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Abstract. Climate change is projected to have major impacts

to land surface and subsurface processes through its expres-2

sion in the hydrological cycle, but the impacts to any particu-

lar basin or region are highly uncertain. Non-stationarities in4

the frequency, magnitude, duration, and timing of floods and

droughts would have important implications for human soci-6

eties and ecosystems. The conventional approach for assess-

ing the near-surface impacts of climate change is to down-8

scale global climate model output and use it to drive re-

gional and local models that express the climate within hy-10

drology near the land surface. While this approach may be

useful for linking general circulation models to the hydro-12

logical cycle, it is limited for examining the details of hy-

drological response to climate forcing for a specific loca-14

tion over timescales relevant to decision makers. For exam-

ple, management of flood hazard or drought amelioration re-16

quires detailed information that includes uncertainty based

on variability in storm characteristics, rather than on differ-18

ences between models within an ensemble. To fill this gap,

we present the second version of our STOchastic Rainfall20

Model (STORM), an open-source, parsimonious and user-

friendly modeling framework for simulating climatic expres-22

sion as rainfall fields over a catchment. This work showcases

the use of STORM in simulating ensembles of realistic se-24

quences, and spatial patterns of rainstorms for current cli-

mate conditions, and bespoke climate change scenarios that26

affect the water balance near the Earth’s surface. We outline,

and detail STORM’s new approaches such as: a copula for28

linking marginal distributions of storm intensity and dura-

tion; an orographic stratification (in which intensity-duration30

copulas can be applied too); a radial decay-rate which takes

into consideration potential, but unrecorded, maximum storm 32

intensities; an optional component to simulate storm start-

ing date-times via circular/directional statistics; and a com- 34

pressed implementation in modelling future climate scenar-

ios. We also introduce a new ingestion module that facilitates 36

the generation of relevant input in the form of probability

density functions (PDFs), from historical data, for stochastic 38

sampling. Independent validation exercises showed that the

average performance of STORM falls within a 5.5% from 40

the average of all storms in the Walnut Gulch (Arizona, US)

ocurred in the current century. 42

Copyright statement. what’s a copyright statement anyways?

1 Introduction 44

In earlier research (Singer and Michaelides, 2017; Singer

et al., 2018), we introduced the STOchastic Rainstorm Model 46

(STORM)1, presented the justification for its creation, and

demonstrated its application to simulating spatial rainfall 48

fields at Walnut Gulch, Arizona (see Sec. 2.10). In this pa-

per, we introduce STORM v.2 and highlight the novel as- 50

pects of the model that warrant a new version number. We

made several changes to the model that make it more user- 52

friendly and enhance its capability for simulating water bal-

ance over small watersheds under historical climate or un- 54

1https://github.com/blissville71/STORM
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der various user-defined scenarios of climate change. Specif-

ically, STORM v.2: a) treats rainstorm intensity and dura-2

tion as joint variables in copula framework, rather than as

independent variables, a major shortcoming in the previous4

version of the model; b) offers an altitude stratification to ac-

count for orographic characteristics influencing precipitation6

c) improves on the radial decay-rate model to incorporate po-

tential, but unrecorded, maximum storm intensities; d) tack-8

les modelling of storm’s starting date-times from directional-

statistics perspective; and e) contains a pre-processing mod-10

ule that automatically generates all the input probability den-

sity functions (PDFs) required for storm. These advances,12

which will be discussed in detail below, were required to

create a model that is faithful to the underlying hydrological14

processes (e.g., capturing relationships between rainstorm in-

tensity, duration, and frequency), while also enabling broad16

uptake and easy use of the model for a range of purposes, and

for any small basin with available storm rainfall data.18

An individual rainstorm (discrete in space and time) has

an intensity that varies spatially from the center of the storm20

(the so-called storm core) to its margins, and a duration over

which an average intensity is expressed. Rainstorm intensity22

and duration are related in the sense that the highest intensity

storms are generally short-lived, while long rainstorms have24

low average intensity. The functional form of the relationship

between rainfall intensity and duration is typically character-26

ized as a negative exponential, where intensity declines with

duration (Nicholson, 2011). However, in rain gauge data,28

there can be dramatic scatter in this relationship, so a single-

valued function cannot represent the phase space between in-30

tensity and duration. To overcome this limitation, the previ-

ous version of STORM fitted the relationship for the upper32

envelope of the intensity-duration phase space and then used

the functional form of the fitted curve to fit additional curves34

that pass through the entire phase space (Singer et al., 2018).

These intensity-duration curves are then treated as a stochas-36

tic variable for random selection within the STORM code. To

further enable complete sampling of the entire phase space,38

STORM 1.0 also includes a fuzzy tolerance such that storm

intensity for the selected duration can vary up or down away40

from the selected curve.

This representation of intensity and duration is the crux of42

STORM 1.0, as it forms the basis for rainstorm characteris-

tics that affect rainfall totals during a storm, over a season,44

and over the longer term. However, this approach has sev-

eral weaknesses: a) it is based on debatable, heuristic rules46

of probability assignation; b) it does not capture the inher-

ent multi-valued relationship between rainfall intensity and48

duration; c) the functional form of the relationship is as-

sumed based on the upper envelope of the phase space; and50

d) there is an arbitrary number of curves used to represent the

phase space. Notably, we also use the curve number proba-52

bilities to represent orography in STORM 1.0. This means

that the STORM 1.0’s representation of orography contains54

these same weaknesses.

The relationship between rainfall intensity and duration is 56

a critical attribute of rainstorms that affects the overall de-

livery of water to the land surface, the balance between in- 58

filtration and evapotranspiration, and the corresponding an-

tecedent moisture condition at any point in time and space. 60

Thus, it is critical to characterize the distribution of storm

intensity-duration from historical records, as well as the fre- 62

quency of their occurrence. STORM v.2 now offers a bet-

ter characterization of storm intensity-duration relationship 64

throughout a copula approach.

Copulas (or copulae), from the Latin word for “tie”, repre- 66

sent a way forward for characterizing the complex relation-

ship between intensity and duration from the perspective of 68

joint frequency of occurrence (Vandenberghe et al., 2011).

A copula is a function that links/couples a multi-variate dis- 70

tribution function to its univariate marginals, regardless any

prior knowledge of such marginals (see Sec. 2.5). The cop- 72

ula approach obviates the need for fitting intensity-duration

curves, and for the arbitrary assignment of curve probabili- 74

ties. Once the intensity-duration copula is fit, it can be sam-

pled randomly to simulate the rainstorm characteristics. 76

Another shortcoming in STORM 1.0 was its reliance on

user-developed PDFs as input to the model. We recognize 78

that this requirement may be a major limitation which pre-

vents some users from deciding to use STORM for rain- 80

storm simulation. To make STORM more user-friendly, we

added the pre-processing, and visualization modules that re- 82

spectively allow the automatization in computing the best fit

of PDFs on (input) gauge data, and the visualization of the 84

(output-modelled) storms (see Sec. 2.8).

We provide STORM v.2 (and its ingestion, and visual- 86

ization modules, along with toy/processed input data, and

parameters) as open source code2. Unlike STORM 1.0, 88

STORM v.2 is uniquely, and entirely written in Python 3

(Van Rossum and Drake, 2009). From here onwards, we will 90

refer to STORM v.2 simply as STORM.

2 Data and Methods 92

STORM is a stochastic model built upon continuous PDFs

for seven variables, i.e., total seasonal rainfall (TOTALP), 94

maximum storm radius/extent (RADIUS), rainfall decay rate

from the storm’s center outwards (BETPAR), maximum in- 96

tensity (MAXINT), average duration (AVGDUR), storm’s

starting date (DOYEAR), and storm’s starting time (DA- 98

TIME). Here we model the relation between the storm’s max-

imum intensity and its average duration via a copula ap- 100

proach (COPULA). STORM allows the stratification of the

copula approach based on the orography of the region, that 102

is, one can specify a maximum_intensity–average_duration

copulas model for every altitude band in which the catchment 104

is split. This “altitude stratification”, along with the storm’s

starting time are optional features in STORM. In the case 106

2https://github.com/feliperiosg/STORM2
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of the former a digital elevation model (DEM) is required;

whereas in the case of the latter the user might encounter2

some difficulties installing the circular statistics libraries.

STORM also preserves STORM 1.0’s functionality to sim-4

ulate the impact of climate change either on the total sea-

sonal rainfall or the storm’s maximum intensity. Such func-6

tionality is applied through two types of mutually exclud-

ing factors: _SC (i.e., Step-Change) which is constantly ap-8

plied to every and each of the simulated years; and _SF (i.e.,

Scaling-Factor) which is increasingly/decreasingly applied10

to all of the simulated years. Hence, for potential/climate im-

pacts on the total seasonal rainfall these factors are dubbed12

as PTOT_SC, and PTOT_SF; whereas for potential/climate

impacts on the maximum rainfall intensity these factors are14

dubbed as STORMINESS_SC, and STORMINESS_SF (see

Sec. 2.7).16

2.1 Total Seasonal Rainfall [TOTALP]

STORM stops a given simulation once the median of the cu-18

mulative rainfall over the catchment surpasses the sampled

TOTALP value for the season under consideration. The sam-20

pled TOTALP value comes from a PDF of historical medi-

ans of total seasonal storm rainfall. Each of these historical22

medians represents the spatial median of the cumulative sea-

sonal rainfall recorded by the gauge network spread within24

the catchment. To avoid sampling negative values of rain-

fall, the fitting (and the sampling) of the PDF is done in the26

(natural) logarithmic space, i.e., TOTALP = eTOTALP(sampled) .

