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Abstract

The unit commitment (UC) optimization issue is a vital issue in the operation and manage-

ment of power systems. In recent years, the significant inroads of renewable energy (RE)

resources, especially wind power and solar energy generation systems, into power systems

have led to a huge increment in levels of uncertainty in power systems. Consequently, solu-

tion the UC is being more complicated. In this work, the UC problem solution is addressed

using the Artificial Gorilla Troops Optimizer (GTO) for three cases including solving the UC

at deterministic state, solving the UC under uncertainties of system and sources with and

without RE sources. The uncertainty modelling of the load and RE sources (wind power and

solar energy) are made through representing each uncertain variable with a suitable proba-

bility density function (PDF) and then the Monte Carlo Simulation (MCS) method is

employed to generate a large number of scenarios then a scenario reduction technique

known as backward reduction algorithm (BRA) is applied to establish a meaningful overall

interpretation of the results. The results show that the overall cost per day is reduced from

0.2181% to 3.7528% at the deterministic state. In addition to that the overall cost reduction

per day is 19.23% with integration of the RE resources. According to the results analysis,

the main findings from this work are that the GTO is a powerful optimizer in addressing the

deterministic UC problem with better cost and faster convergence curve and that RE

resources help greatly in running cost saving. Also uncertainty consideration makes the sys-

tem more reliable and realistic.
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1. Introduction

1.1 Background

Power system operation and management represent a major field of the studies of power sys-

tems. Power systems’ priority is to continuously provide all system users with power of satisfy-

ing-quality without placing them under excessive financial strain and to have a balanced

operating system. This causes the solution of deterministic and stochastic unit commitment

(UC) to be an important orientation for power systems’ researchers. UC problem is a mixed-

integer, and nonlinear optimization problem. It is concerned about estimating the optimal

operating states for each power plant’s generating units, as well as the individual output power

for planned generation to achieve the minimum operating cost [1, 2]. It should be considered

to cover the load demand at minimum operating cost [3]. In some cases, it is required to

involve nonlinearity to the operating cost. This can be accomplished by considering the valve

point loading effects [4]. In most cases, valve point loading effects are considered in the solu-

tion of the economic dispatch problems [5, 6] but not in the UC problem. Recently, the energy

generation is one of the world’s most critical concerns due to rising the demand from the

energy resources and the non-renewability of existing fuels. Renewable energy (RE) can yield

many environmental and economic benefits compared to conventional fuel- based generation

systems. The RE sources are recognized as clean and cost-effective energy sources, and they

play an important role as a power generation system to diminish the need for fossil fuels [7–9].

The solar and wind energy systems, in particular, have made significant inroads into power

systems.

The study of the efficient consumption of wind and solar energies becomes increasingly sig-

nificantly in power systems as the penetration levels of wind and solar energy continue to rise

[10]. Due to the unexpected nature and variable behavior of wind and solar energies, estima-

tion of generation schedule of thermal units in the power system becomes a difficult challenge

in modern power management. Different forecasting methodologies have been introduced

previously to estimate wind and solar power production [11–14], but the generation of wind

and solar power cannot be predicted with a high degree of precision due to intermittent nature

of these energies. Between the real power output and the predicted value, there is an inescap-

able random error. So, for reliable system planning the uncertainties of RE resources should be

considered [15]. As a result, dealing with the UC becomes a challenging mission in the system

operation process [16]. Also, consideration of load demand uncertainty, as load isn’t constant

during the study period, makes it more complicated to adjust the UC to achieve the best time-

table. In optimal planning with integrated RE resources, additional constraints should be con-

sidered including the down spinning reserve and the adequate ramping capacity constraints to

compensate variations in powers of the RE sources.

1.2 Comprehensive literature review

Over years, researchers have turned their efforts to employ different optimization approaches

(traditional and modern) to solve the UC problem under deterministic and stochastic cases

[17–19]. In [20], authors employed the genetic algorithm (GA) using mutation and crossover

operators to solve the deterministic unit commitment (DUC). An improved version of

lagrangian relaxation algorithm was applied to handle the DUC under various test systems. In

[21], extended priority list technique was applied for DUC problem solution through two

steps. In [22], the authors introduce an improved Lagrangian relaxation with a new decision

maker. The algorithm was applied on the DUC under systems up to 100 units system. The

authors of [23] introduced a Greedy Randomized Adaptive Search Procedure to solve the
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time t; SCt
i, start-up cost of unit i at time t; ai,bi,ci,

coefficients of the fuel cost of ith unit; Pi(t),

generated power from unit i at time t; SCihot, hot

start-up cost of unit i; SCicold, cold start-up cost of

unit i; MDTi, minimum down time of unit i; MUTi,

minimum up time of unit i; TONi, time that unit i

has been consistently on; TOFFi, time that unit i has

been consistently off; Tcoldi, the needed time for

unit i to become completely cool; Lnet(t), net load at

time t; PL
t, the system load demand at time t;

Pimax,Pimin, the upper and lower generation limit

of unit i; Prampi, ramp power capacity of unit i;

SRt, the system’s spinning reserve needs at time t;

PW,out(t), the wind turbine produced power at time

t; PR, the base produced power from the turbine;

VR, the base wind speed; Vin, cut-in speed; Vout,

cut-out speed; Vw, actual speed of the wind; PPV,

out(t), the solar unit produced power at time t; Psr,

the rated produced power from the solar unit; Gs,

solar irradiance; Gstd, solar irradiance for standard

environment conditions; fV
t(V), property density

function of wind speed at time t; Vt, wind speed at

time t; kt,ct, shape and scale parameter of Weibull

distribution at time t; μt
V, σt

V, mean value and

standard deviation of wind speed at time segment

t; Γ, gamma function; XN, a matrix contains the

produced N scenarios in 24 hours; fSR
t(SR),

property density function of solar irradiance; SRt,

solar irradiance at the t th time interval; αt,βt, shape

parameters of beta distribution during time

segment t; μt
SR, σt

SR, mean value and standard

deviation of solar irradiance at time interval t;

