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Abstract
We show that in a Morse local-to-global group where
stable subgroups are separable, the product of any sta-
ble subgroups is separable. As an application, we show
that the product of stable subgroups in virtually special
groups is separable.
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1 INTRODUCTION

Given a group 𝐺, we can equip it with the profinite topology, whose basic open subsets are cosets
of finite index subgroups of 𝐺. A subset of 𝐺 is said to be separable if it is closed in the profinite
topology on 𝐺. The group 𝐺 is called residually finite if the trivial subgroup is separable in 𝐺.
Knowing that particular subsets of groups are separable often gives useful information about

the group. For example, in a finitely presented group, separability of a finitely generated subgroup
gives a solution to themembership problem for that subgroup. In a geometric setting, separability
properties of the fundamental group of a space correspond to desirable lifting properties of that
space: immersed subcomplexes of a complex 𝑋 may be promoted to embedded ones in a finite
sheeted cover of 𝑋, provided that their corresponding subgroups are separable in 𝜋1𝑋. For an
example involving subsets rather than subgroups, it has been proven that if 𝑋 is a nonpositively
curved cube complex in which every double coset of hyperplane stabilisers is separable in 𝜋1𝑋,
then 𝑋 has a finite sheeted special cover [9].
It is a difficult problem to show that a given subset of a group is separable, especially when one

is only given some geometric data about the group. For instance, even the question of whether
hyperbolic groups are residually finite is a long-standing open problem. It is known that all hyper-
bolic groups are residually finite if and only if every quasi-convex subgroup is separable in every
hyperbolic group [1].Minasyan showed that if𝐺 is a hyperbolic group inwhich every quasi-convex
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subgroup is separable, the setwise product of any finite number of quasi-convex subgroups is also
separable in 𝐺 [13], extending a result of Ribes and Zalesskii, who proved that the same result
in the case 𝐺 is free [18]. Recently, the first author and Minasyan provided generalisation of this
result in the setting of relatively hyperbolic groups [14]. In this paper, we will provide another
natural generalisation of this product separability result to the class of groups with the Morse
local-to-global (MLTG) property.
Introduced in [16], the MLTG property roughly speaking requires that quasi-geodesics with

hyperbolic-like properties behave similarly to quasi-geodesics in hyperbolic spaces. Consider the
following two perspectives on hyperbolic spaces. The first involves Morse geodesics: we say that a
quasi-geodesic isMorse if any other quasi-geodesic with the same endpoints stays uniformly finite
Hausdorff-distance from it (see Definition 2.2). It is a well-known fact that every quasi-geodesic
in a hyperbolic space satisfies the Morse property, and moreover, that a space is hyperbolic if and
only if all of its geodesics are uniformly Morse [2] (for a discussion on uniformity, see Section 10
in [4]). This motivates the study of Morse quasi-geodesics in spaces that are not hyperbolic, an
approach that has been successful in understanding the properties of spaces up to quasi-isometry
[3, 5, 8, 10, 15]. On the other hand, Gromov showed that a space is hyperbolic if and only if all
of it local quasi-geodesics, that is, paths that are quasi-geodesics on every subpath of a certain
length (see Definition 2.1) are globally quasi-geodesics. The MLTG property puts these two per-
spectives together and prescribes that all paths that are locally Morse quasi-geodesics are globally
Morse quasi-geodesics.
In groups with theMLTG property, elements acting onMorse geodesics behave ‘as they should’.

For instance, it is appealing to think that given two independent infinite order elements with
Morse axes, then it is possible to use a ping-pong argument to generate a free subgroup using these
elements. In general finitely generated groups this is not true, and we require the MLTG property
in order to run such arguments. The above suggests that the failure of the MLTG property seems
to imply some pathological behaviour. Indeed, the only known examples of groups without the
MLTG property are not finitely presentable. On the other hand, many well-behaved classes of
groups, such as 3-manifold groups, CAT(0) groups andmapping class groups are known to satisfy
the MLTG property.
Our main theorem is concerned with separability of products of stable subgroups. Stable

subgroups were introduced by Durham and Taylor, who showed that the convex cocompact sub-
groups of the mapping class groups are precisely the stable ones [6]. For infinite cyclic subgroups,
the notion of stability and fixing a Morse quasi-geodesic agree, and in general stable subgroups
present many properties akin to quasi-convex subgroups of hyperbolic groups.

Theorem 1.1. Let 𝐺 be a finitely generated group with the MLTG property, and suppose that any
stable subgroup of 𝐺 is separable. Then, the product of any stable subgroups of 𝐺 is separable.

Recall that a group is locally extended residually finite (LERF) if every finitely generated sub-
group is separable. The following statement may be of more general interest, for instance, as a
criterion for showing that a given group is not LERF. As stable subgroups are always finitely
generated (see Lemma 2.8), the hypotheses are stronger than the above theorem.

Corollary 1.2. Let𝐺 be a finitely generated LERF group with theMLTG property. Then, the product
of any stable subgroups of 𝐺 is separable.

A group is virtually special if it is has a finite index subgroup that is the fundamental group of
a special cube complex. Triple cosets of convex subgroups in virtually special groups are known
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to be separable [19]. We extend this result to arbitrary products of stable subgroups, which are
quasi-convex.

Corollary 1.3. Let 𝐺 be a virtually special group. Then, the product of any stable subgroups of 𝐺
is separable.

