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KEY PO INT S

• The mechanosensory
ion channel Piezo1 is
the carrier molecule for
Er red cell antigens,
establishing a new
blood group system.

•Antibodies directed
against 2 novel high-
incidence Er antigens
are associated with
severe hemolytic
disease of the fetus and
newborn.
f by 
Despite the identification of the high-incidence red cell antigen Era nearly 40 years ago,
the molecular background of this antigen, together with the other 2 members of the Er
blood group collection, has yet to be elucidated. Whole exome and Sanger sequencing of
individuals with serologically defined Er alloantibodies identified several missense muta-
tions within the PIEZO1 gene, encoding amino acid substitutions within the extracellular
domain of the Piezo1 mechanosensor ion channel. Confirmation of Piezo1 as the carrier
molecule for the Er blood group antigens was demonstrated using immunoprecipitation,
CRISPR/Cas9-mediated gene knockout, and expression studies in an erythroblast cell line.
We report the molecular bases of 5 Er blood group antigens: the recognized Era, Erb, and
Er3 antigens and 2 novel high-incidence Er antigens, described here as Er4 and Er5,
establishing a new blood group system. Anti-Er4 and anti-Er5 are implicated in severe
hemolytic disease of the fetus and newborn. Demonstration of Piezo1, present at just a
few hundred copies on the surface of the red blood cell, as the site of a new blood group
system highlights the potential antigenicity of even low-abundance membrane proteins
guest on 1
and contributes to our understanding of the in vivo characteristics of this important and widely studied protein in
transfusion biology and beyond.
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Introduction
To date, the International Society of Blood Transfusion (ISBT)
recognizes 378 blood group antigens, of which 345 fall into one
of 43 recognized blood group systems.1 Only a small number of
antigens, of both high and low incidence, remain genetically
uncharacterized. Antigens that are related serologically, bio-
chemically, or genetically but do not fall into any recognized
blood group system are grouped together into collections (the
200 series).1 The Er blood group collection represents one such
group of antigens, for which the carrier molecule has yet to be
identified. The high-incidence Era antigen (208001) was first
identified in 1982,2 with its antithetical low-incidence antigen,
Erb (208002), identified 6 years later.3 The third antigen in the Er
collection, Er3 (208003), is defined by an antibody produced by
an Er(a–b–) individual and was proposed to represent a null
phenotype.4 Although anti-Era and anti-Erb have not been
implicated in either hemolytic transfusion reactions (HTR) or
hemolytic disease of the fetus and newborn (HDFN), anti-Er3
production has been associated with possible mild HTR and
may be clinically significant.4 However, clinical data are sparse
due to the rarity of these antibodies, so conclusions about
clinical significance are difficult to draw.

Piezo1 is a large mechanosensitive ion channel that acts as a
nonselective cation channel in a variety of tissues.5,6 It is encoded
12 JANUARY 2023 | VOLUME 141, NUMBER 2 135
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Figure 1. PIEZO1 gene and Piezo1 protein cartoons. (A) Scale representation of PIEZO1 gene (NM_001142864.4), highlighting exons 45 to 50 (shown in blue), which encode
the large extracellular loop (amino acids 2198-2431) of the Piezo1 protein. (B) Piezo1 protein (Uniprot Q92508) cartoon generated in Protter24 with large extracellular loop
(amino acids 2198-2431) shown in blue.
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by the PIEZO1 gene, comprising 51 exons and located on
chromosome 16q24.3.5,7 The protein consists of 36 trans-
membrane domains and 1 large extracellular domain (amino
acids 2198-2431), encoded by exons 45 to 50 (Figure 1), present
in themembrane as a homotrimer.8 Piezo1 is involved in a host of
crucial processes in the lungs, bladder, colon, and kidney, as well
as in sensing of blood flow in the vasculature system.9-12 It is
expressed in erythrocyte membranes,13 where it plays a vital role
in regulation of red blood cell volume during circulation.14 Rare
loss-of-function mutations in PIEZO1 have been shown to result
in generalized lymphatic dysplasia of Fotiou (GLDF; MIM
616843), inherited in an autosomal recessive manner.15 More
common, autosomal-dominant, gain-of-function mutations are
associated with dehydrated hereditary stomatocytosis (DHS;
136 12 JANUARY 2023 | VOLUME 141, NUMBER 2
MIM 194380). DHS presents with abnormal red cell
morphology13,16,17 and metabolism,18 in addition to defects in
red cell volume homeostasis,13,16,17 erythroid differentiation,19

reticulocyte maturation,20 and macrophage phagocytic activ-
ity.21 Both GLDF and DHS are associated with nonimmune fetal
hydrops and/or perinatal edema15,22; however, the pathogenic
mechanism is poorly understood.23

Although it plays a crucial role in mammalian viability (mice
deficient in Piezo1 die in utero)12 and red blood cell integrity
(lineage specific Piezo1 knockout mouse red blood cells are
overhydrated and fragile),25 the Piezo1 protein is present in only
a few hundred copies per red blood cell26 providing challenges
for both detection and functional manipulation.
KARAMATIC CREW et al



Table 1. List of samples included in this study

Sample* Phenotype Antibody Family Material available Sample origin (ethnicity)

