1.1

shows how the DER owner and distribution system values are stacked, in addition

to the transmission system values that DER can offer. A method to assess the

techno-economic potential of DER for NWA, or distribution system up-

grade deferrals, is the topic of Research Objective 2 (RO2).

Since the introduction of FERC Order 2222 in late 2020 transmission sys-

tem operators and regional transmission organizations have started the process of

integrating DER into wholesale electricity markets [9]. Whether DER is owned by

third-parties or grid operators, a primary value stream for DER comes from buy-

ing and/or selling energy in wholesale electricity markets (energy storage systems

4



Figure 1.1: The value stack of distributed energy resource (DER) aggregations: the
current paradigm only accounts for DER owner value but many other value streams
are possible when considering the value that DER can provide for power distribution
and transmission system operators. ©NREL.

can do both). Electricity market prices exhibit significant stochasticity and therefore

make it difficult to quantify the value that could be achieved with DER in wholesale

electricity markets. In recognition of this issue, a method to generate realistic

synthetic electricity market price scenarios is the topic of Research Objec-

tive 3 (RO3).

1.3 Research Objectives

The three research objectives of this work are centered around creating win-win

solutions for DER owners and power system operators. First, a general method for

linearizing bilinear products of price and dispatch variables is developed to facilitate

the solution of large scale bilevel optimization problems. The bilevel framework allows

one to account for competing objective functions, forming a Stackelberg Game [10], in

which an optimal compromise price signal can be determined. The result of Research
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Objective 1 is a general framework for maximizing the social welfare of DER in power

systems.

Second, the result of Research Objective 1 is leveraged in Research Objective

2 to size and locate DER in a distribution grid for non-wire alternatives to system

upgrades, while accounting for DER owner objectives and constraints. According

to a 2018 report from the Rocky Mountain Institute, leveraging DER for non-wire

alternatives in the U.S. will unlock an additional $17 billion in system benefits through

2030 [11]. This work seeks to account for both sides of the meter for valuing grid

support services from DER, and in doing so will fill a gap in the published literature.

Third, in recognition of the need to account for uncertainty in a primary

DER value stream for both system operators and third-party DER owners, Research

Objective 3 presents a method to generate synthetic, yet realistic electricity market

prices. An example use-case shows how the methodology for generating prices can

be leveraged in a stochastic optimization framework for bidding DER into day-ahead

and real-time electricity markets.

In summary, the over-arching objective of this work is to develop win-win

solutions for the integration of DER into modern electricity grids by accounting for

both system operator objectives and DER owner objectives. The specific objectives

are to:

RO1 develop a general framework for determining the spatiotemporal value of DER

that includes DER owner costs and constraints while maximizing the social

welfare;

RO2 develop a method to assess the techno-economic potential of DER for distribu-

tion system upgrade deferrals;

6



RO3 and develop a method to generate realistic synthetic electricity market price

scenarios.

This dissertation begins with the relevant background of the three research

objectives via the Literature Review in Chapter 2. Next, a chapter is devoted to each

research objective. Chapters 3, 4, and 5 provide the theory behind each method and

demonstrate their value with use-case examples. Finally, Chapter 6 summarizes the

results of the research and closes with suggestions for future research directions.
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Chapter 2

Literature Review

The literature review is divided into subsections aligned with the Research

Objectives.

2.1 Literature related RO1: To develop a general framework
for determining the spatiotemporal value of DER that
includes DER owner costs and constraints while maxi-
mizing the social welfare

To co-optimize the benefits of distributed energy resources (DER) for DER

owners and electricity grid operators one must account for two crucial decisions: the

DER owner’s decision of how to use their system, also known as the dispatch decision;

and the system operator’s decision of how to value a service provided by DER, also

known as the price decision. The product of these two decisions determines both

the DER owner income and the system operator’s cost of purchasing a service from

a DER owner. Currently, in deregulated wholesale energy markets, the dispatch of

bulk power generators and the value of the energy provided are determined from

Some sections of this chapter were adapted from the peer-reviewed publication [12]. The majority
of the paper’s research and writing were completed by the author of this dissertation. The co-
author contributed via theoretical development and editing. Some sections of this chapter were also
adapted from the journal article: [13]. The majority of this paper’s research, analysis, and writing
were completed by the author of this dissertation. The co-authors contributed to the background
and conclusions. Some sections of this chapter were also adapted from the technical report: [14].
The majority of this paper’s research, analysis, and writing were completed by the author of this
dissertation. The co-authors contributed to the literature review, editing, writing, and technical
development.
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some variation of an economic dispatch problem, where the value is known as the

“locational marginal price”.

The theory and practice of locational marginal pricing (LMP) in electricity

markets, also known as optimal spot pricing, began in the early 1980s [15, 16] (mo-

tivated by [17] in 1971). Locational marginal pricing is used in many deregulated

wholesale electricity markets today and was first implemented in Chile and UK in

the 1980s with many more countries following in the 1990s [18]. The premise of opti-

mal spot pricing is built upon an offer-based optimal power flow model. The objective

of the model is to maximize the social welfare function, which includes the value of

electricity usage (demand benefit) minus the total cost of generation. The problem

is subject to energy balance constraints and the network constraints. The energy

balance constraints require that the demand is met by generation at each node in the

network in each time step1. It can be shown that when each generator’s offer is equal

to its marginal cost of generation then the Lagrange multipliers of the energy bal-

ance constraints are the optimal spot prices that simultaneously maximize the social

welfare and the generators’ profits [15].

The theory of LMP has naturally been extended to electricity distribution

systems and follows the same framework as the transmission system model [19, 20, 21].

However, distributed locational marginal pricing (DLMP) has not been implemented

outside of academia due to the lack of the communication infrastructure necessary

to coordinate such a market, among other factors such as scalability of the models

required to determine DLMP.

Both LMP and DLMP models assume that market participants are compen-

sated using the Lagrange multiplier of the load balance constraint in some power flow

1The network constraints are equivalent to Kirchoff’s Voltage and Current Laws.
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model. Lagrange multipliers are also known as shadow prices and as dual variables.

For demonstrative purposes, let λj be the price or dual variable at node j and let pj be

the optimal power injected by the market participant at node j. Then the income for

the j-th market participant is λjpj. Because any single level mathematical program

cannot simultaneously include primal variables (such as pj) and dual variables, the

bilinear λjpj term for a market participant’s income (or the market operator’s cost

of purchasing pj from DER at node j) cannot be modeled in the power flow model

used to determine λj. Therefore, a single power flow model cannot directly capture

the price-responsiveness of DER owners.

Equilibrium models, on the other hand, allow modeling the electricity market

and participant behavior by including the power flow constraints and multiple, com-

peting objective functions. Bilevel or Stackelberg Game formulations are common

in electricity market models that include participant objectives, which are typically

to maximize profits, i.e. the income λjpj minus a cost of generation cjpj, where cj

represents a cost per unit of energy. The general bilevel problem is intractable but

when the lower level problem is linear then the upper and lower level problems can

be combined into a tractable single level problem [22]. However, to co-optimize the

price signal λj for the market operator and DER owners, bilinear terms of price and

dispatch decision variables are required. Fortunately, some researchers have been able

to find problem specific methods to linearize these bilinear terms [23, 24, 25, 26].

Ruiz et al. 2009 [23] is the earliest known example to demonstrate that bilin-

ear terms for market price and participant dispatch can be linearized. Their model

places the market participant in the upper level, which chooses its offer curve for

energy generation, while the lower level models the electricity market given the other

participants’ offer curves. Fernandez-Blanco et al. 2016 [24] is the first to find a
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linearization for the same bilinear terms (products of lower level primal and dual

variables) in the upper level of a bilevel program for revenue adequacy constraints.

More recently, Naebi et al. 2020 [27] forms a bilevel problem to optimize the bidding

strategy of a microgrid owner in a day ahead market. The upper level minimizes

operating costs from the microgrid owner’s perspective with the product of its ex-

ported power and the dual variable of the lower level, linear power flow load balance

in its objective. (In other words, the microgrid operator knows its impact on the

market price). The lower level minimizes the system operator’s cost, including the

payment to the microgrid owner, subject to linear power flow constraints. Xu et al.

2020 [28] proposes a bilevel model in which the upper level represents a coalition of

PV system owners that can sell excess power to the grid or to other consumers. The

upper level objective contains a bilinear product of the price to charge consumers and

the level of excess PV production to be sold. The lower level objective is the sum of

the PV owners’ cost functions, which contain the benefit of selling excess PV and the

cost of consuming grid power. The bilinear product of price and dispatch variables

is linearized by setting the lower level primal objective equal to the dual objective.

Additional problem specific examples of the linearization technique can be found in

[25] and [26].

Each of the aforementioned examples presents problem-specific examples of

how the bilinear products of shadow prices and dual variables can be linearized in

bilevel problems using Strong Duality Theorem [29]. This thesis presents a general

method for linearizing the bilinear terms of interest and determines the exact condi-

tions under which the bilinear terms can be linearized in general bilevel problems. The

method is implemented in an open source Julia module for mathematical program-

ming that allows researchers to write their bilevel problems in an intuitive fashion

([30], which extends [31]). After showing the linearization method I present some
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simple and complex use-case examples to demonstrate the value of the linearization

method for power system planning research questions. In the complex use-case, with

a power flow model, I show that the linearization method makes otherwise intractable

problems solvable in a matter of minutes. Using the open source module other re-

searchers can take advantage of the linearization method for any bilevel problem with

bilinear products of shadow prices and dispatch variables of interest.

As part of Research Objective 1, a general method for linearizing bilinear

products of lower level primal and dual variables in the upper level of bilevel opti-

mization problems will be developed. The linearization method is especially relevant

for modeling large scale energy distribution systems with many stakeholders and is

therefore applicable to a growing number of problems as energy markets expand and

adapt to new regulations such as FERC Order 2222 [10] and the increasing adoption

of distributed energy resources [11]. By publishing the general linearization method it

is hoped that more use cases will be discovered for the linearization technique beyond

energy market models. Additionally, the linearization method (detailed in Section 3)

is leveraged in Research Objective 2.

2.2 Literature related to RO2: To develop a method to assess
the techno-economic potential of DER for distribution
system upgrade deferrals

Early evaluations of DER for non-wires alternatives compared costs and ben-

efits of known DER capacities and locations against capacity upgrade costs [32]. A

common theme in the literature for valuing DER as non-wires alternatives accounted

for the single perspective of the distribution system operator (DSO). For example,

Contreras-Ocana et al. developed a model that puts DER costs and benefits in compe-

tition with upgrade deferrals from a single perspective, at a single location (substation
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or transformer) with forecasted overloads [33]. By neglecting power flow constraints

they were able to account for many types of DER including energy efficiency invest-

ments. However, without a network model the DER are presumably installed at the

single, overloaded location.

The valuable work by Andrianesis et al. demonstrates how to determine a

locational marginal value (LMV) of DER in a three step process, where the value

of DER is determined relative to the locational marginal cost of traditional system

upgrades [7]. The method in [7] also only accounts for the DSO perspective, implicitly

assuming that DER will behave in a manner that best suits the system operator’s

cost function and constraints. Furthermore, it is assumed that the LMV is sufficient

to motivate DER investment and that the LMV will not motivate behavior that leads

to greater operating costs or the need for additional system upgrades.

The work by Garcia-Santacruz et al. is perhaps the first to account for both the

DSO and DER owner perspectives when valuing DER for non-wires alternatives [34].

The DSO perspective is represented by minimizing energy losses in a relaxed branch

flow model [35]. The DER owner perspective is represented by maximizing a DER

utilization factor, i.e. minimizing the amount of energy curtailed. The system losses

and DER utilization factors are combined in a single cost function with weighting

factors that must be selected by the planner. To make their problem tractable,

only 24 hours of loading is modeled, which prevents representation of the full value

proposition of DER.

The work in [36] employs a bilevel model to account for the competing per-

spectives of the DSO and DER owners. Their work looks at planning electric vehicle

(EV) charging stations within a distribution network. However, their approach does

not include a value signal from the DSO to DER owners and requires that all cost
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coefficients are known. They modeled 48 hours of load in each of the four years mod-

eled and used a Genetic Algorithm (GA) to solve the bilevel problem. Similar work

on EV charging station integration employed a multi-objective function and a GA to

produce a pareto set of solutions, but also does not include any value signal from the

DSO [37].

The work in [38] uses a tri-level model and a novel solution technique to

optimize system planner and DER owner objectives. However their method also does

not include any value signal from the DSO.

The recent work by Kabirifar et al. leverages a bilevel model for distribution

system planning while accounting for DER investor decisions [39]. By placing the

power flow model in the lower level problem (and using a linear power flow approxi-

mation) they include distribution locational marginal prices as compensation to DER

investors, whose net present cost is constrained to be less than zero (i.e. profit) in

the upper level. The upper level minimizes the system capital and operating costs;

while the lower level minimizes the total cost of power in a distribution market. Their

framework requires knowledge of DER price bids for every time step in the planning

horizon, as well as requires that the power flow model is a linear approximation.

The method presented in this dissertation also uses a bilevel model to repre-

sent the DSO and DER perspectives. The proposed framework for valuing DER as

non-wires alternatives allows system planners to determine the minimum compensa-

tion required to motivate DER investment that minimizes the DSO’s cost function.

The framework does not require knowledge of DER owner bidding functions nor does

it require a linear power flow model. The framework determines a co-optimal, spa-

tiotemporal price signal that simultaneously minimizes DSO costs while guaranteeing

the DER owners’ financial returns. No ad-hoc weighting factors of the competing ob-
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jectives are required. The proposed framework can be used to determine the optimal

locations and capacities of both utility-owned and third-party-owned DER subject to

power flow constraints, which is demonstrated with a use-case example. The example

uses a year of hourly loads, which accounts for the full value proposition of DER for

non-wires alternatives.

2.3 Literature related to RO3: To develop a method to gen-
erate realistic synthetic electricity market price scenarios

In their comprehensive review of electricity price forecasting [40], Weron iden-

tifies five main categories of price forecasting: multi-agent (including game theoretic

and production cost models), fundamental/structural models, reduced-form quantita-

tive/stochastic models, statistical or econometric models, and artificial intelligence-

based models. Additionally, Weron notes that many of the approaches fall into a

“hybrid” category where two or more categories are combined. The developed price

model is a hybrid of reduced-form stochastic and statistical models.

The jump-diffusion model is a special case of a general stochastic differential

equation. The jump-diffusion model draws heavily from risk management finance lit-

erature on price dynamics and derivatives [40]. Mean-reversion, spot price spikes, and

non-normality characteristics observed in stock markets are even more pronounced in

electricity markets [41]. Electricity markets are unique in that the commodity being

traded cannot be easily stored for long periods of time. This constraint creates a

system that is highly reactive to small changes in supply and demand. Electricity is

traded on a spot market, which is based on day-ahead prices [42]. Trading based on

day-ahead prices allows the system operator to verify that supply will meet demand

in the next market period.
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Weron et al. uses two separate approaches to model the “jumpy” character of

spot prices in electricity markets [42]. One approach adds a jump term to a mean-

reverting diffusion-type stochastic differential equation (SDE), with the assumption

that a negative jump always follows a positive one. This approach reflects the authors’

observation that spikes usually only last one day. The second approach, which can

handle spikes that last multiple time steps, uses a Markov chain with two states: a

base state and a spike state. Each state is modeled by an independent price process,

one mean-reverting and one log-normal. Both spike models are fit to data from which

an annual sinusoidal term and a week-long moving average term have been subtracted.

A key contribution to the mean-reverting jump diffusion approach comes from Cartea

and Figueroa [41]. In contrast to Weron et al. [42], only weekly periodicity is removed

from the price data (by subtracting the mean of data corresponding to the same day

of the week). Deterministic annual seasonality is modeled with a time-varying mean

reversion equilibrium. Cartea and Figueroa demonstrate that stripping spikes from

electricity price data improves the result of a normality test dramatically, which makes

a jump-diffusion approach applicable [41].

Geman and Roncoroni [43] propose a similar model to Cartea and Figueroa

[41] with two main differences. First, instead of assuming that every positive jump is

followed by a downward jump, they introduce a jump sign that is dependent on the

current price (+1 if below a threshold, -1 if above). Second, they introduce a separate

threshold above which the probability of a spike increases. Benth et al. compares the

mean-reverting jump-diffusion model in Cartea, and Figueroa [41] to the threshold

variation in [43], and a third approach previously proposed by Benth et al. [44]. The

latter is a multi-factor model made up of a superposition of Ornstein-Uhlenbeck pro-

cesses. Hayfavi and Talasli [45] propose an alternative multifactor model combining

deterministic seasonality terms, Brownian motion, and three jump processes. One is
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an Ornstein-Uhlenbeck type process that reverts in the next time step after a jump,

another is an Ornstein-Uhlenbeck process with slower mean reversion that takes a

few time steps, and the third is a pure jump process that captures long term jump

effects.

Weron proposes the idea of non-homogenous Poisson processes in [46], but is

not able to fully apply this method due to lack of data to fit the model. The non-

homogeneous approach considers arrival rates indexed on time of year and does not

consider how spike probability also depends on prices in preceding hours, which is an

important dependency in day-ahead pricing.

Borovkova and Schmeck [47] present another jump-diffusion variation that

employs stochastic time change, which transforms the price distribution to be closer

to Gaussian using the “activity rate”. They build from prior research demonstrating

a positive correlation between demand and the occurrence of price spikes and use

temperature (as a proxy for demand) as the driving factor in the activity rate for

the stochastic time change. The resulting model captures similar key characteristics

as the jump-diffusion models described above (e.g., seasonality, mean reversion, and

spikes) and uses the stochastic time change to incorporate exogenous variables such

as temperature as a proxy for electricity demand.

Most of the literature described above has focused on forecasting of daily av-

erage spot prices rather than hourly day-ahead or sub-hourly real-time pricing. A

review article by Lago et al. summarizing state-of-the-art algorithms in day-ahead

price forecasting [48] identified that most of the recent research has primarily been

in statistical models and deep learning models. Lago et al. note that the leading

statistical models are generally autoregressive yet utilize least absolute shrinkage and

selection operator (LASSO) or elastic nets for model estimation and feature selection
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tools (e.g., the LASSO Estimated AutoRegressive model) and employ variance sta-

bilizing tools. The leading deep learning models generally fall into the category of

deep neural network, recurrent neural network, or convolution network with multiple

levels and long short-term memory components [48]. While many of these models

have shown promising improvements in point forecast accuracy, they are not focused

on generating stochastic price scenarios and capturing the total uncertainty in the

market. The proposed model combines recent learnings from the statistical model

space into a hybrid model with the reduced-form stochastic approach.

Finally, while the literature review is focused on price forecasting, note that

the work herein does not aim to create a better forecast of hourly pricing. Rather this

work develops a methodology for capturing the uncertainty inherent in the market,

generating thousands of potential realizations of future prices, and applying those

synthetic price scenarios to bidding models. There is a dearth of adequate data for

testing bidding approaches where the underlying time series exhibit high periodicity

and heavy tails. Even with the increased collection and curation of large time series

datasets, any available datasets that have these qualities are of limited use for testing,

calibrating, and vetting time series models [49]. It is imperative that time series mod-

eling and forecasting approaches use diverse training/testing data to be generalizable

to future data realizations, especially as market conditions shift [49] [50].
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Chapter 3

A general framework for determining the

spatiotemporal value of DER that includes DER

owner costs and constraints while maximizing the

social welfare

By leveraging recent advances in bilevel programming and developing a general

linearization method for bilinear products of primal dispatch decisions and dual price

variables a general framework is developed for determining the spatiotemporal value

of DER that includes DER owner costs and constraints while maximizing the social

welfare.