Strongly quasi-convex subgroups, also known as Morse subgroups, were introduced indepen-
dently by Genevois and Tran [7, 20], and Tran showed that a subgroup of a finitely generated
group is stable if and only if it is strongly quasi-convex and hyperbolic [20, Proposition 4.3]. In
the case of right-angled Artin groups, which contain many stable subgroups [11], we can use [17,
Corollary 7.4] to deduce the following.

Corollary 1.4. Suppose that Γ is a finite connected graph, and let𝐴Γ be the associated right-angled
Artin group. Then, the product of any strongly quasi-convex subgroups of 𝐴Γ is separable.

2 PRELIMINARIES

Let us establish some notational conventions. Given a group𝐺 and subgroup𝐻 ⩽ 𝐺, we will write
𝐻 ⩽𝑓 𝐺 when𝐻 has finite index in 𝐺. If g ∈ 𝐺, we will use𝐻g to denote the conjugate subgroup
g𝐻g−1.
For a metric space 𝑋 and points 𝑥, 𝑦, 𝑧 ∈ 𝑋, we will write

⟨𝑥, 𝑦⟩𝑧 = 1

2
(d(𝑥, 𝑧) + d(𝑦, 𝑧) − d(𝑥, 𝑦))

for the Gromov product of 𝑥 and 𝑦 with respect to 𝑧. When 𝑋 is the Euclidean plane, ⟨𝑥, 𝑦⟩𝑧 is
exactly the distance between 𝑧 and the points of tangency on an incircle for the triangle with
vertices 𝑥, 𝑦 and 𝑧. The Gromov product thus acts as a vague analogue for the notion of the angle
spanned by two geodesics issuing from a single point in a metric space.
In this paper, we will restrict our attention to Cayley graphs of groups. Let 𝐺 be a group and 𝑆

a generating set for 𝐺. The Cayley graph of 𝐺 with respect to 𝑆 is the graph Cay(𝐺, 𝑆) with vertex
set 𝐺 and elements g , ℎ connected by an edge if either gℎ−1 ∈ 𝑆 or ℎg−1 ∈ 𝑆.
We equip the set of vertices of a graph with the metric induced by declaring all of its edges to

have length one. For a Cayley graph Cay(𝐺, 𝑆), we write d𝑆 for this metric, which is exactly the
word metric on 𝐺 with respect to 𝑆. For g ∈ 𝐺, we will write |g|𝑆 = d𝑆(1, g).
Given a path 𝛾 of a graph, we will denote its length (i.e. number of edges) by 𝓁(𝛾). Givenmetric

spaces (𝑋, d𝑋) and (𝑌, d𝑌), a (𝜆, 𝑐)-quasi-isometric embedding is a map 𝑓∶ 𝑋 → 𝑌 such that the
following holds for any pair 𝑥, 𝑦 ∈ 𝑋.

1

𝜆
d𝑌(𝑓(𝑥), 𝑓(𝑦)) − 𝑐 ⩽ d𝑋(𝑥, 𝑦) ⩽ 𝜆d𝑌(𝑓(𝑥), 𝑓(𝑦)) + 𝑐.

A (𝜆, 𝑐)-quasi-geodesic is a (𝜆, 𝑐)-quasi-isometric embedding of an interval 𝐼 ⊂ ℝ.
Themain geometric definition of the paper is theMLTGproperty. To define it, we need to define

the Morse property and what is means for a given property of a path to be local.

Definition 2.1 (Local property). A path 𝛾∶ 𝐼 → 𝑋 is said to 𝐿-locally satisfy a property 𝑃 if each
subpath of the form 𝛾|[𝑡1,𝑡2] with 𝑡2 − 𝑡1 ⩽ 𝐿 satisfies 𝑃. When a path 𝛾 is 𝐿-locally a (𝜆, 𝑐)-quasi-
geodesic, we say that 𝛾 is a (𝐿; 𝜆, 𝑐)-local quasi-geodesic.
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Definition 2.2 (Morse quasi-geodesic). Let𝑀∶ ℝ⩾1 × ℝ⩾0 → ℝ⩾0 be a non-decreasing function.
A quasi-geodesic 𝛾∶ 𝐼 → 𝑋 is 𝑀-Morse if for any (𝜆, 𝑐)-quasi-geodesic segment 𝜂∶ [𝑎, 𝑏] → 𝑋

such that 𝜂(𝑎) = 𝛾(𝑡1), 𝜂(𝑏) = 𝛾(𝑡2), we have

d𝐻𝑎𝑢𝑠(𝛾|[𝑡1,𝑡2], 𝜂) ⩽ 𝑀(𝜆, 𝑐),

where d𝐻𝑎𝑢𝑠 denotes the Hausdorff distance. We say that 𝛾 is an (𝑀; 𝜆, 𝑐)-Morse quasi-geodesic,
and𝑀 is itsMorse gauge.

Morse geodesics in any geodesic space satisfy a thin triangles condition, similar to geodesics in
a hyperbolic metric space.

Lemma 2.3 [12, Lemma 3.6]. Let 𝑋 be a geodesic metric space and suppose that 𝑝 and 𝑞 are 𝑀-
Morse geodesics with 𝑝− = 𝑞−. There is a constant 𝛿 = 𝛿(𝑀) ⩾ 0 such that for any geodesic 𝑟 with
endpoints 𝑟− = 𝑝+ and 𝑟+ = 𝑞+, the geodesic triangle with sides 𝑝, 𝑞 and 𝑟 is 𝛿-thin.

