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1 Introduction

Accurate simulations have become the theoretical cornerstone of many physics analyses at
the Large Hadron Collider (LHC) today. They are mandatory not only in the context of
precise Standard-Model (SM) measurements, but also instrumental for new-physics searches,
especially when looking for small deviations or when providing cross-section limits on beyond-
SM (BSM) signatures.

The last ten years have seen an enormous progress in the development of hadron-level
event generators that include already corrections up to next-to-next-to-leading order (NNLO)
in QCD perturbation theory. To this end, several methods have been developed to match
NNLO QCD calculations with parton showers (NNLO+PS). The two main approaches today
are the MiNNLOPS [1, 2] and Geneva [3–5] ones. Among the existing NNLO+PS methods
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the MiNNLOPS one is a notable exception, as it was not only applied to several complex
colour-singlet processes [6–13], but it was also extended to the case of heavy-quark pair
production [14–16], i.e. processes with colour charges both in the initial and in the final state.
Nevertheless, there are several other classes of processes for which NNLO+PS predictions
are becoming absolutely crucial in view of the vast progression of the LHC data taking by
the experiments. One important class of processes is the one that includes light jets in the
final state, such as colour-singlet plus jet production. Although NNLO predictions have
been known for this type of processes for several years, in particular for Higgs+jet [17–20],
V+jet [21–25], V H+jet [26] (V being a vector boson), and even γγ+jet [27], the consistent
combination with parton showers is still an open problem.

Current NNLO+PS approaches, such as MiNNLOPS [1, 2] or Geneva [3–5], rely on
a suitable jet-resolution variable to separate events at the respective Born level from those
with one extra radiation, similar to those NNLO approaches that perform a slicing in
such jet-resolution variable to reach NNLO accuracy, like qT subtraction [28] or N -jettiness
subtraction [29, 30], or the more recent subtraction based on pT -veto [31]. In order to
formulate an NNLO(+PS) method, the resummation ingredients of the jet-resolution variable
need to be known to a sufficiently large order in the logarithmic expansion. In principle,
there is a suitable jet-resolution variable for colour-singlet plus jet processes, namely 1-
jettiness (T1), for which a factorization theorem has been derived using soft-collinear effective
theory (SCET) [32–36] and whose resummation is know at N3LL [37], using the resummation
ingredients obtained in refs. [30, 38–41]. In fact, T1 has already been used to obtain NNLO
predictions through slicing for this class of processes [17, 18, 21, 24, 25]. Although the use of
jettiness-like observables in the context of a fully exclusive Monte-Carlo simulation poses some
challenges, especially related to preserving the parton shower accuracy, at the moment T1 is
the only observable for which all the resummation ingredients for an NNLO+PS matching are
currently available. Therefore, it provides our best chance to obtain NNLO+PS predictions
for colour-singlet plus jet production in a relatively short time period.

As a first step, it is instructive to derive an NNLO+PS approach for inclusive colour-
singlet production based on the 0-jettiness (T0) variable. This variable has been used to
achieve NNLO+PS accuracy within the Geneva formalism for a variety of processes [42–48].
In this paper, we reformulate the MiNNLOPS method in terms of T0 as an alternative to the
transverse momentum of the colour-singlet final state (pT), and obtain a new implementation
for Higgs-boson and vector-boson production at NNLO+PS accuracy. Our results can
be compared directly to the previous MiNNLOPS generators that were built using pT

resummation [1, 2]. We will show that, despite the fact that for MiNNLOPS-T0 the leading
logarithmic accuracy in our showered predictions is not fully preserved, we find remarkable
agreement for vector-boson production before and after including parton-shower effects. For
Higgs-boson production, on the other hand, only NNLO quantities, i.e. the Higgs rapidity,
are in good agreement, while we find larger differences in jet-related quantities (formally
described at NLO QCD accuracy). In addition, we also compare our predictions to results
obtained using the Geneva method (both for T0 and pT), finding very good agreement in all
NNLO quantities. The development of a MiNNLOPS framework for T1 closely parallels our
derivation for T0, and we provide the corresponding derivation and formulae in appendix C.
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The result for T1 introduces additional complications due to the extra radiation, which
generates logarithmic terms that are absent in the cases of T0 or pT.

This paper is organized as follows: First, we briefly recall the MiNNLOPS formalism
based on pT in section 2. Then, we derive a new formulation of MiNNLOPS using T0 in
section 3, where we review the factorization/resummation formula for T0 (section 3.1), recast
it into a form suitable for the MiNNLOPS approach (section 3.2), obtain the MiNNLOPS
master formula for T0 (section 3.3) and discuss the shower accuracy (section 3.4). In section 4,
after presenting our setup (section 4.1), we compare our new MiNNLOPS-T0 results against
MiNNLOPS-pT predictions (section 4.2) for vector-boson and Higgs-boson production, study
the difference between MiNNLOPS and Geneva predictions using both resummation variables
for vector-boson production (section 4.3) and present a comparison to ATLAS and CMS
data (section 4.4). We summarize our findings in section 5. In appendix A all relevant
resummation ingredients for T0 are provided, in appendix B we discuss how higher-order
resummation terms are spread over the inclusive phase space, and in appendix C we present
the derivation of the MiNNLOPS approach for T1.

2 MINNLOPS in a nutshell

The MiNNLOPS method [1, 2] formulates a fully differential calculation in the Born phase
space ΦF at NNLO QCD accuracy of a produced final state F with invariant mass Q and
combines it consistently with multi-parton radiation effects from parton shower. MiNNLOPS
has been formulated thus far for colour-singlet production [1, 2] and for heavy-quark pair
production [14, 15], based on the transverse momentum (pT) of F as a matching variable
in both cases. Here, we focus on the colour-singlet case and, when specific to the original
formulation based on pT resummation, we will refer to it as MiNNLOPS-pT from now on.

MiNNLOPS starts from a differential description of the production of the colour singlet
and a jet (FJ) at NLO matched to parton showers, which is obtained via the POWHEG
approach [49–51] as

dσ
dΦFJ

= B̄(ΦFJ)×
{
∆pwg(Λpwg) +

∫
dΦrad∆pwg(pT,rad)

R(ΦFJ,Φrad)
B(ΦFJ)

}
, (2.1)

where MiNNLOPS modifies the content of the MiNLO’ B̄(ΦFJ) function [52], which generates
the first radiation (inclusive over the second one), to achieve NNLO QCD accuracy. By
contrast, the content of the curly brackets, which describes the exclusive generation of the
second radiation according to the POWHEG method, is not modified by the MiNNLOPS
procedure. Here, ΦFJ denotes the FJ phase space, and B and R are the squared tree-level
matrix elements for FJ and FJJ production, respectively. ∆pwg is the usual POWHEG
Sudakov form factor [49] (with a lower cutoff of Λpwg = 0.89GeV) and the phase space
(transverse momentum) of the second radiation is denoted as Φrad (pT,rad). Extra radiation
beyond the second one is added by the consistent matching to the parton shower achieved
through POWHEG.

The modification of the B̄(ΦFJ) function is the central ingredient of MiNNLOPS. For
MiNNLOPS-pT, its derivation [1] stems from the description of the NNLO cross section
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differential in the pT of the colour singlet and in the Born phase space ΦF, which can be
expressed as

dσ
dΦFdpT

= d
dpT

{
exp[−S̃(pT)]L(pT)

}
+Rf (pT) = exp[−S̃(pT)]

{
D(pT) +

Rf (pT)
exp[−S̃(pT)]

}
,

(2.2)

where Rf contains the non-singular terms in the pT → 0 limit, and

D(pT) ≡ −dS̃(pT)
dpT

L(pT) +
dL(pT)
dpT

. (2.3)

S̃(pT) represents the Sudakov form factor in pT, while L(pT) contains the parton luminosities,
the squared hard matrix elements for the underlying F production process up to two loops
as well as the collinear coefficient functions at NNLO (see ref. [1] for further details). A
crucial feature of the MiNNLOPS-pT procedure is that the renormalization and factorization
scales are set to µR ∼ µF ∼ pT.

Let us introduce the NLO differential cross section for FJ production as

dσ(NLO)
FJ

dΦFdpT
= αs(pT)

2π

[ dσFJ

dΦFdpT

](1)
+
(
αs(pT)
2π

)2 [ dσFJ

dΦFdpT

](2)
, (2.4)

with [X](i) being the coefficient of the i-th term in the perturbative expansion of the quantity
X, so that we can write the non-singular terms as

Rf = dσ(NLO)
FJ

dΦFdpT
− αs(pT)

2π
[
exp[−S̃(pT)]D(pT)

](1)
−
(
αs(pT)
2π

)2 [
exp[−S̃(pT)]D(pT)

](2)
.

(2.5)

Now, we can rewrite eq. (2.2) as

dσ
dΦFdpT

= exp[−S̃(pT)]
{
αs(pT)
2π

[ dσFJ

dΦFdpT

](1)(
1+ αs(pT)

2π [S̃(pT)](1)
)

+
(
αs(pT)
2π

)2 [ dσFJ

dΦFdpT

](2)
+
[
D(pT)−

αs(pT)
2π [D(pT)](1)−

(
αs(pT)
2π

)2
[D(pT)](2)

]

+regular terms of O(α3
s )
}
. (2.6)

This formula includes all relevant terms needed to reach NNLO QCD accuracy. In particular,
upon integration over pT from scales of the order of the Landau pole Λ to the kinematic upper
bound, it reproduces the fully differential NNLO cross section up to terms beyond accuracy.

Each term of eq. (2.6) contributes to the integrated cross section with scales µR ∼ µF ∼ Q

according to the power counting formula∫ Q

Λ
dpT

1
pT
αm

s (pT) lnn Q

pT
exp(−S̃(pT)) ≈ O

(
α

m−n+1
2

s (Q)
)
. (2.7)

Here, it is crucial to understand that for MiNNLOPS-pT at most an extra single logarithm
appears in the formula due to the choice µR ∼ µF ∼ pT, therefore n ≤ 1. As a consequence,
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the truncation of (2.6) beyond second order, i.e. all terms including those up to α2
s(pT), is

NLO accurate in the ΦF phase space, which corresponds to MiNLO′ [52] accuracy, while the
terms at third order in αs(pT) and beyond in the square brackets are the crucial ingredients
to reach NNLO accuracy in ΦF. Moreover, one can expand the square bracket in the second
line of eq. (2.6) and neglect terms that produce N3LO corrections or beyond upon integration
over pT, to any inclusive observable in ΦF. One can therefore, in principle, truncate the
second line of eq. (2.6) to third order in αs(pT)

D(≥3)(pT) = D(pT)−
αs(pT)
2π [D(pT)](1) −

(
αs(pT)
2π

)2
[D(pT)](2)

=
(
αs(pT)
2π

)3
[D(pT)](3) +O(α4

s(pT)) .
(2.8)

Nevertheless, in order to preserve the full total derivative of our starting equation eq. (2.2),
and to keep terms beyond accuracy generated by the total derivative, it is preferable not to
perform such a truncation, although formally valid, as pointed out in ref. [2].

The MiNNLOPS-pT procedure can be applied directly at the fully differential level in
the ΦFJ phase space to the B̄(ΦFJ) function in eq. (2.1) [1]:

B̄(ΦFJ) ≡ exp[−S̃(pT)]
{
αs(pT)
2π

[ dσFJ

dΦFJ

](1) (
1 + αs(pT)

2π [S̃(pT)](1)
)

+
(
αs(pT)
2π

)2 [ dσFJ

dΦFJ

](2)
+D(≥3)(pT)F corr(ΦFJ)

}
, (2.9)

where the factor F corr(ΦFJ) encodes a suitable function needed to spread the correction
D(≥3)(pT), which intrinsically depends only on pT and ΦF, on the full ΦFJ phase space, as
discussed in detail in section 3 of ref. [1].