PDFL(P
t
L), property density function of load

demand; Pt
L, active power of load demand; μt

L, σt
L,

mean value and standard deviation of the load at

time t; GX(t+1), the vector of the candidate solution

in the next iteration; X(t), the vector of current

gorilla position; r1,r2,r3,r4,r5,rand, random vectors

between 0 and 1; Xr, one of the group’s gorillas,

picked at random from the entire population; GXr,

the position vector of one of the gorilla candidates

picked randomly; lb, the control variables’ lower

limit; ub, the control variables’ upper limit; C,L,H,

operators of the artificial gorilla troops optimizer; l,

random number varies from -1 to 1; Z, randomized

number between −C and C; Xsilverback, position of

the silverback gorilla; GXi(t), candidate position for

each gorilla during iteration t; Q, impact force; β,

preset parameter; E, the violence impact on the

solutions’ dimensions; UC, unit commitment; RE,

renewable energy; BRA, backward reduction

algorithm; DUC, deterministic unit commitment;

SUC, stochastic unit commitment; GA, genetic

algorithm; GTO, artificial gorilla troops optimizer;

PDFs, probability density functions; MCS, Monte

Carlo simulation; SD, standard deviation.
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classical DUC. In [24] the DUC was solved by the application of integer-coded GA with test

systems up to 100 generating units. In [25], authors applied an improved SA algorithm com-

bined with dynamic economic dispatch to tackle the DUC. SA was applied for the determina-

tion of on/off status of the units. In [26], authors introduced hybrid algorithm called hybrid

ant system/ priority list technique to tackle the DUC unit commitment problem with consider-

ation of the operation constraints. The technique was applied on systems up to 100-unit sys-

tem. The authors of [27], introduced the shuffled frog leaping algorithm (SFLA) to solve the

DUC to decrease the energy dispatch cost while satisfying the constraints. The authors of [28]

introduced a solution for the DUC using hybrid technique combined between particle swarm

optimization and grey wolf optimizer under three different systems. In [29], the authors devel-

oped an adaptive lagrangian relaxation to tackle the DUC under 10-unit system with a better

way for unit substitute. In [30], a hybrid algorithm combined the evolutionary particle swarm

optimization with tabu search was introduced to handle the DUC through two levels. In the

first level, the time table for operating process was created then, in the second level, the power

dispatch was obtained. In [31], the authors introduced the solution of DUC with line flow con-

straint by application of GA. In [32], a hybrid technique combined priority list with binary

particle swarm optimization was proposed to solve the conventional UC. In [33], an improved

ant colony optimization was used to tackle the DUC on basis of maximization the profits of

the generating companies. Also, Gravitational search algorithm was introduced to solve the

DUC [34]. The authors in [35] studied the stochastic UC under load demand uncertainty

using sample average approximation. Authors in [36] solved a large scale DUC using multi-

cuts outer approximation method. An improved binary version of differential evolution was

introduced in [37] to tackle the small scale and large scale DUC under variety of constraints.

In [38], small-sized systems were employed to solve DUC with an improved hybrid algo-

rithm combined particle swarm optimization with dragon fly algorithm. Authors of [39]

introduced two versions of binary fish migration optimization to overcome the defects of

the original algorithm and applied the developed techniques to the DUC. The authors in

[40] introduced a solution of the stochastic unit commitment (SUC) with consideration of

load uncertainty. The growth of hybrid power systems which combine RE resources with

conventional thermal units makes it more challenging and complicated to solve the UC

problem. Uncertainties in RE sources forecasting have a serious impact on the UC solution

and pose substantial threats to the power system’s control and operation [41]. As a result,

modelling RE power variations becomes essential to solve the UC problem with integrated

RE sources. The authors in [42] studied the effect of wind power forecasting uncertainty on

the UC solution. The authors of [43] applied an enhanced GSA to solve the UC with wind

farm and while considering the fluctuations of wind energy production. They represent the

uncertainty using Latin Hypercube Sampling (LHS) and the Cholesky decomposition meth-

ods. In [44], UC for a combined system with thermal and hydro units and a big wind farm

was solved using a newly developed optimizer called Weight-Improved Crazy Particle

Swarm Optimization (WICPSO). The simulation for uncertainty of wind power was made

using LHS and the Cholesky decomposition methods. In [45], UC was solved by applying a

mixed-integer linear programming with integration of battery energy storage units to make

up for the unpredictable characteristics of wind energy production. In [46], authors studied

DUC with incorporation of wind and solar energies to investigate their effect on the system

economy. The study was made using a modified version of priority list technique. In [47],

authors solved the UC problem using LR technique while including uncertainty of RE sup-

plies, generator and transmission line breakdowns. In [48] authors proposed a detailed

scheme for integrating uncertainty in distributed power systems with integrated RE

resources. Loads, solar and wind power predictions, and generator outages are all studied as
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causes of uncertainty. They solve the SUC problem using GA. In [49], the UC was handled

with the Binary Artificial Sheep Algorithm while considering the variability of RE sources

with pumped hydro-energy storage. The uncertainty was represented using LHS and the

Cholesky decomposition methods. In [50], the authors employed an intelligent search algo-

rithm to handle the UC with load forecast and wind power uncertainty. In [51], the authors

introduced a system contained wind turbines and energy storage system. They solved SUC

while considering the uncertainty of wind power. The problem model was reformulated to a

single level optimization problem with the use of the strong duality theory as a single-level

robust mixed integer linear program. As observed, researchers developed various algo-

rithms and introduced hybrid techniques to tackle DUC and SUC problems. One of the

modern optimization algorithms developed in 2021 was Artificial gorilla troops optimizer

(GTO) [52]. It is an effective algorithm for high dimensional optimization problems.

Recently, GTO was applied to solve various hard optimization problems such as implement-

ing of fractional order PID controller for automatic generation control in interconnected

power systems in [53] and controlling the frequency fluctuations in micro grids which

come from the wind power uncertainty in [54]. In this work, GTO is employed to handle

the DUC and the SUC at RE resources and load demand uncertainties.

1.3 Objective, research gaps and contributions of the paper

This paper mainly aims to study the SUC with and without the integration of wind and solar

energies to investigate their role in the cost saving and their effect on the performance of the

power system without disturbing the problem constraints. Also, the uncertainty of load

demand and RE resources is considered in this work for more realistic system operation. Also,

it is employed to validate the efficacy of GTO to handle DUC with and without consideration

of the valve point loading effect which is rarely applied the UC problem to simulate the nonlin-

earity of the objective function. The validation is made through results comparison with other

well-known techniques and presented works in the literature.