Definition 2.4 (Local Morse quasi-geodesic). We say that a path is an (𝐿;𝑀; 𝜆, 𝑐)-local Morse
quasi-geodesic if it is 𝐿-locally an𝑀-Morse (𝜆, 𝑐)-quasi-geodesic.

Definition 2.5 (MLTG property). We say that a metric space 𝑋 satisfies the MLTG property, if
for any choice of Morse gauge 𝑀 and constants 𝜆 ⩾ 1, 𝑐 ⩾ 0, there exist a scale 𝐿 > 0, a Morse
gauge𝑀′ and constants 𝜆′ ⩾ 1, 𝑐′ ⩾ 0 such that every (𝐿;𝑀; 𝜆, 𝑐)-local Morse quasi-geodesic is a
(𝑀′; 𝜆′, 𝑐′)-Morse quasi-geodesic.

The strength of the MLTG property is that it allows us to draw global conclusions from local
conditions, as the next lemma shows.

Lemma 2.6. Let 𝑝 = 𝑝1 ∗ ⋯ ∗ 𝑝𝑛 be a concatenation of 𝑀-Morse geodesics in space 𝑋 with the
MLTG property and let 𝑎𝑖 and 𝑎𝑖+1 be the ordered endpoints of 𝑝𝑖 . For each 𝜀 > 0, there are constants
𝐵 ⩾ 0, 𝜆 ⩾ 1, 𝑐 ⩾ 0, and a gauge 𝑁 (all depending only on𝑀 and 𝜀) such that if we have 𝓁(𝑝𝑖) > 𝐵

for all 𝑖 = 2, … , 𝑛 − 1 and ⟨(𝑎𝑖−1), (𝑎𝑖+1)⟩𝑎𝑖 ⩽ 𝜀 for all 𝑖 = 2, … , 𝑛, then 𝑝 is a (𝑁; 𝜆, 𝑐)-Morse quasi-
geodesic.

Proof. We will show that there exists 𝑀′ depending only on 𝑀 and 𝜀 such that 𝑝 is locally a
(𝑀′; 1, 2𝜖)-Morse quasi-geodesic, and then we will choose an appropriate 𝐵 to use the MLTG
property. Given the existence of such 𝑀′, the MLTG property gives us a Morse gauge 𝑁 and
constants 𝜆 ⩾ 1, 𝑐 ⩾ 0, 𝐿 ⩾ 0 such that any (𝐿;𝑀′; 1, 2𝜀)-local Morse quasi-geodesic is also a
(𝑁; 𝜆, 𝑐)-Morse quasi-geodesic.
We start with the quasi-geodesic claim. Take 𝐵 ⩾ 𝐿 + 𝜀 and observe that if we consider two

points 𝑥, 𝑦 at parameterised distance at most 𝐿, they either lie on the same segment 𝑝𝑖 (which is
geodesic), or on two consecutive segments 𝑝𝑖−1 and 𝑝𝑖 . In the latter case, we have

⟨𝑥, 𝑦⟩𝑎𝑖 ⩽ ⟨𝑎𝑖−1, 𝑎𝑖+1⟩𝑎𝑖 ⩽ 𝜀,

which means
d(𝑥, 𝑦) + 2𝜖 ⩾ d(𝑎𝑖, 𝑥) + d(𝑎𝑖, 𝑦) = 𝓁(𝑝𝑖−1|[𝑥,𝑎𝑖] ∗ 𝑝𝑖|[𝑎𝑖 ,𝑦]).
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Thus, 𝑝 is an (𝐿; 1, 2𝜖)-local quasi-geodesic. A similar computation to that above (with 𝑥 =

𝑎𝑖−1, 𝑦 = 𝑎𝑖+1) shows that

d(𝑎𝑖−1, 𝑎𝑖+1) ⩾ 2𝐵 − 2𝜀 > 𝐿

where the last inequality comes from the choice of 𝐵. Now, applying [16, Lemma 2.15] to each
concatenation 𝑝𝑖 ∗ 𝑝𝑖+1, we obtain some 𝑀′ (depending only on 𝑀 and 𝜀) such that 𝑝 is an
(𝐿;𝑀′; 1, 2𝜖)-local Morse quasi-geodesic. Now applying the MLTG property shows that 𝑝 is
(𝑁; 𝜆, 𝑐)-Morse quasi-geodesic. □

The property of stability generalises the notion of having the Morse property from quasi-
geodesics to arbitrary subgroups.

Definition 2.7 (Stable subgroup). Let 𝐺 be a group with finite generating set 𝑆, and let 𝑀 be a
Morse gauge and 𝜇 ⩾ 0 a constant. A subgroup 𝐻 ⩽ 𝐺 is called (𝑀, 𝜇)-stable if any geodesic in
Cay(𝐺, 𝑆) with endpoints in 𝐻 is𝑀-Morse and lies in the 𝜇-neighbourhood of 𝐻. A subgroup is
called stable if it is (𝑀, 𝜇)-stable for some Morse gauge𝑀 and 𝜇 ⩾ 0.

An immediate consequence of the definition is that a stable subgroup of a finitely generated
group is undistorted. We note that while the gauge𝑀 and constant 𝜇 in the above depend on the
choice of generating set 𝑆, the property of being stable does not (see, for example, [6, Lemma 3.4]).
We recall some basic properties of stability, which follow from [6].