3 Formulation of the MINNLOPS method using 0-jettiness

In this section, we derive the MiNNLOPS master formula for colour-singlet production using
T0 factorization and resummation as formulated in SCET. From now on, we will refer to this
new formulation of the MiNNLOPS method as MiNNLOPS-T0. Our derivation follows the
strategy of the MiNNLOPS method based on pT. In order to perform the MiNNLOPS-T0
derivation we start by reviewing T0 factorization and resummation as formulated in SCET
in section 3.1. Then, in section 3.2, we bring it into a form that makes it suitable to make
contact with the MiNNLOPS approach and we derive the MiNNLOPS-T0 master formula in
section 3.3. Finally, we discuss the accuracy of the parton shower in section 3.4.

3.1 Review of T0 factorization and evolution

We begin by reviewing the SCET resummation formalism for 0-jettiness (T0), also known as
beam thrust. The infrared-safe 0-jet resolution variable T0 was originally introduced in ref. [53],
and extended to N -jet processes in ref. [54]. Following the notation of ref. [55], it is defined as

T0 =
∑

k

min
{2qa · pk

Qa
,
2qb · pk

Qb

}
. (3.1)
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Here, the sum runs over all hadronic final states (excluding decay products of the identified
colour-singlet final state), pk are their momenta, and qa and qb are the momenta of the
colliding partons. Aligning the incoming hadrons along the directions

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) , (3.2)

the incoming parton momenta can be written as

qµ
a = QeY nµ

2 , qµ
b = Qe−Y n̄µ

2 , (3.3)

where Q and Y are the invariant mass and rapidity of the colour-singlet final state, respectively.
Finally, Qa,b in eq. (3.1) are normalization factors giving rise to different definitions of T0.
The most common choices are [53, 54]

leptonic T0 : Qa = Qb = Q , T lep
0 =

∑
k

min
{
e+Y n · pk , e

−Y n̄ · pk

}
,

hadronic T0 : Qa,b = Qe±Y , T cm
0 =

∑
k

min
{
n · pk , n̄ · pk

}
. (3.4)

It has been shown that the power corrections to the hadronic definition are exponentially
enhanced in Y [56–58]. This is compensated for in the leptonic definition by the explicit e±Y

factors, which is thus the preferred choice and which we will use throughout this paper.
In the kinematic limit T0 → 0, all hadronic momenta pk must be either soft or collinear

to the incoming partons to yield a negligible contribution to the sum in eq. (3.1). Based
on this observation, a factorization formula1 was derived in refs. [53, 54] using SCET. It
can be written as

dσ
dΦFdT0

= dσsing

dΦFdT0
×
[
1 +O

(
(T0/Q)m)] , (3.5)

dσsing

dΦFdT0
=
∑
a,b

d|Mab|2

dΦF
Hab(Q,µ)

∫
dtadtbBa(ta, xa, µ)Bb(tb, xb, µ)S

(
T0 −

ta
Qa

− tb
Qb
, µ

)
,

where we are differential both in T0 and in the Born phase space ΦF. As indicated, the
factorization holds up to power corrections in T0/Q, with m = 1 for inclusive processes
without any cuts and m = 1/2 for selection cuts which break azimuthal symmetry, see for
instance ref. [60]. The sum runs over all flavour combinations a and b contributing to the
Born process, where Mab is the corresponding matrix element and the hard function Hab

encodes virtual corrections to it. The beam functions Ba,b encode the effect of radiation
close the incoming protons, and they are convolved (integral over ta and tb) against the soft
function S encoding soft radiation. The soft function differs between quark and gluon-induced
processes, which is kept implicit in eq. (3.5), but it is independent of the quark flavour in the
massless case. Finally, xa,b = Qe±Y /Ecm are the Bjorken variables in the Born kinematics,
and the renormalization and factorization scales are denoted by µ. Note that all perturbative
ingredients depend on the process under consideration (quark versus gluon initiated), but the
form of the equations is the same, therefore we leave this dependence implicit.2

1Starting at O(α4
s), the factorization is violated by Glauber contributions [59].

2In the case of pT factorization there are additional collinear correlation functions [61] for gluon-initiated
processes starting at NNLO, which are absent in the case of T0 due to the scalar nature of this observable.
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While it is standard in the literature to discuss T0 in momentum space, here we perform
a Fourier transform with respect to y = y − i0 to turn the convolution in eq. (3.5) into a
simple product, similar to the usual treatment in pT factorization. This yields

dσsing

dΦF dT0
=
∑
a,b

d|Mab|2

dΦF
Hab(Q,µ)

∫ dy
2π e

iyT0Ba

(
y

Qa
, xa, µ

)
Bb

(
y

Qb
, xb, µ

)
S(y, µ) , (3.6)

where the Fourier transformed beam and soft functions are defined as

Bj(y, x, µ) =
∫

dt e−ityBj(t, x, µ) , S(y, µ)=
∫

dT e−iT yS(T , µ) . (3.7)

Note that the arguments of Bj and S have different mass dimensions due to geometric
measures, which in eq. (3.6) we have put back into the arguments of the beam functions.

In Fourier space, the hard, beam and soft functions obey the following renormalization
group equations (RGEs):3

d
d lnµ lnHab(Q,µ) = γH(Q2, µ) = 2ΓC[αs(µ)] ln

Q2

µ2 + γH [αs(µ)] ,

d
d lnµ lnBi

(
y

Qi
, x, µ

)
= γB

(
y

Qi
, µ

)
= 2ΓC[αs(µ)] ln

yµ2

y0Qi
+ γB[αs(µ)] ,

d
d lnµ lnS(y, µ) = γS(y, µ) = −4ΓC[αs(µ)] ln

yµ

y0
+ γS [αs(µ)] . (3.8)

Here, ΓC is the cusp anomalous dimension, and γH,B,S are the hard, beam and soft non-cusp
anomalous dimensions, respectively. For brevity, we also defined the constant

y0 = −ie−γE (3.9)

appearing in the logarithms, where γE is the Euler-Mascheroni constant. Note that due to
the Fourier transform, the beam anomalous dimension explicitly depends on the measure
Qi, which in momentum space only appears in the convolution in eq. (3.5). Finally, the
overall µ independence implies that

γH(αs) + 2γB(αs) + γS(αs) = 0 , (3.10)

as well as QaQb = Q2, which is fulfilled for both hadronic and leptonic T0.
It is clear from eq. (3.8) that the hard, beam and soft functions contain large logarithms

that can be minimized using the scale choices

µH = Q , µB =
√
Qy0
y

= √
µHµS , µS = y0

y
, (3.11)

for H, B and S, respectively. Note that for generic measures Qa ̸= Qb, this would leave
potentially large logarithms ln(Q/Qi) in the individual beam functions Bi, which however
is absent for our preferred choice T lep

0 . By solving eq. (3.8), we can evolve all functions
3For processes such as Higgs production, Mab also carries a scale dependence, which would be compensated

by changing γH accordingly. Alternatively, which shall be our default choice in this work, one can always
simultaneously evolve |Mab|2 and Hab, which leaves γH unchanged.
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appearing in eq. (3.6) from their natural scales in eq. (3.11) to a common scale µ, which
resums large logarithms ln(Q/T0) appearing in the cross section. The resummed cross section
is then given by

dσsing

dΦF dT0
=
∫ dy

2π e
iyT0

∑
a,b

d|Mab|2

dΦF
Hab(Q,µH)Ba

(
y

Qa
, xa, µB

)
Bb

(
y

Qb
, xb, µB

)
S(y, µS)

× exp
{
−
∫ µH

µB

dµ′

µ′

[
2ΓC[αs(µ′)] ln

Q2

µ′2
+ γH [αs(µ′)]

]}

× exp
{
−
∫ µS

µB

dµ′

µ′

[
−4ΓC[αs(µ′)] ln

yµ′

y0
+ γS [αs(µ′)]

]}
, (3.12)

where the two exponentials evolve the hard and soft functions from their natural scales µH

and µS to the beam scale µB, respectively.
To bring this into a form suitable for the MiNNLOPS method, we first notice that for

the hard and soft functions, using their natural scales, the coefficients in the perturbative
expansion are constant,4 i.e.

H̄ab(Q) ≡ Hab(Q,µH = Q) =
∞∑

n=0

[
αs(Q)
2π

]n

H
(n)
ab ,

S̄(y0/y) ≡ S(y, µS = y0/y) =
∞∑

n=0

[
αs(y0/y)

2π

]n

S(n) . (3.13)

We introduced the barred notation to define the series expansion of the hard and soft functions
evaluated at their canonical scales, where the dependence on the scale is entirely contained
in the running coupling. We can then express the first line in eq. (3.12) at a common scale,
as used in the MiNNLOPS method. Since the beam scale µB enters the nonperturbative
parton distribution functions (PDFs), it is natural to choose µB as this common scale.
Thus, with some abuse of notation (H̄ab(Q) ≡ H̄ab[αs(Q)] and S(y0/y) ≡ S̄[αs(y0/y)]), we
rewrite eq. (3.13) as

H̄ab(Q) = H̄ab(µB) exp
[∫ Q

µB

dµ′

µ′
γH̄ [αs(µ′)]

]
,

S̄(y0/y) = S̄(µB) exp
[∫ y0/y

µB

dµ′

µ′
γS̄ [αs(µ′)]

]
, (3.14)

where the induced anomalous dimensions are given by

γF̄ (αs) = 2β(αs)
d ln F̄ (αs)

dαs
= −4πβ0

F (1)

F (0)

(
αs

2π

)2
+O(α3

s) , (3.15)

for F̄ = H̄ab or F̄ = S̄. β(αs) represents the QCD β function as defined in (A.1), and β0 it’s
first order coefficient given in (A.2). The beam functions can be related to the PDFs as

Bi

(
y

Qi
, x, µ

)
=
∑

j

∫ 1

x

dx′

x′
Cij

(
y

Qi
, x′, µ

)
fj

(
x

x′
, µ

)
≡ (C ⊗ f)i

(
y

Qi
, x, µ

)
z , (3.16)

4For 2 → 2 or more complicated processes, the hard function constants actually have a nontrivial dependence
on ΦF, which we keep implicit.
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where the Cij are perturbatively calculable coefficients. At their canonical scale, they read

C̄ij

(
y

Qi
, x

)
≡ Cij

(
y

Qi
, x, µB

)
=

∞∑
n=0

[
αs(µB)
2π

]n

C(n)
ij (x) , (3.17)

with all dependence on y arising through αs(µB). Similar to the treatment commonly used
in pT resummation, where the beam and soft functions are combined into a transverse-
momentum dependent PDF (TMDPDF), we absorb the T0 soft function with the beam
function, and define

C̄ij

(
y

Qi
, x

)
≡ C̄ij

(
y

Qi
, x, µB

)√
S(µB) . (3.18)

Using eqs. (3.14)–(3.18) to rewrite eq. (3.12), we arrive at our final expression

dσsing

dΦF dT0
=
∫ dy

2π e
iyT0 L(y0/y) e−S(y0/y) , (3.19)

where the luminosity and Sudakov factor are defined as

L(y0/y) =
∑
a,b

d|Mab|2

dΦF
H̄ab(µB) (C̄ ⊗ f)a(xa, µB) (C̄ ⊗ f)b(xb, µB) ,

S(y0/y) = 2
∫ µH

µB

dµ′

µ′

[
A[αs(µ′)] ln

Q2

µ′2
+BH [αs(µ′)]

]
(3.20)

+ 2
∫ µS

µB

dµ′

µ′

[
A[αs(µ′)] ln

(y0/y)2

µ′2
+BS [αs(µ′)]

]
.

In what follows, we will keep the dependence of the PDFs on the momentum fractions xa

and xb and on µB implicit. Following the standard naming conventions in MiNNLOPS,
the anomalous dimensions are labeled as A and B. They are related to the anomalous
dimensions in eq. (3.8) by

A(αs) = ΓC(αs) , BF (αs) =
1
2γF (αs)− β(αs)

d ln F̄ (αs)
dαs

, (3.21)

where F̄ = H̄ for the hard function and F̄ = S̄ for the soft function. Note that the structure
of S contains two distinct evolution kernels, and as such its structure differs from the Sudakov
for pT resummation, which can be written as a single kernel.