From the previous review survey, it is obvious that huge efforts were presented for solving

the UC problem. However, to the best of our knowledge, the research gaps in these works Can

be outlined as follow:

• All previous introduced studies on the DUC in the review didn’t account for the nonlinearity

of the fuel cost function through application of the valve point loading effect (VPE).

• Reference [35] solved the SUC problem at uncertain load demand without incorporation of

RE resources.

• References [42–45, 47, 50, 51] solved the SUC with consideration of wind power uncertainty

but there was no integration for solar power units into the system. Although, references [44,

45, 51] introduced energy storage systems to the main system to overcome the unpredictabil-

ity of the wind power.

• Reference [48] solved the SUC at distributed energy systems with consideration of load

uncertainty and RE resources uncertainty (wind and solar power) but it ignored the ramp

rate constraints for the generation units.

• Reference [46] solved the UC with wind and solar power integration. However, the uncer-

tainties of system were not considered.

• Reference [49] solved the SUC with wind and solar power integration with the uncertainties

of RE resources. However, load uncertainty was not taken into consideration.
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Based on the listed research gaps in this area, this paper fills these gaps and the main contri-

butions can be stated as follows:

• Solving the DUC using GTO with and without VPE consideration and validating the results

through a comparison with other well-known algorithms.

• Solving the SUC problem with and without inclusion of RE resources.

• Solving the SUC at uncertainties of load demand, wind power, and solar energy.

• Analyzing the system performance with and without incorporation of RE resources at the

uncertain condition.

1.4 Paper layout

The remainder of the paper is structured as follows: Section 2 ‘Uncertainty Modeling’

describes the uncertainty of RE resources and load demand. Section 3 ‘Problem Formulation’

describes the objective function and the problem constraints. Section 4 ‘Artificial Gorilla

Troops Optimizer’ presents an overview of GTO that has been applied on the problem. Section

5 ‘Simulation results and discussion’ introduces the studied cases, the effectiveness of used

algorithm and the results’ comparison. Finally, Section 6 ‘Conclusion’ outlines the paper’s

results.

2. Uncertainty modeling

During the operation of power systems including integrated RE generation units, uncer-

tainty can appear in both generation side and load side (referring to forecasting errors and

demand response). The proper modelling and analysis of these uncertainties ensure the

solution of UC problem to be more reliable and reasonable. The unstable behavior of the

solar and wind power and the load demand are statistically described by the application of

probability density functions (PDFs). As the probability density functions (PDF) parame-

ters are assumed to be known for the system variables during each time period t, so to simu-

late the uncertainties of RE resources and load demand, Monte Carlo Simulation (MCS)

method is used to produce scenarios, which are then reduced by application of scenario

reduction methods.

2.1 Wind speed modeling

Random nature of wind speed which is the key for determining the power produced by a wind

turbine. In the UC problem (deterministic model), using predicted wind speed to determine

output power from wind turbines is insufficient for practical power system operation. The fol-

lowing is a brief overview for wind speed uncertainty described using PDF:

Step 1: We assume that the wind speed has a Weibull distribution [55]. For the wind speed

Vt (m/s) at the t th time interval, the Weibull distribution can be defined as in (1):

fV
t Vð Þ ¼

kt

ct
:

Vt

ct

� �kt � 1

:exp �
Vt

ct

� �kt
 !

for ct > 1 and kt > 0 ð1Þ

PLOS ONE An artificial gorilla troops optimizer for stochastic unit commitment problem solution incorporating RESs

PLOS ONE | https://doi.org/10.1371/journal.pone.0305329 July 10, 2024 5 / 28

https://doi.org/10.1371/journal.pone.0305329


Where kt and ct represent the shape and scale parameter of Weibull distribution at the t th

time interval, respectively. They are expressed in (2) and (3):

kt ¼
st

V

mt
V

� �� 1:086

ð2Þ

ct ¼
mt

V

G 1þ 1

kt

� � ð3Þ

Where μt
V and σt

V are mean and standard deviation of wind speed at time segment t.Γ
gives the Gamma function.

After that a large set of scenarios are created using MCS technique which relies upon ran-

dom variables to create a huge set of predicted scenarios [15, 56]. The produced N scenarios

can be represented in 24 hours by a matrix XN as in (4):

XN ¼

S1;1 S2;1 � � � ST;1

S1;2 S2;2 � � � ST;2

..

. ..
.
� � � ..

.

S1;N S2;N � � � ST;N

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð4Þ

Step 2: Using a backward reduction algorithm (BRA) [57, 58], the number of generated sce-

narios in step 1 is minimized effectively to a smaller scale. They are scenario-based strategies

intended towards obtaining a smaller number of scenarios that are relatively close to the origi-

nal system. So, a reduction in the scenarios numbers is achieved with various probabilities are

achieved, and an accurate estimation of the uncertain performance of the system is

maintained.

2.2 Solar irradiance modeling

Solar energy is another form of RE that gain its intermediated nature due to continuous varia-

tions of the solar irradiance. For modelling Solar power uncertainty, we assume that the solar

irradiance has a Beta distribution [59]. The beta distribution for solar irradiance SRt (kW/m2)

at the t th time interval can be defined as in (5):

fSR
t SRð Þ ¼

Gðat þ btÞ

GðatÞ:GðbtÞ
:ðSRtÞ

at � 1
:ð1 � SRtÞ

bt � 1

for at > 0 and bt > 0 ð5Þ

Where αt and βt represent the shape parameters during time segment t; Γ is the Gamma

function. The shape parameters of Beta distribution at the t th time interval are expressed as in
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(6) and (7):

bt ¼ 1 � mt
SRð Þ:

mt
SRð1þ mt

SRÞ

ðst
SRÞ

2
� 1

 !

ð6Þ

at ¼
mt

SR:bt

ð1 � mt
SRÞ

ð7Þ

Where μt
SR and σt

SR are the mean and SD of solar irradiance at time interval t.
The same two step procedure applied to represent wind speed uncertainty is used to repre-

sent solar irradiance uncertainty.