P1 Er(a−b+) anti-Era N/A Red cells, serum, DNA IBGRL collection (unknown)

P2 Er(a−b+) anti-Era N/A Red cells, serum, DNA IBGRL collection (unknown)

P3 Er(a−b+) anti-Era N/A Serum, DNA IBGRL collection (unknown)

P4 Er(a−b+) anti-Era N/A Serum, DNA IBGRL collection (unknown)

P5 Er(a−b+) anti-Era N/A Serum, DNA IBGRL collection (unknown)

P6 Er(a−b+) anti-Era N/A Red cells, serum, DNA IBGRL collection (unknown)

P7 Er(a+b+) None N/A Red cells, DNA IBGRL collection (unknown)

P8 Er(a+b+) None N/A Red cells, DNA IBGRL collection (unknown)

P9 Er(a+b+) None N/A Red cells, DNA IBGRL collection (unknown)

P10 Er(a−b−) anti-Er3 N/A Red cells, serum, DNA IBGRL collection (White)

P11 Er(a+wb−) anti-Er-related P11-F1, P11-F2 Red cells, serum, DNA Germany (unknown)

P12 Er(a+wb−) anti-Er-related P12-F1_F11 Red cells, serum, DNA Kuwait (Middle Eastern)

P13 Er(a+b−) anti-Er-related P13-F1, P13-F2 Red cells, serum, DNA United Kingdom (Black African)

*For further sample information, including clinical history (where available) and information on family members, see supplemental Table 1.
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In this study, we identify the red blood cell ion channel Piezo1
as the elusive carrier molecule for the Er blood group antigens.
Using exome sequencing of individuals with serologically
defined Er-related alloantibodies, we demonstrate missense
and nonsense mutations in PIEZO1, segregating with Er
phenotype. Through CRISPR/Cas9-mediated gene knockout in
an erythroid cell line, expression studies, proteomics, electro-
physiology, and extensive serological characterization, we
define the molecular bases of the currently recognized antigens
of the Er collection (Era, Erb, and Er3), establishing Er as a new
blood group system. We also provide evidence for 2 further
high-incidence antigens of the Er system (described here as Er4
and Er5) and present data regarding clinical significance of anti-
Er4 and anti-Er5.

Methods
Samples
Blood samples were procured, and the study was conducted
according to NHS Blood and Transplant (NHSBT) Research and
Development governance requirements and ethical standards
and in accordance with the Declaration of Helsinki. Ethics
approval was granted by National Health Service Health
Research Authority, Bristol Research Ethics Committee refer-
ence 12/SW/0199.

Samples from 6 unrelated individuals serologically typed as
Er(a–b+), 3 individuals typed as Er(a+b+), and 1 individual
typed as Er(a–b–) were obtained from IBGRL cryopreserved
reference collections. A further 3 individuals were included due
to variant expression of Er antigens and/or identification of
apparently Er-related antibodies in their serum, together with a
total of 15 family members of these individuals (Table 1;
supplemental Table 1, available on the Blood website).
PIEZO1 CARRIES ER RED BLOOD CELL ANTIGENS
Ethylenediaminetetraacetic acid (EDTA) peripheral blood sam-
ples from voluntary NHSBT blood donors, who consented to
the use of their blood for research purposes, were used as
controls.

Serologic testing
Standard agglutination techniques were used for investigation
of reactivity of all Er-related antibodies and red blood cell (RBC)
phenotyping using anti-Era (from P1, P2, P3, and P6), anti-Erb

(IBGRL reference collection), and anti-Er3 (from P10). For the
indirect antiglobulin test, a low-ionic strength saline tube
method was used, where the secondary antibody was poly-
specific antihuman globulin (Millipore). Anti-Er eluates were
prepared using Gamma ELU-KIT II rapid acid elution kit
(Immucor). Agglutination was scored on a scale of 0 (negative)
to 5+ (strongest positive). For papain (NHSBT Reagents) treat-
ment of RBCs, 1 volume of washed packed RBCs was incubated
with 2 volumes of papain for 3 minutes, according to the
manufacturer’s instructions. Following incubation, RBCs were
washed a minimum of 4 times with phosphate buffered saline
(PBS) until wash supernatant was clear.

Next-generation sequencing library preparation
Genomic DNA (gDNA) was extracted using a DNA isolation kit
according to the manufacturer’s instructions (QIAamp DNA
Blood Mini Kit; Qiagen). Exome sequencing was carried out
using Nextera Rapid Capture Exome kit (Illumina), following the
manufacturer’s instructions. Paired-end (2 × 87 cycle) single-
plex sequencing was carried out on a MiSeq (Illumina). Sec-
ondary data analysis, including alignment of reads against
human reference genome hg19, was carried out using MiSeq
Reporter v2.5.1 (Illumina). Variants were called and annotated
using Illumina BaseSpace Variant Interpreter. Homozygous or
12 JANUARY 2023 | VOLUME 141, NUMBER 2 137
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compound heterozygous missense variations with allele fre-
quency <1% were considered as potential causes of loss of Er
high-incidence antigen expression. Selected alignments were
visualized using Integrative Genomics Viewer v2.8.13.27

