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Abstract

Conventional distribution protection schemes may not be suitable for evolving and future networks due to the rapid increase in
distributed energy resources. This paper presents a review of selected novel protection principles for distribution networks and
proposes a new and effective protection technique using only current measurements, based upon comparison between pre- and
during-fault current phasors. This comparison process only requires low-cost communication systems for intermittent data
transmission between measurement points. An overview of potential communication solutions is also contained in the paper.
The operation of the method is tested and validated using simulated case studies of different scenarios, which demonstrate that
the proposed scheme is highly effective in detecting and isolating faults, thus presenting a promising solution for protection of

future active distribution networks.

1 Introduction

Electrical power systems are continuously evolving — the
increasing demand for sustainable low carbon energy has
resulted in the penetration of many relatively small renewable
energy resources (RES), including distributed generation (DG)
units and energy storage technologies, many of which are
connected to power distribution networks. In addition to
providing clean energy, RES can also provide many benefits
such as increases in system reliability and efficiency, decreases
in peak overall power demand on networks, improvements in
power quality and reliability, and reductions in distribution
losses [1]. However, this evolving situation also leads to a
number of protection challenges being presented [2]. In
microgrids, where the power flow can be bi-directional due to
connection of DG units, fault levels depend on the operational
mode, type, number, and capacity of DGs [4], as well as the
infeed from any grid connection(s) (which may not always be
connected and could also vary in strength). In addition, fault
current magnitudes contributed by inverter-interfaced DGs can
be limited (typically to less than 150% of their rated current
[4]), and may also present highly distorted waveforms,
particularly in the initial time following fault inception, which
can lead to difficulties in fault detection [5]. Thus,
conventional protection devices may not detect faults for all
situations in future networks, or if they do, the operating time
could be much longer than usual [1]. As a result, directional
protection based upon voltage and current polarity
measurements may be more appropriate for future electrical
networks.

However, using both volage and current as inputs for fault
detection may require more measurements and could require
more computation power. Including voltage measurements
(typically requiring three voltage transformers for three-phase
system) can increase the expense associated with protection
[6]. Moreover, if the fault location is very close to the relay

measuring point, the voltage polarisation function may be
compromised as the voltage is very low, leading to difficulties
in establishing direction/phase for such ‘close-in’ faults [7].

During fault conditions, current phasor values typically change
considerably from pre-fault values due to drastic changes in
system impedances. Hence, current-only directional principles
are of interest and potentially beneficial for future power
systems (with high penetrations of DG and bidirectional and
highly variable during-fault power flows). The work reported
in [8] proposes fault detection methods based on current
directions measured from signals in the time-domain.
However, the results of measuring signals in the time-domain
include noise, harmonics, and possibly frequency deviations.
This can mean that such protection systems may mal-operate
in some cases. In addition, the paper also stresses that the
direction of system power flow in normal operating condition
must be known prior to faults. In [6, 9], other schemes for
measuring the current direction e.g., using Kalman filters and
Discrete Fourier Transforms (DFT), are described as
alternatives to processing signals using time-domain
computation. However, Kalman filters may be unable to
remove all noise, harmonics, and may be susceptible to
frequency deviations. The results from Kalman filter may be
incorrect [10]. Moreover, the method in [9] demonstrates
operation only for balanced faults, whereas the vast majority
of faults on overhead distribution systems are typically
unbalanced in nature. There can be a number of problems
associated with such methods in practical applications with
varying fault types. [10] presents fault detection using DFT-
based phase angle computation. This addresses the
aforementioned noise and harmonic issues. However, the
problem remains as described in [8], as the direction of power
flow must be known in advance of fault inception. [11]
proposes a protection method that does not require prior
knowledge of initial power flows, and this method uses a



“current energy variation scheme” to measure current
magnitude and angle. However, no significant details of
communications to enable phasor comparisons are included

In this paper, a new protection method for future distribution
systems is presented. It requires only current measurements,
with communications of basic data relating to the angular
change from pre- to during-fault transition used to accurately
identify the faulted section of the system. Case studies using
MATLAB/Simulink simulation are included. The paper
consists of five sections. The principle of fault identification
through comparison of currents and use of communications are
explained in section 2. Section 3 presents various case studies.
Discussion and future work are described in section 4 and
conclusions are drawn in section 5.