We expand the coefficients in eq. (3.21) as

A(αs) =
∞∑

n=1
A(n)

(
αs

2π

)n

, BF (αs) =
∞∑

n=1
B

(n)
F

(
αs

2π

)n

. (3.22)

Explicit results for all required coefficients are collected in appendix A.

3.2 Making contact with the MINNLOPS method

We have already brought the T0 resummation formula into a form that is suitable to make
contact with the MiNNLOPS method, see eqs. (3.19) and (3.20). We begin by taking the
cumulant of eq. (3.19),

dσsing(T0)
dΦF

=
∫ T0

0
dT ′

0

∫ dy
2π e

iyT ′
0 L(y0/y) e−S(y0/y) , (3.23)
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which we expand around y0/y ∼ T0 in order to evaluate analytically the Fourier transform
over dy. More precisely, we define our expansion through

Ly = ln T0y

y0
≪ 1 . (3.24)

Expanding the luminosity and Sudakov yields

L(y0/y) = L(T0) + Ly L′(T0) +
1
2L

2
y L′′(T0) + · · · ,

e−S(y0/y) = e−S(T0)−Ly S′(T0)
[
1− 1

2L
2
y S ′′(T0)−

1
6L

3
y S ′′′(T0) + · · ·

]
, (3.25)

where the derivatives of an arbitrary function f are defined as

f (n) = dnf

dn ln(1/T0)
= (−1)n dnf

dn ln T0
, with f ′ ≡ f (1), f ′′ ≡ f (2), f ′′′ ≡ f (3), . . . . (3.26)

By evaluating the integral of the cumulant using∫ T0

0
dT ′

0

∫ dy
2πe

iT ′
0 yLn

ye
−S′Ly = (−1)n∂n

S′
e−γES′

Γ(1 + S ′) , (3.27)

and by truncating eq. (3.23) at NNLO accuracy, we obtain

dσsing(T0)
dΦF

= e−S(T0)
[
L(T0)

(
1− 1

2∂
2
S′S ′′ + 1

6∂
3
S′S ′′′ + 1

8∂
4
S′(S ′′)2

)
+ L′(T0)

(
−∂S′ + 1

2∂
3
S′S ′′

)
+ 1

2∂
2
S′L′′(T0) +O(α3

s)
] e−γES′

Γ(1 + S ′) . (3.28)

Here we used that the power counting in terms of the strong coupling constant is given by:

S ′ = O(αs) , S ′′ = O(αs) , S ′′′ = O(α2
s) , L′ = O(αs) , L′′ = O(α2

s) . (3.29)

Expanding also the Gamma factor in eq. (3.28) and taking the partial derivatives with
respect to S ′, we arrive at

dσsing(T0)
dΦF

= e−S(T0)
[
L(T0)

(
1− ζ2

2 [(S ′)2 − S ′′]− ζ3S ′S ′′ + 3ζ4
16 (S ′′)2 + ζ3

3 S ′′′
)

+ L′(T0)
(
ζ2S ′ + ζ3S ′′)− ζ2

2 L′′(T0) +O(α3
s)
]
. (3.30)

The terms in square brackets are to be understood as an expansion in αs(µB) with µB =
√
QT0,

since µB defined in eq. (3.11) has also been expanded around T0.
Before proceeding, we note that eq. (3.30) has a much richer structure than its counterpart

in MiNNLOPS-pT. The reason is that the analog of eq. (3.27) in pT has a much simpler
expansion itself. Most notably, for MiNNLOPS-pT one does not encounter the L′′ term,
which will have a significant impact on our final formula, and there are fewer S ′ terms in
the coefficients of L and L′.

Our goal is to write eq. (3.30) in the form

dσsing(T0)
dΦF

= L̃(T0)e−S(T0) , (3.31)
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which has the same structure as the singular part of the starting formula in eq. (2.2) of the
MiNNLOPS-pT method. Thus, bringing the T0 resummation formula into that form allows
us to follow the same subsequent steps when deriving the MiNNLOPS-T0 formalism. Similar
to MiNNLOPS-pT this can be achieved by absorbing the additional terms in square brackets
in eq. (3.30) into a redefinition of the Sudakov factor and the luminosity. Evaluating the
derivatives of S in eq. (3.30), we obtain the expression

dσsing(T0)
dΦF

= e−S(T0)
{
L(T0)

[
1 + αs

2πc1,0 +
(
αs

2π

)2 (
c2,2L

2
T + c2,1LT + c2,0

)]

+ L′(T0)
[
αs

2π
(
c′1,1LT + c′1,0

)]

+ L′′(T0)c′′0,0 +O(α3
s)
}
. (3.32)

Here and in the following, we always use the abbreviations

αs = αs

(√
QT0

)
, LT = 1

2 ln Q
T0
. (3.33)

The constants appearing in eq. (3.32) are given by

c1,0 = A(1)ζ2 ,

c2,2 = −8[A(1)]2ζ2 ,

c2,1 = −8[A(1)]2ζ3 + 4A(1)ζ2
(
B

(1)
S −B

(1)
H

)
+ 8πβ0A

(1)ζ2

= −4A(1)(c′1,0 − 2πβ0ζ2
)
,

c2,0 = ζ2A
(2) + 3

4[A
(1)]2ζ4 + 2A(1)ζ3

(
B

(1)
S −B

(1)
H

)
− ζ2

2
(
B

(1)
S −B

(1)
H

)2

+ πβ0
[
4A(1)ζ3 + ζ2(B(1)

H − 3B(1)
S )

]
= A(2)ζ2 + [A(1)]2

(
3
4ζ4 +

2ζ2
3
ζ2

)
−

(c′1,0)2

2ζ2
+ 2πβ0

(
A(1)ζ3 −B

(1)
S ζ2 +

1
2c

′
1,0

)
,

c′1,0 = 2A(1)ζ3 + ζ2(B(1)
H −B

(1)
S ) ,

c′1,1 = 4A(1)ζ2 ,

c′′0,0 = −ζ2
2 . (3.34)

Furthermore, we require the first and second derivative of L up to αs and α2
s, respectively.

They are given by

L′(T0) =
∑
a,b

d|Mab|2

dΦF

[
−(P̂ ⊗ f)a fb + (a↔ b)

]
+O(α2

s) , (3.35)

L′′(T0) =
∑
a,b

d|Mab|2

dΦF

[{
(P̂ ⊗ f)a (P̂ ⊗ f)b − (P̂ ′ ⊗ f)a fb

+ (P̂ ⊗ P̂ ⊗ f)a fb

}
+ (a↔ b)

]
+O(α3

s), , (3.36)
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where the regularised splitting function P̂ij can be expanded as

P̂ij(x, αs) =
∞∑

n=0
P̂

(n)
ij (x)

(
αs

2π

)n+1
, (3.37)

and its derivative is given by

P̂ ′
ij(x, αs(µB)) = − d

d ln T0
P̂ij
(
x, αs(µB)

)
=
(
αs(µB)
2π

)2
2πβ0P̂

(0)
ij (x) +O(α3

s) . (3.38)

It is possible to absorb all terms in the first line of eq. (3.32) into a redefinition of the
Sudakov and the luminosity. However, the αsLT term in the second line of eq. (3.32) can
not be absorbed into a redefinition of the Sudakov without reintroducing such a term in the
first line as well. Similarly, the first term in eq. (3.36) can not be factorized such that it
can be absorbed into a redefinition of the beam function matching kernels C̄ij . Therefore,
we can express our final result as

dσsing(T0)
dΦF

= e−S(T0)L̃(T0) , (3.39)

by defining the final luminosity factor through

L̃(T0) =
∑
a,b

d|Mab|2

dΦF
H̃ab(µB)

[
(C̃ ⊗ f)a (C̃ ⊗ f)b + 2c′′0,0(P̂ ⊗ f)a (P̂ ⊗ f)b

]

−
∑
a,b

d|Mab|2

dΦF

(
αs

2π

)2
c′1,1LT

[
(P̂ (0) ⊗ f)a fb + fa (P̂ (0) ⊗ f)b

]
+O(α3

s) . (3.40)

Here, the second line arises from the corresponding term in eq. (3.36), and can not be
absorbed into a redefinition of the kernels C̄ij , while the last line contains an explicit LT
term. All non-logarithmic terms in eq. (3.32) are absorbed into the modified hard function
and matching kernels, which are given by

H̃ab(µB) = H̄ab(µB)
[
1 + αs

2πc1,0 +
(
αs

2π

)2
c2,0 +O(α3

s)
]
, (3.41)

C̃ij(x, µB) = C̄ij(x, µB)

−
(
αs

2π

)2 [
−c′′0,0

(
P̂ (0) ⊗ P̂ (0))

ij
(x) +

(
c′1,0 + 2c′′0,0πβ0

)
P̂

(0)
ij (x)

]
+O(α3

s) . (3.42)

In the original MiNNLOPS-pT implementation, the remaining terms appearing in the
equivalent of eq. (3.32) were absored into a redefinition of the Sudakov form factor (specifically,
by redefining the B coefficients). In our default implementation of MiNNLOPS-T0 we do
not perform such a redefinition.

Finally, we note that for the practical implementation it is convenient to combine the
two integrals in eq. (3.20) into a single integral,

S(T0) = 2
∫ ln

√
Q/T0

0
dℓ
{
2A[αs(Qe−ℓ)]ℓ+ 2A[αs(T0e

ℓ)]ℓ

+BH [αs(Qe−ℓ)]−BS [αs(T0e
ℓ)]
}
. (3.43)
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For completeness, we also quote the expansion of the Sudakov,

S(T0) =
αs(µB)
2π

[
4A(1)L2

T + 2LT
(
B

(1)
H −B

(1)
S

)]
+
[
αs(µB)
2π

]2 [
4L2

T

(
A(2) − πβ0(B(1)

H +B
(1)
S )

)
+ 2LT

(
B

(2)
H −B

(2)
S

)]
+
[
αs(µB)
2π

]3 [2
3(4πβ0)2[A(1)L4

T + L3
T
(
B

(1)
H −B

(1)
S

)]
+ L2

T

[
4A(3) − 8π2β1

(
B

(1)
H +B

(1)
S

)
− 8πβ0

(
B

(2)
H +B

(2)
S

)]
+ 2LT

(
B

(3)
H −B

(3)
S

)]
+O(α4

s) . (3.44)

We note that the MiNNLOPS formulation contains the same ingredients as those entering
in a NNLL′ computation, but does not need to retain its formal logarithmic accuracy in
order to guarantee that the final result is NNLO accurate.

3.3 Derivation of the MINNLOPS master formula for T0

With the resummation formula in a suitable form we are now ready to derive the MiNNLOPS-
T0 master formula. We start from the resummed cumulative cross section in eq. (3.31),

dσsing(T0)
dΦF

= L̃(T0)e−S(T0) , (3.45)

where all the ingredients have been derived in detail in the previous section. We obtain
the NNLO cross section differential in T0 and in the Born phase space ΦF by taking the
total derivative and then matching the ensuing differential cross section at small T0 with
the fixed-order cross section valid at large T0

dσ
dΦFdT0

= d
dT0

{
exp[−S(T0)] L̃(T0)

}
+Rf (T0)

= exp[−S(T0)]
{
D(T0) +

Rf (T0)
exp[−S(T0)]

}
. (3.46)

Here, Rf contains terms that are non-singular in the T0 → 0 limit, and we have defined

D(T0) ≡ −dS(T0)
dT0

L̃(T0) +
dL̃(T0)
dT0

. (3.47)

A central feature of the MiNNLOPS method is that the renormalization and factorization
scales are evaluated at the low scale, i.e. the typical scale of the resummation.5 For T0
resummation there are two relevant low scales, namely µS = T0 and µB =

√
T0Q, as discussed

above. We select µR ∼ µF ∼ µB as the common low scale at which to evaluate all terms in
eq. (3.46), especially because the PDFs are naturally evaluated at that scale. The logarithms

5Note that this is not a strict requirement of the MiNNLOPS method and other choices are possible in
general, but it has been introduced as the default setting within the MiNNLOPS approach so far.
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to be resummed are then given by either ln(Q/µB) = ln
√
Q/T0 or ln(T0/µB) = ln

√
T0/Q.