As part of Research Objective 1 a general method for linearizing bilinear terms

of dual and primal variables in a bilevel program is developed. The method also

accounts for linearizing bilinear products of upper and lower level primal variables

in the lower level objective. These bilinear terms represent the product of the price

signal selected by the upper level market operator and the dispatch variable selected

by the lower level DER owner. This method is applied in Research Objective 2, which

demonstrates the usefulness of the linearization method for appropriately valuing

DER for social welfare maximization.

This chapter was adapted from the journal article [12]. The majority of this paper’s research,
analysis, and writing were completed by the author of this dissertation. The majority of the paper’s
research and writing were completed by the author of this dissertation. The co-author contributed
via theoretical development and editing.
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By modeling the optimal power flow problem in a bilevel framework one is able

to account for the objectives and constraints of DER owners in an electricity market.

Typically, it is assumed that the dispatch decisions of power generators are made by

the market coordinator or system operator, rather than the generator owners. This is

a valid assumption in bulk power transmission markets where generator owners seek

only to maximize profits. However, it is not appropriate to assume that DER owners,

(especially residential DER owners), will fully surrender control of their DER to a

centralized dispatcher.

3.1 Methodology

The general framework consists of a bilevel problem with bilinear terms in the

upper and lower level objectives and linear lower level constraints:

min
x∈RM ,y∈RN

f(x,y) + λ⊺Ay (3.1a)

s.t. g(x,y) ≤ 0, (3.1b)

y ∈ arg min
y∈RN

c⊺y + x⊺By (3.1c)

s.t. y ≤ y (µ) (3.1d)

y ≤ y (µ) (3.1e)

Ux + V y = w (λ). (3.1f)

Table 3.1 summarizes the terms in Equation 3.1. Note that the linearization method

developed in this work is also valid for bilinear terms of λ and y in the upper level

constraints, but they are not shown for clarity.
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Table 3.1: Sets, indices, parameters, and decision variables for Equation 3.1, the
general bilevel framework.
Decision Variables

x ∈ RM upper level, primal decision variables

y ∈ RN lower level, primal decision variables

λ ∈ RJ lower level, dual variables for equality constraints

µ ∈ RN
+ lower level, non-negative, dual variables for upper bounds

µ ∈ RN
+ lower level, non-negative, dual variables for lower bounds

Parameters

c ∈ RN lower level cost coefficients for lower level decisions y

U ∈ RJ×M lower level equality constraint coefficients for upper level decisions x

V ∈ RJ×N lower level equality constraint coefficients for lower level decisions y

w ∈ RJ lower level equality constraints right-hand-side

y ∈ RN upper bounds for lower level, primal decision variables

y ∈ RN lower bounds for lower level, primal decision variables

A ∈ RJ×N upper level coefficients for bilinear terms of lower level primal and dual variables

B ∈ RM×N lower level coefficients for bilinear terms of lower level primal and upper level primal
variables

Sets and Indices

A {(j, n) ∈ J ×N : Ajn ̸= 0}
AJ {j ∈ J : ∃n ∈ N such that Ajn ̸= 0}
AN {n ∈ N : ∃j ∈ J such that Ajn ̸= 0}
J 1, 2, . . . , J , |J | = number of lower level equality constraints

Jj ⊆ J indices of lower level equality constraints connected to constraint j via non-zero values
of V , i.e. the constraints that share variables with constraint j and the constraints
that share variables with those constraints (and so on recursively as described in
Algorithm 1).

J∪
⋃

j∈AJ
Jj

M 1, 2, . . . ,M, |M| = number of upper level variables

N 1, 2, . . . , N, |N | = number of lower level variables

Nn ⊆ N indices of lower level variables connected to variable yn via non-zero values of V

N∪
⋃

n∈AN
Nn

ABN {n ∈ AN : ∃m ∈M such that Bmn ̸= 0}
AB {(j, n) ∈ A : ∃m ∈M such that Bmn ̸= 0}
Ø The empty set

Z The set of integers

In the upper level objective (3.1a) the system operator or DER aggregator

seeks to minimize its cost function f (which might include the cost of wholesale power
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purchased at the feeder for example) plus the payments made to DER owners, rep-

resented by λ⊺Ay. By minimizing the total cost of power in the network the system

operator maximizes the social welfare. The A matrix selects the appropriate lower

level dual variables λ from the DER owner power balance constraints and the lower

level primal variables y for the power injected by each DER owner. The constraint

set (3.1b) represents Kirchoff’s Voltage and Current Laws, or an approximation as

appropriate.

The lower level objective (3.1c) represents a linear cost function for all DER

owners (capturing investment and operating costs for example) and a bilinear term

x⊺By for the income from selling DER services to the upper level. The B matrix

selects the price signal decisions from the upper level and the power export decisions

from the lower level. Constraints (3.1d) and (3.1e) represent the lower and upper

bounds on the lower level decisions, with the dual variables shown in parantheses.

These constraints might represent comfort bounds on temperature decision variables

for example. Constraints (4.1e) include all of the lower level operational constraints

including each node’s power balance constraint, which can be separate from the upper

level’s optimal power flow load balance in (3.1b). For example, the upper level load

balance will include line flows into and out of each node, where as the lower level load

balance only accounts for the load balance behind the meter.

The linearization algorithm is applicable when the upper level and/or the

lower level problems are non-linear in constraints or objectives. However, the lower

level constraints that include the lower level variables from the upper level bilinear

terms must be linear to get an exact linearization of the upper level bilinear terms.

Futhermore, we assume that the lower level problem is linear in its decision variables

(given the upper level decisions) so that we can replace the lower level with its Karush
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Kuhn Tucker conditions to show single level problem equivalents to the non-linear

bilevel problems of interest.

We begin by assuming that the upper level variables x are integer such that

any product of integer x and the continuous variables y or λ can be made linear using

binary expansion [51]1. In the sequel we relax the integer assumption to account for

continuous upper level x variables in the bilinear products, which requires stricter

conditions than the integer x case for the exact linearization.

3.1.1 Linearization Method with Integer Upper Level Variables

To linearize any λjyn term one must combine the lower level primal and dual

constraints. The dual formulation of the lower level problem is shown below for

reference.

max
µ,µ∈RN

+ ,λ∈RJ
yTµ− yTµ + (w −Ux)T λ (3.2a)

s.t. V Tλ = c + µ− µ + BTx (3.2b)

The first step is to multiply the lower level primal constraints (4.1e) by λ component-

wise:

V y ◦ λ = w ◦ λ−Ux ◦ λ (3.3)

where ◦ denotes the Hadamard product.2

Second, the dual constraints (3.2b) are multiplied with y as follows:

(V ⊺λ) ◦ y = c ◦ y + µ ◦ y − µ ◦ y + (B⊺x) ◦ y. (3.4)

1It is important to note that in some cases good bounds, which are necessary for the ”big M”
constraints used to linearize the product of integer and continuous variables, cannot be found [52].

2Note that one can also multiply each of the primal constraints by each of the components of λ
to get J2 equations. However, in practice the bilinear terms that appear in the upper level problem
are bilinear in yn and λj , where λj is the Lagrange multiplier of the constraint that involves yn.
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Note that any µnyn can be linearized because of the upper bound

yn ≤ yn. (3.5)

The complementary slackness condition for (3.5) allows one to linearize µnyn:

µnyn = µnyn. (3.6)

A similar result follows for any µ
n
yn. Combining the last result with the complemen-

tary slackness conditions gives:

(V ⊺λ) ◦ y = c ◦ y + µ ◦ y − µ ◦ y + (B⊺x) ◦ y. (3.7)

Equations (3.3) and (3.7) are then combined to produce a system of equations with

the bilinear products of λ and y as the unknowns. In the following we show how to

solve for a specific λjVjnyn.

Let the ith row of (3.3) be defined as (Pi), which can be written:

(Pi) : λiVinyn = wiλi − λi

∑
Vikyk

k∈N\{n}

− λi

∑
m∈M

Uimxm (3.8)

And, let the kth row of (3.7) be defined as (Dk), which can be written:

(Dk) : yk
∑
i∈J

Vikλi = ckyk + µkyk − µ
k
y
k

+ yk
∑
m∈M

Bmkxm (3.9)

Note that the choice of P for (Pi) and D for (Dk) are intentional: P is for primal

constraints and D is for dual constraints.

Algorithm 1 outlines the procedure for determining the minimum set of the

(Pi) and (Dk) equations needed to linearize a given λjyn term. Note that the algorithm

refers to the indices of (Pi) as rows and (Dk) as columns because the sums over Vjk

in (3.8) and (3.9) are over the rows and columns of V respectively.
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The first step of Algorithm 1 is to check if Vjn is the only non-zero value in

the nth column of V : in this case (Dn) provides the exact linearization of λjyn (and

(Pi) is unnecessary):

ynλj =
1

Vjn

(
cnyn + µnyn − µ

n
y
n

+ yn
∑
m∈M

Bmnxm

)
(3.10)

Note that (3.10) only applies under the condition that yn is in a single lower level

primal constraint. Additionally, the bilinear products of yn and xm in (3.10) can be

linearized since we are assuming that x is integer in this section.

In the second step of Algorithm 1 the first primal equation (Pj) is added to

the set of row indices that will be returned at the end of the algorithm (where j is

an input). Additionally, for all the non-zero values in the jth row of V , except Vjn,

the indices of the dual equations (Dk) are added to the set of column indices. In

mathematical terms, this step is taking (Pj):

λjVjnyn = wjλj − λj

∑
Vjkyk

k∈N\{n}

− λj

∑
m∈M

Ujmxm (3.11)

and all of the (Dk) equations for k ∈ N \ {n} in order to replace the bilinear terms

of λj and yk on the right-hand-side of (3.11). Each (Dk) equation can add more

bilinear terms of λ and y and so step three of Algorithm 1 adds additional equations

if necessary.

In the third and final step of Algorithm 1 a recursive function, Algorithm 2,

is used to search the array V for non-zero, “connected” values. We use the term

“connected” to indicate that one could draw horizontal and vertical paths through V

to connect non-zero entries to the first entry of interest Vjn, starting with a horizontal

line each time. A horizontal line adds a (Pi) equation and a vertical line adds a (Dk)

equation. The indices of the rows and columns are collected until a sufficient amount

of equations are obtained to linearize the λjyn term in the upper level objective.
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Note that Algorithm 2 is similar to — but not the same as — finding the blocks

of a block-diagonal matrix. The difference is that Algorithm 2 does not necessarily

find all of the non-zero values in a block. In other words, one does not need all of the

(Pi) and (Dk) equations that may be available; one only needs as many equations as

unknowns (where the unknowns are products of λ and y entries). Algorithm 2 has

Algorithm 1: Minimum set of equations to linearize λjyn

input : The 2D array V ; and the integers (j, n) of non-zero Vjn.
output: Indices of (Pi) and (Dk) necessary to linearize a λjyn term.
1. if Vj′n = 0 ∀j′ ∈ J \ {j} then

return {},{n} (only need Dn)
end
2. Initialize arrays of integers for the rows and columns:
Jj = {j}
cols to check = {k ∈ N \ {n} : Vjk ̸= 0}
Nn = copy(cols to check)

3. Recursive search to find all connections
foreach k in cols to check do

rows, cols = recursive array search(V, j, k, {}, {})
Jj ← Jj ∪ rows
Nn ← Nn ∪ cols

end
return Jj, Nn

some conditions under which it returns an error: these errors occur when the search

has indicated that redundant row or column indices should be appended to the final

vectors. Mathematically, these errors indicate that there are more unknowns than

equations and thus the system of equations is underdetermined.

Let the indices of (Pi) and (Dk) returned from Algorithm 1 for a given (j, n) ∈
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Algorithm 2: recursive array search

input : The 2D array V ; integers row j and column k; and two vectors
of integers to append to: rows and cols.

output: Two vectors of integers for the non-zero entries of V connected
to row j and column k.

rs = { j′ ∈ J \ {j} : Vj′k ̸= 0 }
if rs ∩ rows ̸= Ø then

return error: redundant row
end
rows ← rows ∪ rs
foreach r ∈ rs do

cs = { k′ ∈ N \ {k} : Vrk′ ̸= 0 }
if {cs ∩ cols} ̸= Ø then

return error: redundant column
end
cols ← cols ∪ cs
foreach c ∈ cs do

recursive array search(V, r, c, rows, cols)
end

end
return rows, cols
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A pair be defined as Jj and Nn respectively. The exact linearization of λjyn is:

λjyn =
1

Vjn

∑
j′∈Jj

(
wj′λj′ − λj′

∑
m∈M

Uj′mxm

)

−
∑

n′∈Nn

(
cn′yn′ + µn′yn′ − µ

n′yn′

+yn′

∑
m∈M

Bmn′xm

)]
,

(3.12)

which is simply a combination of (3.8) and (3.9) for all of the non-zero values of V

connected to λjyn, as demonstrated with the examples in Appendix B.

Finally, using the result (3.12) the mixed integer linear form of (3.1) is:

min
x,y,λ,µ,µ

f(x,y)

+
∑

(j,n)∈A

Ajn

Vjn

∑
j′∈Jj

(
wj′λj′ − λj′

∑
m∈M

Uj′mxm

)

−
∑

n′∈Nn

(
cn′yn′ + µn′yn′ − µ

n′yn′

+yn′

∑
m∈M

Bmn′xm

)]
(3.13a)

s.t. g(x,y) ≤ 0, (3.13b)

c + B⊺x + V ⊺λ + µ− µ = 0 (3.13c)

y ≤ y ≤ y (3.13d)

Ux + V y = w (3.13e)

µ ⊥ (y − y) (3.13f)

µ ⊥ (y − y) (3.13g)

where the lower level problem has been replaced with the Karush Kuhn Tucker (KKT)

conditions and the complementary constraints can be modeled as special order sets

or using the “big M” method from [53]. Note that this section assumes that the x
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variables are integer and therefore the products of xm and yn or λj can be linearized

using binary expansion [51].

It is important to note that finding valid values for the “big M” can be difficult

[54]. The open source package in which the linearization method presented in this

paper is implemented includes the options to use big M (Fortuny-McCarl) constraints,

special order sets, or indicator constraints to linearize the complementary conditions

used to integrate the lower level problem into the upper level. The latter two methods

do not require defining bounds for the dual variables, but may be more difficult to

solve than the “big M” method.

3.1.2 Linearization Method with Continuous Upper Level Variables

In Section 5.1 we assumed that x are integer such that all of the products of

xm and yn or products of xm and λj can be linearized using binary expansion [51].

Here we show the conditions under which a λjyn term can be linearized when the

upper level variables x are continuous.

The conditions are divided into two groups with one group less restrictive

than the other. The first group of conditions is less restrictive but does not allow

lower level variables y to be bilinear in both the upper level problem with λ and

the lower objective with x. In mathematical terms this is when AB = Ø, where

AB ≜ {(j, n) ∈ A : ∃m ∈M such that Bmn ̸= 0}.

The second group of conditions allows a problem to be linearized when bilinear

products of λjyn are in the upper level and bilinear products of xmyn are in the lower

level objective for a given n. These types of problems are particularly relevant to

energy system market models, in which the upper and lower level bilinear products

together represent a zero-sum game. Demonstrative examples are provided in Section
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3.2, in which the upper level products of λjyn represent payments to distributed

generator owners and the lower level products of xmyn represent generator owner

income.

3.1.2.1 Conditions when AB = Ø

Recall that the Algorithms 1 and 2 provide the sets Jj for each λj in the

upper level objective. Let J∪ ≜
⋃

j∈AJ
Jj, which includes the indices of all the lower

level constraints that are connected (via non-zero values of V ) to the λj terms in the

upper level objective. Therefore, in order to eliminate all bilinear terms of the form

λjUjmxm in (3.13a) the following condition must be met:

Condition 1. Ujm = 0 ∀j ∈ J∪, ∀m ∈M

Similar to Condition 1, let N∪ ≜
⋃

n∈AN
Nn, then one could assume that

Condition 2. Bmn = 0 ∀m ∈M, ∀n ∈ N∪

to eliminate all bilinear terms of the form xmBmnyn from (3.13a). Under Conditions
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1 and 2 the mixed integer result for (3.1) is

min
x,y,λ,µ,µ

f(x,y) +
∑

(j,n)∈A

Ajn

Vjn

∑
j′∈Jj

(wj′λj′)

−
∑

n′∈Nn

(
cn′yn′ + µn′yn′ − µ

n′yn′

)] (3.14a)

s.t. g(x,y) ≤ 0, (3.14b)

c + B⊺x + V ⊺λ + µ− µ = 0 (3.14c)

y ≤ y ≤ y (3.14d)

Ux + V y = w (3.14e)

µ ⊥ (y − y) (3.14f)

µ ⊥ (y − y) (3.14g)

3.1.2.2 Conditions when AB ̸= Ø

The case when Condition 2 is violated and Problem (3.1) has bilinear terms

in the upper and lower level objectives of the form λjAjnyn and xmBmnyn, (where

Ajn ̸= 0 and Bmn ̸= 0), for some n is particularly relevant to energy system market

models. For example, take the case where Ajn = 1 and Bmn = −1 for some particular

m, j, and n. Let yn represent a lower level generator dispatch decision. Then λj

represents the marginal cost of the dispatch decision yn as well as the upper level’s

cost of purchasing power from the lower level. And −xmyn in the lower level objective

is the lower level’s income for the generation yn using the price signal xm. Section

3.2 provides an example of such a scenario. Thus it is useful to investigate the

linearization of problems when AB ̸= Ø (i.e. when Condition 2 is violated).
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The problem of interest has the following structure:

min
x,y

f(x,y) +
∑

(j,n)∈A

λjAjnyn (3.15a)

s.t. g(x,y) ≤ 0 (3.15b)

y ∈ arg min
y

c⊺y +
∑

m∈M

∑
n∈AN

xmBmnyn

+
∑

m∈M

∑
xmBmnyn

n∈N\(AN∪N∪)

(3.15c)

s.t. y ≤ y (µ) (3.15d)

y ≤ y (µ) (3.15e)∑
n∈N

Vjnyn = wj (λj), ∀j ∈ J∪ (3.15f)∑
m∈M

Ujmxm +
∑
n∈N

Vjnyn = wj (λj),

∀j ∈ J \ J∪.

(3.15g)

Note that the products of x and y in the lower level objective (3.15c) are linearized

when the lower level problem is replaced with the KKT conditions. And the set of

yn for all n ∈ N \ (AN ∪ N∪) in the last sum of (3.15c) are the values of y that

are not in the upper level objective nor connected to the yn, n ∈ AN , in the upper

level objective. Recall that the connected indices are provided by Algorithm 1 and

captured in N∪. We will show shortly that the connected yn values must not be in

the lower level objective with x terms to prevent ynxm terms from showing up in

the (Dk) equations needed to linearize the λjyn in the upper level objective. Also,

Condition 1 is reflected in (3.15f).

Now, applying Condition 1 to (3.12) gives

λjyn =
1

Vjn

∑
j′∈Jj

wj′λj′ −
∑

n′∈Nn

(cn′yn′ + µn′yn′

−µ
n′yn′ + yn′

∑
m∈M

Bmn′xm

)]
, ∀(j, n) ∈ A. (3.16)
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We wish to eliminate the yn′Bmn′xm terms when AB ̸= Ø. Recall that the yn′Bmn′xm

terms in (3.12) and (3.16) come from the (Dk) equations with Bmk ̸= 0, and that

the (Dk) equations for all k ∈ N∪ are necessary to linearize the upper level λjAjkyk

terms.