Genetic analysis of PIEZO1
To confirm mutations identified using next-generation
sequencing, polymerase chain reaction (PCR) primers for
amplification of 51 PIEZO1 exons were designed using a
primer designing tool (Primer-BLAST), with Homo sapiens
chromosome 16, GRCh38.p13 Primary Assembly
(NC_000016.10) as reference. Primer sequences and PCR
conditions are shown in supplemental Table 2. Sanger
sequencing of PCR products was carried out with forward and
reverse PCR primers using a capillary automated DNA
sequencer (3130xL Genetic Analyser; Applied Biosystems).
Exon sequences were aligned to PIEZO1 reference using
SeqScape software v.3 (Applied Biosystems).
m
 http://ashpublications.org/blood/article-pdf/141/2/135/2073258/blood_bld-20
Lentiviral transduction of Bristol erythroid
line–adult (BEL-A) cells
For vector preparation, HEK293T cells (Clontech) were cultured
in Dulbecco’s Modified Eagle Medium containing 10% fetal calf
serum (Gibco). Cells were seeded in 10 cm dishes, and calcium
phosphate was transfected using lentiviral packaging vectors
pMD2 (5 μg) and pPAX (15 μg) and plentiCRISPRv2 PIEZO1
gRNA (CATCCCCAACGCCATCCGGC) (Genscript) or XLG3 for
expression of PIEZO1 open reading frames (20 μg). PIEZO1
gene synthesis and site-directed mutagenesis was performed
by Genscript. After 24 hours, Dulbecco’s Modified Eagle
Medium was removed and replaced with 5 mL fresh media. The
virus was harvested after 48 hours, concentrated using the
Lenti-X concentrator (Clontech) and stored at −80◦C.

BEL-A cells28 were cultured and transduced as previously
described.29
22-016504-m
ain.pdf by guest on 12 July 2024
Fluorescence-activated cell sorting (FACS) based
on Piezo1 function
Piezo1 function was assessed using Yoda1, a small molecule
Piezo1 selective agonist that induces Piezo1-mediated influx of
calcium ions.30 Pretreatment of cells with calcium-responsive
fluorescent dye FLUO4, before a challenge with Yoda1,
enables detection of functional Piezo1 as assayed by an
increase in fluorescent intensity of FLUO4, indicative of calcium
influx via this channel. BEL-A cells transduced with plenti-
CRISPRv2 containing a guide targeting PIEZO1 exon 5, were
loaded with 5 μM FLUO4 in Stemspan SFEM (StemCell Tech-
nologies) containing expansion growth factors for 30 minutes at
37◦C. Cells were pelleted and resuspended in Iscove’s Modi-
fied Dulbecco’s Medium containing 2% fetal calf serum for
FACS sorting. Immediately before FACS, Yoda1 (Sigma) was
added to a final concentration of 20 μM for 1 minute and cells
were subsequently sorted or screened on the basis of their
response to the Yoda1 stimulus. Cells were FACS sorted into a
positively responsive population, where Piezo1 was exoge-
nously expressed. For derivation of PIEZO1 knockout (KO)
clones, CRISPR-targeted cells were blind sorted into individual
clones and functionally screened for KO on the basis of the lack
of Yoda1 response.
138 12 JANUARY 2023 | VOLUME 141, NUMBER 2
Flow cytometry
For flow cytometry, 7.5 × 104 BEL-A cells resuspended in
PBSAG (PBS + 1 mg/mL BSA, 2 mg/mL glucose) + 1% BSA
were labeled with primary human antibody eluates at indicated
dilutions for 30 minutes at 4◦C. Cells were washed in PBSAG,
incubated for 30 minutes at 4◦C with Alexa647-conjugated
antihuman secondary antibody, and washed. Data were
acquired on a MacsQuant VYB Analyser (Miltenyi Biotec).
Propidium iodide was used for exclusion of dead cells. For
Yoda1 screening of transduced and sorted populations, meth-
odology as described for FACS was employed.

RBC membrane preparation and
immunoprecipitation
RBC membrane preparation and immunoprecipitation were
performed as previously described.31 Immune precipitates were
prepared from test Er(a+b–) donor RBCs and negative control
Er(a–b+) (P1) RBCs using anti-Era plasma from P3 (5:1 ratio of
plasma to cells). Proteomic analysis was performed at the Uni-
versity of Bristol Proteomics Facility (detailed in supplemental
Methods, available on the Blood website).

Automated patch clamp analysis
Piezo1 channel activity in BEL-A cells overexpressing each
individual Piezo1 variant (Glu2392Lys, Gly2394Ser,
Glu2407Gln, Glu2407Lys, Arg2245Gln) and wild-type Piezo1
was assessed using a 384-well planar patch clamp (SyncroPatch
384PE; Nanion Technologies) as previously described32 with
modifications detailed in supplemental Methods (available on
the Blood website).

Homology modeling and molecular dynamics
calculations
A homology model of amino acids 570 to 2521 was created
using mouse Piezo1 homolog experimental coordinates
derived from cryo-EM (PDB 5Z10)8 with human Piezo1 as a
threading sequence using automated SWISS-MODEL server,33

resulting in an overall sequence identity of 82% for this
region. A combined lipid-protein model was generated and
analyzed as described in detail in supplemental Methods
(available on the Blood website).