To simplify the notation in the following, we will always use

µB =
√
QT0 = Qe−LT , LT = 1

2 ln Q
T0
, (3.48)

which is the natural extension of eq. (3.33) to the T0 spectrum. In particular, we express all
derivatives w.r.t. T0 as derivatives w.r.t. LT . This induces a Jacobian in eq. (3.47),

D(T0) =
1
2T0

[
dS(T0)
dLT

L̃(T0)−
dL̃(T0)
dLT

]
, (3.49)

but simplifies the expressions for derivatives of S and L̃ evaluated below.
As in eq. (2.4) for MiNNLOPS-pT, we introduce the NLO differential cross section

for FJ production

dσ(NLO)
FJ

dΦFdT0
= αs(µB)

2π

[ dσFJ

dΦFdT0

](1)
+
(
αs(µB)
2π

)2 [ dσFJ

dΦFdT0

](2)
, (3.50)

so that we can write the finite remainder Rf at this order as

Rf = dσ(NLO)
FJ

dΦFdT0
− αs(µB)

2π [exp[−S(T0)]D(T0)](1) −
(
αs(µB)
2π

)2
[exp[−S(T0)]D(T0)](2) .

(3.51)

This allows us to rewrite eq. (3.46) as

dσ
dΦFdT0

= exp[−S(T0)]
{
αs(µB)
2π

[ dσFJ

dΦFdT0

](1)(
1+ αs(µB)

2π [S(T0)](1)
)

+
(
αs(µB)
2π

)2 [ dσFJ

dΦFdT0

](2)
+
[
D(T0)−

αs(µB)
2π [D(T0)](1)−

(
αs(µB)
2π

)2
[D(T0)](2)

]

+regular terms of O(α3
s )
}
. (3.52)

Here, D(T0) is the term from eq. (3.46) without any further expansion, while the other terms
arise from expanding Rf/e

−S using eq. (3.51).6 Using eq. (3.49), the [D(T0)](n) coefficients
are given by

[D(T0)](1) = 1
2T0

{[dS(T0)
dLT

](1)
[L̃(T0)](0) −

[dL̃(T0)
dLT

](1)}
, (3.53)

[D(T0)](2) = 1
2T0

{[dS(T0)
dLT

](2)
[L̃(T0)](0) +

[dS(T0)
dLT

](1)
[L̃(T0)](1) −

[dL̃(T0)
dLT

](2)}
.

6Note that, when deriving D(T0) all resummation ingredients need to be included to an order such that the
cumulative cross section in eq. (3.45) is accurate at relative O(α2

s), in particular that means two-loop order in
the hard, beam and the soft functions. This is necessary to ensure NNLO accuracy of the MiNNLOPS approach.
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The expansion of the derivative of the Sudakov form factor with respect to LT are given by[ dS
dLT

](1)
= 2

(
4A(1)LT +B

(1)
H −B

(1)
S

)
,[ dS

dLT

](2)
= 2

[
4A(2)LT +B

(2)
H −B

(2)
S + 8πβ0

(
A(1)L2

T −B
(1)
S LT

)]
, (3.54)

while the fixed-order terms of L̃(T0) and their derivatives follow from eq. (3.40),

[L̃(T0)](0) =
∑
a,b

d|Mab|2

dΦF
fafb , (3.55)

[L̃(T0)](1) =
∑
a,b

d|Mab|2

dΦF

{
H̃(1)fafb + (C̃(1) ⊗ f)a fb + fa (C̃(1) ⊗ f)b

}
,

[L̃(T0)](2) =
∑
a,b

d|Mab|2

dΦF

{
H̃(1)

[
(C̃(1) ⊗ f)a fb + fa (C̃(1) ⊗ f)b

]
+ H̃(2)fafb

+ (C̃(2) ⊗ f)a fb + fa (C̃(2) ⊗ f)b

+ (C̃(1) ⊗ f)a (C̃(1) ⊗ f)b − ζ2(P̂ (0) ⊗ f)a (P̂ (0) ⊗ f)b

− c′1,1LT
[
(P̂ (0) ⊗ f)a fb + fa (P̂ (0) ⊗ f)b

]}
,[

dL̃(T0)
dLT

](1)

=
∑
a,b

d|Mab|2

dΦF
(−2)

{
(P̂ (0) ⊗ f)a fb + fa (P̂ (0) ⊗ f)b

}
,

[
dL̃(T0)
dLT

](2)

=
∑
a,b

d|Mab|2

dΦF
(−2)

{
(P̂ (1) ⊗ f)a fb + fa (P̂ (1) ⊗ f)b

+
(
H̃(1) +

c′1,1
2

)[
(P̂ (0) ⊗ f

)
a
fb + fa (P̂ (0) ⊗ f)b

]
+ (P̂ (0) ⊗ f)a (C̃(1) ⊗ f)b + (C̃(1) ⊗ f)a (P̂ (0) ⊗ f)b

+ (C̃(1) ⊗ P̂ (0) ⊗ f)a fb + fa (C̃(1) ⊗ P̂ (0) ⊗ f)b

− 2πβ0
[
H̃(1)fafb + (C(1) ⊗ f)a fb + fa (C(1) ⊗ f)b

]}
.

The scale dependence is implemented as in appendix D of ref. [1], which directly generalizes
from the pT to the T0 case up to the required accuracy, as we have made sure that our
starting equation has the identical structure. We note that [D(T0)](1) does not depend on
the renormalization and factorization scale factors KR and KF, while for [D(T0)](2) one has

[D(T0)](2)(KF,KR) = [D(T0)](2) − 2β0π

[
dL̃(T0)
dT0

](1)

ln K
2
F

K2
R
. (3.56)

By construction, eq. (3.52) yields the NNLO cross section fully differential in ΦF when
integrating over T0, which can be understood as follows: Our starting equation eq. (3.46)
is computed at exactly that accuracy, provided that we take into account all relevant
contributions up to two-loop level in the computation of the cumulant in eq. (3.45). Given
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that we have not expanded D(T0) in eq. (3.52) the total derivative w.r.t. T0 in eq. (3.46), and
therefore in D(T0), is kept intact. As a result, eq. (3.52) retains NNLO accuracy in ΦF (when
integrating over T0). By contrast, if we were to truncate D(T0) beyond O(α3

s), for instance,
we would neglect large logarithmic terms proportional to Ln

T at higher orders. Depending
on their power n, these missing logarithmic terms could spoil the NNLO accuracy upon
integration over T0. In the case of MiNNLOPS-pT expanding D(pT) up to O(α3

s) would be
sufficient to retain NNLO accuracy, but in the case of T0 higher powers n of the logarithms
appear, which would require an expansion even beyond O(α3

s). This renders it crucial to
keep the full unexpanded D(T0) for MiNNLOPS-T0.

We can now apply the MiNNLOPS-T0 procedure directly at the fully differential level
in the ΦFJ phase space to the POWHEG FJ calculation, as given in eq. (2.1), by replacing
the corresponding B̄(ΦFJ) function through

B̄(ΦFJ) ≡ exp[−S(T0)]
{
αs(

√
QT0)

2π

[ dσFJ

dΦFJ

](1)
(
1 + αs(

√
QT0)

2π [S(T0)](1)
)

+
(
αs(

√
QT0)

2π

)2 [ dσFJ

dΦFJ

](2)
+D(≥3)(T0)F corr(ΦFJ)

}
. (3.57)

The factor F corr(ΦFJ) encodes a suitable function to spread the correction D(≥3)(T0), which
intrinsically depends only T0 and ΦF, on the full ΦFJ phase space, as discussed in detail
in appendix B.

3.4 Matching with the shower

So far, we presented how to reach NNLO accuracy within the MiNNLOPS method using
T0 as a resolution variable. We now discuss how to match our MiNNLOPS-T0 predictions
with a parton shower. In both MiNNLOPS-pT and MiNNLOPS-T0, the matching with the
parton shower relies on the POWHEG formalism. In particular, the non-emission probability
associated to the first and to the second emissions are encoded in the MiNNLOPS and
POWHEG Sudakov form factors, given in eq. (3.43) for MiNNLOPS-T0 (eq. (2.9) of [1] for
MiNNLOPS-pT) and eq. (2.1), respectively. In the original MiNNLOPS-pT formulation, these
Sudakov form factors are both associated to transverse-momentum like observables, and they
match the leading-logarithmic structure of a transverse-momentum ordered parton shower.
This implies that, as long as the emissions generated by the shower are ordered in transverse
momentum and vetoed according to the POWHEG procedure, the leading-logarithmic
accuracy of the shower is preserved. In this case, the corresponding Lund plane [62] is filled
without leaving any empty areas and without covering the same area twice, which would
constitute a leading-logarithmic violation. By contrast, in the MiNNLOPS-T0 approach the
MiNNLOPS Sudakov form factor is associated to a different variable, T0, whose resummation
has a different leading-logarithmic structure. Thus, the matching with a parton shower
becomes a delicate point. Filling correctly the Lund plane is now highly non trivial, since
applying the standard POWHEG formalism can lead to empty areas or regions that are
accounted for two times (thus wrongly suppressed).

To address these issues, one should modify the POWHEG mapping (for instance
extending the mapping described in ref. [63] to deal initial state) and/or rely on a truncated-
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Figure 1. Transverse-momentum distribution of the lepton pair in Drell-Yan production. Left plot:
comparison of MiNNLOPS-pT at LHE level (brown, dashed) and after parton showering (blue, solid);
right plot: comparison of MiNNLOPS-T0 at LHE level (pink, solid) and after parton showering (green,
dashed). The ratio plots show the relative effect of the parton shower.

vetoed shower [49] to properly fill the Lund plane. More concretely, this implies a substantial
modification of the POWHEG code. We note that analogue modifications would be needed to
implement a matching with NLL-accurate parton showers, which are being actively developed
at the time of writing [64–71]. Since the main goal of this paper is to define the theoretical
framework of the new MiNNLOPS formalism based on jettiness-like observables, we prefer to
postpone a detailed discussion on the matching to a future paper. We believe that studying
this problem in a separate work would be optimal, in view of the construction of an NNLO
Monte Carlo event generator consistently matched to an NLL parton shower. Therefore,
in this paper we do not implement these modifications, which means that in our matched
results the accuracy of the parton shower is not fully preserved. However, in section 4.2,
we will show more quantitatively that the numerical effect of this choice is rather small by
comparing our MiNNLOPS-T0 and MiNNLOPS-pT results after showering. This comparison
provides us with an estimate of the size of the neglected terms needed to formally preserve
the shower accuracy. Moreover, the impact of the parton shower is almost identical for
MiNNLOPS-pT and MiNNLOPS-T0. This can be observed from the two ratio panels of
figure 1 that show the showered result divided by the Les-Houches-Event (LHE) level one
for the example case of the transverse momentum distribution of the Z boson in Drell-Yan
production. We find an analogous behaviour for all distributions we considered in Higgs-boson
and Drell-Yan production. In conclusion, despite the fact that the logarithmic accuracy of
the parton shower is not formally preserved in the MiNNLOPS-T0 case, its effect in the two
MiNNLOPS formulations is almost identical.