2 The Proposed Principle

2.1 Description of Method for Fault Detection/Identification

Sudden changes in measured current angles, and/or sudden
changes in magnitudes (and possibly thresholds of
overcurrent) may be used to initially detect that a fault exists —
initiating operation of the scheme. Work is ongoing to refine
the detection method and use of unbalance/negative sequences
detection may also be incorporated in future. The method is
further described in [12]. For the example system shown in
Fig. 1, PQ loads are assumed at A and B and a fault is located
between A and B. Different load types may be investigated in
future, but it is not anticipated that the nature of the loads
(unless they significantly re-generate power to the network
during network faults) will impact upon the performance of the
protection system. The phase angles of both currents will
clearly change from normal to fault conditions as shown in Fig.
2.
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Fig. 1 Study system

The change in angles measured at bus A (Af,) and at bus B
(ABp) can be stated as shown below:

A8y = Opn— Oy 1

Abg = 93,n - BB,f ()
where 8, , and 8p ,, are the current angles with respect to some
reference at bus A and bus B during normal conditions prior to
the fault, and 8, ; and 85  are the current angles measured at
bus A and bus B during fault conditions.

According to calculations in (1) and (2), the value of current
angle change between pre- and during-fault, measured at relay
A, is positive (0° < A8, < 180°) or can thought of as
“rotating” in a clockwise (CW) direction/angle. However, the
current angle change measured at relay B between pre- and
during-fault rotates in a counter-clockwise (CCW) direction,
or its value can be deemed negative (—180° < Afp < 0°).

Conversely, if system power flows from Source 2 to Source 1
prior to the fault, the current angle changes between normal
and fault condition measured at bus A rotates counter-
clockwise, whereas angle change measured at point B would

rotate in a clockwise direction. It can be concluded that if
current angle changes between pre- and during-fault condition
measured at both ends of the faulted feeder rotate in opposite
directions, the fault is located between on that section
regardless of the direction of power flow prior to the fault.

If, however, there is a fault that lies external to the feeder
connecting bus A and B, the current angle changes at bus A
and bus B from pre- to during-fault would both be in the same
direction (either both clockwise or both counter-clockwise).

In summary, for external faults with respect to the feeder
connecting A and B, the direction/rotation of current angle
changes between normal condition and fault condition at both
ends of feeder will be similar, regardless of the direction of
power prior to the fault. Phasor diagrams illustrating the
directions of current angle changes for internal and external
fault conditions are displayed in Figs. 2 and 3.
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Fig. 2 phasor diagram of pre- and during-fault current
during internal fault condition when
(a) system power flows from Source 1 to Source 2
(b) system power flows from Source 2 to Source 1

Vss Vsz
Lan, Ign
46,46, Vs2 [A'”’IZ;AAHE Vs
Lo Ipr
Lo Ipr
a b

Fig. 3 phasor diagram of pre- and during-fault current
during external fault condition when

(a) system power flows from Source 1 to Source 2

(b) system power flows from Source 2 to Source 1

There is a potential issue associated with low fault current
conditions, or situation where there is only infeed from one
end of the feeder section. The current directional change
comparison method will only be accurate when fault current
infeeds from both feeder ends are relatively high. However, if
fault levels are relatively low, or only one end supplies fault
current, there may be issues associated with the technique
described [13]. This represents ongoing and further work.

When there is infeed from only one end (or one infeed is
extremely low), then a comparison between pre- and during-
fault current magnitude may also be used to supplement the
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resistance faults, etc. This is subject to ongoing investigations
— e.g., a further confirmatory step to establish the faulted
section can be carried out using magnitudes if angular
comparisons are inconclusive - if the during-fault current
magnitudes (in addition to the directional changes) are
significantly different, then the fault is ‘Internal’, otherwise no
fault is deemed to be present in the section. As already
mentioned, the relays do not need to exchange these data
continuously. The exchange takes place only when the fault
occurs and only if angular changes do not indicate an internal
fault. In the event of loss of communications, a more simple
but less effective graded overcurrent function could be used as
backup. Simple monitoring (or self-monitoring) of the health
of the communications system would be included.

Technology capable of wireless communication over a
relatively large area (depending on the nature of the system) is
required. It must also be cost-effective, and ideally should be
a multi-use system. One suitable candidate technology may be
Narrow-Band — Internet of Things (NB-IoT) due to its reach to
remote and underground areas, wide coverages, and multiple
connection capabilities [15]. It consumes low power, is low
cost and has a long service life. Thus, NB-IoT is often used for
non-real-time monitoring applications, such as electricity
meter monitoring and tracking. However, according to its
specification, relatively high latency (around 1.6 — 10 s) may
be experienced, and this is not appropriate for protection
applications — latency is still under investigation and methods
for guaranteeing or specifying lower latency are being
investigated.