STORM 1.0 used too as stopping criteria the TOTALP me-28

dian. Nevertheless, that sampled value came from a PDF of

historical means (or was it maxima?) of total seasonal rain-30

fall. Now, we consider that reaching the (catchment) median

sampled from a distribution of historical medians offers a32

more accurate picture in stochastic modelling of seasonal to-

tals. Figure 1, panel b, shows the spatial distribution of rain-34

fall at the end of one simulation exercise, i.e., once the me-

dian of the cumulative rainfall over the catchment is larger36

than the sampled value for TOTALP.

2.2 Maximum Storm Extent [RADIUS]38

Storm radii are defined in STORM as the maximum distance

computed for a group a gauges and their centroid. Here, a40

“group of gauges” means all those gauges for which the time-

stamp of any storm’s starting time is identical among them. A42

PDF of radii was computed from groups with at least two rain

gauges. We are aware that this assumption does not consider44

the extent, evolution, and/or trajectory of any storm in par-

ticular throughout the gauge data. Nevertheless, by assuming46

that identical time-stamps (in storm starting times) might im-

ply that the whole storm is being simultaneously captured by48

the gauge network, one can easily estimate an extension of

the storm from plain gauge records. This premise also relies50

in the assumption of a circular-shape model for storm cells,

Figure 1. Spatio-temporal distribution of simulated storm rainfall

over the Walnut Gulch catchment (see Sec. 2.10). Spatial resolution

of 1×1km. Panel a - One large simulated storm starting at∼ 17:41
on July 21st, with a radius of ∼ 11km, ∼ 2.5h of duration, and a

maximum intensity of ∼ 19mm (i.e., 7.57mm · h−1). Please note

its logarithmic color scale. Panel b - Cumulative seasonal distribu-

tion of 116 storms for the wet season, i.e., from June through Octo-

ber. Even though the grid is presented in “lat-lon” coordinates (i.e.,

CRS WGS-84), the actual projection (in both panels) is the 2D-

Cartesian coordinate system known as NAD83 / UTM zone 12N

(i.e., EPSG:26912; https://epsg.io/26912).

which might not be entirely true, and how reliable might the 52

gauge network be with regard to its spatial density. Figure 1,

panel a, shows a simulated storm with a radius of ∼ 11km. 54

This approach is biased towards spatially-large storms given

that small-radii storms, i.e., storms not captured by a single 56

gauge are disregarded in this methodology.

The minimum radius that can be sampled is restricted 58

by the spatial resolution the user might set up the model

output to. For instance, for a model output’s resolution of 60

0.5× 1.0km, the minimum possible (sampled) radius would

be 1km. This is achieved by truncating the RADIUS PDF, 62

and then sampling from it. Instead of using a “maximum”

criterion for the selection of storm radii, the user can also 64

modify this criterion to be, e.g., the mean (or median or

whatever) distance of a group of gauges and their cen- 66

troid. This change can be implemented by the user, via the

pre_processing.py script. STORM 1.0 did not use a 68

“radius” approach. Instead, storm area values were sampled

from a pre-fixed (GEV?) PDF. 70
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2.3 Rainfall Decay Rate [BETPAR] & Maximum

Storm Intensity [MAXINT]2

We model individual storms as isotropic circular cells for

which maximum intensities (Imax) are (always) located at4

their centres, with a quadratic exponential decay (β2) as the

distance from such centres (r) increases:6

I
(

r
)

= Imax · e
−2·β2

·r2 , (1)

where I
(

r
)

(in mm · h−1) is the rainfall intensity at a dis-8

tance r (in km) from the storm centre. β has units of km−1.

We use the quadratic exponential decay model to fit both10

the decay rate (β), and maximum intensity (Imax). This

is done via scipy’s module curve_fit, i.e., a non-linear12

least squares approach, for which the Trust Region Reflective

method is applied, given the constraints we enforce to our14

minimization problem (Virtanen et al., 2020; Branch et al.,

1999). Such constraints/bounds simply refer to the limits for16

which one intends β and Imax (in this case) to be within.

For instance, and following Eagleson et al. (1987, Fig. 17),18

we bound β between 0 and 3; whereas for Imax we set 3
times the highest intensity found in the gauge data as the up-20

per limit, and some value slightly above zero as the lower

limit (0.07mm · h−1, in our case). Eagleson et al. (1987), and22

Morin et al. (2005) previously used, for the Walnut Gulch

catchment, the same model to only fit the rainfall’s decay24

rate respectively from gauge and radar data. Figure 1, panel

a, shows a simulated storm with a steep β of ∼ 0.18km−1,26

and Imax = 18.77mm.

We fit the model for storms simultaneously registered28

by four or more gauges (i.e., with identical starting time-

stamps). Along with the optimal values for which the model30

is fitted, curve_fit also returns the estimated covariance

of such optimal values. We only kept optimal values for32

which their covariance is equal or smaller than 5, and equal

or larger than 0. These “clean” optimal values are the ones34

over which the PDFs (BETPAR and MAXINT) are then con-

structed upon. Supplementary Figure B6 shows three cases36

for which the model represented by Eq. (1) offers a got fit/ap-

proximation. Now i’m reluctant to use this figurE We ob-38

tained similar results (not shown here) to Eagleson et al.

(1987), and Morin et al. (2005) for the PDF of β. In our case,40

βmean ≈ 0.1, whereas for the them is ∼ 0.4. This is mainly

attributed to our methodology of fitting simultaneously both42

Imax and β. We also hit the µ≈ 0.4 when we only fit for β,

using a lot more storm records than they did.44

We assume that in the vast majority of the cases, the rain-

fall recorded by the gauge network does not correspond to46

the maximum intensity of the storm event; thus, our need

to model for a maximum intensity (MAXINT). Eq. (1) is48

therefore an adequate model that allows us to easily estimate

the maximum rainfall intensity from gauge records (given50

the current computational tools, and the extensive rainfall

records). Supplementary Fig. B1 shows the difference be- 52

tween PDFs accounting (and not) for maximum intensity.

Accounting for maximum storm rainfall intensity is a feature 54

not present in STORM 1.0.

2.4 Storm Average Duration [AVGDUR] 56

The AVGDUR PDF is constructed from the correspondent

“clean” optimal values for maximum intensity (MAXINT) 58

(see Sec. 2.3). Once a “group of gauges” is established (see

Sec. 2.2), we model storm duration as the average of all storm 60

durations registered within such a group. Please recall that

here a storm event is that one in which a group of gauges 62

shares the same storm’s starting time-stamp. Nevertheless,

the storm’s total duration registered by each gauge does differ 64

from gauge to gauge, mainly due to the pass/movement of

the storm front over the gauge network. Thus, for every fit 66

of Eq.(1) to a group of gauges (for which Imax and β are

estimated) an average storm duration is also retrieved. And 68

after selecting the best fits, average storm durations included,

then we proceed to fit the AVGDUR PDF. 70

2.5 Copula Approach [MAXINT-AVGDUR COPULA]

The cornerstone of a copula framework is (set on) Sklar’s 72

theorem (e.g., Hofert et al. (2018, chap. 1), Joe (2014, chap.

1), Nelsen (2006, chap. 2)), which states that for any d- 74

dimensional (joint) distribution function H with univariate

marginals (margins) F1, . . . ,Fd, there exist a d-dimensional 76

copula C such that:

H
(

x

)

= C
(

F1(x1), . . . ,Fd(xd)
)

, x ∈ R
d. (2) 78

If the univariate marginals F1, . . . ,Fd are continuous, then

C is uniquely defined on [0,1]d. In simpler terms, a copula is 80

a function that links/couples (thus its etymology) a multivari-

ate (joint) distribution function to its univariate marginals, 82

with no prior knowledge of the actual shape (or type) of

such marginals (e.g., Zhang and Singh, 2019; Nelsen, 2006; 84

Hofert et al., 2018; Vandenberghe et al., 2011; Dai et al.,

2014). 86

Elliptical copulas (which show elliptically contoured den-

sity level surfaces) refer to copulas from elliptical distribu- 88

tions (e.g., Mai and Scherer (2017, chap. 4), Tjøstheim et al.

(2022, chap. 5)). An elliptical distribution represents a linear 90

transformation of spherical distributions (Mai and Scherer,

2017, chap. 4), these latter being extensions of multinormal 92

distributions (Fang et al., 1990, chap. 2). The vast majority of

application from elliptical copulas are found in financial sci- 94

ences (Genest et al., 2009; The Economist, 2009). Nonethe-

less, there have recent applications of elliptical copulas in hy- 96

drometeorology such as modelling radar rainfall uncertainty

(Dai et al., 2014), and establishing seasonal correlation be- 98

tween ENSO, PDO and precipitation (Khedun et al., 2014),

to name a couple. Zhang and Singh (2019); Chen and Guo 100



Rios Gaona et al.: STORM v.2 5

(2019) provide a thorough review of recent advances and ap-

plications of copulas (elliptical among others) in several ar-2

eas of hydrology fields such as extreme analysis, drought(s),

rainfall, flood (frequency, forecasting, and risk), streamflow,4

water quality, and suspended sediment transport. Elliptical

copulas are very common and advantageous as they allow6

the specification of different levels of global correlation be-

tween marginals (Tjøstheim et al., 2022, chap. 5). Neverthe-8

less they offer no simple closed-form expressions, that is,

they have only implicit analytical expressions/solutions (Mai10

and Scherer, 2017, chap. 4).

A (d-variate) Gaussian (namely, standard normal) copula12

belongs to the parametric family of the elliptical copulas

(e.g., Mai and Scherer, 2017, Fig. 4.1), and it is described14

by the functional form (e.g., Mai and Scherer (2017, chap.