4 Validation and phenomenological results

In this section we present phenomenological results for Drell-Yan production (pp → ℓ+ℓ−)
and on-shell Higgs-boson production (pp → H) in the heavy-top limit. For our practical
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implementation we use as a starting point the MiNNLOPS-pT generators in POWHEG-
BOX-V2 developed in refs. [1, 2], which are based on the POWHEG computations of
H+jet [72] and Z+jet [73] production, and we apply the MiNNLOPS-T0 formalism discussed
in the previous section. The relevant input parameters are discussed in section 4.1. First, we
validate our MiNNLOPS-T0 predictions against the MiNNLOPS-pT ones [1, 2] in section 4.2.
Then, we present the first comparison between results from the MiNNLOPS and Geneva [4]
generators in section 4.3. Finally, we compare our predictions against high-precision data
from ATLAS [74] and CMS [75] for Drell-Yan production at 13 TeV in section 4.4.

4.1 Setup

We consider proton-proton collisions at the LHC with a center-of-mass energy of 13 TeV.
We use the Gµ scheme with cos2 θW = m2

W /m2
Z and α =

√
2Gµm

2
W sin2 θ2

W /π and we
set the electroweak (EW) inputs to their PDG [76] values: GF = 1.16639 × 10−5 GeV−2,
mW = 80.385GeV, ΓW = 2.0854GeV, mZ = 91.1876GeV, ΓZ = 2.4952GeV, mH = 125GeV.
We set the on-shell top-quark mass to mt = 173.2GeV. Our choice for the parton densities
is the NNLO set of NNPDF3.1 [77] with αs = 0.118, which is obtained via the lhapdf
interface [78]. The PDFs are read by lhapdf and evolved internally through hoppet [79] as
described in ref. [1]. The central factorization and renormalization scales are set following
the MiNNLOPS procedure, as described before. For Higgs-boson production the overall
two powers of the strong coupling are evaluated at the scale µ(0)

R = mH . We estimate the
uncertainties due to missing higher-order corrections through the usual variations of µF

and µR around their central value by a factor of two in each direction with the constraint
0.5 ≤ µR/µF ≤ 2 while keeping the minimal and maximal values of the cross section.
Resummation effects at large T0 are switched off by replacing the nominal logarithm LT with
the modified logarithm L̃T = 1/p ln(1 + (

√
Q/T )p). For our predictions, we set p = 6, to

ensure that they vanish sufficiently fast. We have checked that our final predictions depend
only mildly on the value of p used. For all predictions presented in this paper we make use of
the Pythia8 parton shower [80] and we employ a variation of the Monash tune [81] adapted
by CMS to improve the description of the Drell-Yan transverse-momentum spectrum.7

We validate our MiNNLOPS-T0 implementation for Drell-Yan and Higgs production
against reference predictions from the MiNNLOPS-pT generators developed in refs. [1, 2] using
the identical input settings. Moreover, we present a first comparison between MiNNLOPS
and Geneva predictions for Drell-Yan production. The Geneva results correspond to those
presented in ref. [4], and we refer the reader to that paper for the respective input parameters
and settings. Finally, we compare our predictions with experimental measurements by both
the ATLAS [74] and the CMS collaboration [75]. In order to provide the most realistic
comparison to experimental data, our showered predictions always include effects from
hadronization and multi-particle interactions (MPI). We do not require any lepton dressing,
as we do not include any QED showering effects.

7We thank Kenneth Long for providing us with the settings.
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pp→ H (on-shell) pp→ Z → ℓ+ℓ−

σ [pb] σ/σNNLO σ [fb] σ/σNNLO

NNLO 40.32(2)+10.7%
−10.4% 1.000 1919(1)+0.9%

−1.1% 1.000

MiNNLOPS-pT 39.33(1)+12.2%
−11.0% 0.975 1907(2)+1.1%

−1.2% 0.994

MiNNLOPS-T0 41.56(2)+9.4%
−10.1% 1.031 1925(1)+1.2%

−1.2% 1.003

Table 1. Predictions of the total inclusive cross section for Higgs-boson production and the DY
process at NNLO obtained with Matrix [82], and using the MiNNLOPS-pT and MiNNLOPS-T0
implementations. The second and fourth columns show the ratio to the NNLO cross section.

4.2 Comparison and validation against MINNLOPS-pT results

We start the presentation of the phenomenological results by comparing our MiNNLOPS-T0
predictions with MiNNLOPS-pT ones. The MiNNLOPS-pT generators have been tested
extensively against fixed-order predictions in ref. [2]. They therefore serve us as reference
predictions to validate our MiNNLOPS-T0 implementations in this section.

4.2.1 Total cross section

Table 1 compares MiNNLOPS-T0 and MiNNLOPS-pT predictions for the total inclusive cross
sections for Higgs-boson production and for Drell-Yan production (with an invariant-mass
window of 66GeV < mℓℓ < 116GeV). One should bear in mind that, despite both being
NNLO accurate, these predictions differ by terms beyond NNLO accuracy. This is the case as
they use different matching observables in their expansion and different scale settings. As a
result, those predictions should agree within the quoted perturbative uncertainties. Indeed, as
one can see, the predicted rates from MiNNLOPS-T0 and MiNNLOPS-pT are fully consistent
with each other within the uncertainties from scale variation.

4.2.2 NNLO accuracy in distributions of the colour-singlet final states

We continue by considering differential distributions of the colour-singlet final states in
Higgs-boson and Drell-Yan production. Since the results at Les Houches event (LHE) level
are similar to the showered ones for all the distributions discussed in this section, we only show
results including shower effects as well as hadronisation and multi-parton interactions (MPI).
For on-shell Higgs-boson production the only formally NNLO-accurate observable is the
rapidity of the Higgs boson, whose distribution is shown in figure 2. The predictions from the
MiNNLOPS-T0 (green, dashed) and MiNNLOPS-pT (blue, solid) generators are in complete
agreement within the given uncertainty bands. This is a numerical confirmation of the
NNLO accuracy of our new MiNNLOPS-T0 implementation for Higgs boson production.
Similarly, we present a validation of NNLO-accurate observables in the phase space of the
final-state leptons in Drell-Yan production in figure 3. In particular, the distributions in
the rapidity (yℓℓ) and invariant-mass (mℓℓ) of the lepton pair, as well as the rapidity (yℓ+)
and the transverse-momentum (pT,ℓ+) of the positively charged lepton are shown. In all
cases, we find a remarkable agreement between the MiNNLOPS-T0 and MiNNLOPS-pT
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Figure 2. Comparison of MiNNLOPS-T0 (green, dashed) and MiNNLOPS-pT (blue, solid) predictions
for the rapidity distribution of the Higgs boson.

results, especially considering the very small scale uncertainties of this process, which are
of order ∼ 1%. Only for pT,ℓ+ ≳ mZ/2 the uncertainty bands increase to 5–10% and the
two predictions differ by about 5% from each other (i.e. again within those uncertainties).
This behaviour is well understood and can be traced back to a phase-space effect [83], which
requires the two (back-to-back) leptons at LO to share the available energy of mℓℓ ∼ mZ

among them, effectively restricting their transverse momentum spectra to pT,ℓ ≲ mZ/2. As
a result, the pT,ℓ+ distribution, even in an NNLO calculation, becomes formally only NLO
accurate above the mZ/2 threshold, which explains both the increased uncertainty band and
the larger differences between the MiNNLOPS-T0 and MiNNLOPS-pT predictions.

4.2.3 NLO accuracy in exclusive distributions in the one-jet phase space

We finish the validation of our MiNNLOPS-T0 implementation by considering distributions
that require the presence of at least one jet in the final state. Such distributions, by
construction, are only NLO accurate, and accordingly MiNNLOPS predictions have the
same formal accuracy as MiNLO′ ones. However, since the kinematical origin of the NNLO
corrections added through the MiNNLOPS procedure corresponds to that of the Born phase
space without any extra jets, building a consistent NNLO+PS generator requires some
form of spreading of these distributions in one-jet phase space. Indeed, such spreading is
implemented in the MiNNLOPS method for both the pT and the T0 matching, see F corr(ΦFJ)
in eq. (2.9) and eq. (3.57), respectively. It is obvious that such spreading for MiNNLOPS-pT

and MiNNLOPS-T0 may have different effects in the one-jet phase space. Nevertheless, the
predictions are expected to be in reasonable agreement with each other and with the MiNLO′
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Figure 3. Comparison of MiNNLOPS-T0 (green, dashed) and MiNNLOPS-pT (blue, solid) predictions
for differential distributions in the phase-space of the leptons in Drell-Yan production.

ones within the respective scale uncertainties. While such validation has been performed (for
various processes) for the MiNNLOPS-pT implementation by comparing to MiNLO′ results,
here we need to perform such validation also for our new MiNNLOPS-T0 implementation.

To this end, we compare MiNNLOPS-T0 predictions to MiNNLOPS-pT ones for distribu-
tions in the one-jet phase space in figure 4 for both Higgs-boson production and Drell-Yan
production. In both cases, we also show predictions at NNLO accuracy obtained using
Matrix. In particular, we show the distribution in the transverse momentum (pT,j1) and
rapidity (yj1) of the leading jet. The results for Higgs and Drell-Yan production turn out to
be rather different. While for Drell-Yan, by and large, MiNNLOPS-T0 and MiNNLOPS-pT

are consistent with each other within uncertainties, with acceptable (and not unexpected)
differences in terms of shape, for Higgs-boson production we observe much larger differences
between the two predictions. These different behaviours can be qualitatively explained by the
fact that relative size of the cross-section which is spread in the one-jet phase space is much
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Figure 4. Comparison of MiNNLOPS-T0 (green, dashed) and MiNNLOPS-pT (blue, solid) predictions
for differential distributions involving the hardest jet for Higgs (left) and Drell-Yan (right) production.
For reference, we also include predictions at NNLO accuracy obtained with Matrix (red, dot-dashed).

larger in the Higgs case, thus enhancing the differences between the two formulations. In par-
ticular, we observe that the MiNNLOPS-T0 prediction is about 20% larger at pT,j1 > 70GeV
and at central rapidities of the leading jet. Those differences are not fully covered by the
scale uncertainty bands, which are at the 10% level, and they are already present at the
LHE level, i.e. before shower effects are included. We found that modifying the spreading
function of the inclusive NNLO correction for MiNNLOPS-T0 in the one-jet phase space can
have an impact on those distributions in the case of Higgs-boson production. However, while
variations of the spreading function partially mitigate the differences with MiNNLOPS-pT,
they do not eliminate them completely. For reference, we also show predictions obtained
with Matrix both in Drell-Yan and in Higgs production. In the case of pT,j1 we see that
MiNNLOPS-pT results approach the NLO-accurate predictions earlier than the corresponding
MiNNLOPS-T0 result, although by pT,j1 ≳ 150GeV the three results are in broad agreement
within their respective uncertainties. In the case of the jet rapidity we observe a qualitatively
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better agreement between the shape of the Matrix predictions and those of MiNNLOPS-pT,
especially in the Higgs case. In the Drell-Yan case the MATRIX result is about 10% lower
than both the MiNNLOPS-pT and the MiNNLOPS-T0 ones at central rapidity. At larger jet
rapidities the Matrix prediction gets progressively close to the MiNNLOPS-pT one, while
maintaining an O(10%) difference with respect to the MiNNLOPS-T0 result.

We would like to stress that as far as NNLO accuracy is concerned, the MiNNLOPS-T0
implementation provides correct results also for Higgs-boson production. However, since our
aim is a full fledged NNLO+PS Monte-Carlo generator, the issues observed in jet-related
quantities of the MiNNLOPS-T0 matching pose a certain level of concern for Higgs-boson
production. Nevertheless, we reckon that the new results for Drell-Yan production are very
encouraging and make a MiNNLOPS implementation based on jettiness worthwhile, also
in view of moving towards higher jet multiplicities. Moreover, one should bear in mind
that the present paper should be considered a first step towards NNLO+PS matching for
processes with an extra jet in the final state. Eventually, the relevant ingredients for NNLO
matching for new one-jet resolution variables will become available, which renders the present
and forthcoming studies crucial.