2.3 Load demand modeling

In order to simulate the uncertainty of load demand in the power system, also PDF is used,

which can be defined as in (8):

PDFL Pt
Lð Þ ¼

1
ffiffiffiffiffiffiffiffiffiffiffi
2pst

L

p exp �
ðPt

L � m
t
LÞ

2

2st
L

2

� �

ð8Þ

where PDFL represents the PDF of load demand; Pt
L represents the apparent power of load

demand; μt
L represents the mean value of the load at time t; σt

L represents the SD of the load at

time t.
We consider that the load has a normal distribution [15]. The mean and standard devia-

tions (μt
L and σt

L) are known for each period of time t.

3. Problem formulation

3.1 Objective function

UC’s aim is to diminish the system’s operating cost by predicting the optimal operation sched-

ule and the produced power of the existing generating units while meeting a number of con-

straints. The integration of RE resources with the consideration of uncertainty complicates the

optimization of the UC objective function as additional constraints must be added. In this

paper, the operating costs of RE units is neglected as they consume no fuel so, the system total

operating cost to be minimized depend on Fuel cost (costs of power generation), and starting-

up costs of typical thermal units. Using scenario analysis for uncertainty modelling, the objec-

tive function of the UC is optimized to analyze the system’s overall operating cost under uncer-

tainty of RE resources and load demand. Mathematically, it is expressed as in (9):

Min TC ¼
XT

t¼1

XN

i¼1
Ut

i � FCt
i þ SCt

i ð9Þ

Where TC is the total operating cost; Ut
i is represents the operating state of the unit i at

time t; FCt
i represents the fuel cost of unit i at time t; SCt

i represents the start-up cost of unit i

at time t; t gives the time horizon for a set of T; i is the thermal power units for a group of i.
3.1.1 Fuel cost. The cost of fuel can be defined as a quadratic equation in case of not con-

sidering the valve point effect (VPE). It is represented as in (10):

FCt
i ¼ ai þ bi � PiðtÞ þ ci � P2

iðtÞ ð10Þ

Where ai,bi and ci give the coefficients of the fuel cost of ith unit; Pi(t) represents the gener-

ated power from unit i at time t.
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To have more nonlinearity in the evaluation in the operating cost, the VPE is considered in

which the fuel cost function is expressed in a higher order equation. A sinusoidal term is

added to the quadratic function [60]. It is represented as in (11):

FCt
i ¼ ai þ bi � PiðtÞ þ ci � P2

iðtÞ þ jdi � sinðei � ðPimin
� PiðtÞÞj ð11Þ

3.1.2 Start-up cost. It represents the expense that a thermal unit incurs when it starts up.

Before they can be used, thermal units must first be "warmed up." The cost of the warming up

procedure influences the overall operating cost. The thermal unit restarting cost is estimated

by the amount of time it has been turned off. The costs of starting the thermal units vary

depending on the unit properties. The starting up cost of unit i is defined in (12):

SCt
i ¼

SCihot
! MDTi � TOFFi

� MDTi þ Tcoldi

SCicold
! TOFFi

> MDTi þ Tcoldi

ð12Þ

(

Where SCihot
represents the hot start-up cost of unit i; SCicold

gives the cold start-up cost of

unit i; MDTi gives the minimum off time of unit i; TOFFi
represents time that unit i has been

consistently off; Tcoldi
represents the needed time for unit i to become completely cool.

3.2 Constraints

3.2.1 Power equilibrium constraint.

XN

i¼1

UiðtÞ � PiðtÞ ¼ LnetðtÞ ð13Þ

Where Lnet(t) represents the net load at time t.

LnetðtÞ ¼ Pt
L � PW;outðtÞ� PPV;outðtÞ ð14Þ

Where PL
t gives the system load demand at time t; PW,out(t) represents the wind turbine

produced power at time t; PPV,out(t) gives the solar unit produced power at time t.
The net load refers to the gap between the served load and the total capacity generated by

the renewable energy resources (wind turbines and solar units). In other words, it represents

the power that will be provided by the thermal units when RESs are in service.

3.2.2 Up/down spinning reserve. The up-spinning reserve participates in load forecasting

errors, unplanned generator outages, a drop in wind speed and/ or solar irradiance. The sud-

den rise in wind speed and/ or solar irradiance is supported by the down spinning reserve.

This constraint is given in (15):

XN

i¼1

UiðtÞ � Pimax
þ PW;outðtÞ þ PPV;outðtÞ � SRt þ Pt

L

XN

i¼1

UiðtÞ � Pimin
þ PW;outðtÞ þ PPV;outðtÞ < SRt þ Pt

L ð15Þ

Where Pimax
and Pimin

give the upper and lower generation limit of unit i, respectively; SRt

represents the system’s spinning reserve needs at time t.
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3.2.3 Output power limits for thermal generating units.

Pimin
� PiðtÞ � Pimax

ð16Þ

3.2.4 Minimum up/down time constraints. • Minimum up time constraint

This constraint is reflected in the fact that a unit cannot be shut down immediately after it has

been switched on and it can be mathematically defined as in (17):

TONi
� MUTi ð17Þ

Where TONi
represents time that unit i has been consistently on; MUTi is the minimum up

time of unit i.

• Minimum down time constraint

This constraint is reflected in the fact that a unit cannot be restarted immediately after it

has been switched off and it can be mathematically defined as in (18):

TOFFi
� MDTi ð18Þ

3.2.5 Ramping capacity constraint for thermal generating units. The output power gen-

erated by thermal units should be increased or decreased only by a certain amount described

as ramping capacity of the unit. It can be expressed mathematically as in (19):

� Prampi
� PiðtÞ � Piðt � 1Þ � Prampi

ð19Þ

Where Pi(t−1) represents the generated power from unit i at time (t−1); Prampi
gives the

ramp-up power capacity of unit i.
3.2.6 Production limits of wind turbine. A wind turbine produced power is expressed

based on the wind speed as follows:

PW;out ¼

0 for Vw < Vin and Vw > Vout

PR
Vw � Vin

VR � Vin

� �

for ðVin � Vw � VRÞ

PR for ðVR < Vw � VoutÞ

ð20Þ

8
>>><

>>>:

Where PR represents the base produced power from the turbine; VR gives the base wind

speed; Vin represents the cut-in speed; Vout represents the cut-out speed; Vw represents the

actual speed of the wind.