Results
Serologic characterization of Er alloimmunized
individuals
Comprehensive serologic cross-compatibility testing was car-
ried out with samples from known Er(a–b+), Er(a+b+) and
Er(a–b–) individuals, plus the additional 3 individuals (and family
members) included in this study due to variant Er expression
and/or identification of apparently Er-related antibodies in their
serum (Table 1; supplemental Table 1, available on the Blood
website). Cross-compatibility testing (Table 2) clearly shows the
expected reactivity of anti-Era, anti-Erb and anti-Er3 with
Er(a–b+), Er(a+b+) and Er(a–b–) red cells. The antibodies made
in unrelated individuals P11 and P12 were incompatible with
Er(a–b+) and Er(a–b–) cells, but their red cells were mutually
compatible, and compatible with cells from 4 siblings of P12.
This indicates that P11 and P12 antibodies define the same
novel antigen, designated Er4 in this study, and these individ-
uals (and 4 compatible siblings) have the Er4– phenotype. The
KARAMATIC CREW et al



Table 2. Results of serologic cross-compatibility testing of Er samples

RBCs

Anti-

PhenotypeEra Era Era Erb Er3 Er4* Er4* Er5*

P1 P2 P3 P10 P11 P12 P13 Era Erb Er3 Er4* Er5*

P1 0 + + + + neg pos pos pos pos

P2 0 0 0 + + + + + neg pos pos pos pos

P6 0 0 + + + + + neg pos pos pos pos

P7 + + + + + pos pos pos pos pos

P10 0 0 0 0 + + + neg neg neg pos pos

P11 w 0 w 0 0 wk neg wk neg pos

P11-F1 + + + pos neg pos pos pos

P11-F2 + 0 + + pos neg pos pos pos

P12 w 0 + 0 0 wk neg pos neg pos

P12-F1 + + 0 0 + pos neg pos neg pos

P12-F2 + + + 0 + 0 0 + pos neg pos neg pos

P12-F3 + + 0 0 + pos neg pos neg pos

P12-F4 + + + 0 + 0 0 + pos neg pos neg pos

P13 + + + + 0 pos neg pos pos neg

P13-F2 + pos neg pos pos pos

Empty cells indicate not tested; neg, negative; pos, positive; wk, weak; actual phenotype shown as bold text; inferred phenotype shown as italic type.

*Er4 and Er5 defined in this study.
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antibody present in the serum of P13 was found to be incom-
patible with Er(a–b+), Er(a–b–), and Er4– cells. This antibody
defines a different novel antigen, designated Er5 in this study,
and the red cells of P13 are Er5–.

Determination of the genetic basis of Era and Erb

antigens
To uncover the genetic basis of the Er antigens, DNA from 2
unrelated Er(a–b+) individuals (P1, P2) was subjected to whole
exome sequence analysis. Initial data filtering was used to
search for genes carrying rare (frequency <0.01), homozygous
missense mutations, consistent with observed lack of the high
incidence Era antigen in both individuals. No variant fitting
these criteria was shared by both individuals (supplemental
Table 3, available on the Blood website); however, 1 rare
homozygous missense PIEZO1 variant in P1 was found to be
heterozygous in P2, so PIEZO1 was selected for further analysis.
P1 was homozygous for 7180G>A (Gly2394Ser), in exon 50 of
PIEZO1 (rs201950081; gnomAD freq. 0.0012), while P2 carried
this same mutation in compound heterozygosity with a second
nearby mutation, 7174G>A (Glu2392Lys; rs528448732; gno-
mAD freq. 0.0004). Mutations were confirmed by Sanger
sequencing, and a further 4 unrelated Er(a–b+) samples (P3-P6)
were also homozygous for 7180G>A. Three Er(a+b+) samples
(P7-P9) were heterozygous for this mutation, consistent with
7180G>A encoding the Era/Erb polymorphism (7180G; Gly2394
associated with Era, 7180A; Ser2394 associated with Erb)
PIEZO1 CARRIES ER RED BLOOD CELL ANTIGENS
(Figure 2A; supplemental Table 4, available on the Blood
website).

P10, an Er(a–b–) individual, was shown to be compound het-
erozygous for 7174G>A (Glu2392Lys) and a nonsense mutation
in exon 38 of PIEZO1 (5289C>G; Tyr1763Ter; rs72811487;
gnomAD freq. 0.0001). The 7174G>A mutation, also observed
in P2, appears to prevent expression of Era antigen when car-
ried in cis with wild-type 7180G (Figure 2A; supplemental
Table 4, available on the Blood website).

Genetic investigation of families with suspected Er
variant phenotype
Three further individuals with suspected Er-related antibodies,
as well as their respective family members (supplemental
Table 1, available on the Blood website), were also subjected
to Sanger or whole exome sequencing of PIEZO1. Individual
P11, with predicted Er variant phenotype (Er4–), was found to
carry a rare homozygous missense mutation (7219G>C;
Glu2407Gln; rs200291894; gnomAD freq. 0.0001) in exon 50 of
PIEZO1, while her children (P11-F1 and P11-F2) were hetero-
zygous for this mutation (Figure 2B; supplemental Table 4,
available on the Blood website).