4.2.4 Results for the T0 distribution

Finally, in this section we compare the results obtained for the T0 distribution between
MiNNLOPS-T0 and MiNNLOPS-pT . The results are shown in figure 5 at NNLO+PS level.
We stress that despite the MiNNLOPS-T0 results are obtained starting from a NNLO+PS
formulation which contains the ingredients entering a NNLL′ resummation for T0 they
do not retain any formal accuracy, even before showering the results. We recall that at
NNLO+PS level our predictions always include effects from hadronization and multi-particle
interactions (MPI), which are particularly large for N -jettiness observables, see [59]. In
particular, the inclusion of MPI distorts significantly the shape of the distribution with
respect to the results at parton level, broadening it and shifting the peak of the distribution
towards higher values of T0. We observe an overall reasonable agreement between the results
of MiNNLOPS-T0 and those of MiNNLOPS-pT , both for the Higgs case and for the Drell-Yan
case; in both cases, the spectrum obtained with MiNNLOPS-T0 is slightly harder, with
O(10%) (O(20%)) differences for the Drell-Yan (Higgs) case. Let us now focus on the
large T0 region, where we expect the two predictions to agree as the effect of resummation
decreases. In the Drell-Yan case, the two predictions are indeed in good agreement starting
from T0 ≳ 200GeV. In the Higgs case, the agreement between MiNNLOPS-T0 and the
MiNNLOPS-pT distributions at large T0 is delayed, with the two predictions getting closer
to each other only for T0 ≳ 300GeV. We observe very good agreement from T0 ≳ 150GeV
between the predictions when removing MPI and hadronization effects, indicating that the
behaviour in figure 5 in the Higgs case is an interplay of the different scale choices in the two
calculations (pT -based or T0-based) with MPI and hadronization effects. We finally observe
that the MiNNLOPS-pT scale uncertainty band is rather symmetric in the whole range,
while the MiNNLOPS-T0 one presents some degree of shrinking and is more asymmetric,
especially in the Higgs case.
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Figure 5. Comparison of MiNNLOPS-T0 (green, dashed) and MiNNLOPS-pT (blue, solid) predictions
for the T0 distribution for Higgs (left) and Drell-Yan (right) production.

4.3 Comparison to GENEVA results for Drell-Yan production

We continue our study of phenomenological results by presenting a first direct comparison
between the predictions from our MiNNLOPS generators to the ones from the Geneva
generators [3, 4]. Also in the case of the Geneva method there exist two different implemen-
tations for the Drell-Yan process, one using T0 as the matching variable (the default choice for
Geneva predictions so far) [3] and one using pT as the matching variable. The Geneva-pT

implementation employs the resummed pT spectrum obtained through RadISH [84, 85]
by means of an interpolation of a grid fully differential in the degrees of freedom of the
Born phase space as well as in pT.

Figures 6 and 7 show the comparison of MiNNLOPS and Geneva predictions in the
phase space of the two final-state leptons using as matching variables T0 and pT, respectively.
Given that MiNNLOPS and Geneva treat terms beyond accuracy differently, we do not
expect a one-to-one correspondence between their results, but rather that their NNLO
predictions agree within the associated scale uncertainties. Indeed, we observe for both the
T0 and pT results that MiNNLOPS and Geneva predictions are in full agreement within
uncertainties. Note that for Born-level observables the public version of Geneva-T0 allows one
to calculate the uncertainty only with a three-scale variation as described in ref. [42], which
explains why the GENEVA-T0 uncertainties are somewhat smaller than the MiNNLOPS-T0
ones. Similarly to before, the largest relative differences appear for pT,ℓ+ > mZ/2, with a
visible shape distortion around the threshold, which is sensitive to soft-gluon effects and
therefore to the specific matching scheme. We recall that these differences as well as the
widening of the uncertainty bands for pT,ℓ+ > mZ/2 is expected, since the accuracy of the
predictions is effectively reduced to NLO.

Finally, in figure 8 we perform a comparison between the results obtained with
MiNNLOPS and Geneva for the T0 distribution. In order to not overcrowd the plots,
we show on the left panel the comparison between the two NNLO+PS computations using T0
as resolution variable and on the right plot a comparison between the two results using pT .
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Figure 6. Comparison of MiNNLOPS-T0 (green, dashed) and Geneva-T0 (purple, dot-dashed)
predictions for differential distributions in the phase-space of the leptons in Drell-Yan production.

In the left panel we also show, as reference, the result at NNLO+NNLL′ accuracy obtained
using Geneva [42]. As discussed in section 4.2.4, the inclusion of MPI has a substantial
effect on the T0 distribution, which at NNLO+PS level has a completely different shape with
respect to the parton-level NNLO+NNLL′ results. After the inclusion of MPI effects the
results of MiNNLOPS and Geneva are qualitatively in agreement, but retain important
differences both at low and at relatively large T0 values. The peak of the MiNNLOPS
distribution is shifted towards larger values of T0 with respect to the Geneva predictions.
Differences persist also at larger values of T0, which are however partially driven by the
different choice of scales in the two calculations; in particular, the Geneva predictions
used here [4] employ renormalization and factorization scales sensitive to the transverse
momentum of the radiation, which are responsible for lowering the tail of the distribution.
We finally note that the shape of the T0 distribution after the matching with the shower
is largely driven by the tune used in the parton shower, which is not the same in the two
calculations. We have checked that by using the same settings as in the Geneva predictions
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Figure 7. Comparison of MiNNLOPS-pT (blue, solid) and Geneva-pT (red, dotted) predictions for
differential distributions in the phase-space of the leptons in Drell-Yan production.

the peak of the MiNNLOPS one shifts towards smaller values of T0, improving significantly
the agreement of the two predictions.

4.4 Comparison against ATLAS and CMS data for Drell-Yan production

In this section we compare our MiNNLOPS predictions for Drell-Yan production against
ATLAS and CMS data. We consider the recent ATLAS analysis presented in ref. [74], where
results for the transverse momentum of the dilepton system (pT,ℓℓ) and a variation of the
Collins-Soper angle (ϕ∗) are shown. The angle ϕ∗ is defined as

ϕ∗ = tan
(
π −∆ϕ

2

)
sin (θ∗) , cos (θ∗) = tanh

(∆η
2

)
, (4.1)

where ∆η and ∆ϕ are the differences in pseudorapidity and azimuthal angle between the
two leptons. As for the CMS data, we consider the analysis presented in ref. [75] where,
besides results for pT,ℓℓ and ϕ∗, also the rapidity distribution of the dilepton system (yℓℓ) is
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Figure 8. Comparison between MiNNLOPS and Geneva predictions for the T0 distribution. Left
panel: comparison of MiNNLOPS-T0 (green, dashed) and Geneva-T0 (purple, dot-dashed), as well as
a parton-level NNLO+NNLL′ curve. Right panel: Comparison between MiNNLOPS-pT (blue, solid)
and Geneva-pT (red, dotted) predictions.

ATLAS [74] CMS [75]
pT,ℓ > 27GeV pT,ℓ > 25GeV
|ηℓ| < 2.5 |ηℓ| < 2.4

66 GeV < mℓℓ < 116 GeV |mℓℓ −mZ |GeV < 15GeV

Table 2. Fiducial cuts used in the ATLAS and CMS analyses.

shown. The two analyses use similar fiducial cuts, which are reported in table 2. In figure 9
we present a comparison between MiNNLOPS-pT (blue, solid) and MiNNLOPS-T0 (green,
dashed) predictions with ATLAS data. As for the transverse momentum of the dilepton
system, our MiNNLOPS predictions are in good agreement with data throughout the entire
spectrum. For very small values of pT,ℓℓ (pT,ℓℓ < 10GeV), we observe a slight difference in
shape between the MiNNLOPS curves and data, which is however not unexpected as this
region is sensitive to soft-collinear radiation and requires an accurate resummation of large
logarithmic terms. At large pT,ℓℓ values, both generators are NLO accurate only, which is
reflected in the enlarged theory uncertainty bands. In this high-pT,ℓℓ region theory predictions
tend to overestimate data but the agreement remains good, at 1–2 σ level. As for the angle
ϕ∗, we observe that both generators agree rather well with data (1–2 σ level), but data tend
to fall more sharply at large ϕ∗ values. In figure 10 we present a comparison with CMS data.
In this comparison we observe the same relative behaviour as with ATLAS data for both
pT,ℓℓ and ϕ∗, so the same conclusions hold. Moreover, we present results for the rapidity
distribution of the reconstructed Z boson yℓℓ, for which we observe an excellent description of
the data with both MiNNLOPS-pT and MiNNLOPS-T0, with a discrepancy of a few percent
only, relatively flat across the whole rapidity range.
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Figure 9. Comparison of MiNNLOPS-pT (blue, solid) and MiNNLOPS-T0 (green, dashed) against
ATLAS data from ref. [74] for the transverse momentum of the lepton pair (left) and the Collins-Soper
angle ϕ∗ (right), as defined in the main text.
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(bottom plot).
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5 Conclusions

We have presented the derivation of the MiNNLOPS formalism using jettiness as resummation
variable. This calculation opens the door to consider NNLO+PS matching for processes
with additional jets in the final state. As a proof-of-concept we have performed a complete
implementation of the MiNNLOPS approach using the 0-jettiness variable for colour-singlet
production. Specifically, we have considered Higgs-boson production and Drell-Yan production
as a first implementation.

We have validated our MiNNLOPS-T0 implementation against the existing MiNNLOPS-
pT generators, finding excellent agreement among their predictions within uncertainties for
NNLO-accurate observables, including the total inclusive cross section and differential distri-
butions, both for Higgs-boson and Drell-Yan production. On the other hand, for jet-related
quantities in Higgs-boson production we observe larger differences between MiNNLOPS-T0
and MiNNLOPS-pT predictions. Those are present both at Les-Houches-Event level and after
the inclusion of parton shower effects, but their relative difference remains almost identical
before and after showering. The corresponding jet-related results for the Drell-Yan process
are in good agreement between the MiNNLOPS-T0 and MiNNLOPS-pT implementations.

We then continued by presenting the first direct comparison of MiNNLOPS predictions
with existing results from the Geneva generators for Drell-Yan production. For this process
both MiNNLOPS and Geneva implementations exist using T0 and pT as a matching variable.
We have shown that for NNLO-accurate quantities MiNNLOPS and Geneva results are in
excellent agreement within the respective higher-order uncertainties, which is not unexpected
given that both approaches yield NNLO accurate predictions.

Finally, we have compared MiNNLOPS-T0 and MiNNLOPS-pT predictions to Drell-Yan
data recorded by the ATLAS and by the CMS collaboration. By and large, we have found
MiNNLOPS predictions to be in remarkable agreement with the experimental data, with
differences mostly within one standard deviation.

This work is a first important step towards NNLO+PS matching for processes with
massless partons in the final state, such as Higgs plus jet and vector boson plus jet production,
which has not been achieved for any such process to date. The implementation of the
MiNNLOPS approach based on T0 has been fully worked out, implemented and validated.
We have also fully worked out all necessary formulae to obtain NNLO+PS accurate predictions
for colour singlet plus jet production using T1 as a resummation variable. All equations
are reported in appendix C. The complete implementation for T1 and application to a
corresponding process, such as Higgs plus jet or Drell-Yan plus jet production, is left to
future work.

Acknowledgments

We would like to thank Simone Alioli, Pier Francesco Monni and Paolo Nason for fruitful
discussions, and we are grateful to Simone Alioli for comments on the manuscript. We also
thank Kenneth Long for providing us details on the Pythia tune used for the MiNNLOPS
predictions by CMS and for useful discussion on the experimental analysis. L.R. has been
supported by the SNSF under contract PZ00P2 201878. S.Z. has been supported by the

– 29 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
5

International Max Planck Research School (IMPRS) on “Elementary Particle Physics”. The
research of S.Z. has also been supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agreement No.
788223, PanScales, and grant agreement No. 804394, HipQCD) and by the Science and
Technology Facilities Council (STFC) under grant ST/T000864/1.