3.2.7 Production limits of solar unit. A solar unit produced power is expressed based on

the solar irradiance according to Eq (21):

PPV;out ¼

Psr
Gs

2

Gstd � Xc

� �

for 0 < Gs � Xc

Psr
Gs

Gstd

� �

for Gs � Xc

ð21Þ

8
>>><

>>>:

Where Psr is the rated produced power from the solar unit; Gs represents the solar irradiance;

Gstd represents the solar irradiance for standard environment conditions.
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4. Artificial gorilla troops optimizer

4.1 Inspiration

Artificial Gorilla Troops Optimizer (GTO) is an innovative optimization technique which sim-

ulates natural lifestyle, social interaction, and immigration of the gorilla [52]. The gorilla

group is led by a dominant silverback gorilla, and all males and females in the group obey the

silverback gorilla. Black backs, or young male gorillas, obey silverbacks and serve as the group’s

backup guards. Sometimes, female gorillas travel to new groups. GTO method uses Five dis-

tinct operators for exploration and exploitation phases depend on the habits of gorilla. Three

operators are used to control the exploration phase. The first operator is the relocation to

unknown areas in order to expand the exploration of GTO. The second one is the travelling

towards other gorillas, whereas the third operator is the movement of the groups to known

locations which considerably improves the GTO’s capabilities to seek for alternative optimiza-

tion areas. In the exploitation phase, two approaches are employed. The first one depends on

silver back tracking, whereas the second one depends on adult female mobility. The optimiza-

tion area of the GTO has three solutions (X,GX, and the silverback). X denotes the gorillas’

position. GX denotes the gorilla candidate position, whereas the silverback is the best solution.

There is a single silverback in the overall population whenever it comes to the quantity of

search agents used for optimization operations.

The three sorts of solutions: X,GX, and silverback, closely resemble gorilla social behaviour

in the wild. Gorillas try to find new food areas or build a powerful and equitable group. In

each iteration in the GTO technique, solutions are developed and known as GX and replaced if

another solution with better value is found. Otherwise, it will remain as GX. The GTO algo-

rithm employs several strategies for optimization operations, that are discussed below.

4.2 Exploration phase

All gorillas are regarded as possible solutions in the GTO algorithm, and the optimal solution

at each optimization operation step is referred to as a silverback gorilla. As previously stated,

the exploration phase is based on three mechanisms: gorilla movement to new unknown posi-

tions, gorilla travel to known positions, and gorilla migration to other gorillas. An operator

called P, that has a range of 0 to 1, can be used to adjust the crossover between the three mech-

anisms. When rand<P, the first mechanism is selected. If the rand<0.5, the gorilla adjusts its

position to a known one. If rand>0.5, the technique of travelling towards other gorillas is cho-

sen. Mathematically, the three mechanisms utilized in the exploration phase can be repre-

sented as follows:

GXðt þ 1Þ ¼

ðub � lbÞ � r1 þ lb; rand < p

ðr2 � CÞ � XrðtÞ þ L�H; rand � 0:5

XðiÞ � L� ðL� ðXðtÞ � GXrðtÞÞ þ r3 � ðXðtÞ � GXrðtÞÞÞ; rand < 0:5

ð22Þ

8
><

>:

GXðt þ 1Þ ¼ ðub � lbÞ � r1 þ lb If rand < p ð23Þ

GXðt þ 1Þ ¼ ðr2 � CÞ � XrðtÞ þ L�H If rand � 0:5 ð24Þ

GXðt þ 1Þ ¼ XðiÞ � L� ðL� ðXðtÞ � GXrðtÞÞ þ r3 � ðXðtÞ � GXrðtÞÞÞ If rand < 0:5ð25Þ

Where GX(t+1) represents the vector of the candidate solution in the next iteration. X(t) gives

the vector of current gorilla position. ub and lb give the upper and lower limits of the control
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elements. r1,r2,r3 and rand are randomized numbers in the range of [0–1]. Xr represents one

of the group’s gorillas, picked at random from the entire population, as well as GXr is the posi-

tion vector of one of the gorilla candidates picked randomly. C,L and H are operators that are

represented mathematically as shown below:

C ¼ F � 1 �
iter

maxiter

� �

ð26Þ

F ¼ cosð2� r4Þ þ 1 ð27Þ

L ¼ C � l ð28Þ

Z ¼ ½� C;C� ð29Þ

H ¼ Z � XðtÞ ð30Þ

Where iter represents the current iteration and maxiter denotes the maximum number of iter-

ations. r4 represents a randomized number between 0 and 1. l is a random number varies from

-1 to 1. Z is a randomized number that locates between −C and C.

Finally, a group construction process is carried out, during which the cost of all solutions is

evaluated, and the best solution is remembered. As a result, the best solution created during

this phase is referred to as a silverback.

4.3 Exploitation phase

The silverback gorilla is the head of the group, makes all the choices, guides the gorillas to

sources of food, controls the group’s movements and accounts for the group’s security. The sil-

verback gives orders to the bunch of gorillas, and they all comply. On the other hand, the sil-

verback gorilla might become feeble and old, finally die, and the group’s black-back gorilla

may take over as a leader, or the silverback gorilla may be fought off and managed by other

male gorillas. As stated with the two strategies previously mentioned in the exploitation phase,

the other gorillas can select to either obey the silverback one or struggle for adult females. The

W value, which is a preset value and the value of C shown in (26) are used to changeover

between the two motions.

4.3.1 Follow the silverback. This technique is the choice if C�W and the positions of

gorillas are updated by obeying the silverback gorilla as in (31):

GXðt þ 1Þ ¼ L�M � ðXðtÞ � XsilverbackÞ þ XðtÞ ð31Þ

Where Xsilverback represents the position of the silverback gorilla. X(t) represents the gorilla

location. L is determined by (28) and M can be determined as in (32).

M ¼ j
1

N

XN

i¼1

GXiðtÞj
g

 !1
8

ð32Þ

g ¼ 2L ð33Þ

Where GXi(t) gives candidate position for each gorilla during iteration t.N is the overall

number of gorillas.