Let us assume that a less restrictive version of Condition 2 holds:

Condition 2′. Bmn = 0 ∀m ∈M, ∀n ∈ N∪ \ AN

Condition 2′ implies that none of the lower level variables connected to the

λjAjnyn terms (provided by Algorithm 1) are in the lower level objective with ynBmnxm

terms, except the lower level variables in the upper level objective (yn ∀n ∈ AN ). Ap-

plying Condition 2′ to (3.16) gives:

λjyn =
1

Vjn

∑
j′∈Jj

wj′λj′

−
∑

n′∈Nn\AN

(
cn′yn′ + µn′yn′ − µ

n′yn′

)
−

∑
n′∈Nn∩AN

(
cn′yn′ + µn′yn′ − µ

n′yn′

+yn′

∑
m∈M

Bmn′xm

)]
, ∀(j, n) ∈ A. (3.17)

Let us also assume that Condition 3 holds:

Condition 3. AN \ {n} ⊆ Nn ∀n ∈ AN

⇒ Nn ∩ AN = AN \ {n} ∀n ∈ AN

Condition 3 implies that the yn ∀n ∈ AN variables of interest are connected to

each other via non-zero values of V . Section 3.2.2 provides an example problem, in

which the yn ∀n ∈ AN are indexed on time and connected to each other via another
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time-indexed variable in each equality constraint that is restricted to be no more than

a certain value across all time.

Condition 3 allow us to rewrite (3.17) as

λjyn =
1

Vjn

∑
j′∈Jj

wj′λj′

−
∑

n′∈Nn\AN

(
cn′yn′ + µn′yn′ − µ

n′yn′

)
−

∑
n′∈AN \{n}

(
cn′yn′ + µn′yn′ − µ

n′yn′

+yn′

∑
m∈M

Bmn′xm

)]
, ∀(j, n) ∈ A. (3.18)

Applying (3.9) to the last summation in (3.18) gives:

λjyn =
1

Vjn

∑
j′∈Jj

wj′λj′

−
∑

n′∈Nn\AN

(
cn′yn′ + µn′yn′ − µ

n′yn′

)

−
∑

n′∈AN \{n}

(
yn′

∑
j′∈J

Vj′n′λj′

) , ∀(j, n) ∈ A, (3.19)

This step is key to eliminating the bilinear yn′Bmn′xm terms when AB ̸= Ø. The next

steps are to impose conditions that allow us to move the last summation in (3.19) to

the left hand side to get a single sum of terms over the set A.

Let us assume that Condition 4 holds:

Condition 4. Vj′n = 0 ∀j′ ∈ J \ {j}, ∀(j, n) ∈ A.

Condition 4 is equivalent to each yn for all n ∈ AN being in only one lower level

constraint. Condition 4 implies that

yk
∑
j′∈J

Vj′kλj′ = λjVjkyk, ∀(j, k) ∈ A (3.20)
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Note that Condition 4 requires that Step 1 of the Algorithm be skipped. The revised

algorithm for Conditions 1, 2′, 3, and 4 is shown in Algorithm 3.

Algorithm 3: Minimum set of equations to linearize λjyn under Con-
ditions 1, 2′, 3, and 4

input : The 2D array V ; and the integers (j, n) of non-zero Vjn.
output: Indices of (Pi) and (Dk) necessary to linearize a λjyn term.

1. Initialize arrays of integers:
Jj = {j}
cols to check = {k ∈ N \ {n} : Vjk ̸= 0}
Nn = copy(cols to check)

2. Recursive search to find all connections
foreach k in cols to check do

rows, cols = recursive array search(V, j, k, {}, {})
Jj ← Jj ∪ rows
Nn ← Nn ∪ cols

end
return Jj, Nn

Condition 4 allows us to write (3.19) as

λjyn =
1

Vjn

∑
j′∈Jj

wj′λj′

−
∑

n′∈Nn\AN

(
cn′yn′ + µn′yn′ − µ

n′yn′

)

−
∑

(j′,n′)∈A\{(j,n)}

(yn′Vj′n′λj′)

 , ∀(j, n) ∈ A, (3.21)

Rearranging (3.21) gives:

∑
(j′,n′)∈A

λj′Vj′n′yn′ =
∑
j′∈Jj

wj′λj′

−
∑

n′∈Nn\AN

(
cn′yn′ + µn′yn′ − µ

n′yn′

)
, ∀(j, n) ∈ A. (3.22)

Note that since (3.22) is valid for all (j, n) ∈ A it implies that Nn are equal for all

n ∈ AN and that Jj are equal for all j ∈ AJ .
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Lastly, we see that to replace
∑

(j,n)∈A λjAjnyn with the last result for
∑

(j,n)∈A λjVjnyn

we must require that the two sums are equal to a proportionality constant p:

Condition 5. Ajn = pVjn ∀(j, n) ∈ A

⇒
∑

(j,n)∈A

λjAjnyn = p
∑

(j,n)∈A

λjVjnyn.

With Condition 5 we can write (3.22) as:

∑
(j,n)∈A

λjAjnyn = p

∑
j′∈Jj

wj′λj′

−
∑

n′∈Nn\AN

(
cn′yn′ + µn′yn′ − µ

n′yn′

) ∀(j, n) ∈ A. (3.23)

Substituting (3.23) into (3.1) and replacing the lower level with the KKT conditions,

under Conditions 1, 2′, 3, 4 and 5 the mixed integer result is shown in (3.24). Note

that any (j, n) ∈ A can be used in (3.24a) to define the sets Jj and Nn.
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min
x,y,λ,µ,µ

f(x,y) + p

∑
j′∈Jj

(wj′λj′)

−
∑

n′∈Nn\AN

(
cn′yn′ + µn′yn′ − µ

n′yn′

) (3.24a)

s.t. g(x,y) ≤ 0, (3.24b)

c + B⊺x + V ⊺λ + µ− µ = 0 (3.24c)

y ≤ y (3.24d)

y ≤ y (3.24e)

Ux + V y = w (3.24f)

µ ⊥ (y − y) (3.24g)

µ ⊥ (y − y) (3.24h)

To summarize all of the conditions under which (3.24) is valid:

• Condition 1: Ujm = 0 ∀j ∈ J∪, ∀m ∈M

– None of the connected constraints contain x terms.

• Condition 2′: Bmn = 0 ∀m ∈M, ∀n ∈ N∪ \ AN

– None of the connected variables are multiplied with x in the lower level

objective, except the y in the upper level objective that are multiplied

with λ.

• Condition 3: AN \ {n} ⊆ Nn ∀n ∈ AN

– Each of the yn in the upper level objective are connected to each other via

non-zero values of V .

37



• Condition 4 Vj′n = 0 ∀j′ ∈ J \ {j}, ∀j ∈ AJ

– Each of the yn in the upper level objective are in only one lower level

equality constraint.

• Condition 5 Ajn = pVjn ∀(j, n) ∈ A

– All of the coefficients of the upper level λjyn terms are proportional to

the corresponding coefficients in the lower level constraints to the same

constant p.

The examples in Section 3.2 meet the Conditions 1, 2′, 3, 4 and 5. Both

problems consist of an energy market model with a load balance constraint in the

lower level, bilinear products in the upper level objective of lower level dispatch

variables and the load balance dual variables, and bilinear products in the lower

level objective of upper level price signal variables and the same lower level dispatch

variables as in the upper level objective.

3.1.3 A note on separable lower level problems

It is important to note that the conditions required to linearize the bilinear

products of shadow prices and primal variables can be applied to sub-matrices when

the lower level problem is separable. For example, in a multi-follower Stackelberg

game the lower level is likely to be separable, such as when modeling multiple dis-

tributed energy resource (DER) owners or grid customers. In these cases Conditions

3 and 5 should be checked against the blocks of A and V corresponding to each

sub-problem. An example of a separable lower level problem is provided in Section

3.2
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3.2 Use-case examples

It is important to note that the use of the linearization algorithm is not limited

to the problem types shown in these examples. Indeed, the conditions required for

the linearization algorithm are met in each of the references mentioned in Section 2.1.

For example, other use cases include:

• optimizing generator offer curves in an energy market [23];

• applying generator revenue constraints in a market clearing process [24];

• and optimal profit sharing in a community microgrid [25].

3.2.1 Simple examples without time indices

The first use-case example shows a step-by-step linearization process for a

scenario in which the upper level model minimizes the total cost of power with the

option to purchase power from the bulk system or from customer owned DER. The

lower level can choose to meet its demand from the grid at some retail rate or invest
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in DER to lower its total cost.

min
x,y

cLMPx0 + λye (3.25a)

s.t. x0 + ye − yi − d2 = 0 (3.25b)

xλ ≥ 0 (3.25c)

0 ≤ ye ⊥ yi ≥ 0 (3.25d)

y ∈ arg min
y

cDERyDER + ciyi − xλye (3.25e)

s.t. yi − ye + yDER = d1 (λ) (3.25f)

yDER ≥ yDER ≥ 0, (µDER, µDER
) (3.25g)

ye ≥ ye ≥ 0 (µe, µe
) (3.25h)

yi ≥ yi ≥ 0 (µi, µi
). (3.25i)

In example (3.25) the upper level (UL) can purchase power x0 at the feeder

head at the wholesale price cLMP and/or from the lower level (LL) at a price of the

UL’s choosing. The UL chooses xλ to set the LL’s marginal cost of power λ when the

LL chooses to export power ye (”e” for export). The LL considers buying power yi

from grid at the retail rate ci (”i” for import) and/or purchasing the DER capacity

yDER at the cost cDER to meet its demand d1. Constraint (3.25b) is the system load

balance, which includes an uncontrollable demand d2 (in practice this constraint is

replaced with a power flow model). Constraint (3.25d) is the UL enforcement of no

simultaneous export and import3. Constraint (3.25f) is the LL’s load balance. The

lower level dual variables, µDER, µe, and µi, are show in parentheses.

Let y ≜ [ye, yi, yDER]⊺. The lower level has one equality constraint, making

V = [−1 1 1]. In this case we wish to linearize the product λye, making the indices of

3Allowing simultaneous power import and export would require two isolated meters: one mea-
suring demand and one measuring DER production.
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interest j = 1 for the first and only equality constraint in the lower level, and n = 1

because we put ye in the first index of y.

First, let us check the linearization conditions for this problem. Note that the

set AB is not empty because we have a bilinear term in the upper and lower level

objectives of the form λjAjnyn and xmBmnyn. Thus, we must check the Conditions

1, 2′, 3, 4, and 5. To check the conditions we need the sets J∪, N∪, A and their

sub-sets Jj, Nn, AN . With N = {1, 2, 3} for the three LL variables and J = {1} for

the single LL constraint, we get:

• A = {(j, n) ∈ J ×N : Ajn ̸= 0} = {(1, 1)}

• AN = {n ∈ N : ∃j ∈ J such that Ajn ̸= 0} = {1}

With only one pair of (j, n) in A we only need to call Algorithm 3 once with the

values for V , j = 1, and n = 1. Algorithm 3 first initializes J1 = {1} and defines the

cols to check as {2, 3} because V1,2 and V1,3 are non-zero. The cols to check is copied

to start the set N1 and then the recursive search is started. The recursive search

loops over the values in cols to check and calls Algorithm 2, appending the results

to the sets J1 and N1. In this case no new non-zero values are found (there is only

one row in V ) and so Algorithm 2 returns the values that it was provided. Finally,

Algorithm 3 returns the sets J1 = {1} and N1 = {2, 3}.

Now, since we only have one pair of (j, n) in A the union sets J∪ and N∪ are

equal to the sets J1 and N1 respectively. With the necessary sets defined we can use

(3.23) to linearize the product of λ and ye in the UL objective:

λe(−1)ye = d1λ− (cgyDER + yDERµDER + ciyi + yiµi)

⇒ λye = cDERyDER + yDERµDER + ciyi + yiµi − d1λ.
(3.26)
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With this last result, we replace the lower level problem in (3.25) with its KKT

conditions to get the mixed integer linear program:

min
x,y

cLMPx0 + cDERyDER + yDERµDER + ciyi + yiµi − d1λ (3.27a)

s.t. x0 + ye − yi − d2 = 0 (3.27b)

xλ ≥ 0 (3.27c)

0 ≤ ye ⊥ yi ≥ 0 (3.27d)

yi − ye + yDER = d1 (λ) (3.27e)

yDER ≥ 0, ye ≥ 0, yi ≥ 0 (3.27f)

− xλ + λ− µe = 0 (3.27g)

ci − λ− µi = 0 (3.27h)

cDER − λ− µDER = 0 (3.27i)

0 ≤ yDER ⊥ µ
DER
≥ 0 (3.27j)

0 ≤ ye ⊥ µ
e
≥ 0 (3.27k)

0 ≤ yi ⊥ µ
i
≥ 0 (3.27l)

yDER − yDER ⊥ µDER ≥ 0 (3.27m)

ye − ye ⊥ µe ≥ 0 (3.27n)

yi − yi ⊥ µi ≥ 0 (3.27o)

Example (3.25) (and its mixed-integer linear version (3.27)) is useful for show-

ing how DER can benefit system operators. First, let us assume that the DER system

has a relatively high cost of 10 $/MW when compared to the other cost values, which

are cLMP = 1 $/MW, ci = 1 $/MW, d1 = 1 MW, and d2 = 2 MW. In this case it is

not in the LL’s interest to buy DER and so yDER = 0 and the LL purchases all of its

power d1 = 1 from the grid. Also, the UL purchases all power from the bulk system
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at cLMP = 1 to meet the total demand d1 + d2 = 3 MW. Therefore, the UL’s cost is

$3 and the LL’s cost is $1.

Now, let us assume that the DER system cost is equivalent to the other cost

values at 1 $/MW. The LL can now meet its demand for equivalent costs from either

the grid or from a DER system. However, it is in the UL’s best interest for demand to

be met by the LL’s DER system because the UL can lower its total cost from $3 to $2

by paying the LL $2 for exporting excess DER power in to the grid to meet demand

d2 instead of meeting the total demand d1 + d2 from the bulk system. Therefore, the

UL chooses xλ = 1 $/MW, which incentivizes the LL to purchase yDER = 3 MW. The

LL meets its demand d1 = 1 MW behind-the-meter and exports 2 MW, which meets

demand d2 = 2 MW (and x0 = 0 MW). The LL’s cost is $1 (the same as in the high

DER cost scenario), but the UL reduces its cost from $3 to $2.

In summary, in this simple demonstration, only when the marginal cost of

power from DER for the LL is less than (or equal to) retail rate will the LL purchase

DER, which allows the UL to purchase excess power. When the LL can export excess

power, and the UL can lower its total cost by purchasing DER exports, the UL will

set the LL’s marginal cost of power by choosing the minimum compensation rate to

incentivize the LL to export the optimal amount of power that minimizes the total

system cost of power. Note that in practice the decision variables are indexed on

time; and, with solar PV as a DER option, there can be times when the LL has a

zero marginal cost of power. Therefore, determining the DER solutions in practice

are not as simple as comparing the cost coefficients.

3.2.2 Complex example with separable lower level problem

In this planning example we have a distribution system planner in the upper

level that is considering purchasing battery energy storage systems for installation at
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three different nodes in a distribution system in order to reduce its operating cost in

a real-time energy market. The planner also accounts for purchasing exported PV

power from customers and sending a time-of-use price signal to refrigerated ware-

houses with price-responsive cooling systems. The upper level model is shown in

(3.28). Tables 3.3, 3.4, and 3.5 summarize the variables, parameters and sets in

(3.28). The objective (3.28a) includes three components to minimize: (1) the cost

of energy purchased on the bulk market at the feeder head; (2) the cost of energy

purchased from distributed, customer-owned photovoltaic (PV) systems; and (3) the

capital costs of battery systems. We assume an analysis period of 20 years and a

discount rate of 5%. For the bulk market price cLMP,t we use the average hourly

real-time market prices from Electric Reliability Council of Texas (ERCOT) over the

year of 2019 [55]. A year of load is simulated at an hourly resolution by randomly as-

signing different U.S. Department of Energy Commercial Reference Building profiles

to the load nodes [56]. The load nodes are defined in [7], from which we take the 38

node network model. Constraints (3.28c) – (3.28g) define a linear power flow model,

commonly known as ”LinDistFlow” [57]. Constraint (3.28h) limits the squared volt-

age magnitude. Constraints (3.28i) and (3.28j) define the net power injection from

system operator owned battery systems. Constraints (3.28k) and (3.28l) define the

net power injection from customer nodes with PV systems. Constraints (3.28m)

and (3.28n) define the net power injection from nodes with price-responsive refrig-

erated warehouses. Constraints (3.28o) and (3.28p) define the net power injection

from nodes with uncontrollable load. Constraint (3.28q) is structural and prevents

simultaneous export and import rom nodes with PV systems. Constraints (4.10a) –

(4.10f) define the operational limits of the system operator’s battery systems. Finally,

constraint (3.28w) says that the lower level decisions y must be optimal for the lower

level problem (3.29).
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min
P ,Q,w,x,y,λ

pwf
∑
t∈T

(
cLMP,tx0,t +

∑
n∈NPV

[λn,tye,n,t]

)
+
∑
n∈NB

(cBkWxBkW,n + cBkWhxBkWh,n)

(3.28a)

s.t. x0,t ≥ 0, xe,t ≥ 0, xi,t ≥ 0, ∀t ∈ T (3.28b)

P0,t = P01,t, ∀t ∈ T (3.28c)

Q0,t = Q01,t, ∀t ∈ T (3.28d)

Pij,t + Pj,t −
∑
k:j→k

Pjk = 0, ∀j ∈ N+, ∀t ∈ T (3.28e)

Qij,t + Qj,t −
∑
k:j→k

Qjk = 0, ∀j ∈ N+, ∀t ∈ T (3.28f)

wj,t = wi,t − 2 (rijPij,t + xijQij,t) , ∀j ∈ N+, ∀t ∈ T (3.28g)

(vmax
j )2 ≥ wj,t ≥ (vmin

j )2, ∀j ∈ N , ∀t ∈ T (3.28h)

Pj,t = xB−,j,t − xB+,j,t, ∀j ∈ NB, ∀t ∈ T (3.28i)

Qj,t = fpf,j,t
(
xB−,j,t − xB+,j,t

)
, ∀j ∈ NB, ∀t ∈ T (3.28j)

Pj,t = ye,j,t − yi,j,t, ∀j ∈ NPV, ∀t ∈ T (3.28k)

Qj,t = fpf,j,t (ye,j,t − yi,j,t) , ∀j ∈ NPV, ∀t ∈ T (3.28l)

Pj,t = −yi,j,t, ∀j ∈ NW , ∀t ∈ T (3.28m)

Qj,t = −fpf,j,tyi,j,t, ∀j ∈ NW , ∀t ∈ T (3.28n)

Pj,t = −dj,t, ∀j ∈ NU , ∀t ∈ T (3.28o)

Qj,t = −fpf,j,tdj,t, ∀j ∈ NU , ∀t ∈ T (3.28p)

ye,j,t ⊥ yi,j,t, ∀j ∈ NPV, ∀t ∈ T (3.28q)

xSOC,j,t = xSOC,j,t−1 + fhr
(
xB+,j,tη − xB−,j,t/η

)
∀j ∈ NB, ∀t ∈ T

(3.28r)

xBkW,j ≥ xB+,j,t + xB−,j,t ∀j ∈ NB, ∀t ∈ T (3.28s)

xBkWh,j ≥ xSOC,j,t ∀j ∈ NB, ∀t ∈ T (3.28t)

xSOC,j,0 = 0.5xBkWh,j ∀j ∈ NB (3.28u)

xSOC,j,Nt = 0.5xBkWh,j ∀j ∈ NB (3.28v)

y = y⋆(x) (3.28w)
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y⋆(x) = arg min
y

pwf
∑
t∈T

∑
n∈NW

(yi,n,t [ci,n,t + xi,n,t]) + pwf
∑
t∈T

∑
n∈NPV

(ci,tyi,n,t − xe,n,tye,n,t)

+
∑

n∈NPV

cPVyPV,n (3.29a)

s.t. yi,n,t + ypvprod,n,t = dn,t + ye,n,t, (λn,t) ∀n ∈ NPV, ∀t ∈ T (3.29b)

yi,n,t = dn,t + yHVAC,n,t/COP ∀n ∈ NW , ∀t ∈ T (3.29c)

ypvprod,n,t ≤ yPV,nfPV,n,t ∀n ∈ NPV, ∀t ∈ T (3.29d)

yT,n,t = yT,n,t−1 + fhr

(
AyT,n,t−1 + B [yHVAC,n,t,un,t]

T
)

∀n ∈ NPV, ∀t ∈ T
(3.29e)

yT,n,0 = Tn,t=0 ∀n ∈ NPV (3.29f)

Thi ≥ yT,n,t ≥ Tlo ∀n ∈ NPV, ∀t ∈ T (3.29g)

ye,n,t ≥ 0, yi,n,t ≥ 0, ∀n ∈ NPV, ∀t ∈ T (3.29h)

Problem (3.29) shows the lower level problem, with the objective to minimize

the total cost of energy for all customers in the distribution system. Tables 3.3, 3.4,

and 3.5 summarize the variables, parameters and sets in (3.29). The first half of

the lower level objective (3.29a) represents the cost of energy for price responsive

refrigerated warehouses that have a known retail rate ci,n,t and a time-varying price

signal from the upper level problem xi,n,t. The second half of (3.29a) represents the

cost of energy for customers that can install PV systems. These customers also pay the

retail rate ci,n,t for imported power but can also receive compensation for exported,

excess PV power from the upper level via xe,n,t. Constraints (3.29b) and (3.29c)

are the load balance constraints for the PV and warehouse customers respectively.