A similar rare homozygous missense mutation, affecting the
same PIEZO1 nucleotide but resulting in a different amino acid
substitution, was observed in P12 (7219G>A; Glu2407Lys;
12 JANUARY 2023 | VOLUME 141, NUMBER 2 139
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Figure 2. Mutations in PIEZO1 gene (exons 45-50) encoding amino acid substitutions in Piezo1 protein extracellular loop. (A) PIEZO1 genotypes observed in Er(a−b+)
and Er(a−b−) individuals. PIEZO1 exons 45 to 50 are shown (regions coding for extracellular domain shown in blue). Mutations are highlighted in pink (7180G>A) and yellow
(7174G>A), seen in homozygous, heterozygous, and compound heterozygous states in individuals tested as shown. Individual P10 has nonsense mutation in exon 38 (not
shown) predicted to encode truncated protein (exons colored gray). (B) PIEZO1 alleles observed in Er variant individuals. PIEZO1 exons 45 to 50 are shown. Mutations are
highlighted in purple (7219G>C), green (7219G>A), and brown (6734G>A). All mutations were homozygous in the indicated individuals. (C) All mutations shown in panels A
and B encode amino acid substitutions in the extracellular domain of Piezo1 protein (amino acids 2198-2431) as shown (colors as in 2A and 2B).
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rs200291894; gnomAD freq. 0.0001). This mutation was
demonstrated to segregate in 11 tested family members (four
7219A homozygotes were serologically compatible while 5
heterozygotes and 2 wild-type 7219G were incompatible;
supplemental Figure 1, available on the Blood website).

One further mutation was identified in PIEZO1 exon 46
(6734G>A; Arg2245Gln; rs2290901; gnomAD freq. 0.0033) as
the potential causative mutation in an HDFN case, carried in the
homozygous state in the alloimmunized mother P13 (Er5–) and
heterozygous state in her child (while the father showed wild-
type sequence at this position).

All PIEZO1 mutations identified by exome/Sanger sequencing
are detailed in Figure 2 and supplemental Table 4 (available on
the Blood website). As PIEZO1 encodes a known trans-
membrane protein, expressed on erythrocytes, with all
observed mutations predicted to encode amino acid sub-
stitutions falling within the extracellular region of the protein
(amino acids 2198-2431; Figure 2C), this was considered a good
candidate for the carrier of the Er blood group antigens.

Disruption of PIEZO1 ablates Er antibody binding
to erythroid cells
To create a cellular model for establishing specificity of anti-Er
alloantibodies for Piezo1, CRISPR-mediated gene editing was
140 12 JANUARY 2023 | VOLUME 141, NUMBER 2
applied to BEL-A erythroblast cell line, generating a novel
human erythroid PIEZO1 KO cell line. Expanding BEL-A cells
were transduced with a lentiviral vector expressing Cas9 and a
guide targeting PIEZO1 exon 5. Because endogenous surface
Piezo1 expression was not detectable with commercially avail-
able antibodies, a functional assay using FLUO4 and Yoda1
stimulus was used to screen for KO (Yoda1 unresponsive) clones
(supplemental Figure 2A, available on the Blood website).
Sequencing of a selected clone confirmed presence of a bial-
lelic disruptive PIEZO1 mutation; 354_361delCATCCGGC
(Ile119GlyfsTer4) (supplemental Figure 2B, available on the
Blood website), confirming both genotypic and functional
Piezo1 knockout.

Flow cytometry using anti-Era, isolated from alloimmunized
Er(a–b+) individual P3, was able to detect antibody binding to
unmodified BEL-A cells that was completely ablated in PIEZO1
KO cells, confirming Piezo1 as the carrier molecule for the Era

antigen (Figure 3, A1).

Expression of Piezo1 mutants confirms Er antigen
loci
To determine specificity of antibodies eluted from sera of
individuals carrying different PIEZO1 mutations, lentiviral con-
structs were generated overexpressing full-length wild-type
Piezo1, as well as Piezo1 with 1 of the following mutations
KARAMATIC CREW et al
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Figure 3. Anti-Er alloantibodies are specific for antigenic sites on Piezo1. Flow cytometry histograms illustrate cell surface labeling of indicated wild-type or mutant Piezo1
constructs overexpressed in an endogenous Piezo1 knockout (KO) BEL-A cell line using antibodies eluted from plasma of individuals (P3, row A; P11, row B; P12, row C; and
P13, row D) with mutations in Piezo1 as labeled. BEL-A Piezo1 KO cells and endogenous Piezo1 are shown in column 1, with overexpressed wild-type Piezo1 in column 2.
Columns 3 to 7 show overexpressed mutant Piezo1 constructs as labeled. Results are summarized in the grid below histograms. O-E WT, overexpressed wild-type; +,
positive; −, negative; (+), weakly positive.
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individually introduced: Glu2392Lys, Gly2394Ser, Glu2407Gln,
Glu2407Lys, Arg2245Gln. Constructs were transduced into the
endogenous Piezo1 KO BEL-A clone, and successfully trans-
duced populations were selected by FACS sorting of Yoda1
responsive cells. In all cases, mutated Piezo1 retains Yoda1
responsivity (supplemental Figure 3, available on the Blood
website).