Lemma 2.8. Let𝐺 be a group with finite generating set 𝑆 and suppose𝐻 ⩽ 𝐺 is (𝑀, 𝜇)-stable. Then
the following are true:

(1) if 𝐾 ⩽𝑓 𝐻, then 𝐾 is (𝑀, 𝜇′)-stable for some 𝜇′ ⩾ 0;
(2) if g ∈ 𝐺, then g𝐻g−1 is stable;
(3) 𝐻 is finitely generated and undistorted in 𝐺;
(4) 𝐻 is hyperbolic.

The following lemma tells us that stable subgroups cannot be ‘too parallel’ away from their
intersection. More precisely, that there is a uniform upper bound on the Gromov product of
elements from one subgroup when taken with minimal length coset representatives of the other.

Lemma 2.9. Let 𝐺 be a group with finite generating set 𝑆, and suppose that 𝐻 and 𝐾 are (𝑀, 𝜇)-
stable subgroups of 𝐺. There is a constant 𝜌 = 𝜌(𝑀, 𝜇, 𝑆) ⩾ 0 such that if ℎ ∈ 𝐻 is a shortest (with
respect to 𝑆) representative of its right coset (𝐻 ∩ 𝐾)ℎ, then for any 𝑘 ∈ 𝐾, we have ⟨ℎ, 𝑘⟩1 ⩽ 𝜌.

Proof. Suppose for a contradiction thatwe can find elementsℎ ∈ 𝐻, 𝑘 ∈ 𝐾 such thatℎ is a shortest
coset representative of ℎ(𝐻 ∩ 𝐾) and ⟨ℎ, 𝑘⟩1 is arbitrarily large. Since 𝐻 and 𝐾 are stable, any
choice of geodesics 𝑝 = [1, ℎ] and 𝑞 = [1, 𝑘] is𝑀-Morse and lies in a 𝜇-neighbourhood of 𝐻 and
𝐾, respectively.
Let 𝑎1, … , 𝑎𝑛 be the vertices of 𝑝 with d𝑆(1, 𝑎𝑖) ⩽ ⟨ℎ, 𝑘⟩1. The assumption that ⟨ℎ, 𝑘⟩1 can be

taken to be arbitrarily large means that 𝑛 can be taken to be arbitrarily large. Corresponding to
each vertex 𝑎𝑖 , there is 𝑣𝑖 ∈ 𝐻 such that d𝑆(𝑎𝑖, 𝑣𝑖) ⩽ 𝜇 by stability of𝐻. Moreover, by Lemma 2.3,
there is 𝛿 = 𝛿(𝑀) ⩾ 0 such that d𝑆(𝑎𝑖, 𝑞) ⩽ 𝛿 for each 𝑖 = 1, … , 𝑛. By stability of𝐾 and the triangle
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inequality, therefore, we obtain that d𝑆(𝑣𝑖, 𝐾) ⩽ 2𝜇 + 𝛿 for each 𝑖 = 1, … , 𝑛. Note that since 𝑝 is
geodesic

d𝑆(1, 𝑣𝑖) ⩽ 𝑖 − 𝜇 and d𝑆(𝑣𝑖, ℎ) ⩽ d𝑆(1, ℎ) − 𝑖 − 𝜇 (1)

for each 𝑖 = 1, … , 𝑛.
For each 𝑖 = 1, … , 𝑛, let g𝑖 be the shortest element of 𝐺 with respect to 𝑆 such that 𝑣𝑖g𝑖 ∈ 𝐾, so

|g𝑖|𝑆 ⩽ 2𝜇 + 𝛿. Let 𝑁 be the number of elements in the ball of radius 2𝜇 + 𝛿 about the identity in
Cay(𝐺, 𝑆). Taking 𝑛 to be sufficiently large with respect to𝑁 and 𝜇, there must be some pair (𝑖, 𝑗)
with g𝑖 = g𝑗 satisfying 𝑗 − 𝑖 > 2𝜇. Then, Equation (1) gives

d𝑆(1, 𝑣𝑖) + d𝑆(𝑣𝑗, ℎ) < d𝑆(1, ℎ). (2)

But then 𝑣𝑗g𝑗(𝑣𝑖g𝑖)−1 = 𝑣𝑗𝑣
−1
𝑖

∈ 𝐻 ∩ 𝐾, as 𝑣𝑖, 𝑣𝑗 ∈ 𝐻 and 𝑣𝑖g𝑖 , 𝑣𝑗g𝑗 ∈ 𝐾. Moreover,

d𝑆(𝑣𝑗𝑣
−1
𝑖
, ℎ) ⩽ d𝑆(𝑣𝑗𝑣

−1
𝑖
, 𝑣𝑗) + d𝑆(𝑣𝑗, ℎ)

= d𝑆(1, 𝑣𝑖) + d𝑆(𝑣𝑗, ℎ) < d𝑆(1, ℎ),

where the last inequality is an application of (2). It follows that 𝑣𝑖𝑣−1𝑗 ℎ ∈ (𝐻 ∩ 𝐾)ℎ and

|𝑣𝑖𝑣−1𝑗 ℎ|𝑆 = d𝑆(𝑣𝑗𝑣
−1
𝑖
, ℎ) < d𝑆(ℎ, 1) = |ℎ|𝑆,

which contradicts the fact that ℎ is a minimal length representative of its (𝐻 ∩ 𝐾)-coset. Thus,
there must be an upper bound on the Gromov product. □

We finish this section by recalling the key property that we need for our proof, namely that the
MLTG property allows a ping-pong-type argument for stable subgroups.