Constraint (3.29d) limits the PV power used to meet load to the PV capacity times

a known, normalized solar PV production factor from [58]. Constraints (3.29e) -

(3.29g) define the refrigerated warehouse temperature dynamics, starting condition,

and temperature limits.

We select Austin, Texas as the testbed to generate inputs for demonstrating
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the method. Warehouses have freezing units that can at most reach zero ◦C but can

be cooled to as low as -20 ◦C in order to lower their energy costs by coasting through

high price periods. PV production factors and ambient temperatures from Austin are

used as an input to the refrigerated warehouse models.

By inspection the lower level model (3.29) is separable between the set of PV

nodes NPV and the warehouse nodes NW . Because we wish to linearize the bilinear

product λn,tye,n,t in (3.28a), which is only defined for the PV nodes, we only need

to check the linearization conditions for the components of the lower level model

(3.29) that are relevant to the PV nodes. A Julia module to programatically check

the linearization conditons, including for separable problems like this example, is

available in [59]4.

The upper level is allowed to install battery systems at up to three nodes

(2, 7, and 24) in the network while the lower level can install PV systems on up to

five nodes (9, 17, 22, 31, and 34). Using the baseline values the optimal solution is

for the lower level customers to install small PV systems to reduce their utility bills

and it is not economical for the upper level to install storage systems. To produce

more interesting results we increase the bulk energy costs by integer values from the

baseline 1× to 5×. Table 3.2 summarizes the results with increasing bulk energy

costs. In table 3.2 we can see some expected trends: as the bulk energy costs increase

less energy is purchased on the bulk market and more PV energy is purchased from

customers, which encourages larger PV systems. However, there are not clear trends

in the battery sizes nor energy throughput. The lack of trends in the battery results

is not surprising: batteries can serve many purposes including energy arbitrage, peak

shaving, and grid services. In fact, in the 5× bulk cost scenario so much PV energy

4The module in [59] will be merged into [30] for ease-of-use. When debug logging is enabled the
module will report which conditions did not pass.
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cost
multi-
plier

Bulk
MWh
Pur-

chased

PV
MWh
Pur-

chased

PV MW Battery MW Battery MWh Battery
MWh

throughput

1× 129,895 2,396 [0.04, 0.00, 0.89, 0.12, 0.97] [0.00, 0.00, 0.00] [0.00, 0.00, 0.00] 0
2× 127,952 4,162 [0.06, 0.00, 1.42, 0.19, 1.66] [0.27, 0.29, 0.31] [0.58, 0.61, 0.66] 1,026
3× 121,799 9,890 [0.14, 0.42, 2.84, 0.40, 3.50] [0.79, 0.18, 0.00] [1.47, 0.34, 0.00] 1,020
4× 94,092 36,981 [0.35, 2.66, 8.24, 1.53, 12.8] [0.30, 0.35, 0.00] [0.62, 0.74, 0.00] 752
5× 72,352 61,378 [0.56, 5.00, 13.3, 2.13, 21.2] [0.34, 0.46, 0.28] [0.72, 0.96, 0.58] 1,313

Table 3.2: Results for the use-case example in Section 3.2.2. Energy purchased and
throughput values are per year. The cost multiplier is applied to the bulk energy costs
only. PV capacities are listed in order of nodes [9, 22, 31, 34, 17]. Battery capacities are
listed in order of nodes [2, 7, 24].

is exported that it is necessary to use the storage systems to keep the voltage within

limits.

For more information regarding model results readers are encouraged to see

the code available online [60]. The examples in this section are meant is demonstra-

tive use-cases and only represent a fraction of the types of questions that might be

answered using the linearization technique for power system planning. Furthermore,

the price signal from the upper level to the lower level can also be used in trans-

active control context by removing capacity decisions, shortening the time horizon,

increasing the time resolution, and using forecasts for the uncontrolled demand and

PV production.
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Table 3.3: Decision variables for Problems (3.28) and (3.29). Scalar parameter values
are shown in square brackets and some vector parameters include source references.

P0,t, Q0,t real, reactive power imported at feeder head, node 0 in time step t

Pj,t, Qj,t real, reactive power injected at node j in time step t

Pij,t, Qij,t real, reactive power flow on line ij in time step t

wj,t voltage magnitude squared at node j in time step t

xi,j,t retail price adder to refrigerated warehouse at node j in time step t

xB+,j,t battery charge rate at node j in time step t

xB−,j,t battery discharge rate at node j in time step t

xBkW,j battery inverter power rating at node j

xBkWh,j battery storage capacity at node j

xSOC,j,t battery state of charge at node j in time step t

yi,n,t imported power at node n in time step t

ye,n,t exported power at node n in time step t

yHVAC,n,t HVAC thermal power at node n in time step t

yT,n,t interior temperature at node n in time step t

yHVAC,n,t thermal power of HVAC system at node n in time step t

yPV,n PV capacity at node n

ypvprod,n,t PV production used at node n in time step t
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Table 3.4: Parameters for Problems (3.28) and (3.29). Scalar parameter values are
shown in square brackets and some vector parameters include source references.

cLMP,t Locational Marginal Price paid by upper level in time step t [ref. [55]]

ci,n,t retail price of energy [$0.25/kWh]

cBkW cost of battery inverter [$700/kW]

cBkWh cost of battery capacity [$350/kWh]

cPV cost of PV capacity [$1,400/kWh]

fpf,j,t power factor at node j in time step t [0.1]

rij, xij resistance, reactance of line ij [ref. [7]]

fPV,n,t PV production factor at node n in time step t [ref. [58]]

fhr fraction of hour in each time step (for example, fhr = 0.25 for 15 minute
time steps) [1.0]

dn,t uncontrolled demand at node n in time step t [ref. [56]]

COP HVAC system coefficient of performance [4.55]

η battery charge and discharge efficiency [0.95]

Thi, Tlo upper, lower temperature limit [0, -20]

Tn,t=0 initial interior temperature at node n in time step t [-1]

A HVAC system state matrix [[ −1
RC

] where R = 0.00025 K/kW and C = 105

kJ/K]

B HVAC system input matrix [[ 1
RC

1
C

]]

un,t HVAC system exogenous inputs at node n in time step t (outdoor tem-
perature) [ref. [58]]

Nt integer number of time steps [8,760]

pwf present worth factor assumming an annual cash flow year over year for
the analysis period of 20 years and a discount rate of 5% [12.46]

vmax
j , vmin

j maximum, minimum voltage limit at node j
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Table 3.5: Sets and indices for Problems (3.28) and (3.29).

T set of integer time steps, 1, . . . , Nt

N set of integer nodes in the network, {0, 1, . . . , N}
N+ set of positive integer nodes, {1, . . . , N}
NPV ⊂ N set of integer nodes that can buy PV in lower level

NU ⊂ N set of integer uncontrolled nodes

NW ⊂ N set of integer refrigerated warehouse nodes

NB set of integer nodes that have battery decisions

3.2.3 Solution time impact

Using the example from Section (3.2.2) we compare solution times with and

without the upper level bilinear terms λtye,t replaced with the linearization. In both

cases the model is reformulated as a single level problem. Both the mixed integer-

linear and the mixed integer-bilinear problems were solved using Gurobi 9.1 on 16-core

3.4GHz Linux PC with 32GB of RAM using ”big M” constraints for the complemen-

tary constraints. The mixed integer-bilinear problem is (3.28) combined with the

KKT conditions for (3.29). The mixed integer-linear problem is not shown due to

space constraints, but is available in the public repository [60].

Both the linearized and bilinear problems have 350,405 binary variables and

2,417,777 continuous variables. The bilinear problem also has 43,800 bilinear objective

terms. After 25 seconds in the presolve the linearized problem has 103,588 binary

variables and 519,031 continuous variables. The linear problem solves in 128 seconds

with a gap of 0.01%. After 21 seconds in the presolve the bilinear problem has 83,143

binary variables, 540,209 continuous variables, and 21,180 bilinear constraints. The

bilinear model takes 8,447 seconds to get to a 57% gap, which is not improved until the

operating system kills the problem at 16,032 seconds due to running out of memory.

In short, the linearization method makes the otherwise intractable bilinear bilevel
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problem from Section (3.2.2) solve in a few minutes. Similar results are expected for

other large planning problems like the example in Section (3.2.2).

3.3 Conclusions

This work presents a method for linearizing bilinear products of lower level

primal and dual variables in the upper level of bilevel optimization problems, and

the conditions required for the linearization to be exact. The linearization method

is especially relevant for modeling large scale energy distribution systems with many

stakeholders and is therefore applicable to a growing number of problems as energy

markets expand and adapt to new regulations such as FERC Order 2222 [9] and the

increasing adoption of distributed energy resources [61].

For future work we intend to leverage the method in an open source math-

ematical programming package [30, 62]. for studying compensation mechanisms of

distributed energy resources serving as power system upgrade deferrals (c.f. [7]). An-

other future research direction involves using the optimal price signals from one level

to the other as a transactive control mechanism. We will also explore more accurate

and complex power flow approximations such as the second-order cone approximation

for the Branch Flow Model.
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Chapter 4

A method to assess the techno-economic potential

of DER for distribution system upgrade deferrals

Building upon the methodology from RO1, this thesis develops a scalable mod-

eling framework for valuing DER as non-wires alternatives (NWA) that accounts for

the DER owners’ objectives and the market operator’s objective. The framework

allows distribution system operators and DER aggregators to ascertain the cost opti-

mal locations and capacities of DER to avoid traditional system upgrade costs while

accounting for DER owner objectives.

DER owner benefits are accounted for in terms of the minimum life-cycle cost

of energy. Transactions between the DER owners and the DSO occur in the form of

payment from the DSO to customers for exported DER power and demand response.

A bilevel optimization model is proposed to account for the competing objective

functions, in which the DSO’s cost is the customers’ profit.

The optimal price signal from the DSO to DER owners should not be de-

termined a priori (c.f. [7]) since customer behavior will change based on the price

signal. A well known example of the consequences of pre-determined price signals is

the rebound effect that can occur from time-of-use pricing applied to customers with

Sections of this chapter were adapted from the journal article: [13]. The majority of this paper’s
research, analysis, and writing were completed by the author of this dissertation. The co-authors
contributed to the background and conclusions.
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load-shifting capabilities [63]. By applying high prices during times of expected high

demand customers will shift demand from the high-price periods to the lower price

periods. As more customers gain the ability to shift their loads a new peak demand

period occurs during the lowest price period, which creates a game of whack-a-mole

for tariff designers.

In this work the non-linear products of the price-signals and dispatch decisions

are linearized using the result of RO1. Since the method requires only inputs that are

within a DSO’s purview it can be used by distribution system planners to compare

traditional wires upgrade cost to the cost of purchasing power and demand response

from BTM DER.

4.1 Methodology

To account for the objectives and constraints of both the DSO and the potential

DER investors we employ a bilevel optimization framework. Bilevel optimization

problems, also known as Stackelberg Games, are generally intractable. However, by

ensuring that the lower level problem is linear given upper level decisions the bilevel

problem can be converted into an equivalent single level problem [64]. Furthermore,

under certain conditions the bilinear products of dual variables, i.e. shadow prices,

and primal variables can be linearized [12]. This last point is especially important

since we seek to optimize the product of the price signal from the DSO and the power

injection decisions of the DER investors.
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Table 4.1: Decision Variables

x ∈ RM upper level primal decision variables

y ∈ RN lower level primal decision variables

z ∈ {0, 1}K upper level primal binary decision variables

λ ∈ RJ lower level, dual variables for equality constraints

µ ∈ RN
+ lower level dual variables for upper bounds

µ ∈ RN
+ lower level dual variables for lower bounds

xBkW
j,ϕ BESS inverter capacity [kW]

xBkWh
j,ϕ BESS energy capacity [kWh]

xB+

j,ϕ,t BESS charge rate [kW]

xB−

j,ϕ,t BESS discharge rate [kW]

xSOC
j,ϕ,t BESS state-of-charge [kWh]

xλ
j,t Price of DER exported energy [$/kWh]

zTRF
j binary for transformer upgrade [0/1]

zLINE
j binary for transformer upgrade [0/1]

ykWj capacity of DER at node j [kW]

yIMP
j,t energy imported [kWh]

yEXP
j,t energy exported [kWh]

yDER
j,t energy produced [kWh]
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Table 4.2: Parameters

V ∈ RJ×N lower level equality constraint coefficients

w ∈ RJ lower level equality constraints right-hand-side

y ∈ RN upper bounds for lower level, primal decision variables

y ∈ RN lower bounds for lower level, primal decision variables

a upper level scaling coefficient for cost of DER energy

b lower level scaling coefficient for income from selling energy to
upper level

c ∈ RN lower level cost coefficients for lower level decisions y

cBkW cost of BESS inverter [$/kW]

cBkWh cost of BESS capacity [$/kWh]

cTRF
j cost of a new transformer [$]

cLINE
j cost of a new line [$]

cLMP
t wholesale cost of energy [$/kWh]

cDEM
s peak demand cost in period s [$/kW]

η BESS efficiency [fraction]

∆RTRF
j increase in transformer rating [kW]

R
TRF

j existing transformer rating [kW]

∆RLINE
j increase in line rating [kW]

R
LINE

j existing line rating [kW]

re energy cost growth rate [year−1]

re energy consumption growth rate [year−1]

rWACC weighted avg. cost of capital [year−1]

ckWj cost of DER at node j [$/kW]

cOM annual cost of operations and maintenance [$/(kW-year)]

cIMP
j,t cost of energy imported [$/kWh]

dj,t uncontrollable demand [kW]

fprod
j,t production factor, 0–1

re energy cost growth rate [year−1]

re energy consumption growth rate [year−1]

ROR required rate of return [year−1]
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Table 4.3: Sets and Indices

E set of edges in the network

N set of nodes in the network

NDER set of nodes for potential DER investors

NBESS set of nodes for potential BESS installations

NTRFX set of nodes for potential transformer upgrades

NLINE set of nodes for potential line upgrades

S set of demand charge periods

T set of time steps

Φj set of phases connected to node j

The general bilevel optimization framework is shown in Problem 4.1 (with

nomenclature in Table 4.1).

min
x,y

f(x,y) +
a

b

∑
j∈NDER

∑
t∈T

λj,t y
EXP
j,t (4.1a)

s.t. g(x,y) ≤ 0 (4.1b)

y ∈ arg min
y∈RN

c⊺y − b
∑

j∈NDER

∑
t∈T

xλ
j,t y

EXP
j,t (4.1c)

s.t. y ≤ y ≤ y (µ,µ) (4.1d)

V y = w (λ). (4.1e)

The components of the framework in (4.1) are:

• the upper level cost (4.1a), which includes a generic function f(x,y) and a

second term that represents the payment to DER owners via the product of the

lower level shadow price λj,t and export decisions yEXP
j,t ;

• the upper level generic constraint set g(x,y) ≤ 0;
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• the upper level is constrained by the lower level decisions y being in the optimal

space of the lower level problem;

• the lower level problem has a linear cost function given x (4.1c), which includes:

– a generic cost c⊺y and

– the income from the upper level via price signal xλ
j,t times the exported

DER energy yEXP
j,t ;

• and the linear lower level constraints with the associated dual variables in paren-

theses (4.1d)-(4.1e).

The key feature of the framework is the exchange of money between the DSO in

the upper level and the DER investors in the lower level via the products of the

upper level price signal decisions and the lower level export decisions in the objective

functions (4.1a) and (4.1c). Since bilevel programs are by default optimistic, i.e. the

lower level acts in the upper level’s best interests [64], the framework guarantees the

the total system cost is minimized, i.e. the social welfare is maximized. However, to

realistically account for DER investor decisions we scale the monetary exchange such

that DER investors get a required rate of return on their investments (if any).

One way to explain the framework is to first think of a DER investor in isola-

tion, without the price signal from the DSO. Including the investor required rate of

return can be done in the same fashion as done in the bilevel framework, specifically

by scaling costs and benefits appropriately using present worth factors [65]. In brief,

the DER investor will purchase a system if and only if the benefits are greater than

or equal to the costs – and the benefits must provide at least the required rate of

return. The same is true in the bilevel framework. But in the bilevel framework

the benefits can include an income from selling energy to the DSO (or aggregator or
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Figure 4.1: Summary of the interactions between the DSO and DER. The DSO pays
DER for energy exported, which can only be accomplished if DER invest in a system.
If it is optimal for DER investors to purchase a system then they can benefit from the
monetary exchange from the DSO as well as by reducing their cost of energy to meet
demand. The DSO will only send a price signal if it reduces the system operating
costs, including deferring capital investments.

whatever entity is represented in the upper level). Furthermore, since the framework

is optimistic the DER investor will get no more than the required rate of return.

As we show in the following, the DSO in the upper level can effectively set

the marginal price of DER investors when the DSO wishes; and the sum of the total

compensation paid to DER investors must meet the investors’ required rate of return.

As shown in [12]1:

λj,t = b xλ
j,t (4.2)

which means that the upper level payment to DER can be written:

a

b

∑
j∈NDER

∑
t∈T

λj,t y
EXP
j,t = a

∑
j∈NDER

∑
t∈T

xλ
j,t y

EXP
j,t . (4.3)

In other words, we have formed a zero-sum game in which the upper level, or DSO’s,

cost of DER energy is equal to the DER owners’ income (with the exception of the

scaling coefficients a and b that we will use to account for each party’s cost of capital).

1See Equation (9) in [12] when the index k is equal to the index for a given yEXP
j,t , the variable

has zero coefficients in the cost vector c, and no bounds are binding (i.e. µ = 0 and µ = 0).
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Furthermore, the product of the dual variable λj,t and the DER dispatch variable yEXP
j,t

can be shown to equal a linear sum [12]:∑
j∈NDER

∑
t∈T

λj,ty
EXP
j,t =

1

VyEXP

(
w⊺λ− c⊺y − µ⊺y + µ⊺y

)
(4.4)

where VyEXP is the coefficient of the lower level export variable in the lower level load

balance equations.