Antibody eluates produced from 4 individuals carrying different
PIEZO1 mutations—P3 (Gly2394Ser), P11 (Glu2407Gln), P12
(Glu2407Lys), and P13 (Arg2245Gln)—were tested by flow
cytometry against unmodified and Piezo1 KO BEL-A cells, as
well as against cells overexpressing wild-type and each mutant
Piezo1 construct.

Only P3 and P11 eluates were able to weakly detect endoge-
nous BEL-A Piezo1 (Figure 3, column 1); however, all eluates
PIEZO1 CARRIES ER RED BLOOD CELL ANTIGENS
showed strong positive reactions with overexpressed wild-type
Piezo1 (Figure 3, column 2), with specificity of antibody binding
to Piezo1 demonstrated by absence of labeling of the KO clone
in each case. Each tested eluate gave expected negative
reactions with cells overexpressing Piezo1 harboring their cor-
responding mutation.

P3 eluate (anti-Era, Figure 3, row A) reacted strongly with
cells overexpressing Piezo1 harboring either Glu2407Gln,
Glu2407Lys, or Arg2245Gln mutation, while negative reactions
were observed with Gly2394Ser and Glu2392Lys. This pattern
of reactivity was replicated using a further example of anti-Era

from P2 (data not shown). Anti-Era reacted with all Piezo1 con-
structs expressing Gly2394, demonstrating that this residue is
required for Era expression, while Ser2394 presumably defines
the antithetical Erb antigen. The Glu2392Lys mutation appears
to result in absence of expression of Era (despite the presence
12 JANUARY 2023 | VOLUME 141, NUMBER 2 141
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of Gly2394), as demonstrated by lack of reactivity with either
anti-Era eluate (P3 or P2).

P11 and P12 eluates (Figure 3, rows B and C) both reacted
strongly with Piezo1 harboring Glu2392Lys or Gly2394Ser, as
well as with Arg2245Gln mutant cells, demonstrating that these
antibodies recognize a different antigen to Era, here defined as
Er4. P11 and P12 both have mutations affecting the same amino
acid residue of Piezo1 (Glu2407Gln and Glu2407Lys, respec-
tively). These individuals appear serologically compatible, and
P11 eluate failed to react with Glu2407Lys mutant cells. Inter-
estingly, however, P12 eluate showed a markedly reduced, but
detectable, reactivity with Glu2407Gln Piezo1 (Figure 3, C5).
This likely reflects reduced disruption to the epitope brought
about by a Glu>Gln mutation compared with the Glu>Lys
mutation in P12.

P13 eluate (Figure 3, row D) robustly detected each of the other
mutated Piezo1 proteins (Glu2392Lys, Gly2394Ser,
Glu2407Gln, Glu2407Lys), showing that it recognizes a further
different antigen from Era or the proposed Er4 antigen, defined
here as Er5.

Similar results were obtained from overexpression studies in a
second Piezo1 KO BEL-A clone (supplemental Figure 4, avail-
able on the Blood website).

Immunoprecipitation using anti-Era

Further evidence for Piezo1 carrying the Er antigens was
obtained by immunoprecipitation of red cell membranes pre-
pared from test Er(a+b–) RBCs and negative control Er(a–b+)
RBCs, using human anti-Era (from P3). Proteomic analysis,
comparing test immunoprecipitation to negative control,
showed Piezo1 to be the most overrepresented protein in the
test immunoprecipitation by a considerable margin (score ratio
test: negative >500; supplemental Table 5, available on the
Blood website). These data indicate that anti-Era can selectively
bind Piezo1 in Er(a+) cells, but not in Er(a–) RBCs.

Functional characterization of Piezo1 mutants
using high-throughput automated patch clamp
To investigate potential functional effects, Piezo1 current
responses from mutant Piezo1 constructs overexpressed in BEL-
A cells were compared with wild-type Piezo1 constructs. Whole
cell currents were recorded in response to a voltage ramp
protocol (−100 mV to 80 mV, Figure 4A), which elicited an
outward rectifying current (Figure 4A-B red trace/symbols).
Yoda1 was applied to enhance activity, triggering current
amplitude increases at both −100 mV and 80 mV, indicative of
nonselective cation channels such as Piezo1 (Figure 4A-B, blue
trace/symbols). Subsequent addition of GdCl3, a nonspecific
blocker of mechanosensitive channels, blocked the current
(Figure 4A-B, green trace/symbols) as previously described.32

Current amplitudes in response to Yoda1 showed no signifi-
cant difference in magnitude (Figure 4C) or percentage of
responding cells (supplemental Figure 5A, available on the
Blood website) between mutants and wild types, indicating
normal Piezo1 functionality for all mutants. To further isolate
Piezo1 currents, experiments were repeated in the presence of
TRAM-34, a specific Gardos channel blocker. Yoda1-induced
currents were amplified but also exhibited no significant
142 12 JANUARY 2023 | VOLUME 141, NUMBER 2
differences between mutant and wild-type Piezo1 (Figure 4D;
supplemental Figure 5B, available on the Blood website).