Another potential communication technology could be Long-
Term Evolution Machine (LTE-M) especially enhanced
Machine-Type Communication (eMTC) including LTE
Category M1 (CAT M1) and LTE Category M2 (LTE M2).
Compared with NB-IoT, the benefits of LTE-M are similar;
remote and wide coverage, and low power consumption [16].
It is also believed to be a strong candidate to facilitate high
penetrations of high numbers of IoT devices in 5G/6G future
communication networks. One positive is that the latency of
LTE-M is lower than NB-IoT (LTE-M latency is 10 — 15 ms
[17], while NB-IoT latency is typically 1.6 — 10 s [18]). Hence,
it may be more suitable for protection system application. Its
operation and application will be investigated and
demonstrated using real time simulation and hardware-in-the-
loop (HIL) facilities in the laboratory at Strathclyde as a
component of future work.

3 Case Studies and Results

To demonstrate and validate the principles of operation
outlined in section 2, a 5-bus system as shown in Fig. 6 is used.
This is derived from the IEEE 33 bus distribution network [19-
20] and has been simulated in MATLAB/Simulink. Based on
the line impedance values and R/X ratios, the system is
underground cable-based. In the future, studies using overhead
and mixed overhead-underground systems will be conducted,
as the ratios between resistance and reactance will vary, and
therefore the angle change in the measured currents will be
different for faults at different locations (with different R/X
ratios of line sections). The system has 3 sources connected to
busses 1, 4, and 5. Every feeder between buses has a

Source 1

Fig. 6 Case study system

measurement point at the line ends where they connect to
buses. A Fourier block is used for calculating current phase
angles at A, B, and C and to remove any noise from the signals.
The system voltage (line-line) is 12.66 kV and frequency is 50
Hz. The parameters of the case study system are specified in
Table 1.

Table 1 Parameters in case study system

Source  Fault level (MVA) Initial voltage angle (degree)
Source 1 250 10
Source 2 250 5
Source 3 10 0
Load
Active power Reactive power
At bus Type (MW) (MVAR)
2 PQ 1.00 0.60
3 PQ 0.90 0.40
4 PQ 1.20 0.80
5 PQ 1.20 0.80
Line impedance
Frombus Tobus Resistance () Reactance ()
1 2 0.3660 0.1864
2 3 0.4930 0.2511
3 4 0.3660 0.1864
3 5 0.3811 0.1941
4 5 0.3811 0.1941

A fault is simulated at 0.8s between bus 1 (relay A) and bus 2
(relay B), and another fault is simulated between bus 4 (relay
G) and bus 5 (relay H). furthermore, the network topology is
also altered to investigate the response of the protection
scheme under different circumstances.

A range of different variations on the fault scenarios have been
investigated, as explained below:
1) Different fault locations: 10%, 50%, and 90% of the
length along each feeder section
2) Different fault resistances: 0.001 Q, 0.1 Q, 1 Q, and
10 Q

3.1 Scenario 1: 3 Sources in Services, All Circuit Breakers
(CB) are Closed

An earth fault is placed on phase-C (C-E fault) at 3 different
locations between bus 1 and 2 of the network in Fig. 6, and
current angle changes for phase-C at relays A, B, G, and H are
obtained as depicted in Fig. 7.

According to Fig. 7, the phase-C current angle changes from
pre- to during-fault conditions at all measurement locations.
The value obtained at relay A (A6,) is around 51.22° to 82.96°
(positive; CW) or ‘1’ while -100.61° to -120.19° (negative;
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a b Table 3 Pre- and during-fault signal values associated with
3100 t 3100 t faulted phase current phasor changes for varying fault
2 80 _L 2 80 _L resistances y e
€ 60 ‘ € 60 :
w 40 o w 40 o Fault Fault Signal value of Fault type
MR | 2 50%. bem‘;’en impedance rﬁiﬁﬁﬁtﬁiﬁ 3-PH PE PP PPE
E ‘ : 90% E ‘ 90“‘/ y
S TEL T v e ooorg A LT
, ¢ d A 1111
Fig. 7 Phase-C current angle measured at (a) relay A 0.1Q B O 0 0 0
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CCW) or ‘0’ is measured at relay B (A8p). Both relays G and
H measure a negative phase angle change (-92.01° to -103.57°; 10Q A L L1
CCW) or “0°. It can be concluded that the fault lies on the B 0 0 0 ©
section between bus 1 and bus 2. As the angular change can 0.001 Q G 1 111
conclude the fault identification, the further confirmatory step H 0 0 0 0
of comparison of current magnitude is not required. 01Q G 1 L
Simulations of different fault location between bus 1 and 2 4 &5 H 00 0 0
have also been carried out. The results for angular changes for, 10 G 1 11
shown in Table 2, are similar, in that relays outside of the H 0 0 0 0
faulted line measure the similar angle changes, whereas those 10Q g (1) (1) (1) (1)

at the ends of the faulted line detect differences in the relative
angle changes/directions of rotation from pre- to during-fault
conditions. The operation of the proposed protection scheme
is thus validated for all scenarios considered (although it is
accepted that there remains many more scenarios and
considerations to be investigated in the future).