To convert the bilevel problem (4.1) into a single level problem it is important

to note that the the lower level problem described by (4.1c) – (4.1e) is linear given

x. The conversion to a single level is achieved by replacing the lower level problem

with its Karush-Kuhn-Tucker (KKT) conditions [66]. The KKT conditions make the

lower problem a mixed-integer linear problem. Problem (4.5) shows the single level

equivalent of (4.1):

min
x,y,z,λ,µ,µ

f(x,y, z) +
a

b

∑
j∈NDER

∑
t∈T

λj,t y
EXP
j,t (4.5a)

s.t. g(x,y) ≤ 0 (4.5b)

c + bTx + V ⊺λ + µ− µ = 0 (4.5c)

y ≤ y ≤ y (4.5d)

V y = w (4.5e)

µ ⊥ (y − y) (4.5f)

µ ⊥ (y − y) (4.5g)

Note that the complementary constraints (4.5f) and (4.5g) can be handled with integer

variables or special order sets [67]. Also, the entries of the vector b in (4.5c) are zero

except for the entries that correspond with the price signal xλ
j,t. The non-zero values

of b are set to pwfLL, the present worth factor for the lower level, in the examples.
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The present worth factor accounts for the DER investors’ required rate of return by

scaling their costs according the number of years they expect to operate a system, as

well as any expected cost growth rates and their discount rate.

Problem 4.5 is a mixed integer non-linear problem. Using the result from [12]

the product of λ and y in (4.5a) can be linearized as shown in (4.4). Also, if the

upper level cost function f(x,y) and constraints g(x,y) are linear then the single

level problem is mixed-integer linear. However, there are no requirements on the form

of the upper level problem within the framework. For example, the constraints in the

upper level can represent any power flow equations and integer decisions.

4.1.1 Accounting for Uncertainty

The framework allows for using optimization methods under uncertainty, such

as stochastic and robust optimization. For example, when there is uncertainty sur-

rounding input parameters such as the price of battery energy storage systems (BESS)

one could leverage a minimax formulation to account for the range of possible BESS

prices. However, often these methods are insufficient for accounting for the level of

uncertainty inherent in power system planning problems (also argued in [68]). Meth-

ods such as stochastic and robust optimization, which assume full knowledge of the

probability distribution or uncertainty set respectively [69], account for what is known

as “shallow” uncertainty in the field of Decision Science (c.f. [70]). For example, past

works account for shallow uncertainty by minimizing the expected cost over load

scenarios with known probabilities [36]. Deep uncertainty, in contrast to shallow un-

certainty, exists when probabilities are unknown, or when experts do not agree on

what the future looks like. For example, what will the DER developers require for

their rate of return in the future? And what will wholesale electricity costs look like

as DER are integrated into wholesale markets under FERC Order 2222?

61



Methods such as stochastic optimization follow a paradigm of predict-then-

act; whereas methods that account for deep uncertainty stress test feasible actions

under possible scenarios, as well as integrate the decision makers into the process

directly. The realm of Decision Making Under Deep Uncertainty is a rich and vibrant

field and readers are referred to the book [71] for an excellent introduction. The

method proposed in this work can be leveraged in Decision Making Under Deep

Uncertainty methods, such as Robust Decision Making [72] or Adaptive Pathways [73].

For example, by leveraging the market price model developed in Research Objective

3 the framework for valuing DER presented in this chapter could be solved for many

different possible future market price scenarios. By stress-testing the model over

many price scenarios decision makers can make more informed decisions based on the

range of optimal solutions.

4.2 Use-case Examples

To demonstrate the value of the proposed framework we start with a system

that has expected transformer and line overloads. The system planner or DSO, as the

first player in the upper level, seeks to find the lowest cost solution to the expected

overloads by choosing from:

• line and transformer upgrades,

• battery energy storage systems (BESS),

• and/or purchasing DER energy at a time and space varying price of its choosing.

The DSO makes these choices with knowledge of how the lower level, i.e. potential

DER investors, will react to the price signal. The DER investors, as the second

players in the lower level, choose from:
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• purchasing energy at a known fixed price to meet demand,

• and/or investing in DER to meet load as well as (possibly) receive compensation

for exported energy.

We emphasize that this example is only one of infinite ways that the framework for

valuing DER as non-wires alternatives can be leveraged. Other examples include:

• voltage support: by using voltage regulator investment decision in the upper

level and including a price signal for reactive power from the lower level

• electric vehicle charging infrastructure: the upper level pays for vehicle-to-grid

services while the charging station owners select locations that provide the most

profit

• demand response: compensating dispatchable loads to avoid system upgrades,

where the lower level chooses how to dispatch given the price signal

We presume that the DER investors’ required rate of return (RoR) is known.

The model is formulated such that DER will only be purchased if the RoR can be

reached. The DSO decisions are also subject to power flow constraints, such as line

flow and transformer loading limits.

For reference we compare three scenarios in each use-case:

1. The base case with component overloads and the traditional upgrade costs.

2. The minimum cost solution considering only utility owned BESS (no DER

value).

3. The minimum cost solution considering BESS and valuing DER as a non-wires

alternative.
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The input data and the results are summarized in Figure 4.2. Note that we

assume that the DER are PV systems by using a time-varying production factor from

[58]. We presume to have expected hourly load profiles over a year (8760 time steps)

for each load bus in the network2. An annual load growth rate is included to account

for expected electrification over the analysis period. In the base case the utility must

pay for new lines and transformers due to expected overloads. The examples are

built upon the IEEE 13 bus distribution test system. Transformer upgrade costs are

estimated using values from [74] and line costs were obtained from a large municipal

distribution utility.

Figure 4.2: Summary of the use-case example inputs and outputs used to demonstrate
the method for valuing DER for non-wires alternatives.

Figure 4.3 gives an overview of the overloaded network components, where the

DSO is considering installing BESS, and where it is possible for the DER investors

2Random combinations of profiles from [56] were scaled to match the test system.
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to install PV systems.

650

645 632 633

604611 671

652 680

692 675

646 634

Utility BESS Option

3rd-Party PV Option

overloaded lines
overloaded lines

Figure 4.3: Overview of the IEEE 13 Bus Test System showing the DER and BESS
options as well as the overloaded lines and transformers. Secondary transformers
at buses 634, 646, and 675 have peak loads of 143%, 111%, and 167% as percent
of ratings respectively. Overloaded lines are all assumed to have 110% overloads
compared to their capacity ratings. Graphic by Jeffrey M. Phillips.

4.2.1 System Planner Problem

The upper level problem in the bilevel framework represents the system plan-

ner’s perspective. The upper level cost function f(x,y) is the sum of battery capital

costs, the cost of transformer and line upgrades, the cost of bulk energy purchased,

and the peak demand charges:

f(x,y) =
∑

j∈NBESS,∀ϕ∈Φj

(
cBkWxBkW

j,ϕ + cBkWhxBkWh
j,ϕ

)
+

∑
j∈NTRF

cTRF
j zTRF

j +
∑

j∈NLINE

cLINE
j zLINE

j

+ pwfUL

∑
t∈T

(
cLMP
t

∑
ϕ∈Φ0

P+
0,ϕ,t

)
+ pwfUL

∑
s∈(1,...,|S|)

cDEM
s PMAX

s

(4.6)
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The cost coefficients in (4.6) are defined in Table 4.4 and the variables in (4.6) are

defined in Table 4.1. Note that the net power at the feeder head P0,ϕ,t decisions

implicitly include lower level decisions via the power flow constraints shown below.

Also, we assume that the DSO is not compensated for exported power by including

only the non-negative power P+
0,ϕ,t (defined in (4.7)) at the feeder head in the objective

function.

P+
0,ϕ,t ≥ 0 (4.7a)

P+
0,ϕ,t ≥ P0,ϕ,t,∀ϕ ∈ Φ,∀t ∈ T (4.7b)

DSO are not typically compensated for exported power and can even be restricted to

not export at all by contractual agreements or regulations.

The upper level present worth factor pwfUL accounts for annual recurring costs,

and is defined as:

a = pwfUL =
∑

y∈1..Nyears

(
(1 + re)(1 + rc)

1 + rWACC

)y

(4.8)

where re is the annual cost of electricity growth rate, rc is the annual energy consump-

tion growth rate, and rWACC is the planner’s weighted average cost of capital rate.

Present worth factors are commonly used to account for long time-horizon financial

analyses. The present worth factor effectively makes any costs that it multiplies an

annuity that grows each year at the rates in the numerator, and is discounted into

present value by the rate in the denominator. The DSO’s present worth factor ac-

counts for the annual growth of bulk energy costs and energy consumption. The cost

of capital rate accounts for the DSO guaranteed rate of return on investment (if the

DSO is investor owned) or the cost of borrowing money to upgrade the system (if the

DSO is publicly owned such as a cooperative).
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The system planner also has the option to purchase energy from DER (as

described in the Section 5.1). For these use-case examples we set the coefficient a in

(4.3) equal to the system planner’s present worth factor pwfUL. The additional cost

component for the planner is thus:

pwfUL

∑
j∈NDER

∑
t∈T

xλ
j,t y

EXP
j,t . (4.9)

Together equations (4.6) and (4.9) make up the upper level objective function.

Table 4.4: Parameter values for the distribution system planner in the use-case ex-
ample.

name description value

cBkW cost of BESS inverter [$/kW] 300

cBkWh cost of BESS capacity [$/kWh] 250

cTRF
j cost of a new transformer [$] 150,000

cLINE
j cost of a new line [$] length×200+15,000

cLMP
t wholesale cost of energy [$/kWh] varies

cDEM
s peak demand cost in period s [$/kW] 50

η BESS efficiency [fraction] 0.96

∆RTRF
j increase in transformer rating [kW] varies

R
TRF

j existing transformer rating [kW] varies

∆RLINE
j increase in line rating [kW] varies

R
LINE

j existing line rating [kW] varies

re energy cost growth rate [year−1] 0.03

re energy consumption growth rate [year−1] 0.03

rWACC weighted avg. cost of capital [year−1] 0.10
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Battery Energy Storage Systems

The system planner considers purchasing BESS systems, which can preclude

or reduce the size of system upgrades, lower the cost of bulk energy purchases via

energy arbitrage, as well as reduce peak demand charges. The BESS operational

constraints are shown in (4.10).

xSOC
j,ϕ,t = xSOC

j,ϕ,t−1 + xB+

j,ϕ,tη − xB−

j,ϕ,t/η

∀j ∈ NBESS,∀ϕ ∈ Φj,∀t ∈ T
(4.10a)

xBkW
j,ϕ ≥ xB+

j,ϕ,t + xB−

j,ϕ,t, ∀j ∈ NBESS,∀ϕ ∈ Φj,∀t ∈ T (4.10b)

xBkWh
j,ϕ ≥ xSOC

j,ϕ,t , ∀j ∈ NBESS,∀ϕ ∈ Φj,∀t ∈ T (4.10c)

xSOC
j,ϕ,0 = 0.5xBkWh

j,ϕ , ∀j ∈ NBESS,∀ϕ ∈ Φj (4.10d)

xSOC
j,ϕ,T = 0.5xBkWh

j,ϕ , ∀j ∈ NBESS,∀ϕ ∈ Φj (4.10e)

xSOC
j,ϕ,t ≥ 0, xBkWh

j,ϕ ≥ 0, ∀j ∈ NBESS,∀ϕ ∈ Φj,∀t ∈ T (4.10f)

In words, the BESS constraints are:

• (4.10a) defines the time evolution of the battery state of charge;

• (4.10b) says that the sum of the battery power decisions can be at most the

inverter rating;

• (4.10c) says that the battery state of charge is at most the battery energy rating;

• (4.10d) says that the initial state of charge is half of the energy rating;

• (4.10e) says that the final state of charge is half of the energy rating; and

• (4.10f) says that the state of charge and energy rating decisions are non-negative.
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Note that though it is common to use binary variables to restrict a BESS from charg-

ing and discharging in a single time step of a mathematical program, the additional

binary variables are generally unnecessary (unless some specific control context re-

quires the restriction). In most cases an optimal solution will not include simultaneous

charging and discharging of a battery due to the round trip losses. However, when the

benefit of one action exceeds the cost of the other (including losses) then an optimal

solution can include simultaneous charging and discharging. For planning problems

such as this, with generally long time steps (one hour in the examples), the simulta-

neous dispatch is a non-issue because we include the constraint (4.10b), i.e. the total

energy through the battery still obeys the physics. For example, say that a BESS

with 10% roundtrip losses can charge at a cost of 0.1$/kWh, discharge for income

of 1.1$/kWh, has a zero state-of-charge, and a 1 kW inverter rating. The optimal

solution for the BESS is to charge for approximately 0.91 of the hour and discharge

for 0.09 of the hour to profit $0.009. In other words, one can think of the battery

doing two independent actions for parts of the hour in order to profit.

In practice, system planners should account for the degradation of BESS over

their operational life. However, degradation mechanisms are non-linear and therefore

difficult to model in large mathematical programs for system planning (c.f. [75]). Re-

cent work has identified two primary explanatory variables for modeling degradation

(besides temperature): equivalent full cycles (EFC) and depth of discharge (DoD)

[76]. In collaboration with the first author of [76] the first author of this work deter-

mined a method to model non-linear battery degradation using the EFC and DoD

variables in a mixed integer linear program [77]. The model is publicly available in

the National Renewable Energy Laboratory’s flag-ship techno-economic optimization

model for DER sizing and dispatch: REopt [78]. For simplicity of exposition we do

not include the degradation model in the use-case example. The impact of including
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a degradation model is to effectively raise the upfront cost of the BESS. However, the

cost of degradation is small when compared to bulk energy arbitrage and peak cost

reduction opportunities that BESS enable and therefore the inclusion of degradation

costs in the use-case examlpes would not significantly change the results.

Transformer and Line Upgrades

The system planner has binary decisions for transformer and line upgrades

(see Table 4.1). If a component is upgraded then its operational limits are expanded

by the difference in capacity between the original component and the new component.

This fact is reflected in Equation (4.11) for transformers and Equation (4.12) for lines.

−RTRF

j − zTRF
j ∆RTRF

j ≤ Pj,ϕ,t ≤ R
TRF

j + zTRF
j ∆RTRF

j ,

∀j ∈ J TRF,∀ϕ ∈ Φj,∀t ∈ T
(4.11)

−RLINE

j − zLINE
j ∆RLINE

j ≤ Pij,ϕ,t ≤ R
LINE

j + zLINE
j ∆RLINE

j ,

∀j ∈ J LINE,∀ϕ ∈ Φj,∀t ∈ T
(4.12)

Power Flow

The planner’s constraint set also includes a three phase, unbalanced LinDist-

Flow model [79].3 The power flow constraints are shown in (4.13).

Pij,ϕ,t + Pj,ϕ,t −
∑
k:j→k

Pjk,ϕ,t = 0,

∀j ∈ N ,∀ϕ ∈ Φj,∀t ∈ T
(4.13a)

Qij,ϕ,t + Qj,ϕ,t −
∑
k:j→k

Qjk,ϕ,t = 0,

∀j ∈ N ,∀ϕ ∈ Φj,∀t ∈ T
(4.13b)

3As part of this work an open-source Julia implementation of LinDistFlow was created [80].
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vj,t = vi,t + MP
ijP ij,t + MQ

ijQij,t,

∀(i, j) ∈ E , ∀t ∈ T
(4.13c)

P0,ϕ,t = P01,ϕ,t ∀ϕ ∈ Φ0,∀t ∈ T (4.13d)

Q0,ϕ,t = Q01,ϕ,t, ∀ϕ ∈ Φ0,∀t ∈ T (4.13e)

P j,ϕ ≤ Pj,ϕ,t ≤ P j,ϕ ∀j ∈ N , ∀ϕ ∈ Φj,∀t ∈ T (4.13f)

Q
j,ϕ
≤ Qj,ϕ,t ≤ Qj,ϕ ∀j ∈ N , ∀ϕ ∈ Φj,∀t ∈ T (4.13g)

P ij,ϕ ≤ Pij,ϕ,t ≤ P ij,ϕ ∀(i, j) ∈ E , ∀ϕ ∈ Φj,∀t ∈ T (4.13h)

Q
ij,ϕ
≤ Qij,ϕ,t ≤ Qij,ϕ ∀(i, j) ∈ E , ∀ϕ ∈ Φj,∀t ∈ T (4.13i)

v ≤ vj,ϕ,t ≤ v, ∀j ∈ N , ∀ϕ ∈ Φj, ∀t ∈ T (4.13j)

The real and reactive power balances are shown in (4.13a) and (4.13b) respectively.

Equation (4.13c) defines the vector of voltage magnitudes squared for each phase,

where MP
ij and MQ

ij are 3×3 matrices of line resistances and reactances (see equa-

tions (20) and (21) in [79]), the vector vj,t = [vj,1,t, vj,2,t, vj,3,t]
⊺ collects the phase

voltages (squared), and similarly the vectors P ij,t = [Pij,1,t, Pij,2,t, Pij,3,t]
⊺ and Qij,t =

[Qij,1,t, Qij,2,t, Qij,3,t]
⊺ collect the phase line flows. Equations (4.13d) and (4.13e) state

that the net power at the feeder head is equal to power transferred along the lines

from node zero to one. And the remaining constraints (4.13f) – (4.13j) define upper

and lower bounds.

Note that the power injection variables at busses without potential DER are

not decision variables. However for busses with candidate DER the power injections

are as defined in 4.14.

Pj,ϕ,t = −dj,ϕ,t − xB+

j,ϕ,t + xB−

j,ϕ,t + yDER
j,ϕ,t

∀j ∈ NDER ∩NBESS,∀ϕ ∈ Φj,∀t ∈ T
(4.14a)
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Pj,ϕ,t = −xB+

j,ϕ,t + xB−

j,ϕ,t

∀j ∈ NBESS ∩NDER,∀ϕ ∈ Φj,∀t ∈ T
(4.14b)

Pj,ϕ,t = −dj,ϕ,t + yDER
j,ϕ,t

∀j ∈ NDER \ NBESS,∀ϕ ∈ Φj,∀t ∈ T
(4.14c)

The peak demand in each demand period PMAX
s is defined as the highest

demand at the substation in a demand period:

PMAX
s ≥

∑
ϕ∈Φ0

P0,ϕ,t ∀t ∈ s,∀s ∈ S (4.15)

Lastly, the upper level includes a structural constraint that prevents simulta-

neous import and export of energy (which we model with special order sets of type

1):

yIMP
j,ϕ,t ⊥ yEXP

j,ϕ,t , ∀j ∈ NDER,∀ϕ ∈ Φj, ∀t ∈ T (4.16)

4.2.2 DER Investor Problem

The potential DER investors have known demands and a time varying cost of

energy. Note that if DER costs are low enough (or energy costs high enough) it is

possible that DER capacity is installed even in the absence of the price signal.

The lower level costs are:

∑
j∈NDER

(
ckWj ykWj + pwfLL

[
cOMykWj +

∑
t∈T

cIMP
j,t yIMP

j,t

])
, (4.17)

which in words is the sum over all potential DER investor nodes NDER of:

• the capital cost of DER ckWj ykWj ,

• the operations and maintenance cost of DER cOMykWj ,

• and the cost of energy cIMP
j,t yIMP

j,t .
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The DER investor parameters and variables are summarized in Tables (4.5) and (4.1)

respectively.