4.3.2 Competition for adult females. This technique is the choice if C<W and the adjust-

ment of gorillas’ positions are determined based on a struggle for adult females. This
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mechanism is represented mathematically according to (34):

GXðiÞ ¼ Xsilverback � ðXsilverback � Q � XðtÞ � QÞ � A ð34Þ

Q ¼ 2� r5 � 1 ð35Þ

A ¼ b� E ð36Þ

E ¼
N1; rand � 0:5

N2; rand < 0:5
ð37Þ

(

Where Q simulates the impact force. β represents a preset parameter. r5 represents a ran-

dom number in range of 0 and 1. E represents the violence impact on the solutions’ dimen-

sions and can be calculated as given in (37). In (37) if rand�0.5, The value of E is equivalent to

random number in the normal distribution and the problem’s dimensions, but if rand < 0.5, E
is equivalent to a random number in the normal distribution.

Finally, a group construction process is carried out during which the cost of all solutions is

evaluated, and the best solution achieved in the entire population is recognized as a silverback.

Application of the GTO for handling the SUC problem with integration of RE sources is

presented in Fig 1.

5. Simulation results

In this section, the UC problem has been studied from various perspectives through investiga-

tion of three cases that represent various arrangements of power sources. First case studies the

DUC with system of ten thermal units. This case is used to test the ability of the GTO to handle

the UC problem. It serves as a validation for the GTO to be applied for the UC problem. In the

second case, the SUC is investigated at uncertain load demand without integration of RE

resources. In the third case, RE units (wind and solar) are introduced to the system of the sec-

ond case to investigate the effect of incorporation of the RE units and their uncertainties along

with the uncertainty of the load side on the solution of the UC problem and on the system’s

performance and economics. The simulations have been run in MATLAB 2020a on a PC with

an Intel Core i7 processor, 8 GB RAM, and a Microsoft Windows operating system.

5.1 Case 1: Solution of UC with deterministic load and without RE units

In this case, the system has only 10 thermal units while considering deterministic load

demand. The scheduling period is a one day. According to the power system dependability

measurement, the spinning reserve required in order to face sudden changes in generation

and/or load should be 10% of the load. Table 1 gives the forecasted load data over 24-hour

horizon [28]. The thermal generating units data are presented in Table 2 [61]. The solution of

this case is used to test the efficacy of GTO in handling the UC problem, so the findings are

compared to number of the well-known algorithms. This case is studied with and without con-

sidering the valve point effect (VPE) to test the efficacy of GTO in handling the UC with the

nonlinearity properties of fuel cost function.

5.1.1 solution of UC with deterministic load and without RE units (without the consid-

eration of the valve point effect). The fuel cost equation is represented by a quadratic for-

mula. The convergence curve (total operating cost vs iteration process) of GTO is given in

Fig 2. It obvious that the GTO has a fast convergence rate. Fig 3 gives the commitment sched-

ule of the thermal units indicated by two colors, green color referred to on status and red one
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Fig 1. Flow chart of applying the GTO in solving stochastic UC problem.

https://doi.org/10.1371/journal.pone.0305329.g001
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referred to off status. It is shown that unit1 and unit2 are on during the whole scheduling

period. Although they have the largest generation coefficients values, but it is ineffective to

restart them as their start-up costs are the highest among all units. Fig 4 gives a scheme for the

output power obtained from the thermal units. Table 3 compares the overall operating cost

acquired by the GTO to the cost reported by various well-known algorithms. The minimum

obtained result by the GTO is 563977 ($/day). The minimum obtained results by PSO-GWO

[28], BFMO [39], and ABFMO [39] are 565210 ($/day), 585967 ($/day), and 585828 ($/day)

respectively. In other words, the cost reduction per day is 0.2181%, 3.7528%, and 3.7299%

compared to the GTO. The GTO outperforms the other techniques in tackling the determin-

istic UC. For more statistical analysis, to prove the effectiveness of the GTO in solving the

Table 1. Forecasted load data.

Time 1 2 3 4 5 6 7 8 9 10 11 12

Forecasted load 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

Time 13 14 15 16 17 18 19 20 21 22 23 24

Forecasted load 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

https://doi.org/10.1371/journal.pone.0305329.t001

Table 2. The data for the10-thermal units.

Unit a

($/h)

b

($/MWh)

c

($/MW2h)

Pimax

(MW)

Pimin

(MW)

Tcoldi
(hr)

SCihot
($)

SCicold
($)

MUTi

(hr)

MDTi

(hr)

initial state (hr)

Unit 1 1000 16.19 0.00048 455 150 5 4500 9000 8 8 8

Unit 2 970 17.26 0.00031 455 150 5 5000 10000 8 8 8

Unit 3 700 16.6 0.002 130 20 4 550 1100 5 5 -5

Unit 4 680 16.5 0.00211 130 20 4 560 1120 5 5 -5

Unit 5 450 19.7 0.00398 162 25 4 900 1800 6 6 -6

Unit 6 370 22.26 0.00712 80 20 2 170 340 3 3 -3

Unit 7 480 27.74 0.00079 85 25 2 260 520 3 3 -3

Unit 8 660 25.92 0.00413 55 10 0 30 60 1 1 -1

Unit 9 665 27.27 0.00222 55 10 0 30 60 1 1 -1

Unit 10 670 27.79 0.00173 55 10 0 30 60 1 1 -1

https://doi.org/10.1371/journal.pone.0305329.t002

Fig 2. The convergence curve for the GTO handling the DUC (case 1).

https://doi.org/10.1371/journal.pone.0305329.g002
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Fig 3. The commitment scheduleing of thermal units of the DUC (case 1).

https://doi.org/10.1371/journal.pone.0305329.g003

Fig 4. The output powers of the thermal units at the DUC (case 1).

https://doi.org/10.1371/journal.pone.0305329.g004
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DUC, the cost obtained by GTO are compared with cost obtained by number of famous algo-

rithms: Grey Wolf Optimizer (GWO), Artificial Hummingbird Algorithm (AHA), and Whale

Optimization Algorithm (WOA). Also the obtained results are compared to some experimen-

tal studies from the literature. The numerical results are introduced in Table 3. The statistical

results are depicted in Fig 5. It shows that the results obtained by GTO gives less operating

costs compared to the three algorithms in comparison. This proves the superiority of the GTO

in handling the DUC.