4)):16

CGa
P

(

u

)

=ΦP

(

Φ−1(u1), . . . ,Φ
−1(ud)

)

, (3)

where ΦP is the joint cumulative distribution function (CDF)18

of a d-variate Gaussian distribution; Φ−1 is the univariate

Gaussian inverse CDF (i.e., the quantile function); P is the20

d× d correlation matrix of multivariate normal random vec-

tor; with CGa
P denoting the copula is parametrized by the22

1
2d(d−1) parameters of the correlation matrix (McNeil et al.,

2015, chap. 7).24

STORM uses a bi-variate Gaussian copula to model the

dependence between storm rainfall intensity and duration. In26

a d-variate Gaussian copula the d×d correlation matrix could

be replaced by a/the covariance matrix (Mai and Scherer,28

2017, chap. 4). For the bi-variate case, i.e. d= 2, CGa
P be-

comes CGa
ρ , with ρ the (scalar) Pearson correlation coeffi-30

cient (e.g., Joe (2014, chap. 4), McNeil et al. (2015, chap. 7),

Tjøstheim et al. (2022, chap. 5)). In doing so the parameteri-32

zation is reduced to its minimum (only depending of ρ); thus

its (relatively) easy implementation, and therefore its pop-34

ularity. Still, a bi-variate (or any d-variate, for that matter)

Gauss copula does not have a simple closed form, but can be36

expressed as an integral over the density of a bi-variate nor-

mal random vector (e.g., McNeil et al. (2015, chap. 7), Ross38

(2013, chap. 6)):

CGa
ρ

(

u,v
)

=

Φ−1(u)
∫

−∞

Φ−1(v)
∫

−∞

1

2π
√

1− ρ2
· exp

{

−
u2 + v2 − 2ρuv

2(1− ρ2)

}

dvdu,

with 0⩽ u,v ⩽ 1, and ρ ∈ [−1,1].

(4)40

STORM constructs the bi-variate Gaussian copula via the

GaussianCopula module from the statsmodels package42

(Seabold and Perktold, 2010; Joe, 2014). First of all, during

the pre-processing stage (Sec. 2.8) the Pearson correlation 44

coefficient ρ is obtained through Greiner’s equality (Berger,

2016): 46

τ =
2

π
· arcsin

(

ρ
)

, (5)

where τ is Kendall’s rank correlation (also known as 48

Kendall’s tau) (Kendall, 1945; Virtanen et al., 2020). A rank

correlation is a copula-based measure of (strength of) de- 50

pendence, i.e., only depends on the copula (of a bi-variate

distribution), and not on the marginals (McNeil et al., 2015, 52

chap. 7). It is computed from the ranks of the (empirical)

data, which means one only needs the ordering of the ran- 54

dom variables, and not the actual values, i.e., storm inten-

sity and duration in this case. Eq. (5) generally holds for 56

elliptical copulas (from which the bi-variate Gaussian is a

member); offering a simple approach to compute ρ with- 58

out the estimation of variances and covariances (Langwor-

thy et al., 2021; McNeil et al., 2015, chap. 6). Then, during 60

a simulation (or validation) run, the bi-variate normal dis-

tribution is constructed from Eqs. (5) and (4) by using the 62

probability integral transform (Seabold and Perktold, 2010).

Once the (bi-variate) Gaussian copula is built, n samples are 64

randomly sampled from it. These samples are drawn from

the 0⩽ u,v ⩽ 1 CDF-space; hence, each sample, i.e., (u,v)- 66

point, must be transformed (back) into the intensity-duration

space. This transformation is done throughout the marginal 68

PDFs (and their ppf objects, from scipy’s module stats).

During the pre-processing stage STORM builds the marginal 70

PDFs for intensity and duration from the input gauge data.

Figure 2 shows a comparison between storm rainfall mea- 72

sured by rain gauges, and simulated from a bi-variate Gaus-

sian copula. From this figure, one can see that for the sim- 74

ulated exercise (Fig. 2, panel b) STORM generates storms

with higher (and lower) intensities than those actually ob- 76

served by the gauge network (Fig. 2, panel a).

2.6 Day of Year [DOYEAR] & Time of Day [DATIME] 78

Realistic storm’s starting dates and times can now be sam-

pled in STORM through a modular implementation of direc- 80

tional (or circular) statistics. Directional statistics takes into

consideration the periodicity of random variables that can be 82

distributed in a closed space, e.g., torus, sphere, circle (Bre-

itenberger, 1963). The day of the year (DOY), and the time 84

of the day (TOD), of an occurring storm, belong to such a set

of variables. 86

STORM models storm’s starting dates and times through-

out a finite mixture of unimodal von Mises (vM) distribu- 88

tions. The vM distribution (also known as the Tikhonov dis-

tribution, e.g., Shmaliy (2005)) is a widely used PDF (in the 90

circle space) given its simplistic parameterization, and math-

ematical tractability (e.g., Mardia and Jupp, 1999; Pewsey 92

et al., 2013). The vM distribution is a close approximation of
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Figure 2. Scatter plots of storm intensity (y-axis, mm · h−1) against storm duration (x-axis, min), in log-log scale, for gauge, and validation

datasets. Panel a - Recorded storms for the wet season (i.e., June through October) over the Walnut Gulch catchment (see Sec. 2.10). The

orange markers/crosses are records from the digital network, i.e., gauges from 2000 onwards (from June 2000 through October 2022, i.e., the

validation dataset). The yellow markers/circles are records from the analog network, i.e., gauges prior to 2000 (from August 1953 through

October 1999, i.e., the calibration dataset). Panel b - 23 years of simulated storm, each year having 30 runs. These storm intensity-duration

“pairs” are obtained from the marginal PDFs fitted in the pre-processing module (see Sec. 2.8) for storm maximum intensity (MAXINT),

and average duration (AVGDUR).

distributions such as the Cardiod, the wrapped Cauchy, and

the wrapped normal. This latter (as its name suggests) is the2

equivalent of wrapping the normal distribution (from the lin-

ear space) into the circular space (Mardia and Jupp, 1999,4

chap. 3).

The model for a finite mixture of vM (MvM) PDFs (for6

a random variable θ) is given by (e.g., Jammalamadaka and

SenGupta, 2001, chap. 4.3):8

f
(

θ |
{

p,µ,κ
}M

i=1

)

=

M
∑

i=1

pi ·
eκi·cos(θ−µi)

2π · I0(κi)
,

with 0⩽ θ, µi < 2π, 0⩽ pi ⩽ 1, and
∑

i=1 pi = 1.

(6)

In Eq. (6), pi is the mixing proportion of the i-unimodal10

vM distribution (i.e., everything to the right of pi); κ {for κ⩾

0} is the concentration parameter that quantifies the sparse-12

ness/spreadness of the distribution around its mean direction

µ; and I0
(

κ
)

is the modified Bessel function of the first kind14

with order 0, and argument κ. Mardia and Jupp (1999, Eq.

3.5.19), and/or Jammalamadaka and SenGupta (2001, Eq.16

2.2.7), for instance, define I0
(

κ
)

as:

I0
(

κ
)

=
1

2π

2π
∫

0

eκ·cos(θ) dθ =

∞
∑

s=0

1

(s!)2

(

κ

2

)2·s

. (7) 18

This latter, i.e., the term most to the right in Eq. (7), is the

power series expansion (in infinite series form). Parameters 20

µ, and 1/κ (Eq. (6)) are analogous to the mean µ, and vari-

ance σ2 of the normal distribution. 22

Eq. (6) has no analytical solution. Hence, STORM uses

the vonMisesMixtures3 package, which computes the 24

parameters (µ, κ, p) via Maximum Likelihood Estima-

tors within an Expectation-Maximization framework (e.g., 26

Hornik and Grün, 2013; Dhillon and Sra, 2003). The de-

scription of such an algorithm is beyond the scope of this 28

work. At its core, the vonMisesMixtures package uses

the iv object from scipy’s module special for the Mod- 30

ified Bessel function (Temme, 1975; Virtanen et al., 2020),

and the fsolve object from scipy’s module optimize 32

for the root finding (of non-linear functions). fsolve, ul-

timately is a wrapper for a modified Powell’s hybrid method 34

(Moré et al., 1980, p. 57-64, 71-78); this latter, an algorithm

for nonlinear optimization (Powell, 2009, 1970). 36

3https://framagit.org/fraschelle/mixture-of-von-mises-

distributions



Rios Gaona et al.: STORM v.2 7

Table 1. Mean dates, and times µ (in decimal days of year for DOY,

and in decimal hours for TOD, respectively), concentration param-

eters κ, and mixing proportions p for 1, 3, and 5 mixtures of von

Mises (MvM) probability density functions (PDFs). For instance,

for the time of day (TOD), and for the 3 MvM PDFs, µ (in radians)

are 0.691, 1.707, and 2.557, i.e., (in decimal hours) 14.64, 18.52,

and 21.77 (where 0rad = 12:00, and −π/+π = 00:00/24:00). The

parameters for the 5, and 3 MvM PDFs are respectively the default

for the DOY, and TOD models in STORM. These defaults are de-

fined in the pre_processing.py script/module (and in the in-

put file ProbabilityDensityFunctions_ONE–ANALOG.csv). The fit-

ted PDFs presented in Fig. 3 (and sup. Fig. B2) can be reconstructed

by plugging these parameters into Eqs. (7) and (6).