The lower level benefits (negative costs) are the sum of the price signal xλ
j,t

from the upper level and the exported energy yEXP
j,t over time and space:

−pwfLL
∑

j∈NDER

∑
t∈T

xλ
j,t y

EXP
j,t . (4.18)

Note that the bilinear product of upper and lower level decisions in (4.18) are lin-

earized when the lower level problem is replaced with its KKT conditions (see (4.5)).

The lower level present worth factor pwfLL, defined in (4.19), accounts for the:

• years of the analysis period Nyears,

• the RoR,

• the annual cost of energy growth rate re,

• and the annual energy consumption growth rate rc.

b = pwfLL =
∑

year∈1..Nyears

(
(1 + re)(1 + rc)

1 + RoR

)year

(4.19)

The DER investor load balance defines the net power injection for each node

and time step:

dj,t − yDER
j,t = yIMP

j,t − yEXP
j,t (λj,t), ∀j ∈ NDER,∀t ∈ T (4.20)

Lastly, the real power production of any DER is limited by the purchased

capacity and a time-varying production factor (between zero and one):

yDER
j,t ≤ ykWj fprod

j,t , ∀j ∈ NDER,∀t ∈ T (4.21)
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Table 4.5: DER investor baseline parameter values for the use-case example.

name description value

ckWj cost of DER at node j [$/kW] 1,600

cOM annual cost of operations and maintenance [$/(kW-year)] 17

cIMP
j,t cost of energy imported [$/kWh] 0.15

dj,t uncontrollable demand [kW] [56]

fprod
j,t production factor, 0–1 [58]

re energy cost growth rate [year−1] 0.03

re energy consumption growth rate [year−1] 0.03

ROR required rate of return [year−1] 0.15

4.3 Results

Figure 4.4 provides a high level summary of the results. In the baseline case

the system planner must upgrade the overloaded components and cannot invest in

BESS nor purchase DER energy. The total lifecycle cost (LCC) for the planner is

$8.41M over 20 years of operations, including the capital costs of upgrades. A break

down of the planner’s baseline costs are summarized in Table 4.6.

Upfront Capex Annual Opex NPV
0

1

2

3

4

5

6

7

$M

baseline

BESS only

BESS+DER

Figure 4.4: Case study summary results. See Table 4.6 for a break down of the
upfront capital costs (capex) and the annual operating costs (opex). The net present
value (NPV) is by definition zero in the baseline case.
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Figure 4.5 shows the annual costs in the base scenario. Note that the first bar

represents the upfront capital costs, which in the base case include the traditional

upgrade costs for the lines and transformers with expected overloads. The annual

operating costs include the cost of bulk energy as well as the coincident peak demand

charges.

Table 4.6: A summary of the use-case example results for the baseline, BESS only, and
BESS with DER valued as non-wires alternatives. All dollar values are in millions.
(Abbreviations: “LCC” = lifecycle cost, “Trfx” = transformer, “capex” = capital
cost.). The DSO capital costs include the transformer upgrades, line upgrades, and
BESS “capex”. The DSO operating costs include the cost of bulk energy, demand
charges, and DER energy.

Baseline BESS only BESS & DER

Total LCC $8.41 $6.43 $5.42

Net present value – $1.98 $2.99

Trfx upgrades $0.45 $0.30 $0.15

Line upgrades $0.76 $0.65 $0.12

Bulk energy $3.09 $1.70 $1.17

Demand charges $4.11 $2.61 $2.25

BESS capex – $1.47 $0.96

DER energy – – $0.75

Lines upgraded 4/4 3/4 1/4

Trfxs upgraded 3/3 2/3 1/3
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Year from now

0.0

0.2
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0.8
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total trfx upgrade cost

total line upgrade cost

cost of bulk energy

demand charges

Figure 4.5: Upfront capital costs (in year zero) and annual, discounted operating
costs for the DSO in the base case with traditional upgrades.

Next, we present the results for the system planner when considering only

BESS investments (without purchasing DER energy). The DSO can install BESS at

nodes 632 and/or 634 (see Figure 4.3). In this scenario it is cost optimal for the DSO

to install a 4.4 hour, 21.8 kW BESS at bus 634 and a 4.8 hour, 961 kW BESS at bus

632. With these BESS the total life cycle cost is $6.43M, yielding $1.98M in savings

over the base scenario. The addition of the BESS also prevent the need to upgrade

one of the lines (632-633) as well as the transformer at bus 634.
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2.0
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cost of bess

total trfx upgrade cost

total line upgrade cost

cost of bulk energy

demand charges
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Year from now

0.0

0.2

0.4$M

Figure 4.6: Upfront capital costs (in year zero) and annual, discounted operating costs
for the DSO considering only BESS (no DER). Note the much higher upfront costs
when compared to the base line upfront costs in Figure 4.5 come with the benefit of
lower annual operating costs as compared to the base scenario.

Comparing the cash flows with and without BESS in Figures 4.5 and 4.6

respectively, yields two key observations: i) the planner’s upfront capital costs are

approximately doubled with the BESS investment, even though the line and trans-

former upgrade costs are reduced relative to the base case; and ii) the first year

operating costs are reduced by approximately $0.2M with the optimal BESS.

In the third and final scenario we include the value of DER for non-wires

alternatives. Now, with the option to purchase DER energy the DSO total lifecycle

cost is $5.42M, yielding an additional cost reduction of $1.01M over the BESS only

scenario for a total net present value of $2.99M. The DSO reduces its cost of energy

by purchasing DER exported energy at the DER investor’s marginal cost, in this case

15 cents/kWh4. Additionally, with the DER contributions the DSO only needs to

4We do not use time-varying retail rates to keep the use-case examples relatively easy to under-
stand. However, there is no limit on the form of the retail rates.
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upgrade one of the three overloaded transformers (at bus 675) and one set of the four

overloaded lines (692-675). Table 4.6 summarizes the costs when valuing DER.

Figure 4.7 shows the annual cash flows for the third scenario with DER valued.

Note that the upfront costs are comparable to the base scenario but the annual

operating costs are significantly reduced when compared to the base scenario cash

flows in Figure 4.5.
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Figure 4.7: Upfront capital costs (in year zero) and annual, discounted operating
costs for the DSO considering BESS and DER for non-wires alternatives. The upfront
capital costs are comparable to the traditional upgrade costs and much lower than
the upfront costs in the BESS only scenario shown in Figure 4.6. Also, the annual
operating costs are much lower than the baseline scenario shown in Figure 4.5 and
lower than the BESS only scenario, even with the additional cost of purchasing DER
energy.

For reference we also provide the DER investor results with and without the

DSO price signal in Table 4.7. Note that the net present cost values are the same with

and without the price signal. In both cases the DER investors obtain their required

rate of returns. However, in the case with the price signal the additional costs of

the larger DER systems are offset with the income from selling energy as well as the
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additional energy cost savings.

Table 4.7: Use-case example results summary for DER investors with and without
the price signal from the DSO. All dollar values are in millions, total present value.
(Abbreviations: “capex” = capital cost, “opex” = operating cost.)

no signal with signal

Net present cost $2.79 $2.79

DER capex $0.43 $1.59

DER opex $0.04 $0.16

Income – $0.51

Energy cost savings $0.53 $1.30

Bus 634 capacity 67 kW 138 kW

Bus 646 capacity 124 kW 305 kW

Bus 675 capacity 79 kW 550 kW

Internal Rate of Return 16.6% 15.2%

4.4 Discussion

Using the proposed framework for valuing DER as non-wires alternatives, the

use-case examples demonstrate the potential for reducing system operating costs in

ways that benefit the DSO as well as DER investors. Ultimately, it is reasonable to

expect that lower system costs will lead to lower costs for all customers.

The use-case examples assumed that DER investors consider PV systems since

they are cost-competitive in many areas and are not subject to emission regulations

like back-up gas generators. However, back-up gas generators could provide a sig-

nificant value proposition for both the DSO and DER investors by providing power

during evening peak loads (unlike PV systems) as well as serve customer critical loads

during outages. The proposed framework for valuing DER can account for gas gen-

erators by removing the time varying limit on the DER production and adjusting the
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cost parameters.

All scenarios were solved on a 2017 Macbook Pro with two each 2.8 GHz

Quad-Core Intel i7 chips, 16 GB of RAM, and Gurobi version 9. The bilevel problem

solve time was limited to one hour, in which it reached an optimality gap of less than

two percent. While the long solve time may indicate that the bilevel method may not

scale well to large problems, no efforts were made to make the bilevel problem easier

to solve. Future work could include appropriately scaling the problem coefficients as

well as decomposing the problem into sub-problems and leveraging advanced solution

techniques.

A major advantage of the proposed framework is its flexibility. For example,

it is straightforward to account for different DER types in the lower level problem,

as long as they can be modeled in a linear fashion. The upper level problem is

not limited to linear equations, as demonstrated in the use-case example with the

inclusion of integer decisions for the transformer and line upgrades. Another example

of leveraging the flexibility of the framework would be to replace the non-negative

bulk power purchases P+
0,ϕ,t with the net power P0,ϕ,t in the upper level objective

(4.6). Valuing power exported to the bulk system would increase the value of DER

for non-wires alternatives by adding another value stream for the DSO. For example,

it is possible that DSO could sell excesss energy in a bulk market.

4.5 Conclusion

Valuing DER for non-wires alternatives appropriately is a difficult task. The

framework proposed in this work accounts for both the system planner’s perspective

and the DER investor perspectives. The bilevel optimization framework guarantees

that solutions minimize the planner’s costs over the chosen horizon as well that the
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DER investors achieve their required rate of returns. In light of FERC Order 2222

[9] and expected growth in load and DER adoption [81] it is becoming more and

more important for system planners to work with DER investors to plan efficient

distribution power systems.

Using a use-case example we showed how the framework can be leveraged to

value DER for non-wires alternatives. Comparing life cycle costs over 20 years for

the system planner, the results show that by valuing DER for non-wires alternatives

the DSO can avoid upgrading most of the overloaded components as well as achieve

a net present value of nearly $3M relative to the cost of the traditional upgrades.

We also compared the solution with DER valued to a scenario with utility owned

batteries and no third-party DER value. The results show that the DSO can achieve

an additional $1M in net present value when valuing DER relative to the scenario

with utility owned batteries.

In future work we intend to leverage the bilevel framework in a transactive con-

trol context. Transactive control methods that account for the DSO perspective and

the DER owner objectives are necessary to appropriately motivate DER to provide

services that benefit the entire system.
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Chapter 5

A method to generate realistic synthetic electricity

market price scenarios

Advances in regulatory policies that expand market access to renewable energy

(RE) generation and energy storage technologies are bringing a broader and more di-

verse set of market participants to wholesale electricity markets in the United States.

Regulatory directives such as Federal Energy Regulatory Commission (FERC) Order

841 focus on creating avenues for the participation of energy storage resources in

wholesale markets [82]. Similarly, FERC Order 2222 is opening up market participa-

tion to aggregations of distributed energy resources (DER), ensuring market access

to a diverse set of new market actors [9]. The expanded market access that these reg-

ulatory directives afford is happening in conjunction with rapid cost declines for RE

and storage technologies [83]. These factors — as well as other considerations such

as decarbonization and energy resilience — are combining to drive more installations

of RE and storage assets, bringing more resources online at a rapid pace [84].

The increase in number and diversity of energy resources in wholesale electric-

ity markets is happening in tandem with an increase in the uncertainty in wholesale

electricity prices. Increased price volatility is driven in large part by growing pene-

Sections of this chapter were adapted from the technical report: [14]. The majority of this
paper’s research, analysis, and writing were completed by the author of this dissertation. The
co-authors contributed to the literature review, editing, writing, and technical development.
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trations of variable renewable energy generation (primarily wind and solar) [85], but

also by extreme weather events and overall net demand variability [86] [87].

Participants need effective bidding models to enable profitable participation

in these increasingly diverse and volatile markets. While many approaches to strate-

gic bidding exist — including optimization, equilibrium, and simulation approaches

— there is a significant amount of ongoing research in establishing the most effec-

tive methods. One attribute that is common to most of the bidding approaches is

that they rely on the ability to form an accurate expectation of market prices [88].

Thus, to assess the performance of the various approaches being proposed, methods

to model expected market prices and associated uncertainty are needed. This will

enable researchers to understand (and improve) the performance of different bidding

approaches. Accurate characterization of price forecast uncertainty can help market

participants evaluate the efficacy of potential bidding strategies under many different

possible pricing regimes and futures.

A key challenge in modeling day-ahead and real-time electricity prices is that

the underlying probability distribution often has heavy or fat tails [89]. Fat-tailed

distributions are highly skewed and have an undefined variance, which makes them

difficult to model. Occurrences of extreme price events are typically characterized as

a stochastic process, but stochastic processes that arise from fat-tailed distributions

are not mathematically well-behaved; using a probability function with a defined vari-

ance will under-represent the probability of extreme observations [90]. In electricity

markets, extreme observations can be disruptive and/or result in high profit or loss,

which strongly impacts the profitability of a given bidding strategy.

This work presents an approach for generating statistically representative time

series that exhibit high-periodicity and heavy tails, and capture the uncertainty ob-
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served in electricity markets. To achieve an accurate characterization of electricity

prices, the price generation process is divided into two components: a deterministic

component and a stochastic component. The two components are synthesized into

time series. The methodology to stochastically generate synthetic prices is presented

in the following. A discussion of the goodness of fit and moments as compared to

realized prices is also presented. To evaluate the performance of the methods, syn-

thetic, price scenarios are generated for the Electricity Reliability Council of Texas’s

(ERCOT) Houston Hub for the years 2018 and 2019 [91]. The price scenarios are

used to demonstrate the method, but the techniques are applicable to any hourly

or sub-hourly electricity pricing data from deregulated wholesale markets across the

United States and throughout the world.

The synthetic price generation methodology builds on considerable research in

two distinct areas: stochastic differential equations (SDE) for forecasting electricity

prices (specifically mean-reversion and jump-diffusion modeling) and auto-regressive

integrated moving average (ARIMA) modeling for price forecasting. Previous work

in applying SDEs to electricity prices has generally focused on daily average prices

[40]. To extend these methods to hourly or sub-hourly pricing, the mean-reversion

component of the SDE is replaced with an ARIMA process that is better able (than

standard linear regression approaches) to characterize the daily and weekly patterns.

The jump process is extended to account for conditional probabilities of price spikes

occurring in consecutive hours. Next, to capture the conditional probabilities, the

traditional Poisson process for modeling jumps is replaced with a generalized point

process model, including a conditional intensity function. Finally, traditional methods

of estimating spike intensity (e.g. sampling into estimated distribution parameters)

are replaced with a Markov chain where the transition matrices are derived from

observed price spike transitions.
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In addition to presenting the results on the quality of the synthetic price time

series, a use-case of the synthetic price generation method for testing market bidding

approaches in a stochastic optimization model is presented. For each bidding period

1,000 price scenarios are generated along with probabilities using the synthetic pricing

methodology. Then, k-means clustering is applied on the 1,000 scenarios to generate

10 scenarios that are used as input to the stochastic optimization model. Finally,

profit performance of this stochastic model is compared against a persistence forecast

model.

In summary, a synthetic price generation methodology is developed that brings

together jump diffusion modeling and ARIMA modeling to generate hourly electricity

prices that capture both the seasonal (including weekly/hourly and annual seasonal-

ity) mean-reverting trend and the stochastic nature of price spikes (including inter-

hour spike dependencies). To the author’s knowledge this is the first application of

jump-diffusion modeling to electricity markets, specifically enabled by the integra-

tion of ARIMA models and generalized point processes for jump arrivals. Specific

contributions include:

• The integration of ARIMA models as the deterministic component of an SDE

• Replacement of the standard Poisson process in jump modeling by a general-

ized point process allowing for non-homogeneous and history-dependent spike

modeling

• Integration of Markov chain transition matrices to model spike intensities and

enable improved estimation of price transitions during multi-hour spike events
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5.1 Method

The methodology is laid out as follows: first, an overview of the SDE used

in the price generation approach is presented (contrasting it to previous work in the

field); second, each of the three terms in the SDE are discussed and the derivation of

relevant parameters is outlined.

5.1.1 Summary of the Stochastic Differential Equation

The approach builds from a general SDE that captures the mean-reversion and

jump-diffusion characteristics of the electricity spot price St at time t. The baseline

approach for the mean-reverting, jump-diffusion model is as follows. The log-price

process is defined as:

lnSt = g(t) + Yt (5.1)

where g(t) is a deterministic function and Yt is a stochastic process. The stochastic

process, Yt, is defined as:

dYt = −αYtdt + σ(t)dZt + ln Jdqt (5.2)

The first term, −αYtdt, is the mean-reversion term. The speed of mean-regression α

is typically derived by linear regression and often combined with g(t) to capture the

deterministic component of the log-price process. The second term, σ(t)dZt, is the

diffusion term, which combines the volatility observed in the de-spiked prices (σ(t))

and the increment of a standard Brownian motion (dZt). The last term, ln Jdqt, is

the jump process that combines a random variable (J), which characterizes the jump

size, with a Poisson process (dqt), which determines the arrival rate of the jump. The

arrival rate is based on some intensity λ, which is often empirically derived from the

data.
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Actual prices are modeled (rather than log-prices) for two reasons. First, the

log-transform can affect the skewness of the data that the jump component is aiming

to capture, and level prices have been empirically shown to have better performance

in capturing spikes [48] [92]. Second, hourly electricity pricing in many markets can

take on negative values, which are inherently undefined in log-pricing.

The deterministic component (the combination of g(t) and the mean reversion

term) is replaced with an ARIMA process, Xt, that is able to capture the inter-day

seasonality of hourly day-ahead and real-time pricing. The modeling of price-levels

rather than log-prices and the use of an ARIMA model to capture the deterministic

component of the SDE allows us to rewrite equation (5.1) and combine with an

integrated equation (5.2) to derive the price process:

St = Xt +

∫ t

0

σ(τ)dZτ +

∫ t

0

Jdqτ (5.3)

In the following sections, the individual terms in Equation 5.3 are described as well

as the methods for deriving the associated parameters.

5.1.2 Mean Reversion Term – ARIMA Modeling

Data Preparation: an ARIMA model is used to capture the mean-reversion

component of the realized price time series. Prior to fitting the ARIMA model, the

interquartile method is used to remove prices that are considered extreme (i.e. spikes).

Equations (5.4) and (5) describe the process for spike identification.

IQR ≜ Q3 −Q1 (5.4)

Kt /∈ [(Q1 − c× IQR) , (Q3 + c× IQR)] (5.5)
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IQR is the inter-quartile range, Q1 is the 25th empirical quartile, Q3 is the 75th

empirical quartile, c is a multiplier on the IQR, and Kt is a spike at time t. 1

It is important to note that prior to fitting the ARIMA model he de-spiked

time series is tested for a unit root using the Augmented Dickey-Fuller (ADF) test

[90]. The ERCOT day-ahead pricing data used in this study do not have a unit root

at the 0.01-level, which provides further rationale for using actual prices instead of

log-pricing.

In addition to the actual prices, hourly temperature data is used as a co-

variate in the ARIMA models. The ADF test was used to verify that these hourly

temperature data also do not have a unit root. Based on this, first-order differencing

is performed on the hourly temperatures and used as the hourly temperature differ-

ences in the ARIMA models. Figure 5.1 shows the data preparation process described

here for a representative period in 2019.

ARIMA Fitting: To better capture short-term seasonality (diurnal and weekly),

rolling window approach is used to fit an ARIMA model for each consecutive one-

week (168 hours) subset of the time series (5.3). The Python package pmdarima was

used to fit a unique ARIMA model to each 168-hour window [93]. These models were

used to generate the price forecasts discussed below.