Proposition 2.10 [16, Theorem 3.1]. Let 𝐺 be a group with finite generating set 𝑆 and suppose that
𝐺 has the MLTG property. Let 𝑄, 𝑅 ⩽ 𝐺 be (𝑀, 𝜇)-stable subgroups of 𝐺. There is a constant 𝐶 =

𝐶(𝑀, 𝜇, 𝑆) ⩾ 0 such that the following is true.
Let 𝑄′ ⩽ 𝑄 and 𝑅′ ⩽ 𝑅 be subgroups such that 𝑄′ ∩ 𝑅′ = 𝑄 ∩ 𝑅 and |g|𝑆 ⩾ 𝐶 for each g ∈ (𝑄′ ∪

𝑅′) ⧵ (𝑄′ ∩ 𝑅′). Then ⟨𝑄′, 𝑅′⟩ ≅ 𝑄′ ∗𝑄′∩𝑅′ 𝑅
′. Moreover, if 𝑄′ and 𝑅′ are finitely generated and

undistorted in 𝐺, then ⟨𝑄′, 𝑅′⟩ is stable.

3 SEPARABILITY OF PRODUCTS

In this section, we will prove the main theorem. We start with some elementary observations
about separable subsets.

Remark 3.1. If𝑈 ⊆ 𝐺 is a separable subset of𝐺, then𝑈−1, g𝑈 and𝑈g are separable for any g ∈ 𝐺.

Remark 3.2. Let𝐻1,… ,𝐻𝑛 ⩽ 𝐺 be subgroups of 𝐺 and let 𝑎0, … , 𝑎𝑛 ∈ 𝐺. Observe that

𝑎0𝐻1𝑎1 …𝑎𝑛−1𝐻𝑛𝑎𝑛 = 𝐻
𝑎0
1
𝐻
𝑎0𝑎1
2

…𝐻
𝑎0…𝑎𝑛−1
𝑛 𝑎0 …𝑎𝑛,
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which is a translate of a product of conjugates of the subgroups 𝐻1,… ,𝐻𝑛. The set
𝑎0𝐻1𝑎1 …𝑎𝑛−1𝐻𝑛𝑎𝑛 is thus separable if and only if the product of subgroups 𝐻𝑎0

1
…𝐻

𝑎0…𝑎𝑛−1
𝑛

is separable.
In particular, suppose that there is 𝑛 ∈ ℕ such that any product of 𝑛 stable subgroups is sepa-

rable in 𝐺, and suppose 𝐻1,… ,𝐻𝑛 are stable subgroups of 𝐺. Lemma 2.8(2) gives that 𝐻
𝑎0…𝑎𝑖−1
𝑖

is stable for each 1 ⩽ 𝑖 ⩽ 𝑛, so that the set 𝐻𝑎0
1
…𝐻

𝑎0…𝑎𝑛−1
𝑛 is a product of 𝑛 stable subgroups.

By the observation above, we may conclude that the set 𝑎0𝐻1𝑎1 …𝑎𝑛−1𝐻𝑛𝑎𝑛 is separable in this
situation.

In order to exploit the geometric properties afforded by theMLTGproperty, it is useful to choose
coset representative that is geometrically meaningful, which we can do by the following remark.

Remark 3.3. Suppose that 𝑆 is a generating set for group 𝐺 and let 𝐻1,… ,𝐻𝑛 ⩽ 𝐺 be sub-
groups of 𝐺. Given elements 𝑥1 ∈ 𝐻1,… , 𝑥𝑛 ∈ 𝐻𝑛, there are elements 𝑦1 ∈ 𝐻1,… , 𝑦𝑛 ∈ 𝐻𝑛 such
that 𝑥1 …𝑥𝑛 = 𝑦1 … 𝑦𝑛 and |𝑦𝑖|𝑆 is minimal among elements of the coset (𝐻𝑖−1 ∩ 𝐻𝑖)𝑦𝑖 for each
1 < 𝑖 ⩽ 𝑛.
Indeed, there is 𝑦𝑛 ∈ 𝐻𝑛 and 𝑧𝑛 ∈ 𝐻𝑛 ∩ 𝐻𝑛−1 such that 𝑥𝑛 = 𝑧𝑛𝑦𝑛 and |𝑦𝑛|𝑆 is minimal among

elements of (𝐻𝑛−1 ∩ 𝐻𝑛)𝑥𝑛 = (𝐻𝑛−1 ∩ 𝐻𝑛)𝑦𝑛. Similarly, there is 𝑦𝑛−1 ∈ 𝐻𝑛1
and 𝑧𝑛−1 ∈ 𝐻𝑛−1 ∩

𝐻𝑛−2 such that𝑥𝑛−1𝑧𝑛 = 𝑧𝑛−1𝑦𝑛−1 and 𝑦𝑛−1 is a shortest representative of (𝐻𝑛−2 ∩ 𝐻𝑛−1)𝑥𝑛−1𝑧𝑛 =

(𝐻𝑛−2 ∩ 𝐻𝑛−1)𝑦𝑛−1. We can proceed by finite induction to find elements 𝑦2 ∈ 𝐻2,… , 𝑦𝑛 ∈ 𝐻𝑛 and
𝑧2 ∈ 𝐻2 ∩ 𝐻3,… , 𝑧𝑛 ∈ 𝐻𝑛−1 ∩ 𝐻𝑛 with the properties described above. Setting 𝑦1 = 𝑥1𝑧2 ∈ 𝐻1

completes the observation.