#-MvM pdf-1 pdf-2 pdf-3 pdf-4 pdf-5

D
O

Y

1

µ - - 223.9547 - -
κ - - 3.9086 - -
p - - 1.0000 - -

3

µ - 207.1516 252.9430 - 294.0633
κ - 9.3424 9.2696 - 122.8981
p - 0.6533 0.3062 - 0.0405

5

µ 158.0482 201.3853 238.3692 273.6777 293.2942
κ 287.1728 15.5872 9.4628 129.0467 104.7193
p 0.0118 0.4657 0.4250 0.0445 0.0531

T
O

D

1

µ - - - 17.5157 -
κ - - - 1.0544 -
p - - - 1.0000 -

3

µ - - 14.6420 18.5217 21.7681
κ - - 6.3909 3.0643 0.4700
p - - 0.2492 0.3245 0.4263

5

µ 3.3158 8.0591 15.0518 19.0519 22.4794
κ 4.6405 8.4354 3.7416 5.9302 3.7813
p 0.0825 0.0424 0.4667 0.2400 0.1683

Table 1 presents the estimated parameters for mixtures of

1, 3, and 5 vM-PDFs. Given the storm’s starting DOY and2

TOD, STORM transforms those date-time stamps into radi-

ans, and feed them to the vonMisesMixtures package,4

along with the number of vM PDFs to compute the mix-

ture. The conversion from decimal-based days (ddec) into6

radians (drad), follows: drad = π(2 · ddec/365− 1); for 0⩽
ddec ⩽ 365, and −π ⩽ drad ⩽+π. Similarly, the conversion8

from decimal-based hours (hdec) into radians (hrad), fol-

lows: hrad = π(hdec/12− 1); for 0⩽ hdec ⩽ 24, and −π ⩽10

hrad ⩽+π. Figure 3 shows the fitted mixtures reconstructed

from the parameters in Table 1, along with the circular distri-12

bution of DOY, and TOD. In this figure (panel b), the op-

timal (and more parsimonious) fit for TOD is given by 314

MvM-PDFs. A fit for 5 MvM-PDFs is also presented in panel

b of Fig. 3, even though it overshadowed by the 3 MvM-16

PDFs. This shows the preference (and optimality) of the lat-

ter model not only to capturing in quite detail the (poten-18

tial) multimodality of the TOD distribution but also offering

a less burdensome/intensive parameter estimation, with re-20

gard to the former model (i.e., a 5 MvM-PDFs). Disregard-

ing its circular framework, the TOD histogram presented in22

Fig. 3 is consistent with that of Eagleson et al. (1987, Fig.

5). Appendix A presents the rationale behind the optimum24

Figure 3. Panel a - Circular distribution for 3-day binned-data of

(storm’s starting) days of year (DOY; orange dots, each dot repre-

senting 350 counts). The black continuous curve indicates the op-

timal mixture of von Mises (MvM) probability density functions

(PDFs), a mixture of 5 vM-PDFS, in this case (see Appendix A).

The green curve represents a fit for 3 MvM-PDFs. A 5day-bin cir-

cular histogram is also plotted on the inside. Panel b - Circular dis-

tribution for 12-min binned-data of (storm’s starting) times of day

(TOD; blue dots, each dot representing 150 counts). The red contin-

uous curve indicates the optimal MvM-PDFs, i.e., 3 MvM-PDFS, in

this case. The (almost imperceptible) green curve represents a fit for

5 MvM-PDFs. A 1h-bin circular histogram is plotted on the inside.

In both panels, the dashed black curves represent a fit of just 1 vM-

PDF. The size of the sample is ∼ 146k values, for both DOY and

TOD, encompassing the wet seasons (June through October) from

1953 through 1999, in the Walnut Gulch catchment (see Sec. 2.10).

Table 1 (Sec. 2.6) displays the parameters µ, κ, and p which the vM

PDFs are constructed from.

selection of 5 MvM-PDFs for DOY, and 3 MvM-PDFs for

TOD, which are the default settings in STORM. Still, we en- 26
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courage the user to assess the optimal number of vM PDFs

on an case-by-case basis.2

The choice to implement an approach like the MvM-

PDFs allows the end-users to account for potential mul-4

timodality (and asymmetry) in their storm’s starting date-

times. Nonetheless, in the eventuality that any user en-6

counters some difficulties when installing/running the

vonMisesMixtures package (as it is not shipped through8

the conda channels (Anaconda Software Distribution,

2023)); or that they simply do not want to follow such an10

approach, STORM can still run without this feature (once it

is turned off). In that case, STORM finds the best fit through-12

out a set of discrete probability mass functions (PMFs) for

the DOY; and samples TOD from a uniform distribution (up-14

scaled to the 00:00− 24:00 h domain). Supplementary Fig-

ure B2 shows the best fit of a PMF for DOY in the Walnut16

Gulch dataset. In Fig. B2, one can see the advantages of us-

ing a more elaborate model. i.e., MvM-PDFs, with regard to18

a simple PMF model. Having a statistical model for DOY

is another improvement over STORM 1.0. Thus, we avoid20

modelling inter-arrival, and do not contradict the notion of

rainfall modelling from a (Poisson) point-process perspec-22

tive (e.g., Eagleson et al., 1987).

Both TOD, and DOY sampling takes place independently24

from one another. Then, they are glued together into full date-

time stamps (i.e., DOYEAR, and DATIME). Although theo-26

retically possible, the probability of having two storms simu-

lated at the same location with the very same date-time stamp28

is extremely low.

2.7 Scaling Factors & Stratification30

One key feature carried on from its predecessor is STORM’s

capability to model potential future climate change scenarios32

throughout two scaling factors (f1,f2), applied to TOTALP

(total seasonal rainfall), and MAXINT (maximum storm in-34

tensity). Equation (8) is a generic equation where U repre-

sents the variable to be scaled (i.e., TOTALP or MAXINT),36

U∗ its new value after being modified by factors f1 or f2, and

k the iterator for the number of years per simulation, namely38

NUMSIMYRS.

U∗ = U ·
(

1+ f1 +(f2 · k)
)

, 0< k ⩽ NUMSIMYRS. (8)40

Equation (8) implies that for every simulated year one can

apply either a factor f1, which yields a constant increase (or42

decrease) for every year throughout the whole span of the

simulation, or a factor f2 which progressively increases (or44

decreases) with regard to the previous simulated year. For in-

stance, a factor f1 =−0.1 will decrease 10% of every sam-46

pled TOTALP in any given n-years simulation; whereas a

factor f2 =+0.1 will double the value of sampled TOTALP48

at the end of a 10-year simulation, for instance. Both factors

(f1,f2) are expressed as percentages, and are mutually ex-50

clusive, i.e., STORM ensures they cannot be applied at the

same time, even though Eq. (8) suggests the opposite (this 52

constraint can easily be removed in the source code, though).

Otherwise, the effect of each factor in the output becomes 54

somewhat muddy to disentangle.

For TOTALP, f1 = PTOT_SC, and f2 = PTOT_SF; 56

whereas for MAXINT, f1 = STORMINESS_SC, and f2 =
STORMINESS_SF (i.e., variables used in the script 58

rainfall.py). A legacy from STORM 1.0, PTOT_SC

is a factor that simulates (percentage) step changes in the 60

catchment wetness (seasonal precipitation totals); whereas

PTOT_SF is a fractional scaling factor (progressive percent- 62

age) that simulates temporal trends in seasonal totals. Simi-

larly, STORMINESS_SC simulates step changes in stormi- 64

ness (increase/decrease in maximum storm intensities);

whereas STORMINESS_SF is a fractional scaling trend 66

in maximum intensities. Section 3.2 shows the results for

one simulation where PTOT_SC =+0.5 (Fig. 8; and Supp. 68

Fig. B5, panel b); and another where STORMINESS_SF =
−0.035 (Fig. 7; and Supp. Fig. B5, panel a). 70

STORM now offers the possibility to simulate storm rain-

fall at different altitude bands, so potential orographic ef- 72

fects are taken into account. The basic (and simplest) setup

of STORM only requires the catchment shapefile (SHP) to 74

determine the spatial domain over which the simulation(s)

will take place. In this is scenario, it is not possible to deter- 76

mine any altitude bands within/from the SPH, and STORM

falls back to sample storm’s intensity-duration pairs from 78

the “global” copula, i.e. the copula model retrieved from all

gauge data (see Sec. 2.5, and Fig. 2). On the other hand, if 80

the user not only provides a SHP but also its digital ele-

vation model (DEM), STORM can compute as many cop- 82

ulas/copulae? as altitude bands the catchment is split into.

To this end, and during the pre-processing stage (see Sec. 84

2.8.1), the user must define such altitude bands, and STORM

will compute one copula per altitude band (as long as as the 86

storm/gauge dataset also provides the altitude of the gauge

network, which is almost always the case). During the sim- 88

ulation/validation stage, the storm’s extent is defined, then

overlapped to the DEM, and STORM calculates the median 90

elevation/altitude, which is ultimately used to infer which

copula (band) maximum rainfall intensity must be sampled 92

from. By default, STORM calculates the median altitude of

the storm’s extent over the DEM. Nevertheless, this metric 94

can be changed to other statistic, for instance, the mean (see

Sec. 2.8.1). 96

2.8 Extras

2.8.1 Pre-Processing Module 98

This module is divided in two parts: 1) the actual module that

processes all gauge data and generates the pdfs that STORM 100

uses as input; and 2) the file parameters.py, where all “soft-

” and “hard-coded” parameters/variables are placed, and can 102

be read/ingested by STORM.
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The standalone script pre_processing.py ingests

event- and aggregated-based gauge data to best-fit PDFs for2

several variables (see Tables 2, and 3). These storm vari-

ables are: total seasonal rainfall - TOTALP, maximum ex-4

tent - RADIUS, rainfall decay rate - BETPAR, maximum in-

tensity - MAXINT, average duration - AVGDUR, intensity-6

duration copula - COPULA, starting date - DOYEAR, and

starting time - DATETIME. The PDF parameters are ex-8

ported to a CSV (Comma-Separated Values) file (stored in

the model_input/data_WG folder) that is later read during10

the simulation/validation stage. If the analysis require alti-

tude stratification, STORM generates MAXINT, and AVG-12

DUR PDFs for each altitude band, and appends a “Z#” tag

to distinguish them from the all-gauges-based PDFs (see14

Table 4, rows 6-11 and 13-15). Depending on the number

of vM PDFs used in the DOYEAR, and DATETIME vari-16

ables, STORM appends a “m#” tag (see Table 4, last 8

rows). The number 1 appended to the PDF, RHO, and VMF18

tags indicates that the preprocessing was done for only one

wet season. If analyses are carried out for more than one20

wet season, STORM replicates the same analyses for ev-

ery season, appending numerical tags accordingly (e.g., file22

ProbabilityDensityFunctions_TWO–ANALOG-py.csv).