Homology modeling of Er antigenic sites on Piezo1
protein
Molecular models of wild-type and mutant Piezo1 were
analyzed by molecular dynamic calculations. Wild-type Piezo1
and an overview of the locations of Er antigenic determinants
are shown in Figure 5. Era and Erb are contained in an apical
loop extending from the center of the trimer (Figure 5A-B). To
assess potential impacts of substitutions, the Era (Gly2394;
Figure 5C), Erb (Ser2394; Figure 5D), and Glu2392Lys
(Figure 5E) substitutions were analyzed using implicit solvent
models (as described in supplemental Methods, available on
the Blood website). A trajectory of 100 ns calculation time was
subsequently analyzed for potential impact of substitutions on
presentation of combined antigenic sites. Clustering restricted
to the loop structure presented by amino acids 2384 to 2408 (so
as not to bias clustering results toward dominating conformers
in distal regions of the protein complex) was compared for the 3
trajectories. The highest populated cluster is highlighted for
comparison in Figure 5C-E. The very apical section of the trimer
extending to the extracellular side is made up entirely from the
combined sites of the 3 exposed loops encompassing amino
acids E2392QGAGATG2399. Er4 (Glu2407Lys) is located at the
end of a beta sheet connecting to the Era/Erb antigenic loop
region. Er5 (Arg2245Gln) is in a short ɑ-helical segment at the
membrane-proximal side of the extracellular trimeric domain (as
indicated in Figure 5B).

The loop conformations encompassing Era/Erb were observed
to give rise to considerably divergent loop structures
(supplemental Figure 6, available on the Blood website). Era

was observed to exhibit similar conformers in the most highly
populated clusters across the trajectory, whereas Erb was seen
to be populated by more divergent conformers. Substitution of
Glu2392 by lysine may lead to relatively divergent loop for-
mations relative to Era/Erb. This may be due to potential
reshuffling of salt bridges in this apical region of the trimer. In
particular, formation of a new salt bridge between Lys2392 and
Glu2402, as well as Glu2410, was observed, replacing existing
salt bridges for the 2 glutamic acid residues in the wild-type
trajectory (supplemental Figure 7, available on the Blood
website).
Discussion
Nearly 40 years have passed since the high-incidence red blood
cell Era antigen was first described, and throughout this period
its molecular basis has remained elusive. In this study we
demonstrate the mechanosensitive ion channel Piezo1 as the
site of 3 red blood cell antigens—Era, Erb, and Er3—and further
identify 2 novel high-incidence antigens, described here as Er4
and Er5. Our findings show that Gly2394 is required for
expression of the high-incidence Era antigen, while Ser2394
encodes the antithetical low-incidence antigen, Erb. Modeling
shows this amino acid residue to be on an exposed apical
protein loop and reveals significant predicted differences in
structure between Gly2394 and Ser2394. Proposed novel high-
incidence antigens Er4 and Er5 are associated with Glu2407
and Arg2245 in Piezo1, respectively. Modeling is consistent
KARAMATIC CREW et al
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with these residues being antigenic, with the Er4 antigenic site
adjacent to the Era/Erb loop region, and Er5 located in a
membrane-proximal extracellular domain. Our data support the
elevation of Er from blood group collection to blood group
system status.

Lack of the high-incidence Er3 antigen does not appear to be
associated with a true null phenotype as originally proposed4

but rather represents lack of both Era and Erb antigen expres-
sion. The Er(a–b–), Er3–, individual (P10) genetically character-
ized in this study expresses a variant Piezo1 protein, carrying
both Er4 and Er5. Although 1 allele is predicted to encode a
truncated protein, lacking the external loop region, and
consequently expressing no Er antigens, the other allele in this
patient encodes wild-type Gly2394 (Era) with a nearby
Glu2392Lys mutation. Modeling suggests this mutation causes
PIEZO1 CARRIES ER RED BLOOD CELL ANTIGENS
a significant conformational change around the Era epitope,
resulting in the serologically observed lack of Era expression
(without altering expression of Er4 or Er5). There are likely to be
other genetic backgrounds resulting in Er(a–b–) phenotypes,
and the specificity of antibodies historically known as anti-Er3
may be heterogeneous. It is unclear whether complete lack of
Piezo1 is compatible with life, as although mice deficient in
Piezo1 die in utero,12 patients with homozygous PIEZO1
nonsense mutations have survived to adulthood.15 As these
would be predicted to result in truncated proteins lacking the Er
antigen domain, the study of such patients could greatly aid
characterization of Er antigen expression and the role of Er
antibodies in transfusion.