A Explicit formulae for MINNLOPS-T0

In this appendix, we collect explicit formulae of relevant perturbative ingredients we used
or obtained in the main sections of this paper.

Notation. The QCD β function is expanded in terms of the strong coupling αs as

β[αs(µ)] =
dαs(µ)
d lnµ2 = −αs(µ)

∞∑
n=0

βn [αs(µ)]n+1 , (A.1)

where the coefficients βn are given by [86, 87]

β0 = 11CA − 2nf

12π ,

β1 = 17C2
A − (5CA + 3CF )nf

24π2 ,

β2 =
2857C3

A + (54C2
F − 615CACF − 1415C2

A)nf + (66CF + 79CA)n2
f

3456π3 . (A.2)

The DGLAP evolution kernels are defined by
∂fi(x, µ)
∂ lnµ2 =

∑
j

∫ 1

x

dx′

x′
P̂ij [x′, αs(µ)]fj

(
x

x′
, µ

)
, (A.3)

with the expansion of the splitting function given in eq. (3.37). We refer to ref. [1] for explicit
expressions for the coefficients P̂ (n)(x).

Given a generic function F depending on the renormalization scale µ through the running
coupling αs, we define its perturbative expansion in terms of αs/(2π) as:

F (. . . , µ) =
∞∑

n=0
F (n)(. . . )

[
αs(µ)
2π

]n

. (A.4)

We note that this convention differs from the standard one used in the SCET literature. For
a collection of all required ingredients in the standard SCET notation, see e.g. ref. [88].

T0 Sudakov form factor. The MiNNLOPS-T0 Sudakov form factor presented in (3.20)
depends on the A and B coefficients defined as in (3.21)

A(αs) = ΓC(αs) , BF (αs) =
1
2γF (αs)− β(αs)

d ln F̄ (αs)
dαs

, (A.5)

where F̄ can either be related to the hard or the soft functions. These coefficients admit
the following perturbative expansion:

A(αs) =
∞∑

n=1
A(n)

(
αs

2π

)n

, BF (αs) =
∞∑

n=1
B

(n)
F

(
αs

2π

)n

. (A.6)
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The A coefficient is identical to the cusp anomalous dimension. Up to three loops, its
coefficients obey Casimir scaling, i.e. Γ(n)

C ∝ C, where C is the Casimir of the given repre-
sentation, for any given perturbative order n. Up to the third order, the coefficients A(n)

are given by [89–91]

A(1) ≡ Γ(1)
C = 2C ,

A(2) ≡ Γ(2)
C = C

[
CA

(67
9 − 2ζ2

)
− 10

9 nf

]
,

A(3) ≡ Γ(3)
C = C

[
C2

A

(245
12 − 268

18 ζ2 +
22
6 ζ3 + 11ζ4

)
+ CAnf

(
−209

54 + 20
9 ζ2 −

14
3 ζ3

)
+ CFnf

(
−55
12 + 4ζ3

)
− 2

27n
2
f

]
, (A.7)

where C = CF for quark-induced processes and C = CA for gluon-induced processes. Note
that A(1) and A(2) agree with the corresponding expressions for pT resummation given in
ref. [1], while the expression of A(3) differs from the one for pT resummation, as given in ref. [1].

The B coefficient for the hard function reads

BH(αs) = 2γH(αs)− β(αs)
d ln H̄ab(αs)

dαs
, (A.8)

where H̄ab is the hard function and γH is the hard anomalous dimension, with γH = γq
H(γg

H)
for quarks (gluons). To the required order, they read [92–96]

2γq(1)
H = −3CF , (A.9)

2γq(2)
H = CF

[
CF

(
6ζ2 − 12ζ3 −

3
4

)
+ CA

(
−11

2 ζ2 + 13ζ3 −
961
108

)
+ nf

(
ζ2 +

65
54

)]
,

2γg(1)
H = −4πβ0 , (A.10)

2γg(2)
H = C2

A

(11
6 ζ2 + ζ3 −

346
27

)
+ CAnf

(64
27 − ζ2

3

)
+ CFnf .

The fixed-order expansion of eq. (A.8) thus reads

B
(1)
H = 2γ(1)

H ,

B
(2)
H = 2γ(2)

H + 2πβ0H
(1) , (A.11)

where H(1) refers to the one-loop coefficient of the corresponding hard function, which is
given below for Higgs-boson and Drell-Yan production.

For the T0 soft function, the B coefficient is defined as

BS(αs) =
1
2γS(αs)− β(αs)

d ln S̄(αs)
dαs

, (A.12)

where γS is the anomalous dimension of the soft function S̄. Up to second order, its expansion
coefficients obey Casimir scaling and read

γ
(1)
S = 0 , (A.13)

γ
(2)
S = C

[
CA

(11
3 ζ2 + 14ζ3 −

404
27

)
+ nf

(56
27 − 2

3ζ2

)]
.
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The fixed-order expansion of eq. (A.12) reads

B
(1)
S = 0 ,

B
(2)
S = C

[
CA

(
7ζ3 −

16
9

)
− 2πβ0

(
2ζ2 +

28
9

)]
. (A.14)

Here, we used the one-loop result for S given in eq. (A.20).
We now present explicit expressions for the hard, beam and soft functions.

T0 hard function. The hard function is defined in eq. (3.13) as

H̄ab(Q,µ = Q) = 1 + αs(Q)
2π H

(1)
ab +

[
αs(Q)
2π

]2
H

(2)
ab +O(α3

s) . (A.15)

The coefficients H(1) and H(2) for Higgs and Drell-Yan production are identical to those
used in ref. [1] without including the shift ∆H(2) from momentum-space resummation. For
completeness, we repeat them here.

The hard function for Higgs production in the mt → ∞ limit is obtained by combining
the IR-finite gluon form factor, which is known up to three loops [97–102], with the Wilson
coefficient from integrating out the top quark, which itself is known up to four loops [103–105].
Here, we only need the results up to two loops, which are given by

H(1)
gg = CA

(
5 + 7

6π
2
)
− 3CF ,

H(2)
gg =

(7
2C

2
A − 11

2 CACF + 2CFnf

)
log m

2
H

m2
t

+ C2
A

(
755π2

72 − 143ζ3
18 + 37π4

72 + 23827
648

)

+ CA

[
CF

(
−145

6 − 7
2π

2
)
+ nf

(
−23

9 ζ3 −
25
36π

2 − 2255
324

)
− 5

24

]
+ CF

[
9CF + nf

(
4ζ3 −

41
6

)
− 1

3

]
. (A.16)

For Drell-Yan, the hard function is obtained from the IR-finite quark vector form factor which
is known up to three loops [98–102, 106–109]. Starting at O(α2

s) there are also nonvanishing
singlet contributions from the axial anomaly, which are known to have a small effect on the
cross section [110, 111] and are thus neglected here. (For a detailed discussion of its inclusion
in the hard function, see e.g. ref. [112].) The hard function coefficients are

H
(1)
qq̄ = CF

(7
6π

2 − 8
)
,

H
(2)
qq̄ = C2

F

(
−83
12π

2 − 15ζ3 +
67
120π

4 + 511
16

)
+ CACF

(1061
216 π

2 + 313
18 ζ3 −

2
45π

4 − 51157
1296

)
+ CFnf

(
− 91
108π

2 + ζ3
9 + 4085

648

)
. (A.17)

Setting Nc = 3 and nf = 5, eqs. (A.16) and (A.17) reproduce eqs. (B.10) and (B.12) in ref. [1].
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T0 beam functions. The beam functions for leptonic T0 are defined in eqs. (3.16) and (3.17)
as

Bi

(
y

Q
, x, µB

)
=
∑

j

∫ 1

x

dx′

x′
Cij

(
y

Q
, x′, µB

)
fj

(
x

x′
, µB

)
,

C̄ij(x, µB) ≡ Cij

(
y

Q
, x, µB

)
= δijδ(1− z) +

∞∑
n=1

[
αs(µB)
2π

]n

C(n)
ij (z) , (A.18)

where µB =
√
Qy0/y is fixed to minimize all logarithms in Fourier space. At two loops, the

beam functions have been calculated in refs. [39, 40, 95] in momentum space. To obtain the
functions C̄ij , one has to first perform the Fourier transform as defined in eq. (3.7), and then
choose µB =

√
Qy0/y to eliminate explicit logarithms. Alternatively, one can obtain them

directly from the results provided in ref. [113] in Fourier space upon setting the logarithm
Ly = 0 in there.8 It is then trivial to combine the results for C̄ij with the soft function given
below to obtain the coefficients C̄ij as defined in eq. (3.18). Since the C̄ij are rather lengthy
and provided as Mathematica files with ref. [113], we do not provide explicit expressions here.

T0 soft function. The soft function is defined in eq. (3.13) as

S̄(y0/y) = 1 + αs(y0/y)
2π S(1) +

[
αs(y0/y)

2π

]2
S(2) +O(α3

s) . (A.19)

The two loop results have been calculated in momentum space in refs. [114–117]. Taking
cross terms induced by the Fourier transform into account, we obtain

S(1) = −π
2

2 C , (A.20)

S(2) = C

[
CA

(
−π

2

9 + 7
30π

4 − 160
27

)
+ 4πβ0

(
−77
72π

2 + 13
6 ζ3 −

5
27

)]
+ π4

8 C
2 ,

where C = CF for quark annihilation and C = CA for gluon fusion.

B Phase space parametrisation for the D(≥3)[T0] term

In this appendix we discuss the parametrisation of the factor F corr(ΦFJ) in eq. (3.57). The
starting point is the POWHEG projection of the FJ phase space ΦFJ onto the F phase
space ΦF for initial state radiation. The ΦFJ phase space can be expressed in the following
factorised form (see 5.1.1 of [50] for additional details)

dΦFJ = dΦFdΦrad, dΦrad = s

(4π)3
ξ

1− ξ
dξdϕdy (B.1)

where s is the square of the total incoming energy and we have introduced the variables

ξ = 2k0
√
s
, y = cos θ , k2

T = s

4ξ
2(1− y2) , (B.2)

8Note that the results in ref. [113] are expanded in αs/π instead of αs/(2π).
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where k0, θ and ϕ are the energy, the scattering angle and the azimuth of the radiated parton,
respectively, defined in the centre-of-mass frame of the FJ system.

For a single real emission the definition of T0 in eq. (3.1) yields

T0 = kT e
−|Y −ηk| , (B.3)

where ηk is the rapidity of the emission in the laboratory frame. Using the relation

ηk = 1
2 ln x1(1 + y)

x2(1− y) , (B.4)

we obtain

T0 = kT e
−|∆Y (y)| , ∆Y (y) = 1

2 ln x1(1 + y)
x2(1− y) − Y , (B.5)

in terms of the momentum fractions of the two initial-state partons in the ΦFJ phase space
x1,2 and the rapidity of the colour-singlet system Y . In eq. (B.5), it is important to note that
kT and x1,2 themselves depend on ξ and y. Making all of this dependence manifest, we obtain

T0 = Qξ

2

√
1− y2

√
1− ξ

e−|∆Y (x̄1,2,ξ,y)| ,

∆Y (x̄1,2, ξ, y) =
1
2 ln 1 + y

1− y

x̄1
x̄2

2− ξ(1− y)
2− ξ(1 + y) − Y , (B.6)

where the barred momentum fractions are [50]

x̄1 = x1
√
1− ξ

√
2− ξ(1 + y)
2− ξ(1− y) , x̄2 = x2

√
1− ξ

√
2− ξ(1− y)
2− ξ(1 + y) , (B.7)

and Q is the invariant mass of the colour-singlet system.