Table 2. First and last four rows of the (sorted) storm event-

based gauge data used by the script pre_processing.py to

compute the best-fit parameters presented in Table 4. In the S

column, W indicates a storm occurring within the established

wet season, whereas D is for storms out of such a wet sea-

son. The complete table/data can be found in the file gage_data–

1953Aug18-1999Dec29_eventh–ANALOG.csv, located in the fold-

er/path model_input/data_WG.

Gage Year DOY Hour S
Duration

(min)

Depth

(mm)

RG022 1953 230 13.000 W 20 1.02

RG022 1953 233 13.083 W 29 8.38

RG022 1953 243 8.000 W 24 1.52

RG036 1953 230 0.167 W 24 6.10
...

...
...

...
...

...
...

RG100 1999 259 20.400 W 146 3.30

RG100 1999 262 21.133 W 44 0.25

RG100 1999 263 23.250 W 153 2.54

RG100 1999 265 18.550 W 12 1.78

2.8.2 Visualization Tool24

GIF (Graphics Interchange Format)4 animations of selected

simulations are created via the script animation.py (lo-26

cated in STORM’s xtras folder/path). STORM’s simulations

(or validations) are stored in NetCDF (Network Common28

4software developed by CompuServe

(https://www.w3.org/Graphics/GIF/spec-gif87.txt)

Table 3. Twelve rows of the storm aggregated gauge data used by

the script pre_processing.py to compute the best-fit for to-

tal seasonal rainfall (TOTALP in Table 4). In the S column, W

indicates a month within the established wet season, whereas D

is for months out of such a wet season. The complete table/data

can be found in the file gage_data–1953Aug-1999Dec_aggregateh–

ANALOG.csv, located in the folder/path model_input/data_WG.

Gage Year month S Rain (mm)

...
...

...
...

...

RG080 1990 1 D 11.94

RG080 1990 2 D 17.78

RG080 1990 3 D 9.65

RG080 1990 4 D 4.57

RG080 1990 5 D 4.32

RG080 1990 6 W 17.53

RG080 1990 7 W 150.88

RG080 1990 8 W 97.54

RG080 1990 9 W 59.69

RG080 1990 10 W 18.29

RG080 1990 11 D 24.13

RG080 1990 12 D 29.97
...

...
...

...
...

Data Form)5 files, i.e., one file per each season containing

m-simulations each one of n-years. Once the NetCDF files 30

are produced, and for a given simulation, the user can easily

create animations (and/or snapshots) depicting the evolution 32

of storm events during the wet season, along with its sea-

sonal aggregation within the defined catchment. An exam- 34

ple of such an animation can be found in the README.md

(page) of STORM’s repository6. The snapshots from which 36

the animation is built upon look like Fig. 1.

2.9 STORM’s skeleton 38

Starting from the pre-processing module (see Algo-

rithm 1), STORM ingests pre-preprocessed storm 40

data in the format presented in Tables 2, and 3.

The output of this pre-processing module is the file 42

ProbabilityDensityFunctions_ONE–ANALOG.csv, contain-

ing the parameter of several PDFs needed to stochastically 44

model rainfall storms. Table 4 presents the aforementioned

file in its entirety. 46

Algorithm 2 is the cornerstone of STORM. This algorithm

shows the main steps required to simulate storm rainfall, 48

relating all the stochastic variables previously described in

this section. Algorithm 3 (script storm.py) is the wrapper 50

in charge of: 1) gathering the input files/parameters (scripts

parameters.py, and parse_input.py); 2) verify that 52

all the necessary file/parameters, and variables are correctly

set, and allocated (script check_input.py); and 3) ulti- 54

mately call Algorithm 2 (i.e., script rainfall.py).

5software developed by UCAR/Unidata

(http://doi.org/10.5065/D6H70CW6)
6https://github.com/feliperiosg/STORM2
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Algorithm 1 Pre-Processing module

create CSV file {all the processes below write into this file}

read (pre-processed) gauge data and metadata

fit (wet) seasonal PDF

estimate and fit radii PDF

estimate and fit rainfall decay rate and maxima intensity

compute intensity-duration copula {with stratification or not}

compute and fit DOY and TOD PDFs

Table 4. Parameters of PDFs that best fit the Walnut Gulch gauge

data for a given random variable. _PDF indicates probability den-

sity functions; _RHO refers to the copula ρ-parameter; and _VMF

indicates a von Mises PDF. The number next to the aforementioned

nomenclature refers to the wet season for which the variable is esti-

mated/fit. In this case theres is only one wet season, thus the number

1. The “Z#” tag refers to the altitude band for which the parame-

ters (of the random variable) are estimated. If the variable does not

present such tag (i.e., rows 1−5, 12, and 16−23) that means that the

parameters were estimated/fit regardless altitude. Except for COP-

ULA, DATIME, and DOYEAR, the end-string indicates the pdf-

family to which the parameters belong to; so STORM (via scipy)

can construct the adequate PDF. For variables built upon PDFs, i.e.,

rows 1-11, par-1 and par-2 columns are respectively for the mean,

and the variance. If the PDF presents more than two parameters

(i.e., par-3, and/or par-4) they are for location, and scale. For COP-

ULA, par-1 represents the correlation parameter ρ (see Sec. 2.5).

For DOYEAR, and DATIME, “m#” indicates the number of vM-

PDFs that make up the mixture, i.e., 5-vM for DOYEAR (see Sec.

2.6), and 3-vM for DATIME; and columns par-1, par-2, par-3 re-

spectively represent their p, µ (in radians), κ parameters (see Table

1). This table is produced by the script pre_processing.py,

exported as ProbabilityDensityFunctions_ONE–ANALOG.csv into

the model_input folder/path, and later ingested by STORM.

Variable’s pdf (or parameter) par-1 par-2 par-3 par-4

TOTALP_PDF1+gumbel_l 5.512 0.226

RADIUS_PDF1+johnsonsb 1.519 1.270 -0.279 20.798

BETPAR_PDF1+exponnorm 8.287 0.018 0.010

MAXINT_PDF1+expon 0.106 6.996

AVGDUR_PDF1+geninvgauss -0.090 0.770 2.843 82.079

MAXINT_PDF1+Z1+expon 0.109 5.761

MAXINT_PDF1+Z2+expon 0.106 7.114

MAXINT_PDF1+Z3+expon 0.305 7.353

AVGDUR_PDF1+Z1+geninvgauss -0.106 0.609 5.046 74.205

AVGDUR_PDF1+Z2+geninvgauss -0.084 0.812 2.380 83.780

AVGDUR_PDF1+Z3+fisk 1.434 10.178 57.545

COPULA_RHO1+ -0.316

COPULA_RHO1+Z1 -0.277

COPULA_RHO1+Z2 -0.313

COPULA_RHO1+Z3 -0.440

DATIME_VMF1+m1 0.249 0.692 6.391

DATIME_VMF1+m2 0.325 1.707 3.064

DATIME_VMF1+m3 0.426 2.557 0.470

DOYEAR_VMF1+m1 0.045 1.570 129.047

DOYEAR_VMF1+m2 0.012 -0.421 287.173

DOYEAR_VMF1+m3 0.466 0.325 15.587

DOYEAR_VMF1+m4 0.425 0.962 9.463

DOYEAR_VMF1+m5 0.053 1.907 104.719

Algorithm 2 Computes and exports storm rainfall

for i⩽ SEASONS do

create NetCDF file

for j ⩽ NUMSIMS do

for k ⩽ NUMSIMYRS do

TOTALP← sample total seasonal rainfall

TOTALP← TOTALP ·
(

1+ f1 + f2 · k)
)

NUM_S← 40 ∗ 5 {initial number of storms}

CUM_S← 0 {initial cumulative rainfall}

while CUM_S < TOTALP∧NUM_S ⩾ 2 do

CENTERS← sample center geolocations

BETPAR← sample rainfall decay rates

RADIUS← truncated sampling of radii

stratification {if requested}

MAXINT, AVGDUR← copula sampling

MAXINT←MAXINT ·
(

1+ f1 + f2 · k)
)

DOYEAR, DATIME← sample of date-times

rasterisation

interpolation

aggregation {CUM_S updated}

NUM_S← NUM_S/2
end while

write into NetCDF file

end for

end for

close NetCDF file

end for

Algorithm 3 STORM in a nutshell

Require: input parameters {passed to the shell or read from a file}

Ensure: input parameters make sense

call Algorithm 2 {simulates rainfall}

2.10 Walnut Gulch Catchment

The Walnut Gulch (WG) Experimental Watershed7 is the 2

selected catchment to calibrate and validate STORM. With

an area of 147.75km2, and managed by the USDA-ARS8
4

Southwest Watershed Research Center (SWRC), it is located

near Tombstone, southwestern Arizona, U.S. Stillman et al. 6

(2013) describes the WGEW as having covers of shrub, and

grassland as the dominant type of vegetation, with sandy, 8

and gravely loams as (its) predominant soils, and mean an-

nual precipitation of 350mm (60% of which falls through- 10

out JAS). Goodrich et al. (2008) documented this value to be

312mm, and refers to JAS as the “summer monsoon”. This 12

thunderstorm precipitation is attributed to convective sum-

mer airmasses with moisture originated in the Gulf of Mex- 14

7Historical storm data (among many other hydrological and

hydrometeorological data) from the WGEW is freely available at

https://www.tucson.ars.ag.gov/dap/
8U.S. Department of Agriculture - Agricultural Research

Service, https://www.ars.usda.gov/pacific-west-area/tucson-

az/southwest-watershed-research-center/
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ico, and the Pacific Ocean (Osborn, 1983; Syed et al., 2003).