Table 2 Pre- and during-fault signal values associated with
faulted phase current phasor changes for varying fault
locations

Fault Fault Signal value of Fault type
be{)ween location ~_CUTCRtANgIe 4 b pr pp ppp
us rotation at relay
e 5 g 0 0 o
&2 s AL Lb
W B 0 0 0 o
L A A
4&5 50% g (1) (1) é (l)
% W 0 0 0 o

Further investigations were conducted to establish the impact
of varying fault resistance. The results of this are displayed in
Table 3.

results illustrating fault current magnitude changes from pre-
to during-fault in the faulted phase for varying fault locations
and fault resistances are shown in Table 4 and Table 5. When
the fault is between bus 1 and bus 2, all current angle changes
are ‘1’ or the angle changes are all clockwise. Accordingly, the
confirmatory current magnitude change analysis is initiated.

The fault current magnitude measured at relay A exceeds the
pre-fault magnitude while others do not, because the majority
of the available current flows to the fault location as expected.
Similarly, phase-fault current magnitudes measured at all
relays except relay H are higher than the pre-fault magnitude
if the fault occurs between bus 4 and bus 5. In such cases, the
faulted section is identified using analysis of current angle
changes and a further confirmatory step involving analysis of
current magnitudes.

Table 4 Pre- and during-fault signal values associated with
magnitude changes of faulted phase current phasor for varying
fault locations

Fault Signal value of Fault type
between Fau}t current magnitude
location 3-PH PE PP PPE
bus change at relay
A 1 1 1 1
0,
10% B 0o o0 0 O
A 1 I 1 1
0,
1&2 50% B o 0 0 0
A 1 1 1 1
0,
0% B 0 0 0 o0




G 1 1 1 1
0,
10% H 0 0 0 O
G 1 1 1 1
0,
4&5 50% H o 0 0 0
G 1 1 1 1
0,
0% H 0O 0 0 o0

Table 5 Pre- and during-fault signal values associated with
magnitude changes of faulted phase current phasor for varying
fault resistances

Fault Signal value of Fault type
between Fault current magnitude
impedance SN 3-PH PE PP PPE
bus change at relay
A 1 1 1 1
0.001 Q B 0o 0 0 o0
A 1 1 1 1
0.1Q B 0 0 0 o0
1&2
10 A 1 1 1 1
B 0 0 0 o0
A 1 1 1 1
100 B 0 0 0 o0
G 1 1 1 1
0.001 Q H 0 0 0 0
G 1 1 1 1
0.1Q H 0 0 0 o0
4&5
10 G 1 1 1 1
H 0O 0 0 o0
G 1 1 1 1
100 H 0 0 0 ©0

4 Discussion and Future Work

A current-only protection scheme for future distribution
systems has been described and demonstrated using case
studies. The system requires only currents, and no voltages, as
measurement  inputs, and requires only  simple
communications to communicate the nature/direction of
changes in measured current phase angles (from pre- to during-
fault) between locations — with a further confirmatory check
using detected changes in fault current magnitudes being
available in certain scenarios (this is the subject of future
work). It has also been proposed that relatively simple, low-
cost communication technologies such as LTE-M or NB-IoT
could be used — this will be demonstrated in the near future via
laboratory experiments.

As noted in the paper, further work is required to refine the
initial fault detection method (based on current magnitude
and/or phase angle “jumps”), particularly for scenarios where
infeeds are weak or non-existent from certain locations in the
networks. Conditions such as very high impedance faults and
more complex interconnected networks must also be studied.

Networks with inverter-interfaced distributed generator
(IIDG) units will also affect fault current magnitudes,
directions and angles in future system [4-5]. This will also be
investigated as a part of future work, as well investigating both
grid-connected and islanded modes for networks. Further work
on investigating and demonstration communications
technologies, evaluating performance in back-up mode and
where communications is lost, and demonstrating practical

implementation using hardware-in-the-loop (HIL) prototypes
using real time simulation capabilities at the University of
Strathclyde, will also be conducted.

5 Conclusion

The paper has presented various case studies to demonstrate
and confirm the operation of a novel fault detection and faulted
feeder identification algorithm using solely current
measurements. Investigations of a variety of network topology
and operating conditions has been conducted to confirm the
robustness of the algorithm. There remains future work to be
done, as outlined in the previous section, but this simple
method, while requiring communications to exchange simple
current angle data (importantly, only during faults), is much
simpler than differential, does not require accurate time
synchronisation ~ nor  high  bandwidth  continuous
communication, and should be relatively immune to fault level
variations and network topology changes. A significant
amount of future work is required, but the initial analysis and
results are promising.
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