PIEZO1 is a highly polymorphic gene, implicated in multiple
diseases,13,15-17,20,22,23 with a host of additional nonpathogenic
12 JANUARY 2023 | VOLUME 141, NUMBER 2 143



A B

Er5

Er4
Era/Erb

D

Erb

C

SIDE

Era

TOP

E

E2392K

Figure 5. Modeling of Piezo1 protein and location of
Er antigenic sites. A homology model for the human
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illustration for simplicity. The residues encompassing the
antigenic sites are shown as spheres (colored by atom
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predicted by molecular dynamics calculations. The
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trimer in beige. The conformation (in green) is repre-
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panels. (C) Era representative loop. (D) Erb representative
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SNPs reported. A recent study estimated that as many as 1 in
8000 Americans may present symptoms of DHS.34 DHS most
commonly results from heterozygous pathogenic gain of func-
tion mutations in PIEZO1, although extremely rare homozygous
mutations have also been reported.16,35 Interestingly, several
studies using targeted next-generation sequencing hereditary
anemia gene panels have associated Gly2394Ser, identified
here as the antigenic site of Era/Erb, with DHS.36-38 However,
there is no suggestion in the Er literature that any RBC
pathology or morphologic abnormalities are associated with the
rare Er(a–b+) phenotype. All Er(a–b+) and Er(a+b+) samples in
this study were archive material, and thus no data are available
to ascertain any potential functional significance of this
mutation.

The Glu2407Gln mutation, associated with Er4 antigen
expression in this study, has also been reported to be patho-
genic,38 and the potential functional significance of the other
variants identified (Glu2407Lys; Er4 and Arg2245Gln; Er5)
requires further investigation. Unfortunately, fresh patient blood
samples were unavailable to perform ektacytometry and
obtaining relevant clinical data was challenging. Data from
patients P12 (and family) and P13 are included in supplemental
Tables 6 and 7 (available on the Blood website; P11 data
unavailable as patient is deceased). Interpretation is compli-
cated by the existence of additional underlying conditions in
both P12 and P13. P12 homozygous variant family members
show no signs of macrocytosis or reticulocytosis, but there
is a tendency toward increased mean cell hemoglobin
144 12 JANUARY 2023 | VOLUME 141, NUMBER 2
concentration, possibly indicating some degree of red cell
dehydration. P13 red cells were hypochromic and microcytic,
consistent with a coincident ɑ-thalassemia trait. Blood film
examination of both P12 and P13 showed no evidence of sto-
matocytes, and no clinical or laboratory features of hemolysis
were observed. No electrophysiologic abnormalities were
detected in BEL-A cells overexpressing any of the Piezo1 vari-
ants as compared with wild-type, suggesting that these variants,
although antigenic, may not be of particular relevance for
Piezo1 function. However, an associated DHS phenotype
cannot be conclusively excluded, and the possibility of an
overlap between Er antigen expression and red cell morpho-
logic abnormalities warrants further investigation.

The Gly2394Ser, Glu2407Gln, and Glu2407Lys mutations are
rare in all populations (supplemental Table 8, available on the
Blood website), with the highest frequency being that of
Gly2394Ser in the European population (freq. 0.002). Homo-
zygosity for these variants, as required for loss of associated
high-incidence Er antigens, is predicted to be extremely rare, as
supported by scarcity of reported alloimmunization events.
Interestingly, Arg2245Gln, although rare (freq. 0.003), is
significantly overrepresented in African populations (freq. 0.03),
so the Er5–phenotype (and associated alloimmunization events)
will be more frequent in patients of African descent. This
observation may also point to a wider functional effect of this
mutation. Although there have been conflicting reports,39

studies report that a gain-of-function PIEZO1 mutation,
E756del, common in African populations, causes red cell
KARAMATIC CREW et al
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dehydration and/or is protective against malaria.40,41 Similar
protective variants may be under positive selection in African
populations (and thus overrepresented), so the role of the
Arg2245Gln variant requires further study.

As reported cases of Er alloimmunization are rare, there remains
sparse evidence to conclusively establish or exclude a role of
such antibodies in HTR or HDFN. The majority of Er antibodies
in this study were identified during pregnancy, with 2 patients
presenting with apparent severe HDFN, resulting in fetal/
neonatal death (P12; Er4 and P13; Er5; supplemental Table 1,
available on the Blood website). Interestingly, P12 had 5
uneventful pregnancies, only experiencing complications in her
sixth pregnancy, following a potentially immunizing transfusion
event 2 years previously. Therefore, anti-Er4 and anti-Er5
appear clinically significant, although the reported association
of PIEZO1 mutations with nonimmune hydrops fetalis15,23 adds
complication to unpicking any role of Er antibodies in HDFN.

Considering the high level of polymorphism of PIEZO1,
including nearly 200 missense mutations reported within the
antigenic extracellular region of the protein, it seems likely that
further antigens, of both high and low incidence, will be added
to the Er system in the future. Further investigation of the amino
acid changes identified in P11 and P12 may be warranted
because, although these individuals are serologically compat-
ible, the flow cytometry data showed an intriguing hint of a
difference in antibody reactivity.

In a relatively short period of time after its discovery, under-
standing of the structure, mechanism, and function of Piezo1
has burgeoned, with important functions established within red
cell morphology, erythropoiesis, reticulocyte maturation, and
susceptibility to malaria infection. Demonstration of Piezo1 as
the carrier molecule for the long recognized Er red cell antigens
establishes a new blood group system and further highlights the
importance of this protein. Piezo1 is present at only a few
hundred copies on the surface of the red cell,26 reminding us
that low copy number is a barrier to neither functional impor-
tance nor antigenicity. The occurrence of fatal HDFN associated
with antibodies directed against Er antigens highlights their
clinical relevance, elucidating another facet of the importance
of Piezo1 in human biology.
guest on 12 July 2024
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