ARIMA(ϕ, θ) : Xt = ϕyt−1 + et − θet−1 + β(Tt − ϕTt−1) (5.6)

In equation (5.6), the auto-regressive portion is the product of ϕ and the time-lagged

price; the moving average component is a white noise coefficient at time t (et) less

the product of θ and the time-lagged white noise, and the covariate component is the

1In the results and use-case example wa c-value of 3 is used to capture a broader non-spike band
than the commonly used 1.5 multiplier.
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product of β and the hourly temperature difference at time t (Tt) less the product of

ϕ and the time-lagged temperature difference.

5.1.3 Diffusion Term

The diffusion term in the proposed model aligns closely with traditional diffu-

sion modeling where volatility (σ(t)) is the standard deviation of the residuals from

the ARIMA process and the stochastic portion (dZt) is standard Brownian motion,

using the normal distribution with a zero mean. The volatility is defined on an

hourly basis or as a static value. In the time-varying case the volatility is defined

based on a rolling window with the number of look-back days, or samples, acting as

a hyperparameter in the model.

5.1.4 Jump Term

The jump component of the model extends and modifies the standard ap-

proaches used in jump diffusion modeling in two significant ways: (1) a generalized

point process is utilized that allows for history dependent arrival rates (as opposed

to a standard Poisson process), and (2) a Markov chain with transition matrices is

used to characterize jump intensities instead of modeling them as independent and

identically distributed random variables.

First, the Poisson process commonly used in jump diffusion models is replaced

with a more generalized point process that includes a conditional intensity function,

allowing us to characterize arrival rates that are non-homogeneous and history de-

pendent. This extension was based on work in neural spike trains where the firing of

different neurons in the brain are dependent both on the timing of the events and on

preceding spike events [94] [95]. This switch was driven primarily by the transition to

hourly price generation instead of the daily average price estimation seen in the liter-
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ature. In hourly pricing, price spikes are more likely to occur during certain times of

the day (e.g. more likely in the mid-afternoon than the middle of the night). It is also

common to observe spikes that are longer than 1-hour in duration. The generalized

point process is leveraged to model both conditions.

To model time-dependent, multi-hour spike events, two sets of expected prob-

abilities are utilized: (1) a set of initial arrival probabilities indexed on hour of the

day (λo(h)) and (2) a conditional intensity function (λc(p)) that is dependent on the

number of prior consecutive hours in which spikes occurred. These two sets of prob-

abilities combine into the general point process (dqt), which uses the initial intensity

and conditional intensity functions to determine whether or not a spike occurs at time

t:

dqt =

{
1 with prob. λ0(h) if no spike in prior hour or prob. λc(p) if p spikes have occurred in succession.

0 with prob. 1− λ0(h) if no spike in prior hour or prob. 1− λc(p) if p spikes have occurred in succession.

(5.7)

In equation (5.7) λ0(h) is the probability of a spike occurring in hour h of the day if

no spike occurred in hour h−1; and λc(p) is the probability of a spike occurring given

that a spike has occurred in p consecutive hours prior. Both sets of probabilities are

determined empirically based on spikes observed over the chosen look-back window

(e.g. 30 days prior).

An example of calculated probabilities for two randomly selected days from

two seasons in 2019 (August 30th and November 2nd) is shown in Figure 5.2. Note

that the summer day (left column) shows much higher initial arrival rate probabilities,

with the noon hour having a probability over 40%. The summer day also has a higher

likelihood of additional spikes after the initial spike, and those probabilities stay high

longer than the on late fall day shown in the right column.

The preceding discussion on jumps has centered around the arrival of the
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jumps (dqt), but the spike intensity (J) should be considered as well. Traditionally,

J has been defined as a normal, log-normal, or exponential random variable, but this

approach presents challenges due to the heavy tails of the underlying distribution

[40]. Using a random variable to characterize the spike intensity especially presents

problems in the context of multi-hour spike events. Most multi-hour spike events

follow a pattern (e.g. spike in the first hour is lower than the second, and then the

intensity fades in the final hours), but using a random variable to calculate intensity

leads to spikes in adjacent hours that are uncorrelated. To address these issues the

proposed method implements a Markov process to determine the spike intensity.

The Markov process for spike intensity is built from conditional transition

probabilities from one price-bin to another price bin. Once the Poisson process in-

dicates that an initial spike is occurring, the Markov process begins for determining

the spike intensity, or the market price. The zeroth bin is defined from the lowest

observed price up to the highest de-spiked price. Subsequent bins can be determined

in many ways. It is important to capture relevant price ranges to reflect realistic spike

chains. Thus, determining the price bins should be done based on familiarity with

the market data. Transition probabilities are determined empirically from the data.

The length of any chain of price spikes is determined by the Bernoulli sampling that

determines dqt.

Figure 5.3 shows a Hinton diagram of the transition probabilities, where the

increasing size and darkness of the squares signify a higher likelihood of transitioning

from the state on the vertical axis to the state on the horizontal axis. For example,

upon the first spike in a chain one samples from the zeroth row in Figure 5.3. The

most likely outcome is that the first spike intensity lands in the first price bin so

let us assume that occurs. Say that the first price bin extends from $100/MWh to
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$300/MWh. Then, the spike intensity is determined by uniformly sampling within

the bin, resulting in a spike intensity between $100/MWh to $300/MWh. Now, when

a second consecutive spike occurs, one would sample from the distribution in the first

row. Let us say that the second most likely outcome happens, which is a transition to

the second bin or row of the transition matrix shown in Figure 5.3. Now, the second

price intensity is determined by uniformly sampling from the second bin, which might

extend from $300/MWh to $600/MWh for example. The process continues for as

many time steps as indicated by the arrival process described above.

In summary, the combination of the non-homogeneous, history-dependent

point process for spike arrival and the Markov chain transition matrix for spike inten-

sity allows the approach to more fully capture the characteristics of hourly electricity

pricing. First, the approach can model clusters of spikes of different durations and

their varying likelihoods throughout the year. Next, the approach developed here

can handle spike intensity relationships both within a multi-hour spike event and

conditioned on time of the year.

5.1.5 Parameter Weighting

The primary hyperparameter to the model in both the diffusion term (Section

2.3) and the jump term (Section 2.4) is the number of look-back days, or number of

samples used to derive the empirical values. The model considers this hyperparameter

when building the parameters that define the diffusion and jump terms from the

historical realized pricing. Sometimes it is better to use a larger window (e.g. 3-6

months of data) to obtain large sample sizes for estimating the arrival probabilities or

transition matrix elements and one might not want to treat all of those days equally.

This is especially true when estimating parameters for periods with higher spikes (in

both arrival and intensity), which may persist for a few weeks to a month or two.
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To address this issue, weighting hyper-parameters are added to the model

that allows one to select among a few features for ordering the importance of days

in the look-back window. For example, “days prior”, “average pricing”, and “week-

end/weekday” are used as features of the data along with linear, quadratic, or ex-

ponential weighting of sample days based on those features. Using weighting hyper-

parameters allows the model to preferentially weight recent days, days with similar

average (de-spiked) pricing, or weekends/weekdays (relative to the day being mod-

eled). Additionally, it allows for three methods for calculating those weights, with

linear, quadratic, and exponential giving increasingly more weight to more ‘similar’

days (e.g. similar average price or very recent days), and exponential putting the

highest weight on “similar” days. In the following results section, the impacts of

switching between these weighting approaches for two different look-back lengths is

shown.

5.2 Results

The efficacy of the approach is evaluated by analyzing the synthetic price data

for the year of 2019, with look-back windows stretching back into 2018. Two different

look-back window lengths are used (30- and 180-day windows) along with two different

weighting approaches (‘prior days’ and ‘average price’ weighting). A linear function

is used when applying each weighting. For example, in a 30-day look-back, the 15th

day prior receives 0.5 weighting, while the day immediately preceding the modeled

day receives a weighting of 1.0.

One-thousand synthetic prices traces are generated for each day of 2019 and

each window/weighting combination. Each of the traces contains the same determin-

istic signal generated with the forecast from the ARIMA model, combined with an
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instance of the jump-diffusion components from the SDE. Figures 5.4, 5.5, and 5.6

display synthetic pricing traces for three distinct days using the 30-day look-back win-

dow and linear weighting on prior days. Figures 5.4 and 5.5 show two different days

in the summer period, with the August day exhibiting significant price spikes (over

$2,000/MWh for two consecutive hours) and the July day exhibiting more moderate

price spikes ( $150/MWh for three consecutive hours). The realized price from the

settled day-ahead market is shown in blue. The realized price is not exposed to the

model during generation of synthetic pricing.

A range of spike intensities and durations are captured on these days, and they

generally cover the range of prices that are realized in the day-ahead market. While

many spikes are included in the generated pricing, many of the simulated traces have

no spike, or a much lower spike (demonstrated by the dark gray clustering under the

realized price spike).

Figure 5.6 shows a winter day in December that has no realized price spikes.

The synthetic pricing for this day primarily shows the impacts of the ARIMA and

diffusion portions of the model. The ARIMA portion sets the deterministic signal

and the diffusion term simulates the expected variability around that mean signal.

Since the diffusion term is a function of the hour of the day, more volatility is seen in

the generated prices during the morning and afternoon, which ends up aligning with

the two small peaks in the realized pricing for the day. One trace out of the thousand

simulated pricing sets includes a price spike. This result indicates that the initial

arrival rates for this day had a non-zero value at 6am (the value is in fact 0.02652,

suggesting that one would expect more predicted morning spikes if one generated

another 1,000 traces).

To characterize the performance of the model, the moments of the data are
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calculated for each of the window/weighting combinations and compared these results

to the moments of the realized pricing. Comparing model-based moments to empirical

moments is a common approach to evaluate the performance of the model [45]. Figure

5.7 and Figure 5.8 show the mean and standard deviation of the generated prices for

each look-back length/weighting approach combination compared with the moments

of the realized pricing. The figures show the moments by season of the year, as

the mean price shape varies significantly throughout the year. The shorter, 30-day

look-back window performs better overall than the 180-day look-back in terms of

matching the realized price moments. In contrast, the weighting approach does not

appear to have a significant impact on the accuracy of the moments. The model

captures the mean signal of the empirical data well, but it sometimes fails to capture

the full magnitude of price spikes observed in the data (for example in summer and

fall months).

Due to the infrequency of price spikes it is not possible to validate the price

spike model using traditional statistical methods. However, through discussions at a

multinational oil and gas company and a large US municipal electric utility it was

determined that the price spike model does generate realistic price scenarios. In fact,

the price spike model is being leveraged to evaluate bidding strategies in European

markets by the major oil and gas company.

5.3 Use-case Example

To demonstrate the value of the stochastic price generation method a use-case

example for bidding a battery energy storage system (BESS) in an energy market

is presented. The energy market is modeled after the Electric Reliability Council

of Texas (ERCOT) system, with day-ahead and real-time energy markets. Optimal
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price-quantity bids are determined using a stochastic optimization program modeled

after the work in [96], which is extended by considering the Conditional Value at

Risk (CVaR) as well as adding a two-stage program for the real-time bidding model

to address the issue of infeasible BESS dispatch strategies that might result from the

bid clearing process.

The goal of the BESS bidding model is to maximize the expected profit from

executing energy arbitrage. Price scenarios are used to represent a discrete distribu-

tion of market prices in the stochastic programs to form a sample average approxima-

tion of the expected profit [97]. The probabilities of price scenarios are determined

by first generating 1,000 price scenarios with a rolling look-back window of 30 days.

Second, the 1,000 price scenarios are clustered using the k-means algorithm to create

10 clusters and 10 price scenarios from the centroids of the clusters [98]. The proba-

bility of each of the 10 scenarios is calculated as the ratio of the number of members

in each cluster to the total number of scenarios.

Once the ten price scenarios and their probabilities are determined, the first

step in the stochastic bidding model is to form price-quantity bids in the day-ahead

market. Equation C.3 in Appendix C shows the day ahead bidding model. The

day-ahead market model uses price scenarios to determine the optimal price-quantity

pairs to bid in each hour for tomorrow.

Next, the real-time market model C.4 maximizes the weighted sum of the

real-time market profit and the CVaR given the cleared day-ahead market energy

quantities. The real-time market model is a two-stage stochastic program, with here-

and-now decisions for the real-time price-quantity bids in the next clearing period and

wait-and-see decisions for the price-quantity decisions in all subsequent time-steps.

For this use-case the real-time market model is executed in a rolling fashion, starting
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with optimizing the price-quantity bid in the first hour of the operating day. As

the simulation time advances the real-time market model horizon shrinks because the

cleared day-ahead market quantities are unknown until the 14th hour in the operating

day. In each operating day the day-ahead price-quantity bids for the next day are

optimized in the 9th hour to reflect the 10 AM deadline in ERCOT. The day-ahead

market is assumed to clear by the 14th hour, at which point the real-time model

horizon is extended to 24 hours again. Figure 5.9 shows a graphical representation

of the simulation horizons in the day-ahead and real-time models. Table 5.1 lists the

BESS technical inputs.

Table 5.1: Technical inputs

Battery assumptions Value

Storage Capacity 2 MWh
Inverter Capacity 1 MW
Total Round Trip Efficiency 90.25%
Inverter Efficiency 95%
Rectifier Efficiency 95%
Initial State of Charge 0%

Table 5.2 shows the total profits from the simulation of 168 days in 2019 us-

ing ERCOT day-ahead and average hourly real-time market prices. For comparison

results from using a persistence forecast for the expected energy market prices are

included. CVaR weightings of zero and 50% are used. The scenarios with a 50%

CVaR weighting show the highest profit, with a 47% improvement over the persis-

tence forecast profit. Considering no CVaR results in a 24% improvement over the

persistence forecast profit. The benefit of considering the CVaR is likely due to the

fact that being conservative in the day-ahead market allows for more opportunities

in the real-time market. Indeed, as shown in Table 5.2, the stochastic model with

a 50% CVaR weight resulted in lower day-ahead market profits than the stochastic
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model with no CVaR considered; yet when considering CVaR the stochastic model

is able to get more net profits by performing better in the real-time market than the

model with zero CVaR weight.

Figures 5.10 and 5.11 show a side-by-side comparison of the realized price,

persistence foreacast, and stochastic price scenarios for a certain day in the day-ahead

and real-time markets respectively. It interesting to note that the poorer performance

in terms of profits in the real-time market is likely due to the more volatile nature of

the real-time market. From Figure 5.11 one can see that the stochastic scenarios also

suffer from some persistence assumptions: most of the price scenarios show a price

peak much later than actually occurs - similar to the persistence forecast.

Table 5.2: Total profits from stochastic optimization models and persistence forecast
simulations. The total profits are from simulating 168 days from 2019 with ERCOT
day-ahead and average hourly real-time market prices.

Battery assumptions CVaR weight Total profit Day-ahead Real-time

Persistence forecast n/a $35,040 $48,147 -$13,107
Stochastic model 0 $43,318 $57,134 -$13,815
Stochastic model 0.5 $51,514 $53,729 -$2,215

5.4 Conclusions

This work extends the state-of-the-art for modeling daily average electricity

market prices with stochastic differential equations to sub-daily time intervals. The

goal is not to provide better price forecasts, though the methods may be applied

to price forecasting; rather, the method is intended to generate realistic price time

series for evaluating different market bidding strategies. Like any model built upon

statistics of past data, the method cannot predict new features of price time series

(such as a consecutive spike series twice as long as any series observed in the past).

However, the proposed method can generate an unlimited amount of price series that
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are statistically and qualitatively similar to historical prices. With this capability

researchers can compare different market bidding strategies over long time periods

that may be otherwise unachievable due to data availability or recent changes in

market rules that make all but the most recent prices irrelevant.

Despite the limitations of generating price scenarios from past prices, the

model parameters can be modified by practitioners to represent market behavior

that has not been witnessed but might be anticipated. For example, adjustments to

the conditional intensity function, the initial arrival rates, the variance of the diffu-

sion term or the state switching probabilities of the Markov chain all can be used

to simulate hitherto unseen market conditions. Futhermore, quantifying the range

of these market price attributes in different wholesale electricity markets is an area

of future work and would enable more informed research into how market evolution

will impact stochasticity and volatility. This research could be valuable in assessing

the costs (and risk) associated with procuring 24/7 renewable power or in providing

firm renewable generation from hybrid renewable plus energy storage plants. The

application of the synthetic pricing model to stochastic bidding models demonstrates

that these data can be utilized to programmatically test bidding models and provide

a mechanism to quantify the value in acknowledging and incorporating the increasing

uncertainty that the day-ahead and real-time electricity markets are experiencing.
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Figure 5.1: Representative sample of the time series data used to demonstrate the
price generation method. Prices are from ERCOT Day Ahead Market [91]. Temper-
ature values from [58].
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Figure 5.2: Initial arrival rate probabilities (top row) and conditional intensity func-
tions (bottom row), shown for two days in 2019 (August 30th in left column and
November 2nd in right column). Probabilities are derived empirically from the pre-
vious 30 days of price samples.
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Figure 5.3: Hinton diagram of an example Markov chain transition matrix for spike
intensity. The axes are integer price bins. Individual square sizes and darkness repre-
sent the probability of transition from one price bin to another. Rows of probabilities
sum to one and are sampled uniformly. The zeroth row is sampled first for every set
of price spikes to determine the bin for the first price spike.
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Figure 5.4: Synthetic pricing traces (thin grey lines) and realized price (thick blue
line) for August 15th of 2019.

Figure 5.5: Synthetic pricing traces (thin grey lines) and realized pricing (thick blue
line) for July 15th of 2019.
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Figure 5.6: Synthetic pricing traces (thin grey lines) and realized pricing (thick blue
line) for December 14th of 2019.
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Figure 5.7: First moment (mean) of the synthetic pricing compared to realized prices.
The synthetic pricing mean is shown for four cases: two look-back windows (30 and
180 day, or ”win30” and ”win180” in the legend) and two weighting functions (prior
days and average price, or ”daysprior” and ”priceavgs” in the legend).
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Figure 5.8: Second moment (standard deviation) of synthetic pricing compared to
realized prices. The synthetic pricing mean is shown for four cases: two look-back
windows (30 and 180 day, or ”win30” and ”win180” in the legend) and two weighting
functions (prior days and average price, or ”daysprior” and ”priceavgs” in the legend).
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Figure 5.9: Simulation horizon for the real-time market model simulation, which is
designed to reflect the ERCOT market. Day-ahead bids are due by 10 AM in the
operating day and are cleared by the 14th hour. The real-time market model horizon
shrinks and grows to reflect the knowledge of cleared day-ahead market quantities.
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(a) Realized price and persistence forecast in day-ahead market on July 7th,
2019.
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(b) Realized price and stochastic price scenarios in day-ahead market on
July 7th, 2019. The legend shows the probability of each scenario, which is
determined via the k-means clustering of 1,000 synthetic price scenarios. The
thicker black line is the realized price.

Figure 5.10: Comparison of realized price, persistence forecast, and stochastic price
scenarios in the day-ahead market on July 7th, 2019.
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(a) Realized price and persistence forecast in real-time market on July 7th,
2019.
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(b) Realized price and stochastic price scenarios in real-time market on July
7th, 2019. The legend shows the probability of each scenario, which is de-
termined via the k-means clustering of 1,000 synthetic price scenarios. The
thicker black line is the realized price.

Figure 5.11: Comparison of realized price, persistence forecast, and stochastic price
scenarios in the real-time market on July 7th, 2019.

109



Chapter 6

Conclusions and Future Work

The goal of this dissertation was to develop new methods for valuing dis-

tributed energy resources in electricity transmission and distribution systems, with

a particular focus on accounting for multiple perspectives. This goal was achieved

by developing a new linearization technique for bilevel optimization problems that

allows modeling energy system optimization problems at scales that matter. The lin-

earization technique was leveraged to develop a new framework for valuing distributed

energy resources in transmission and distribution systems. The proposed framework

allows for competing perspectives to be modeled. Furthermore, a new method for cre-

ating synthetic electricity price scenarios was developed and its value demonstrated

in a stochastic optimization framework. The major findings of the three research

objectives, detailed in Chapters 3, 4, and 5, are summarized below.