We conclude the section by proving the main theorem of the paper and the related corollaries.

Proof of Theorem 1.1. We proceed by induction on the number 𝑛 of stable subgroups. The case
𝑛 = 1 is exactly the hypothesis that stable subgroups of 𝐺 are separable, so let 𝐻1,… ,𝐻𝑛 be sta-
ble subgroups of 𝐺 with 𝑛 > 1 and suppose that the product of any 𝑛 − 1 stable subgroups of 𝐺
is separable.
Fix a finite generating set 𝑆 of 𝐺. By taking maxima of gauges and constants, we may assume

without loss of generality that 𝐻1,… ,𝐻𝑛 are (𝑀, 𝜇)-stable. Let 𝜌 = 𝜌(𝑀, 𝜇, 𝑆) be the constant
obtained from Lemma 2.9, and let 𝐶 = 𝐶(𝑀, 𝜇, 𝑆) be the constant of Proposition 2.10. Let 𝐵, 𝜆, 𝑐 ⩾
0 be the constants and 𝑁 the Morse gauge obtained from applying Lemma 2.6 with gauge𝑀 and
constant 𝜌.
Suppose for a contradiction that the product 𝐻1 …𝐻𝑛 is not separable, so that there is some

g ∉ 𝐻1 …𝐻𝑛 belonging to the profinite closure of 𝐻1 …𝐻𝑛. This means that g is contained in
every separable subset containing 𝐻1 …𝐻𝑛. For ease of reading, we will write 𝑄 = 𝐻1, 𝑅 = 𝐻2

and 𝑇𝑖 = 𝐻𝑖+2 whenever 1 ⩽ 𝑖 ⩽ 𝑠 = 𝑛 − 2. By hypothesis, 𝑄 and 𝑅 are separable, and thus, their
intersection 𝐼 = 𝑄 ∩ 𝑅 is also. Let {𝑁𝑖}𝑖∈ℕ be an enumeration of the finite index subgroups of 𝐺
containing 𝐼, and note that 𝐼 =

⋂
𝑖∈ℕ 𝑁𝑖 as 𝐼 is separable. For each 𝑖, we write

𝑁′
𝑖
=

𝑖⋂
𝑗=1

𝑁𝑗

so that {𝑁′
𝑖
}𝑖∈ℕ is a sequence of nested finite index subgroups of𝐺 containing 𝐼 whose intersection

is equal to 𝐼.
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For each 𝑖 ∈ ℕ, we define the set

𝐾𝑖 = 𝑄⟨𝑄′
𝑖
, 𝑅′

𝑖
⟩𝑅𝑇1 …𝑇𝑠,

where𝑄′
𝑖
= 𝑁′

𝑖
∩ 𝑄 ⩽𝑓 𝑄 and𝑅′𝑖 = 𝑁′

𝑖
∩ 𝑅 ⩽𝑓 𝑅. Note that 𝐼 ⊆ 𝑁′

𝑖
for each 𝑖 ∈ ℕ, so that𝑄′

𝑖
∩ 𝑅′

𝑖
=

𝐼. It is immediate from the definition that 𝐾𝑖 ⊇ 𝑄𝑅𝑇1 …𝑇𝑠 for each 𝑖 ∈ ℕ. Our aim is to show that
for sufficiently large 𝑖, the set 𝐾𝑖 is separable and excludes the element g .
Let us first show that 𝐾𝑖 is separable when 𝑖 is large. Indeed, for a given 𝑖, let 𝑥1, … , 𝑥𝑎 be left

coset representatives for 𝑄′
𝑖
in 𝑄 and 𝑦1, … , 𝑦𝑏 be right coset representatives for 𝑅′𝑖 in 𝑅. Then, we

have

𝐾𝑖 =

𝑎⋃
𝑗=1

𝑏⋃
𝑘=1

𝑥𝑗⟨𝑄′
𝑖
, 𝑅′

𝑖
⟩𝑦𝑘𝑇1 …𝑇𝑠.

Since 𝐼 is the intersection of all 𝑁′
𝑖
, there is an index 𝑖0 ∈ ℕ such that for any 𝑖 ⩾ 𝑖0, any element

𝑛 ∈ 𝑁′
𝑖
with |𝑛|𝑆 ⩽ 𝐶 belongs to 𝐼. By (1) and (3) of Lemma 2.8,𝑄′

𝑖
and𝑅′

𝑖
are finitely generated and

undistorted, so wemay apply Proposition 2.10 to obtain that ⟨𝑄′
𝑖
, 𝑅′

𝑖
⟩ is stable. Thus, by Remark 3.2

and the induction hypothesis, 𝐾𝑖 can be written as a finite union of separable subsets, and so 𝐾𝑖

is separable whenever 𝑖 ⩾ 𝑖0.
We now show that there is 𝑖 ∈ ℕ such that g ∉ 𝐾𝑖 . As g belongs to the profinite closure of

𝑄𝑅𝑇1 …𝑇𝑠 and for each 𝑖 ⩾ 𝑖0, the set 𝐾𝑖 is a profinitely closed subset of 𝐺 containing 𝑄𝑅𝑇1 …𝑇𝑠,
g belongs to 𝐾𝑖 for each 𝑖 ⩾ 𝑖0. That is, for each 𝑖 ⩾ 𝑖0, we may write

g = 𝑞(𝑖)𝑥
(𝑖)
1
… 𝑥

(𝑖)
𝑚𝑖
𝑟(𝑖)𝑡

(𝑖)
1
… 𝑡

(𝑖)
𝑠 (3)

for some 𝑚𝑖 ∈ ℕ and 𝑥
(𝑖)

𝑗
∈ 𝑄′

𝑖
∪ 𝑅′

𝑖
for each 1 ⩽ 𝑗 ⩽ 𝑚𝑖 , and where 𝑞(𝑖) ∈ 𝑄, 𝑟(𝑖) ∈ 𝑅, 𝑡

(𝑖)
1

∈

𝑇1, … , 𝑡
(𝑖)
𝑠 ∈ 𝑇𝑠.