Keefer and coauthors (2007) offer a detailed report on phys-2

iography, instrumentation, and different applications on the

WGEW.4

Dating back from the early/mids 1950s (Meles et al., 2022;

Stillman et al., 2013), the WGEW is, according to Moran6

et al. (2008), “one of the most highly instrumented semiarid

experimental watersheds in the world”. Its rain gauge net-8

work is one the densest in the world, for watersheds greater

than 10km2 (∼ 0.6gauges · km−2 (Goodrich et al., 2008);10

or one gauge per 1.7km2 (Meles et al., 2022)). Storm rain-

fall data dates back from 1953 (Moran et al., 2008), and up to12

1999 the entire gauge network was analog. From 2000 to the

present, the gauge network was updated to a digital network14

(Meles et al., 2022; Goodrich et al., 2008). From the dataset

used in this work, there were a total of 93 digital stations (as16

of 2022), averaging 84 stations per year since 2000. Supple-

mental Fig. B7 shows the gauge network used in this study.18

We parameterize STORM using 37 years of analog data (i.e.,

from 1963 to account at least for 80 gauges per year); and20

we validate the performance of STORM over the 23 years of

digital/automatic data (see Sec. 3.1).22

3 Results and Discussion

3.1 Evaluation of STORM24

We carried out a validation run to evaluate the performance

of STORM. In STORM, a “validation” run is equivalent to a26

“simulation” run (thus we interchangeably use these terms).

The difference is that for a “simulation” run the catchment28

mask is exported along the output file, whereas for the “val-

idation” run the mask of the gauge network (for which the30

validation exercise is carried onto) is the one stored in the

output. We run through STORM 30 simulation runs, each32

one comprising 23 years. The above is equivalent to having

∼ 1.65m storms, compared against the ∼ 76k storms (for the34

wet season) measured by the automatic network from 2000
through 2022, i.e., the validation dataset.36

In general terms, STORM does perfectly (and efficiently)

well what it was set up to do, that is, to reach the median38

precipitation over the entire catchment. This can be seen

from the box-plots presented in Fig. 4, panel a, where the40

(pixel/gauge aggregated) median for the validation dataset

(228.3mm) is just 5% larger than the median for the gauge42

data (217.4mm). This difference is maily due to STORM

always stopping after the (sampled) median seasonal total44

(TOTALP) is reached. Therefore, STORM seasonal aggre-

gates (on average) will always be larger than the sampled46

value of reference. One advantage of such a stochastic ap-

proach is the ability to reach maxima (and minima) seasonal48

totals (per station/pixel) outside the inter-quartile range of

the gauge dataset; thus accounting for un-recorded (but po-50

tential) extreme events.

Thanks to the statistical modeling of storm’s starting TOD, 52

STORM is now able to capture some of the intra-seasonal

variability of rainfall. This can be seen in the percentile time 54

series of cumulative seasonal rainfall presented in Fig. 4,

panel b. This latter shows how (on average) the cumulative 56

rainfall, over the WG catchment, slowly rises to a peak (in-

flexion point in the solid orange line) halfway through the 58

wet season, from which then follows a slow and steady de-

cline up until November. Such a seasonal intra-variability is 60

replicated by STORM (solid blue line), having a final under-

stimation of 5.5% (i.e., 236.1mm) with regard to the actual 62

seasonal (cumulative) median of 249.9mm. In the case that

any user does not follow the circular approach (see Sec. 2.6), 64

STORM does also replicate rainfall intra-seasonal variability

by using a discrete pmf (dashed black line in Fig. 4). Some- 66

thing missing in this iteration of STORM is its capability to

Figure 4. Panel a - Distribution of storm rainfall totals (for the

wet season) year-by-year, and station/pixel-based, i.e., not spatially

averaged over the catchment. Blue is for the validation dataset

(∼ 50.6k samples), whereas orange is for the gauge dataset (∼ 1.9k

samples). The bright green line (inside the box-plots) represents

the mean of the distribution, i.e., 229.2mm, and 235.4mm respec-

tively for gauge and validation sets. Panel b - Percentile time se-

ries for the 90th-percentile of all time series from June through Oc-

tober (wet season), for the validation (blue), and gauge (orange)

datasets. The solid lines represent the median(s) of each dataset

(50th-percentile). The dashed black line represents the median for

a validation where DOY was modeled through a discrete pmf (see

Supp. Fig. B2). The green marker at the end of the time series indi-

cates the median of the sampled (simulated) values of total seasonal

rainfall (TOTALP). Supplementary Fig. B3 shows percentile time

series for the 100th-percentile.
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model other local hydrometeorological patterns, and global

teleconnections (e.g., Philander, 1990; Diaz and Markgraf,2

2000; Sarachik and Cane, 2010) that might contribute to

intra- and inter-seasonal rainfall variability. The scatter plot4

presented in Fig. 5 clearly shows STORM’s innability to de-

pict extreme stormy seasons, either wetter or drier (i.e., a6

very low coefficient of determination (ρ2 = 0.0028)). For in-

stance, gauge data tell us that the years 2022, and 2020 had8

respectively the most and the lest wet seasons of the last

two decades. The seasonal averages (for the whole gauge10

network) were 429.9mm for 2022, and 82.5mm for 2020.

These seasonal (mean) extremes contrast the systematic sim-12

ulations (30 runs for each year) for which the validation

dataset averages 237.0mm for 2022, and 222.2 for 2020.14

Nonetheless, and regardless intra- and inter-annual rainfall

variabilities, the seasonal average pixel totals (235.4mm)16

is just 3.3% larger than the seasonal average gage totals

(228.0mm). The modelling of teleconnection phenomena/-18

patterns into STORM was beyond the scope of this work.
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Figure 5. Scatter plot of simulated (means) seasonal rainfall against

measured seasonal rainfall. Each marker/cross represents a pixel/s-

tation for which the seasonal totals of 30 simulations were averaged

(y-axis), and the actual seasonal total recorded (x-axis). The color

scale varies for the 23 simulated years (from 2000 through 2022).

Within the plot, it is indicated the coefficient of determination (ρ2,

which is the square of the coefficient of correlation); the medians of

the datasets; the relative bias between them; and the size of the sam-

ple (an average of 73.3 gauges per year). The green line indicates a

1 : 1 line.

The box-plots in Fig. 6, panel a, represent the distribu-20

tion of number of storms during the wet season for both

validation (blue), and gauge (orange) datasets. Once again,22

one can see how STORM despite being close to the average

number of storms in a season (32), fails to account for the 24

inter-annual variability in storm rainfall present in the gauge

records. The average number of storms for the gauge data 26

is (39). When disaggregated by year (see Fig. 6, panel a),

the maximum average number of storms (66.3) is found for 28

the year 2022 (with a global maxima of 79 storms), whereas

the minimum average (20.6) is for 2020 (13 of global min- 30

ima). As pointed before throughout the scatter plot, 2022, and

2020 match respectively the years for maximum and mini- 32

mum (average) seasonal totals. Thus implying the direct re-

lationship between the number of storm in a given season, 34

and its total precipitation.

We selected three gauges sparsely located throughout the 36

WG catchment, and compared the temporal distribution of

their (mean) storm intensities. The box-plots in Fig. 6, panel 38

b (all three rows), show that the mean yearly storm inten-

sities produced by STORM (blue boxes) are consistently 40

lower than the mean yearly intensities measured by the gauge

network (orange boxes). On average, and throughout the 42

whole validation exercise, mean recorded storm intensities

(7.14mm · h−1) are 16.2% lower than the mean of simu- 44

lated storm intensities (8.52mm · h−1). This is mainly at-

tributed to extremely large simulated storms (see Supp. Fig. 46

B4, panel a). With regard to the medians, storm intensities

from gauge data (3.95mm · h−1) is 48.8% larger than simu- 48

lated storm intensities (2.65mm · h−1) In spite of its inabil-

ity to model inter-annual storm variability, the stochasticity 50

imprinted in STORM allows for plausible storm intensities

larger and smaller than those (ever) recorded by the gauge 52

network (see Supp. Fig. B4, panel a, where the average of

the maximum simulated intensities is 12.6mm · h−1). 54

One final validation exercise was to compare the top 10th-

percentile of all storm intensities, of both gauge and valida- 56

tion datasets, included simulated maximum intensities. The

storms maxima (by design, see Sec. 2.3) are found in the cen- 58

tres of the storms, and can only be retrieved for the simula-

tion dataset. The box-plots presented in Supp. Fig. B4, panel 60

b, show that, despite STORM’s ability to simulate (on av-

erage) extreme rainfall intensities about twice as large/high 62

as those recorded by the gauge network; the top 10th% of

maxima simulated intensities are 44% larger than the top 64

10th% of storm intensities in the gauge set. Supplementary

Fig. B4, panel a, shows that on average, mean maxima inten- 66

sities (12.6mm·h−1) are 76.5% larger than the mean of actu-

al/recorded intensities (7.1mm ·h−1); and 47.9% larger than 68

average simulated intensities. The above suggest the good-

ness of the methodology here developed to account for max- 70

imum intensities when designing the storms.