6.1 Summary of results

Research Objective 1: The focus of this objective (detailed in Chapter 3) was

developing a general method for linearizing bilinear products of price and dispatch

variables to facilitate the solution of large scale bilevel optimization problems. The

Some sections of this chapter were adapted from the journal article: TODO?. The majority of
this paper’s research, analysis, and writing were completed by the author of this dissertation. The
co-authors contributed to defining the direction of this project and editing the manuscript.
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linearization methodology was determined for the most general case as well as the

conditions required to linearize for particular model formats with applications to

power systems planning and operations. The methodology was also implemented in

an open source Julia package to facilitate its use within the research community. The

major findings from this portion of the work are as follows:

• Only light conditions are required to linearize the products of dispatch variables

and shadow prices when the upper level model variables within the lower level

objective are integer (or no upper level variables are in the lower level objective)

• More restrictive conditions are necessary to linearize when the upper level model

variables within the lower level objective are continuous; however, many inter-

esting energy system optimization problems meet the conditions.

• Problems at scales that matter that were intractable without linearization can

now be solved within reasonable time frames.

Research Objective 2: The focus of this objective (detailed in Chapter 4) was

to develop a method to assess the techno-economic potential of DER for distribution

system upgrade deferrals. The linearization technique from RO1 was leveraged to

develop a new optimization framework to value DER as non-wires alternatives. A

use-case was presented, in which both the distribution system operator and third-

party DER investor perspectives were optimized. The results show how both the

system operator and investors can mutually benefit, thereby reducing electricity costs

for all consumers. The major findings from this portion of the work are as follows:

• Co-optimal solutions for DER investors and system operators can be determined

using the proposed framework.
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• The proposed framework can be leveraged in transactive control contexts, pro-

viding price signals that benefit the system first and investors second.

Research Objective 3: The focus of this objective (detailed in Chapter 5) was

to develop a method to generate realistic synthetic electricity market price scenarios.

The value of the developed model was demonstrated in a stochastic optimization

framework for bidding a battery energy storage system into day-ahead and real-

time markets simultaneously. The state-of-the art in electricity price modeling was

advanced by

• The integration of ARIMA models as the deterministic component of the stochas-

tic differential equation.

• Replacement of the standard Poisson process in the jump component with

a generalized point process, which allows for non-homogeneous and history-

dependent spike modeling.

• Integration of Markov chain transition matrices to model spike intensities, which

enables improved estimation of price transitions during multi-period spike events.

Several cross-cutting observations emerge from the findings of the three re-

search objectives of this dissertation. First, by leveraging the linearization method

developed in this thesis, bilevel optimization models for power system planning and

operations can model the bilinear monetary exchanges between operators and dis-

tributed energy resource owners at scales that matter. Second, distributed energy

resources can delay and replace traditional power system upgrades when valued ap-

propriately. Finally, as distributed energy resources integrate into wholesale electric-

ity markets more advanced price modeling techniques are required to evaluate and

plan optimal distributed energy resource dispatch strategies.
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6.2 Future work

There are several direction of future work that could build upon this work.

One major thrust of future work could focus on leveraging the linearization method

in a transactive control context. When using a power flow model in the lower level

of the bilevel model, the price signal decisions are effectively distribution locational

marginal prices (DLMP). However, the bilevel framework might affect the traditional

DLMP values because the framework requires that solutions are in the optimization

space for the lower level (in addition to minimizing the upper level cost function).

Future research might find that prices from the bilevel framework or more fair than

traditional DLMP values, in the sense that the prices from the framework account

for more than the system operator’s perspective.

Another area of interesting research could include more adversarial models, or

a more pessimistic view point in the bilevel framework. The framework developed

in this work is “optimistic” in that the parties represented by the lower level always

act in the best interest of the upper level (given the constraints). Pessimistic bilevel

problems, that typically use a minimax to represent the worst-case reaction from the

lower level (to the upper level decisions), are generally intractable. Future research

might find tractable modeling frameworks to capture more pessimistic optimization

of power systems; thereby producing more robust solutions.

Lastly, as power systems become more complex and more DER are connected

to grids, larger and larger models will be necessary. Future work could research

decomposition techniques to make otherwise unwieldy problems solvable on modern

cloud-based, distributed computing systems.
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Appendix B

Examples to demonstrate the Algorithms

Example 1. The simplest case for linearizing a certain λjyn term occurs when the

yn in the upper level objective bilinear term is in only one lower level constraint. In

this case, step 1 of Algorithm 1 returns and (3.10) provides the linearization of λjyn.

Note that (3.10) is a particular instance of (3.9). In this example we present the

next simplest case, which is when yn is in more than one constraint but the other y

variables in constraint j are in no other lower level constraints.

In Step 2 of Algorithm 1 the indices of (Dk) in the set {k ∈ N \{n} : Vjk ̸= 0}

are added to the set of column indices to check using the recursive Algorithm 2. And

the set Jj is initialized with {j}. Algorithm 2 then checks for non-zero values of V

above and below each Vjk entry for each of the column indices. If no non-zero values

are found then Algorithm 2 returns the same sets that were passed to it, meaning

that no more equation indices are needed to linearize the λjyn term.

Take one particular k′ in N \ {n} for example. The special case that Vik′ =

0 ∀i ∈ J \ {j} is illustrated as follows:

V =



k′-th col.

0
...
0

j-th row . . . Vjn . . . Vjk′ . . .
0
...
0


. (B.1)
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When yk′ is only in constraint j then (Dk′) is:

λjVjk′yk′ = ck′yk′ + µk′yk′ − µ
k′
y
k′

+ yk′
∑
m∈M

Bmk′xm. (B.2)

Equation (B.2) can then be substituted into (Pj), shown in (3.11), to eliminate the

bilinear term of λj and yk′ in the sum over k ∈ N \ {n}. A similar result follows for

eliminating all of the λjyk terms on the right hand side of (3.11). ■

Example 2. Continuing from our previous example, now let us assume that the k′-th

column of V has one other non-zero entry. Now, additional combinations of the (Pi)

and (Dk) equations are necessary to eliminate the λjyk′ term in (3.11). This is where

step three of Algorithm 1, which relies on Algorithm 2, comes in.

For this example let Vi′k′ ̸= 0 for a particular i′ in J \{j}, and let Vik′ = 0 ∀i ∈

J \ {j, i′}. Also, let the i′-th row of V contain one other non-zero value Vi′ℓ, and let

Viℓ = 0 ∀i ∈ J \ {i′}. This case is illustrated in (B.3).

V =



ℓ-th col. k′-th col.

0 0
...

...
... 0

j-th row . . . Vjn 0 Vjk′ . . .
i′-th row 0 . . . 0 Vi′ℓ Vi′k′ 0 . . . 0

0 0
...

...
0 0


(B.3)

Algorithm 2 is passed row j and column k′ from step 3 of Algorithm 1. Al-

gorithm 2 first finds all the row indices of non-zero values of V in column k′ (except

Vjk′) and checks that those rows have not already been added to the set of rows.

(Recall that redundant rows or columns found by the Algorithms indicate an under-

determined system of equations). The set of rows in Algorithm 2 now contains i′ since

Vi′k′ ̸= 0. Finally, Algorithm 2 loops over each row found to check for non-zero values
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of V . If any values are found they are added to the columns set to search in another

call to Algorithm 2 (hence the name “recursive array search”). In this case column

ℓ is appended to the empty set of columns and so Algorithm 2 calls itself once with

r = i′, c = ℓ, rows = {i′}, cols = {ℓ}, which finds no more non-zero entries in V .

Thus Algorithm 2 returns rows = {i′}, cols = {ℓ} to Algorithm 1, which appends

the returned sets to Jj and Nn, making the final sets Jj = {j, i′} and Nn = {k′, ℓ},

Now (Dk′) gives:

λjVjk′yk′ + λi′Vi′k′yk′ = ck′yk′ + µk′yk′ − µ
k′
y
k′

+ yk′
∑
m∈M

Bmk′xm.
(B.4)

Since the i′-th row of V contains only one other non-zero value Vi′ℓ, and the other

values in column ℓ of V are zero as illustrated in (B.3), then adding equations (Pi′)

and (Dℓ) allows one to linearize the λi′Vi′k′yk′ term in (B.4) in a similar fashion to

the previous example. ■
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Appendix C

Energy Market Stochastic Optimization Model

The stochastic optimization models used to demonstrate a use-case for the

stochastic price generation method are described in the following. The models are

based on the work in [96]. The day-ahead stochastic optimization model first deter-

mines the optimal price-quantity pairs to bid (to buy) or offer (to sell) in the day-

ahead market. The real-time stochastic optimization model then takes the cleared

day-ahead market energy obligations as inputs to determine the optimal price-quantity

pair to bid or offer in the next real-time clearing period. For simplicity both models

assume hourly time-steps.

C.1 Day-ahead market price-quantity stochastic optimiza-
tion model

The day-ahead model maximizes the weighted sum of the expected profit and

the conditional value at risk. Table C.1 presents the sets, parameters, and variables

of the day-ahead model, which is shown in C.3.

Constraints C.1a through C.1h are operational constraints for the BESS. The

constraints C.2a through C.2j require that one price-quantity strategy be chosen over

Sections of this appendix were adapted from the technical report: [14]. The majority of this
paper’s research, analysis, and writing were completed by the author of this dissertation. The
co-authors contributed to the literature review, editing, writing, and technical development.
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the horizon of T time-steps from all scenarios. Constraints C.2k and C.2l define the

CVaR value [97]. And constraints C.2m through C.3g define non-negative variables.

xs,t,charge ≤ BMW ∀s ∈ S,∀t ∈ T (C.1a)

xs,t,discharge ≤ BMW ∀s ∈ S,∀t ∈ T (C.1b)

xs,t,MWh ≤ BMWh ∀s ∈ S,∀t ∈ T (C.1c)

xs,t,MWh ≤ BMWh ∀s ∈ S,∀t ∈ T (C.1d)

xs,t,charge = xs,t,Ebuyηcharge ∀s ∈ S,∀t ∈ T (C.1e)

xs,t,discharge = xs,t,Esell/ηdischarge ∀s ∈ S,∀t ∈ T (C.1f)

xs,1,MWh = ft=1BMWh − xs,1,discharge + xs,1,charge ∀s ∈ S (C.1g)

xs,t,MWh = xs,t−1,MWh − xs,t,discharge + xs,t,charge ∀s ∈ S,∀t ∈ {2, . . . , T} (C.1h)
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xs,t,Ebuy ≤ zs,t,EbuyBMW ∀s ∈ S,∀t ∈ T (C.2a)

xs,t,Esell ≤ zs,t,EsellBMW ∀s ∈ S,∀t ∈ T (C.2b)

xt,Ebuy − xs,t,Ebuy ≤ (1− zs,t,Ebuy)BMW ∀s ∈ S,∀t ∈ T (C.2c)

xt,Esell − xs,t,Esell ≤ (1− zs,t,Esell)BMW ∀s ∈ S, ∀t ∈ T (C.2d)

xt,Ebuy − xs,t,Ebuy ≥ 0 ∀s ∈ S,∀t ∈ T (C.2e)

xt,Esell − xs,t,Esell ≥ 0 ∀s ∈ S,∀t ∈ T (C.2f)

xt,$buy ≤ πs,t + Mzs,t,Ebuy ∀s ∈ S,∀t ∈ T (C.2g)

xt,$buy ≥ πs,t −M(1− zs,t,Ebuy) ∀s ∈ S,∀t ∈ T (C.2h)

xt,$sell ≥ πs,t −Mzs,t,Esell ∀s ∈ S,∀t ∈ T (C.2i)

xt,$sell ≤ πs,t + M(1− zs,t,Esell) ∀s ∈ S,∀t ∈ T (C.2j)

xCVaR = xVaR +
1

α

∑
s∈S

psxs,M (C.2k)

xs,M ≥ −
∑
t∈T

πs,t(xs,t,Esell − xs,t,Ebuy)− xVaR ∀s ∈ S (C.2l)

xt,$sell ≥ 0, xt,$buy ≥ 0, xt,Ebuy ≥ 0, xt,Esell ≥ 0 ∀t ∈ T (C.2m)
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max
x∈R,z∈Z

β
∑
s∈S

ps
∑
t∈T

πs,t(xs,t,Esell − xs,t,Ebuy)− (1− β)xCVaR (C.3a)

s.t. xs,t,charge ≥ 0 ∀s ∈ S,∀t ∈ T (C.3b)

xs,t,discharge ≥ 0 ∀s ∈ S ∀t ∈ T (C.3c)

xs,t,MWh ≥ 0 ∀s ∈ S,∀t ∈ T (C.3d)

xs,t,Ebuy ≥ 0 ∀s ∈ S,∀t ∈ T (C.3e)

xs,t,Esell ≥ 0 ∀s ∈ S,∀t ∈ T (C.3f)

xs,M ≥ 0 ∀s ∈ S (C.3g)

C.1a− C.2m (C.3h)

C.2 Real-time market price-quantity stochastic optimization
model

The two-stage real-time market price-quantity stochastic optimization model

maximizes the weighted sum of the expected profit and the conditional value at

risk (CVaR). The real-time model takes the cleared day-ahead energy obligations as

inputs to determine the real-time market profit using the method from the ERCOT

market [106]. The primary difference from the day-ahead model is that only the price-

quantity bid in the first time-step is constrained across the price scenarios. In other

words, the price-quantity bids for all time steps beyond the first are ”wait-and-see”

decisions that vary over the price scenarios, whereas the ”here-and-now” decision for

the first time step is the same in all price scenarios.

Table C.2 presents the sets, parameters, and variables of the real-time model,

which is shown in C.4.The here-and-now decisions are reflected in constraints C.4c

through C.4h. Constraints C.4i through C.4m define whether or not the price bids
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and offers clear the market (in a similar fashion to [96]). Constraint C.4n is used to

define the CVaR value. And constraints C.4o and C.4p define non-negative variables.

max
x∈R,z∈Z

β
∑
s∈S

ps
∑
t∈T

πs,t [(xs,t,Esell − Et,DAsell)− (xs,t,Ebuy − Et,DAbuy)]− (1− β)xCVaR

(C.4a)

s.t. C.1a . . . C.2b, C.2k (C.4b)

xs,1,charge = xcharge ∀s ∈ S (C.4c)

xs,1,discharge = xdischarge ∀s ∈ S (C.4d)

xs,1,$buy = x$buy ∀s ∈ S (C.4e)

xs,1,$sell = x$sell ∀s ∈ S (C.4f)

xs,1,Ebuy = xEbuy ∀s ∈ S (C.4g)

xs,1,Esell = xEsell ∀s ∈ S (C.4h)

xs,t,$buy ≤ πs,t + Mzs,t,Ebuy ∀s ∈ S,∀t ∈ T (C.4i)

xs,t,$buy ≥ πs,t −M(1− zs,t,Ebuy) ∀s ∈ S,∀t ∈ T (C.4j)

xs,t,$sell ≥ πs,t −Mzs,t,Esell ∀s ∈ S,∀t ∈ T (C.4k)

xs,t,$sell ≤ πs,t + M(1− zs,t,Esell) ∀s ∈ S, ∀t ∈ T (C.4l)

xs,t,$sell ≥ 0, xs,t,$buy ≥ 0 ∀s ∈ S,∀t ∈ T (C.4m)

xs,M ≥ −
∑
t∈T

πs,t [(xs,t,Esell − Et,DAsell)− (xs,t,Ebuy − Et,DAbuy)]− xVaR ∀s ∈ S

(C.4n)

xs,t,charge ≥ 0, xs,t,discharge ≥ 0, xs,t,MWh ≥ 0, xs,t,Ebuy ≥ 0, xs,t,Esell ≥ 0

∀s ∈ S,∀t ∈ T
(C.4o)

xs,M ≥ 0 ∀s ∈ S (C.4p)
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Sets and Indices

s ∈ S integer scenarios for market prices and bidding strategies, S ≜
{1, . . . , S}

t ∈ T integer time-steps, T ≜ {1, . . . , T}

Parameters Units

BMW battery inverter capacity MW
BMWh battery energy capacity MWh
ft=1 fraction of battery energy capacity stored in first time-step unitless
πs,t market price in scenario s, time-step t $/MWh
ps,t probability of market price scenario s, unitless
β weighting factor for profit vs. CVaR in objective function unitless
α quantile for CVaR (for example α = 0.05 considers the 5% tail of the

loss)
unitless

Decision Variables Units

xs,t,charge power sent to the battery in scenario s, time-step t MW
xs,t,discharge power discharged from the battery in scenario s, time-step t MW
xs,t,MWh battery state of charge in scenario s, time-step t MWh
xs,t,Ebuy energy purchased in scenario s, time-step t MWh
xs,t,Esell energy sold in scenario s, time-step t MWh
zs,t,Ebuy binary decision to purchase energy in scenario s, time-step t MWh
zs,t,Esell binary decision to sell energy in scenario s, time-step t MWh
xt,Ebuy energy purchased in time-step t, used for day-ahead market bids MWh
xt,Esell energy sold in time-step t, used for day-ahead market offers MWh
xt,$buy market bid in time-step t $/MWh
xt,$sell market offer in time-step t $/MWh
xCVaR conditional value at risk $
xVaR value at risk $
xs,M maximum of loss minus the value at risk and zero, where loss is the

profit multiplied with negative one; used to define the conditional value
at risk

$

Table C.1: Sets, indices, parameters, and decision variables for Equations C.1, C.2
and C.3.
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Sets and Indices

s ∈ S integer scenarios for market prices and bidding strategies, S ≜
{1, . . . , S}

t ∈ T integer time-steps, T ≜ {1, . . . , T}

Parameters Units

BMW battery inverter capacity MW
BMWh battery energy capacity MWh
ft=1 fraction of battery energy capacity stored in first time-step unitless
πs,t market price in scenario s, time-step t $/MWh
ps,t probability of market price scenario s, unitless
β weighting factor for profit vs. CVaR in objective function unitless
α quantile for CVaR (for example α = 0.05 considers the 5% tail of the

loss)
unitless

Et,DAsell cleared energy sold obligations in day-ahead market MWh
Et,DAbuy cleared energy purchased obligations in day-ahead market MWh

Decision Variables Units

xs,t,charge power sent to the battery in scenario s, time-step t MW
xs,t,discharge power discharged from the battery in scenario s, time-step t MW
xs,t,MWh battery state of charge in scenario s, time-step t MWh
xs,t,Ebuy energy purchased in scenario s, time-step t MWh
xs,t,Esell energy sold in scenario s, time-step t MWh
zs,t,Ebuy binary decision to purchase energy in scenario s, time-step t MWh
zs,t,Esell binary decision to sell energy in scenario s, time-step t MWh
xcharge power sent to the battery in first time-step MW
xdischarge power discharged from the battery in first time-step MW
xEbuy energy purchased in first time-step, used for real-time market bid MWh
xEsell energy sold in first time-step, used for real-time market offer MWh
x$buy market bid in first time-step $/MWh
x$sell market offer in first time-step $/MWh
xCVaR conditional value at risk $
xVaR value at risk $
xs,M maximum of loss minus the value at risk and zero, where loss is the

profit multiplied with negative one; used to define the conditional value
at risk

$

Table C.2: Sets, indices, parameters, and decision variables for Equation C.4.
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[34] Garćıa-Santacruz, Carlos, Marano-Marcolini, Alejandro, and Mart́ınez-Ramos,
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