The remainder of the argument may be split into two essentially different cases based on the
lengths of the elements obtained above: we summarise them here.
In one case, the lengths of infinitely many of the elements 𝑟(𝑖), 𝑡(𝑖)

1
, … , 𝑡

(𝑖)
𝑠−1

remain bounded
as 𝑖 tends to infinity. When this happens, we may pass to a subsequence where one these terms
is constant in 𝑖. This reduces the number of subgroups we have to consider in the product and
we may apply the induction hypothesis to obtain our contradiction. The other situation to con-
sider is when the lengths of these elements increase without bound. In this case, for sufficiently
large values of 𝑖, the products as in (3) define paths that are (arbitrarily long) local Morse quasi-
geodesics. TheMLTGproperty then shows that these are actuallyMorse quasi-geodesics, resulting
in another contradiction.
Case 1: lim inf 𝑖→∞ |𝑟(𝑖)|𝑆 < ∞ or lim inf 𝑖→∞ |𝑡(𝑖)

𝑗
|𝑆 < ∞ for some 1 ⩽ 𝑗 < 𝑠.

We consider only the possibility that lim inf 𝑖→∞ |𝑟(𝑖)|𝑆 < ∞, for the other cases can be dealt
with identically. It follows from this assumption that there is a subsequence of (𝑟(𝑖))𝑖∈ℕ whose
terms have length bounded by some fixed constant. Since there are only finitely many elements
of 𝐺 with any given length with respect to 𝑆, we may pass to a further subsequence whose terms
are all equal to a single element 𝑟 ∈ 𝑅. Hence, we have

g ∈ 𝑄⟨𝑄′
𝑖
, 𝑅′

𝑖
⟩𝑟𝑇1 …𝑇𝑠 for infinitely many 𝑖 ∈ ℕ. (4)
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Now by the induction hypothesis and Remark 3.2, the set 𝑄𝑟𝑇1 …𝑇𝑠 is separable in 𝐺. Since
g ∉ 𝑄𝑅𝑇1 …𝑇𝑠, we have g ∉ 𝑄𝑟𝑇1 …𝑇𝑠, and so, there is 𝑁 <𝑓 𝐺 such that g ∉ 𝑁𝑄𝑟𝑇1 …𝑇𝑠 =

𝑄𝑁𝑟𝑇1 …𝑇𝑠. The subgroup 𝐼𝑁 ⩽𝑓 𝐺 is a finite index subgroup of 𝐺 containing 𝐼, so 𝑁′
𝑖1
⊆

𝐼𝑁 for some 𝑖1 ∈ ℕ. Since the sequence of subgroups {𝑁′
𝑖
}𝑖∈ℕ is nested, we have thus shown

that

𝑄⟨𝑄′
𝑖
, 𝑅′

𝑖
⟩𝑟𝑇1 …𝑇𝑠 ⊆ 𝑄𝑁′

𝑖
𝑟𝑇1 …𝑇𝑠 ⊆ 𝑄𝐼𝑁𝑟𝑇1 …𝑇𝑠 = 𝑄𝑁𝑟𝑇1 …𝑇𝑠

for any 𝑖 ⩾ 𝑖1, where the last equality uses the fact that 𝑄𝐼 = 𝑄. However, the fact that g ∉

𝑄𝑁𝑟𝑇1 …𝑇𝑠 now contradicts the inclusions of (4), so this case is impossible.
Case 2: lim inf 𝑖→∞ |𝑟(𝑖)|𝑆 = ∞ and lim inf 𝑖→∞ |𝑡(𝑖)

𝑗
|𝑆 = ∞ for all 1 ⩽ 𝑗 < 𝑠.

Define 𝑧0 = 1, 𝑧1 = 𝑞(𝑖), 𝑧2 = 𝑧1𝑥
(𝑖)
1
, … , 𝑧𝑚𝑖+1

= 𝑧𝑚𝑖
𝑥
(𝑖)
𝑚𝑖
, 𝑧𝑚𝑖+2

= 𝑧𝑚𝑖+1
𝑟(𝑖) and 𝑧𝑚𝑖+3

=

𝑧𝑚𝑖+2
𝑡
(𝑖)
1
, … , 𝑧𝑚𝑖+2+𝑠

= 𝑧𝑚𝑖+𝑠
𝑡
(𝑖)
𝑠 . For each 0 ⩽ 𝑗 ⩽ 𝑚𝑖 + 1 + 𝑠, we let 𝑝𝑗 be a geodesic with

(𝑝𝑗)− = 𝑧𝑗 and (𝑝𝑗)+ = 𝑧𝑗+1. Let 𝑝 be the concatenation 𝑝0 ∗ ⋯ ∗ 𝑝𝑚𝑖+1+𝑠
of these paths.