5.1.2 solution of UC with deterministic load and without RE units (with the consider-

ation of the valve point effect). With the consideration of VPE a sinusoidal term is added to

the equation of the fuel cost. The data for VPE of ten unit system is taken from [62]. VPE has

an impact on the input-output characteristics of generation units, causing the fuel cost to be

nonlinear and non-smooth. In most cases, VPE has been considered in the study of economic

load dispatch problems. So, in this case of study VPE effect is investigated in the solution of

deterministic unit commitment problem. This nonlinearity consideration proves the robust-

ness of GTO against other algorithms. Table 4 gives the obtained results by GTO, GWO,

WOA, and AHA. It is obvious that the inclusion of VPE increases the cost, significantly,

Table 3. The cost comparison between the GTO and other well-known algorithms without considering VPE (case

1).

Approach Best operating cost ($)

HASP [26] 564029

SFLA [27] 564769

PSO-GWO [28] 565210

BFMO [39] 585967

ABFMO [39] 585828

AHA 566481

WOA 568762.3

GWO 564131

GTO 563977

https://doi.org/10.1371/journal.pone.0305329.t003

Fig 5. A statistical comparison for cost reduction by different optimizers at DUC.

https://doi.org/10.1371/journal.pone.0305329.g005
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compared to the cost obtained by GTO without VPE consideration. Also, Table 4 shows that

GTO outperforms GWO, WOA, and AHA with less operating cost. A comparison for the con-

vergence curve OF GTO against GWO, WOA, and AHA is depicted in Fig 6. The results dem-

onstrate the superiority of GTO in dealing with the nonlinearity of fuel cost function in the

UC problem with best operating cost during the whole iteration process.

5.2 Case 2: Solution of UC considering load demand uncertainty without

RE units

In this case, the system has 10 thermal units, but the variability of load demand is considered.

The data for 10 units is the same as in case 1. The spinning reserve values are considered to be

10% of the load. Normal distribution was used to represent the load uncertainty. Mean value

Table 4. The cost comparison between the GTO and other well-known algorithms with VPE (case 1).

Approach Best operating cost($)

AHA 678141.05

WOA 689212.89

GWO 669416.19

GTO 663659.48

https://doi.org/10.1371/journal.pone.0305329.t004

Fig 6. The convergence curves comparison of GTO, GWO, WOA, and AHA with VPE (case 1).

https://doi.org/10.1371/journal.pone.0305329.g006

PLOS ONE An artificial gorilla troops optimizer for stochastic unit commitment problem solution incorporating RESs

PLOS ONE | https://doi.org/10.1371/journal.pone.0305329 July 10, 2024 17 / 28

https://doi.org/10.1371/journal.pone.0305329.t004
https://doi.org/10.1371/journal.pone.0305329.g006
https://doi.org/10.1371/journal.pone.0305329


and standard deviation (SD) are given for each hour [63] and are utilized to create a univariate

function to estimate the load value. Using MCS method, in each hour 1000 scenarios are gen-

erated to simulate load variations. These scenarios are diminished to ten scenarios which are a

good representation of the original system. Fig 7 shows the load demand produced scenarios

during 12.00–13.00 h by using the MCS technique. Fig 7 illustrates that during the proposed

hour the most repeated load values lay between 710 MW and 720 MW. The convergence curve

for the GTO of this case is given in Fig 8. The commitment schedule of thermal units is shown

Fig 7. The produced scenarios of the load demand during 12.00–13.00 h by applying 1000 MCSs.

https://doi.org/10.1371/journal.pone.0305329.g007

Fig 8. The convergence curve for the GTO handling the SUC at uncertain load demand (case2).

https://doi.org/10.1371/journal.pone.0305329.g008
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in Fig 9 and is indicated by two colors typically as in case 1. The generated powers from the

thermal units are indicated in Fig 10. The operating cost for this case is proposed in Table 5.

The minimum obtained cost by the GTO is 416631.12 ($/day). The results show more reliable

and realistic solution of UC under load demand uncertainty.

5.3 Case 3: Solution of UC with RE units and with considering uncertainty

of the load

In this case, the system was simulated as combination of ten thermal units with a wind farm

(six wind turbines) and a solar unit. This system is employed to investigate the impact of inte-

grated RE units and their uncertainties on the UC problem, and as a result the system’s eco-

nomics. To determine the scale and shape parameters of Weibull distribution of the wind

speed variations to calculate the produced power from each turbine and so from the wind

farm, the mean value and SD of wind speed during each time interval [55] are simulated in

Fig 11. To determine the shape parameters of Beta distribution of solar irradiance variations to

find the output power from the solar unit, the mean value and standard deviation (SD) of solar

irradiance during each segment of time [64] are simulated in Fig 12. Figs 11 and 12 illustrate

that the peak of the wind speed and solar irradiance occur at the middle of the day. Using

MCS method, in each hour 1000 scenarios are generated to simulate RE variations.

Fig 9. The commitment scheduleing of thermal units of the SUC at uncertainty of the load demand (case2).

https://doi.org/10.1371/journal.pone.0305329.g009
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Respectively, Figs 13 and 14 show the obtained scenarios of the wind speed and solar irradi-

ance during 12.00–13.00 h by using the MCS technique. Then, these scenarios are shrunk to

typical ten scenarios which effectively give an approximation for the original system. Fig 13

illustrates that during the proposed hour the most repeated wind speed values lay between 10

Fig 10. The output powers of the thermal units of the SUC at uncertainty of the load demand (case 2).

https://doi.org/10.1371/journal.pone.0305329.g010

Table 5. Costs’ results for case 2.