3.2 Testing Climate Drivers 72

To evaluate the ability of STORM in accounting for po-

tential future climate change scenarios, we carried out two 74

more/extra validation exercises. One where TOTALP is in-

creased by a fixed scalar throughout the whole period, i.e., 76
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Figure 6. Yearly box-plots for the validation (blue), and gauge (orange) datasets. Panel a - Distribution of the number of storms in a wet

season. Panel b - Distribution of storm intensities of three stations, i.e., RG012, RG042, and RG072 inside the Walnut Gulch catchment. In

both panels, the green line within each boxplot represents the mean of the distribution. Please note the logarithmic scale of the y-axes in

panel b (i.e., rainfall intensity). Supplementary Fig. B7 shows the (sparse) location of the aforementioned gauges.

PTOT_SC =+0.5. The other where MAXINT is reduced by

a progressive scalar, i.e., STORMINESS_SF =−0.035. We2

are aware that these two scalars might not be realistic or even

at all plausible. Still, we chose those numbers as they en-4

able drastic changes in the final outputs, thus allowing easy

comparisons between these “climate-driven” results, and the6

ones presented for the default validation (i.e., where no cli-

mate controls are simulated).8

With a progressive factor _SF =−0.035, applied to the

MAXINT variable, we force the sampled maximum storm10

intensity of every simulated year to be 3.5% less than the

year before. Hence, for a validation run of 23 years, one12

can expect that in the last simulated year the (mean) de-

crease in maximum storm intensity would be 77% (i.e.,14

(23−1)×0.035) less than the first simulated year. The above

can be seen in the yearly box-plots presented in Fig. 7. For 16

any of the gauges presented in Fig. 7 (e.g., gauge RG042),

one can see how the median rainfall intensity of the valida- 18

tion dataset, i.e., 0.68mm · h−1 at the end of the simulated

period (2022) is 76% less than the median at the starting of 20

the simulation (2000), i.e., 2.82mm · h−1. 86.7% less when

compared to the the median at the end of the actual records 22

(i.e., 5.08mm · h−1). In STORM 1.0, the progressive fac-

tor SF (over the MAXINT variable) is referred as “temporal 24

trend in storminess” (Singer et al., 2018).

With a constant factor _SC =+0.5, applied to the 26

TOTALP variable, we force the sampled seasonal total rain-

fall of every simulated year to be 50% larger than it normally 28

would. Hence, no matter what year of a given validation one

is running, the expected (mean) increase in seasonal total will 30
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Figure 7. Distribution of storm intensities of three stations, i.e., RG012, RG042, and RG072 inside the Walnut Gulch catchment, for a

validation dataset (blue), and the gauge set (orange). This plot is equivalent to Fig. 6, panel b, except that here we force the sampled

maximum storm intensity (MAXINT) to be 3.5% lower than the previous year (thorough the whole period of any given simulation).
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Figure 8. Scatter plot of simulated (means) seasonal rainfall against

measured seasonal rainfall. This plot is equivalent to Fig. 5 except

that here we force all simulated seasonal totals to be (every time)

50% larger than the sampled total seasonal rainfall (TOTALP).

be roughly constant. The above can be seen in the scatter plot

presented in Fig. 8. In this figure, the cloud of points (scatter) 2

has shifted upwards 48.4% of the mean value for simulated

seasonal totals presented in Fig. 5; this latter correspond- 4

ing to a validation were no climate drivers were applied. In

STORM 1.0, the constant factor SC (over the TOTALP vari- 6

able) is referred as “step change in wetness”.

Supplementary Fig. B5 shows how the number of storms 8

(in a wet season) are modified due to the (two) above men-

tioned climated drivers. For the case in which TOTALP is 10

increased by a fixed scalar (i.e., Fig. 8), STORM generates

(on average) more storms per season in order to reach the in- 12

creased total seasonal rainfall. For the case in which MAX-

INT is progressively reduced by a progressive scalar (i.e., 14

Fig. 7), STORM is forced to continually increase the number

of storms in order to reach the median (sampled) seasonal 16

total.

3.3 STORM Applications 18

These improvements to STORM 1.0 now make STORM suit-

able as a climate driver of other watershed response models 20

that simulate hydrology between slopes and channels (sur-

face runoff, infiltration, streamflow) (Michaelides and Wain- 22

wright, 2002; Michaelides and Wilson, 2007; Michaelides

and Wainwright, 2008), groundwater recharge during and 24

after rainfall events (Beven and Freer, 2001), and interac-

tions between streamflow and alluvial aquifers (Evans et al., 26
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2018). It also enables STORM to be useful in water balance

models (e.g., Land Surface Models) to assess water avail-2

ability to plants through dynamic eco-hydrological simula-

tion of plant-climate interactions and water utilization (Cay-4

lor et al., 2006; Laio et al., 2006; D’Odorico et al., 2007),

as well as energy/carbon fluxes between the land surface6

and the atmosphere (Bonan, 1996; Best et al., 2011). Fi-

nally, STORM can also be used to drive geomorphic mod-8

els that characterize erosion and deposition processes within

drainage basins in response to sequences of rainfall and10

runoff (Michaelides et al., 2009, 2012; Michaelides and Mar-

tin, 2012; Michaelides and Singer, 2014), and even land-12

scape evolution models that simulate landform development

over longer timescales (Tucker and Hancock, 2010; Hobley14

et al., 2017). Coupling STORM to such models would en-

able a wide range of interdisciplinary scientists to investi-16

gate key problems in the environment that have their origin

in the climate system. These problems range from which wa-18

ter sources are used by plants (Dawson and Ehleringer, 1991;

Singer et al., 2014; Evaristo et al., 2015; Sargeant and Singer,20

2016; Evaristo and McDonnell, 2017) to what is the dom-

inant source and timing of groundwater recharge (Scanlon22

et al., 2006; Wheater et al., 2010; Cuthbert et al., 2016) to

the role of climate in shaping landscape morphology (Tucker24

and Slingerland, 1997; Tucker and Bras, 2000; Singer and

Michaelides, 2014; Michaelides et al., 2018).26

4 Summary and Conclusions

Built upon STORM 1.0, STORM9 is an improved Stochas-28

tic Rainfall generator focused on small watersheads. This

stochastic framework heavily relies on PDFs of total sea-30

sonal rainfall (TOTALP), maximum storm radius (RADIUS),

decay rate of maximum rainfall from the storm’s centre to-32

wards its maximum radius (BETPAR), maximum rainfall in-

tensity (MAXINT), average storm duration (AVGDUR), the34

copula’s correlation parameter (COPULA), storm’s starting

date (DOYEAR), and the (optional) storm’s starting time36

(DATIME). The main modelling features of STORM with

regard to its predecessor are: storm intensity and duration via38

a (bi-variate) Gaussian copula framework; intensity-duration

copulas at different altitude bands within the catchment;40

storm occurrence via a Circular statistics approach (i.e., mix-

ture of von Mises PDF) or via discrete PMFs; storm start-42

ing times via a Circular statistics (optional); compressed im-

plementation of future (and very likely) climate scenarios;44

output compressed into (geo-referenced) NetCDF files, read-

ily available for visualization; and pre-processing module46

to construct all necessary PDFs from gauge data. Added

to STORM, and with a future mindset of its applicability48

at larger scales, we implemented slick and cool capabili-

ties/tweaks such as: PDFs easily defined by the user (or50

retrieved from gauge data); storm simulation with regard

9https://github.com/feliperiosg/STORM2

to altitude (provided a Digital Elevation Model - DEM); 52

customizable spatial resolution (and Coordinate Reference

System - CRS); spatial operations under a raster framework, 54

thus adding speed, versatility, and scalability; and optimal

output storing in NetCDF format. 56

To develope the stochastic model, we derived and cali-

brated all PDFs to 37 years of storm data, collected by an 58

analog network of 118 gauges sparsely deployed over the

Walnut Gulch (WG) catchment (148km2). To test the per- 60

formance of the model, we carried out one validation ex-

ercise consisting of 30 runs, each one having 23 simulated 62

years (i.e., 690 simulation-years in total). The output of such

a validation run was compared against 23 years of storm data, 64

collected by the digital network of 94 gauges located within

the WG. To evaluate the STORM’s ability to model storm 66

rainfall under potential future varying-climate scenarios, we

carried out two more validation runs, each one comprising 68

690 simulation-years too. These results were also compared

against the digital/automatic gauge network. 70

Results showed that the seasonal total rainfall reached by

STORM is 5.5% lower than the actual records, when ac- 72

counted as the spatial median of all the stations/pixels within

the WG (see Fig. 4, panel b). If accounted on a temporal 74

basis, i.e., without any spatial averaging, this relative differ-

ence amounts to +5% (see Fig. 4, panel a). +3.3% when 76

accounted on a station/pixel basis (see Fig. 5). This general

small but positive difference is mainly attributed STORM 78

seasonal aggregates being always larger than the sampled

value of reference as STORM stops only after the median 80

seasonal total is reached. On a seasonal basis, the storm rain-

fal intensity recorded by the gauge network is (on average) 82

16.2% smaller than simulated storm intensities (see Supp.

Fig. B4, panel a). Nevertheless, the stochasticity embedded 84

in our model allows for un-recorded but very plausible, ei-

ther larger and/or smaller, storm intensities (see Fig. 6, panel 86

b, and Supp. Fig. B4).