We will use Lemma 2.6 to conclude that the path 𝑝 is a uniform quasi-geodesic. Assuming
this, the fact that lim inf 𝑖→∞ |𝑟(𝑖)|𝑆 = ∞ and lim inf 𝑖→∞ |𝑡(𝑖)

𝑗
|𝑆 = ∞ means that for sufficiently

large 𝑖, the distance between the endpoints of 𝑝 is greater than |g|𝑆 , contradicting the fact that 𝑝
represents g .
Without loss of generality, wemay assume𝑥(𝑖)

1
∈ 𝑅′

𝑖
⧵ 𝑄 and𝑥(𝑖)𝑚𝑖

∈ 𝑄′
𝑖
⧵ 𝑅, for otherwisewemay

replace 𝑞(𝑖) with 𝑞(𝑖)
1

= 𝑞(𝑖)𝑥
(𝑖)
1

∈ 𝑄 and eliminate 𝑥(𝑖)
1
from the product (and likewise with 𝑟(𝑖) and

𝑥
(𝑖)
𝑚𝑖
). Further, we may assume by Remark 3.3 that 𝑥(𝑖)

1
, … , 𝑥

(𝑖)
𝑚𝑖
, and 𝑟(𝑖) are shortest representatives

of their right 𝐼-cosets, and, in particular, 𝑥(𝑖)
1
, … , 𝑥

(𝑖)
𝑚𝑖
, 𝑟(𝑖) ∉ 𝐼. Similarly, we take 𝑡(𝑖)

1
to be a shortest

representative of (𝑅 ∩ 𝑇1)𝑡
(𝑖)
1
and, for 1 < 𝑖 ⩽ 𝑠, the element 𝑡(𝑖)

𝑗
to be a shortest representative of

(𝑇𝑗−1 ∩ 𝑇𝑗)𝑡
(𝑖)

𝑗
.

The above paragraph together with Lemma 2.9 shows that

⟨𝑧𝑗−1, 𝑧𝑗+1⟩𝑧𝑗 ⩽ 𝜌 for 𝑗 = 1,… ,𝑚𝑖 + 𝑠. (5)

We now verify the hypotheses of Lemma 2.6. Each of the geodesic segments 𝑝𝑖 represents an
element of a finite index subgroup of one of 𝑄, 𝑅, 𝑇1, … , 𝑇𝑠−1, or 𝑇𝑠. Therefore, by Lemma 2.8(1),
we obtain that the geodesic segments 𝑝𝑖 are 𝑀-Morse. For any given 𝐵′ ⩾ 𝐵 (recall that 𝐵 is the
constant of Lemma 2.6 applied with𝑀 and 𝜌), we deduce the following. Since lim inf 𝑖→∞ |𝑟(𝑖)|𝑆 =
∞ and lim inf 𝑖→∞ |𝑡(𝑖)

𝑗
|𝑆 = ∞, we have that |𝑟(𝑖)|𝑆 > 𝐵′ and |𝑡(𝑖)

𝑗
|𝑆 > 𝐵′ for each 𝑗 = 1,… , 𝑠 and

sufficiently large 𝑖. Moreover, since 𝑥(𝑖)
𝑗

∈
(
𝑄′
𝑖
∪ 𝑅′

𝑖

)
⧵ 𝐼 ⊆ 𝑁′

𝑖
⧵ 𝐼 and since

⋂
𝑁′
𝑖
= 𝐼, for 𝑖 large

enough, we have |𝑥(𝑖)
𝑗
|𝑆 > 𝐵′. Thus, Lemma 2.6 implies that 𝑝 is (𝑁; 𝜆, 𝑐)-Morse quasi-geodesic.

Finally, choosing 𝐵′ sufficiently large with respect to 𝜆, 𝑐, and |g|𝑆 , gives us that the endpoints of
𝑝 are a greater distance than |g|𝑆 apart, the desired contradiction.
From the above, there is some 𝑖 ∈ ℕ such that 𝐾𝑖 is separable, contains the product 𝑄𝑅𝑇1 …𝑇𝑠

and excludes g . Therefore, the product 𝑄𝑅𝑇1 …𝑇𝑠 = 𝐻1 …𝐻𝑛 is separable. □

Proof of Corollary 1.3. Stable subgroups are quasi-convex, and quasi-convex subgroups of virtu-
ally special groups are separable by [9, Corollary 7.9]. Moreover, CAT(0) groups have the MLTG
property by [16, Theorem D]. Therefore, Theorem 1.1 applies to give the result. □
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Proof of Corollary 1.4. Let 𝐻1,… ,𝐻𝑛 be strongly quasi-convex subgroups of 𝐴Γ. If there is some
1 ⩽ 𝑖 ⩽ 𝑛 such that𝐻𝑖 has finite index, then the product𝐻1 …𝐻𝑛 is a union of finitelymany cosets
of𝐻𝑖 . Since𝐻𝑖 has finite index, it is separable in 𝐴Γ, whence𝐻1 …𝐻𝑛 is separable.
Now suppose that each of the subgroups 𝐻1,… ,𝐻𝑛 has infinite index in 𝐴Γ. By [17, Corollary

7.4], they must be stable subgroups. Noting that 𝐴Γ is CAT(0) and hence has the MLTG property
[16, Theorem D], the conclusion follows by applying Theorem 1.1. □
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