Test case Start-up cost ($) Fuel cost ($) Operating cost ($)

Case 2 3880 412751.12 416631.12

https://doi.org/10.1371/journal.pone.0305329.t005

Fig 11. Mean value and SD of wind speed over 24-hr.

https://doi.org/10.1371/journal.pone.0305329.g011
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(m/s) and 12 (m/s). Fig 14 illustrates that during the proposed hour the most repeated solar

irradiance values lay between 0.7 (Kw/m2) and 0.8 (Kw/m2). The specification of wind tur-

bines and solar unit are proposed in Tables 6 and 7, respectively. The data for 10 thermal units

and load demand uncertainty modelling are similar to case 2. The spinning reserve values are

10% of the load. In this case, the thermal units’ ramping capacities are considered and are

taken as 75% of the units rated capacity. The commitment schedule of the thermal units is

shown in Fig 15. The graphical representation for the generated power from the thermal units

is depicted in Fig. The results in Figs 15 and 16 demonstrate that the generation limit con-

straints, up/down ramping capacity constraints, and minimum up/down time constraints are

all meet the requirements proposed previously. The solution of the UC with the consideration

of the generation side uncertainty (wind and solar power generation) ensures that the

Fig 12. Mean value and SD of solar irradiance over 24-hr.

https://doi.org/10.1371/journal.pone.0305329.g012

Fig 13. The produced scenarios of the wind speed during 12.00–13.00 h by applying 1000 MCSs.

https://doi.org/10.1371/journal.pone.0305329.g013

PLOS ONE An artificial gorilla troops optimizer for stochastic unit commitment problem solution incorporating RESs

PLOS ONE | https://doi.org/10.1371/journal.pone.0305329 July 10, 2024 21 / 28

https://doi.org/10.1371/journal.pone.0305329.g012
https://doi.org/10.1371/journal.pone.0305329.g013
https://doi.org/10.1371/journal.pone.0305329


calculated operating cost is more reliable and gives a fairly good simulation for the real power

system operation which makes the solution more practical. In comparison with the previous

case, it is found that fewer number of units have to be on to cover the load demand at nearly

all hours of the day. This indeed reduces the loading on the thermal units except for the first

unit which has to work for all day and represents the base generation. As a result, the operating

cost reduces with a large rate compared to the cost in the previous case. Despite the increment

in the start-up cost, but the fuel cost of thermal units decreases as the wind turbines and solar

unit share power with the conventional thermal units to cover the load demand. The cost com-

parison of this case with the previous case is given in Table 8. The minimum obtained cost by

the GTO is 336516.58 ($/day). In other words, the percentage reduction in the operating cost

per day with incorporation of RE resources is 19.23%. This means that the amount of savings

in the operating cost per day with incorporation of RE resources is 80114.54 ($/day) which

equivalent to 29.2418071 ×106 ($/year). The convergence curve for the GTO with incorpo-

ration of RE resources is depicted in Fig 17. Fig 18 gives the convergence curves comparison

Fig 14. The produced scenarios of the solar irradiance during 12.00–13.00 h by applying 1000 MCSs.

https://doi.org/10.1371/journal.pone.0305329.g014

Table 6. Specification of wind turbine.

Parameter Value

Rated output power, PR 40 MW

Rated wind speed, VR 12 m/s

Cut-in-speed, Vin 3 m/s

Cut-out-speed, Vout 25 m/s

https://doi.org/10.1371/journal.pone.0305329.t006

Table 7. Specification of solar unit.

Parameter Value

Solar irradiance for standard conditions, Gstd 1000 W/m2

Cut-in-radiation point, Xc 150 W/m2

https://doi.org/10.1371/journal.pone.0305329.t007
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Fig 15. The commitment scheduleing of thermal units of the SUC at uncertainty of the load demand and RE resources (case3).

https://doi.org/10.1371/journal.pone.0305329.g015

Fig 16. The output powers obtained of the thermal units at the SUC with uncertainty of the load demand and RE resources (case 3).

https://doi.org/10.1371/journal.pone.0305329.g016
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Table 8. Costs comparison between case 2 and case 3.

Test case Start-up cost Fuel cost Operating cost

Case 2 3880 412751.12 416631.12

Case 3 5630 330886.58 336516.58

https://doi.org/10.1371/journal.pone.0305329.t008

Fig 17. The convergence curve for the GTO handling the SUC at uncertainty of the load demand and RE resources (case3).

https://doi.org/10.1371/journal.pone.0305329.g017

Fig 18. The convergence curves comparison between case 2 and case 3.

https://doi.org/10.1371/journal.pone.0305329.g018
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with and without RE resources integration. The convergence rate is fast in the case of without

integrated RE resources.

6. Conclusion

This work has presented a solution for the single area UC issue. The focus of this work is on a

combined power system consists of conventional thermal units, wind turbines, and a solar

unit. The goal of the proposed study is to reduce the system operating cost with higher degree

of reliability due to the integration of wind and solar energies and the consideration of uncer-

tainty without disturbing the problem constraints. We have applied the GTO that replicates

gorilla social behavior to tackle the UC issue. We statistically investigated the impact of inte-

grated RE resources uncertainty and the load uncertainty on solving the UC problem and so

the economics of the power system. That has been done by analyzing the results obtained for

systems with and without integrated RE resources under deterministic and stochastic models.

By the employment of Weibull and Beta PDF, respectively, uncertainties of wind speed and

solar irradiance have been simulated. The load demand uncertainty has been simulated using

normal PDF. The effectiveness of the GTO is evaluated by considering the deterministic UC

problem. The findings of this work suggested that the GTO has superiority in solving the

deterministic UC and the incorporation of RE resources with uncertainty consideration has

achieved notable cost saving in the operating costs. According to the results derived from the

performed studies under three different cases, the following conclusions are deduced: The

GTO succeed to achieve better operating cost with fast convergence rate over other algorithms

in solving the deterministic UC. The minimum and maximum achieved cost savings per day

are 0.2181% and 3.7528%, respectively. The integration of RE resources in the system while

considering their uncertainties and fluctuations reduced the load put on the thermal units so

the system operation cost decreased by 19.23% per day in comparison with the cost obtained

in the second case (Without RE resources integration), and it is found that the system eco-

nomic performance has been enhanced significantly. The results served as a foundation for

additional investigation and advancement in the UC study with various RE resources integra-

tion and with uncertainty modelling of various parameters in the system. The main limitation

of the proposed solution is the need for energy storage systems to compensate for the instabil-

ity of the wind and solar energies production. By focusing on this limitation, the findings of

the research can be reinforced and the reliability of the system can be enhanced significantly.

Addressing these limitations can strengthen the study’s findings. The Future research work

focuses on solving the stochastic UC with inclusion the electrical vehicle stations to system and

with inclusion multi-types of energy storage systems.
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