STORM’s Achilles’ Heel is its innability to account for 88

other local hydrometeorological patterns, and global telecon-

nections that may contribute to intra- and inter-seasonal rain- 90

fall variability (see Figs. 5, and 6, panel a). This is some-

thing expected as STORM (by design) does not incorpo- 92

rate any PDF that might describe (even remotely) the be-

vahiour of such inter-annual variability. On the bright side, 94

results obtained for the varying-climate simulations showed

that STORM is able to imprint seasonal varibility to storm 96

rainfall (either in intensities or totals), on long-term anal-

yses. This seasonal varibility might be likely attributed to 98

change in climate-drivers such an increse/decrease in (air)

temperature, thus reflecting an increase/decrease (so called 100

feedbacks?) in storminess or seasonal totals (see Figs. 7, and

8). 102
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5 Constraints and Recommendations

The choice of a bi-variate Gaussian copula was mainly2

driven on its simplicity/easy-configuration, and applicabil-

ity. Nevertheless, a further improvement (at least conceptu-4

ally) might be the implementation of a more elaborate cop-

ula models (and truly applicable to the intensity-duration6

case) like Extreme-Values, Archimedean, etc. (e.g., Zhang

and Singh (2019); Chen and Guo (2019)).8

Another key area of future work would be to investigate

how temporal resolution of rainfall data affects the signal of10

observed trends in rainfall (e.g., Barbero et al., 2017) and

how these might yield different watershed responses. this is12

entirely’s Michael’s

Code and data availability. The STORM code and its pre-, and14

post-processed data can be found in STORM’s repo | https://

github.com/feliperiosg/STORM2. Documentation to run the model,16

and tools for its output visualization are also provided in

the aforementioned link. The DOI for the STORM v.2.X is18

doi:10.???/zenodo.???.

Appendix A: BIC Estimation20

The Bayesian information criterion (BIC; also known as

Schwarz’s Bayesian criterion - SBC) is a metric used for the22

unbiased assessment of the optimal number of M-unimodal

vM distributions (e.g., Rios Gaona and Villarini, 2018; Lark24

et al., 2014). Such a criterion allows the selection of the least

complex of all the models in consideration, that is, the one26

with the lowest BIC. From a mathematical point of view (Eq.

(A1)), BIC (or similar models, i.e., AIC - Akaike’s informa-28

tion criterion) combines the maximized log likelihood of the

fitted model with a penalization term that is related to the30

number of estimated parameters (Pewsey et al., 2013, Eq.

(6.3)).32

BIC = ν · ln(n)− 2 · ℓmax, (A1)

where ℓmax is the maximized (full) log-likelihood of a model34

with ν degrees of freedom, and n the number of observations.

Unfortunately, the vonMisesMixtures package does36

not offer a way to retrieve the maximized log-likelihood from

which to compute the BIC of the mixture of M-unimodal38

vM PDFs. Unlike Python’s vonMisesMixtures package,

R (R Core Team, 2023), jointly with the movMF package40

(Hornik and Grün, 2014), does offer the possibility to eas-

ily retrieve BIC estimates for fitted MvM PDFs (Supp. Fig.42

A1). The implementation of such a feature in STORM was

beyond the scope of this work. Nevertheless, STORM does44

offer the script pre_processing_circular.R, which

the entire circular analyses (BIC included) can be computed46

from. Once this analysis is carried out, the user will have

all the neceesary elements to discern the optimal fit for their 48

“circular” data.

Figure A1 shows the DOY, and TOD BICs for mixtures 50

ranging from 1 to 9 vM PDFs. Strictly speaking, and for the

DOY case, the lowest BIC found in the figure is for a mix- 52

ture of 9 vM, i.e., −318370.54. One can argue that a 9-MvM

model certainly over-fits the multimodality of DOY (see Fig. 54

3, panel a), without even mentioning its computationally in-

tensive parameter-estimation. Nevertheless, if one looks at 56

the 5-MvM model (BIC equals to −317840.12), one can see

that the improvement of the BIC metric is increasingly very 58

small beyond this point in comparison to the 1-, to 4-MvM

models. Therefore, we are confident that a 5-MvM model 60

not only accurately describes the multimodality of DOY (for

the Walnut Gulch dataset) but also is faster in its parameter- 62

estimation with regard to any larger (i.e., more vM PDFs)

model. Hence, a mixture of 5 vM-PDFs is the default config- 64

uration for DOY in STORM. Following that train of thought,

we found the 3-MvM model the optimal mixture for TOD, 66

and thus its default settings in STORM.

1 2 3 4 5 6 7 8 9

Mixtures of Von Mises PDFs

300000

310000

320000

68000

70000

72000

BIC for DOY
BIC for TOD

Figure A1. Bayesian information criterion (BIC) for mixtures that

go from 1 to 9 von Mises (vM) probability density functions

(PDFs). The blue line is for the BIC of day-of-year (DOY); whereas

the red line is for the BIC of time-of-day (TOD). The color of the y-

axes indicate the values of their respective BICs. The black circles

indicate one of the lowest point of the related BIC curve. The lower

the BIC the more optimal the number of vM PDFs (in the mixture)

that best describes the sample multimodality. Thus, to avoid the se-

lection of a model with too many vM-PDFs, the black circles also

indicate where the change, in slope, is more drastic even if they are

not global minima.
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Figure B1. Probability density functions (PDFs) for storm rainfall

measured by gauge data (blue curve), and for maximum (estimated)

rainfall (orange curve). Maximum intensities are retrieved by fit-

ting an exponential (quadratic) model I(r) = Imax · e
−2·β2

·r2 to

measured storm rainfall (see Sec. 2.3). The background histograms

show the data for which the pdfs are best fitted to. Note how the

mean from maximum (estimated) intensities is larger than the mean

of rainfall intensities measured by gauges prior any model fitting.

I STRONGLY ADVISE AGAINST THIS FIGURE! (FOR VERY

PRACTICAL PURPOSES)

Figure B2. Probability mass function (PMF - vertical lines ending

in blue circles) of a negative hyper-geometric family, fitted (best

fit) to a distribution of storm’s starting day-of-year (DOY - green

histogram). The coarser green line represents the optimal fit of a

mixture of 5-von Mises (MvM) PDFs for the aforementioned dis-

tribution; presented also in Fig. 3 (over a “circular” space; see Sec.

2.6). The orange line is a mixture of just one von Mises PDF. Note

its similarity with the PMF, and its poor fit of the underlaying DOY-

distribution with regard to the 5 MvM-PDFs fit.

Figure B3. Percentile time series for the 100th-percentile of all time

series from June through October (wet season), for the simulation/-

validation (blue), and gauge (orange) datasets. The solid lines rep-

resent the median(s) of each dataset (50th-percentile). The dashed

black line represents the median for a validation where DOY was

modeled through a discrete pmf (see Supp. Fig. B2). The green

marker at the end of the time series indicates the median of the

sampled (simulated) values of total seasonal rainfall (TOTALP). By

design, STORM stops once the sampled seasonal total is reached or

surpassed (the probability of reaching exactly the sampled value is

extremely low). Hence, the actual (median) simulated seasonal total

will always be greater than the sampled TOTALP.
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Figure B4. Distribution of storm station/pixel-based intensities. Panel a - for all data, i.e., 100th-percentile. Panel b - for the top 10th-

percentile of all storm intensities. Blues is for the validation dataset, whereas orange is for gauge data. The green lines represent the mean

of the distributions. Please note the logarithmic scale of the y-axes in both panels. The column most to the right is for the maxima intesities

found in the storm centres (see Sec. 2.3). Such storm centre maxima are only retrieved for the validation dataset (no way to account for them

in the gauge set).

Figure B5. Distribution of the number of storms in a wet season, for the validation (blue), and gauge (orange) datasets. Panel a - Validation

case for which MAXINT is reduced by a progressive scalar, i.e., STORMINESS_SF =−0.035 (see Fig. 7). Panel b - Validation case for

which TOTALP is increased by a fixed scalar throughout the whole period, i.e., PTOT_SC =+0.5 (see Fig. 8). All y-axes are consistent

with Fig. 6, panel a, to allow (visually) equivalent comparisons. Note how in panel a STORM generates more storms per season in order to

reach the now increased total seasonal rainfall; whereas in panel b the progressive decrease in storm intensity forces STORM to continually

increase the number of storms in order to reach the median (sampled) seasonal total.
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Figure B6. Examples of fitting the exponential (quadratic) model I(r) = Imax · e
−2·β2

·r2 to storm rainfall data. The x-axis represents the

distance from the storm centre to the gauge registering storm rainfall. The storm centre is assumed to be the centroid of the group of gauges

for which the storm starting time is identical among them (see Sec. 2.2). Hence, the blue crosses (in each panel) represent one storm event

being registered by multiple gauges. Y-axis is for the rainfall intensity. The orange line(s) represents the best fit of the exponential model (for

each case). Note how the model does fit a maximum intensity, not registered by any gauge, at the assumed storm’s centre (left and middle

panels). Still, there are cases in which the model under-performs in capturing indeed maximum intensities very close to the assumed storm’s

centre.

110.1°W 110.0°W 109.9°W

31.70°N

31.75°N

RG012

RG042

RG072

Figure B7. Digital gauge network for the Walnut Gulch catchment

(from 2000 through 2022). The 3 bold markers, i.e., gauges/stations

RG012, RG042, and RG072, indicate the geo-location of the gauges

referred to in Figs. 6, and 7. Even though the grid is presented

in “lat-lon” coordinates (i.e., CRS WGS-84), the actual projection

(in both panels) is the 2D-Cartesian coordinate system known as

NAD83 / UTM zone 12N (i.e., EPSG:26912).
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