B.1 Evaluation of F corr
ℓ

The factor F corr(ΦFJ) is defined as

F corr
ℓ (ΦFJ) =

Jℓ(ΦFJ)∑
ℓ′
∫
dΦ′

radJℓ′(Φ̄′
FJ)δ(T0 − T ′

0 )
, (B.8)

where Φ̄′
FJ ≡ Φ′

FJ|Φ̄′
F=ΦF

, whereas Jℓ(ΦFJ) is an arbitrary function of ΦFJ. In our implemen-
tation we use the expressions (A.13) and (A.14) of ref. [1].

Using eq. (B.5), we then obtain

Jℓ(ΦFJ)
F corr

ℓ (ΦFJ)
=
∑
ℓ′

∫
dξdϕdy s

(4π)3
ξ

1− ξ
Jℓ′(Φ̄′

FJ)δ
(
T0 −

ξ
√
s

2

√
1− y2

e|∆Y (y)|

)
, (B.9)

which is the straightforward extension of eq. (A.6) in [1] for T0. After re-arranging the δ
function and using eq. (B.6) we have

Jℓ(ΦFJ)
F corr

ℓ (ΦFJ)
= T0

(2π)2

∑
ℓ′

∫
dξdyJℓ′(Φ̄′

FJ)
ξ

(1− ξ)2 δ

(
4T 2

0
Q2 − ξ2

1− ξ

1− y2

e2|∆Y (x̄1,2,ξ,y)|

)
. (B.10)
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In order to solve the δ, we change the integration variables from (ξ, y) to (kT , ηk) using
the relations

kT = Q

2 ξ
√
1− y2

√
1− ξ

, ηk = 1
2 ln

[
x̄1
x̄2

1 + y

1− y

2− ξ(1− y)
2− ξ(1 + y)

]
. (B.11)

The Jacobian of this variable transformation is given by

dξdy = 2(1− ξ)2

Q2ξ
dk2

Tdηk . (B.12)

In terms of these variables, the FKS radiation phase space reads

dΦrad = s

(4π)3
ξ

1− ξ
dξdϕdy = 2

(4π)3dk
2
Tdηkdϕ . (B.13)

Applying this together with eq. (B.3) to eq. (B.8), we obtain

Jℓ(ΦFJ)
F corr

ℓ (ΦFJ)
=
∑
ℓ′

∫
dΦ′

radJℓ′(Φ̄′
FJ)δ

(
T0 − kT e

−|Y −ηk|)
=
∑
ℓ′

∫ dk2
Tdηk

(4π)2 Jℓ′(Φ̄′
FJ)δ

(
T0 − kT e

−|Y −ηk|)
=
∑
ℓ′

T0
8π2

∫
dηk Jℓ′(Φ̄′

FJ)e2|Y −ηk| . (B.14)

In order to evaluate Jℓ′ we now need to find the kinematic bounds of ηk, and express y
and ξ as a function of kT and ηk. To see that the inverse of eq. (B.11) is unique, consider that

dηk

dy = 4− 2ξ(1 + y2)
4(1− y2)(1− ξ) + (1− y2)2ξ2 > 0 , (B.15)

where the inequality follows since −1 ≤ y ≤ 1 and 0 ≤ ξ ≤ 1. It is useful to introduce
the parameters

κ = x̄2
x̄1
e2ηk = e2(ηk−Y ) , β = 2 + 1 + κ√

κ

√
1 + Q2

k2
T

, (B.16)

through which we can express ξ and y as

ξ = 1− 1

1 + β
k2

T
Q2

, y = κ− 1
κ+ 1

(
1− 2

β

)
. (B.17)

Note that κ ≥ 0 and β ≥ 2, and hence eq. (B.17) always obeys the obvious bounds 0 < ξ < 1
and −1 < y < 1. In order to identify the kinematic bounds on kT , ηk we insert eq. (B.17)
into eq. (B.7),

x1,2 = x̄1,2
(√

1 + ϵ2 + ϵκ±1/2
)

= x̄1,2
(√

1 + ϵ2 + ϵ e±(ηk−Y )
)
, (B.18)
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where ϵ = kT /Q. Eq. (B.18) clearly implies x1,2 ≥ x̄1,2, so we only need to solve for the
constraints x1,2 ≤ 1. Since x1,2 are monotonically growing with ϵ, we easily find

ϵ = kT

Q
≤ ϵmax , ϵmax = min


√
1− (1− κ)x̄2

1 −
√
κ

x̄1(1− κ) , (x̄1 → x̄2, κ→ κ−1)

 . (B.19)

Inserting this constraint into eq. (B.14), we obtain

Jℓ(ΦFJ)
F corr

ℓ (ΦFJ)
=
∑
ℓ′

T0
8π2

∫
dηk Jℓ′(Φ̄′

FJ)e2|Y −ηk|Θ
(

Qϵmax
T0e|Y −ηk|

− 1
)
. (B.20)

B.2 Analytic solution of the phase-space constraints

We can finally derive an analytic solution to this phase space bound. Defining

τ0 = T0
Q

= kT

Q
e−|ηk−Y | , (B.21)

the phase space bound from eq. (B.18) can be written as

x1 = x̄1

(
τ0e

|ηk−Y | e+(ηk−Y ) +
√
1 + τ2

0 e
2|ηk−Y |

)
≤ 1 ,

x2 = x̄2

(
τ0e

|ηk−Y | e−(ηk−Y ) +
√
1 + τ2

0 e
2|ηk−Y |

)
≤ 1 . (B.22)

By using Y = 1
2 ln(x̄1/x̄2), we can write x̄1,2 =

√
x̄1x̄2e

±Y . Thus, we obtain the symmet-
rical result

τ0e
|ηk−Y | e±(ηk−Y ) +

√
1 + τ2

0 e
2|ηk−Y | ≤ e∓Y

√
x̄1x̄2

. (B.23)

Defining s ≡ sgn(ηk − Y ), the two cases s = ±1 can be combined as

τ0e
2|ηk−Y | +

√
1 + τ2

0 e
2|ηk−Y | ≤ e−sY

√
x̄1x̄2

≡ c(+s) ,

τ0 +
√
1 + τ2

0 e
2|ηk−Y | ≤ esY

√
x̄1x̄2

≡ c(−s) . (B.24)

For brevity, we defined c(s) =
(√
x̄1x̄2e

sY
)−1 such that

c(+1) =
(√

x̄1x̄2e
Y
)−1

= 1
x̄1
, c(−1) =

(√
x̄1x̄2e

−Y
)−1

= 1
x̄2
. (B.25)

Since the constraints in eq. (B.24) are monotonically increasing with |ηk − Y |, we can solve
them fairly easily. We obtain

|ηk − Y | ≤ ∆Ymax[sgn(ηk − Y )] , (B.26)

∆Ymax(s) = min

1
2 ln

τ0 + 2c(s)−
√
τ2

0 + 4c(s)τ0 + 4
2τ0

,
1
2 ln [τ0 − c(−s)]2 − 1

τ2
0

 .
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For this bound to be positive, we have to impose that

c(s) ≥ 1 ∧ |τ0 − c(−s)| > 1 , (B.27)

where the first constraint is always fulfilled since c(±1) = 1
x̄1,2

≥ 1. To construct the final
solution, consider both cases separately:

ηk > Y : ηk − Y ≤ +∆Ymax(+1) ⇔ ηk ≤ Y +∆Ymax(+1) ,
ηk < Y : ηk − Y ≥ −∆Ymax(−1) ⇔ ηk ≥ Y −∆Ymax(−1) . (B.28)

In summary, we obtain that

ηmin ≤ ηk ≤ ηmax , (B.29)

with

ηmin = Y −∆Ymax(−1) , ηmax = Y +∆Ymax(+1) . (B.30)

To ensure that the solution is physical, we have to require that∣∣∣∣∣τ0 −
1
x̄1,2

∣∣∣∣∣ > 1 ∧ ηmin ≤ ηmax . (B.31)

For the actual numerical implementation we perform the variable transform

t = tanh(ηk − Y ) , (B.32)

which maps ηk ∈ (−∞,∞) into the finite range t ∈ (−1, 1). Taking the Jacobian into
account, we find

Jℓ(ΦFJ)
F corr

ℓ (ΦFJ)
=
∑
ℓ′

T0
8π2

∫ tmax

tmin

dt
1− t2

1 + |t|
1− |t|

Jℓ′(Φ̄′
FJ)

=
∑
ℓ′

T0
8π2

∫ tmax

tmin

dt
(1− |t|)2 Jℓ′(Φ̄′

FJ) , (B.33)

and the integration bounds are given by

tmin = tanh[−∆Ymax(−1)] = Tmin − 1
Tmin + 1 ,

tmax = tanh[+∆Ymax(+1)] = Tmax − 1
Tmax + 1 , (B.34)

where ∆± ≡ ∆Ymax(±1) and

1
Tmin

= e2∆Ymax(−1)] = min

τ0 + 2x̄−1
2 −

√
τ2

0 + 4x̄−1
2 τ0 + 4

2τ0
,
[τ0 − x̄−1

1 ]2 − 1
τ2

0

 ,

Tmax = e2∆Ymax(+1)] = min

τ0 + 2x̄−1
1 −

√
τ2

0 + 4x̄−1
1 τ0 + 4

2τ0
,
[τ0 − x̄−1

2 ]2 − 1
τ2

0

 . (B.35)
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The solution is physical if and only if

Tmin > 0 ∧ Tmax > 0 ∧ Tmin ≤ Tmax , (B.36)

or equivalently

−1 < tmin < −1 ∧ −1 < tmax < −1 ∧ tmin ≤ tmax . (B.37)

Finally, note that with this change of variables

κ = e2(ηk−Y ) = 1 + t

1− t
, (B.38)

with which eq. (B.17) becomes

ξ = 1− 1
1 + βϵ2

, y = t

(
1− 2

β

)
, β = 2 + 2t

√
1 + ϵ2

1− t2
, (B.39)

with

ϵ2 = k2
T

Q2 = τ2
0 e

2|ηk−Y | = τ2
0
1 + |t|
1− |t|

. (B.40)

B.3 Application to pT

We finally note that we can obtain a simpler result than the one in appendix A of [1]
starting from the relation[

Jℓ(ΦFJ)
F corr

ℓ (ΦFJ)

]
pT

!= e−|Y −ηk|
[
Jℓ(ΦFJ)
F corr

ℓ (ΦFJ)

]
T0=pT e−|Y −ηk|

=
∑
ℓ′

pT

8π2

∫
dηk Jℓ′(Φ̄′

FJ)Θ (Qϵmax − pT ) . (B.41)

The Θ constraint is different from the one in eq. (B.14) due to the missing factor e|Y −ηk|. We
can actually solve this bound analytically. Using eq. (B.19), the constraint reads

ϵ ≤

√
1− (1− κ)x̄2

1 −
√
κ

x̄1(1− κ) ∧ ϵ ≤

√
1− (1− κ−1)x̄2

2 −
√
κ−1

x̄2(1− κ−1) . (B.42)

Where here κ = e2ηk x̄2/x̄1 and ϵ = pT /Q. Both constraints are monotonic with κ, so solving
for equality gives the bounds on ηk. The quadratic equations are solved easily and yield

ηmin = − ln 1− x̄2
√
1 + ϵ2

ϵ
√
x̄1x̄2

, ηmax = ln 1− x̄1
√
1 + ϵ2

ϵ
√
x̄1x̄2

. (B.43)

These solutions are only physical if

ϵ ≤
√
1− x̄1,2
x̄1,2

∧ ηmin < ηmax . (B.44)
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With these constraints, eq. (B.41) becomes[
Jℓ(ΦFJ)
F corr

ℓ (ΦFJ)

]
pT

=
∑
ℓ′

pT

8π2

∫ ηmax

ηmin
dηk Jℓ′(Φ̄′

FJ) . (B.45)

In practice, it is useful to restrict to perform a variable transformation in eq. (B.47) to have
a finite integration range. We choose the transform

t : (−∞,∞) → (−1, 1) , η 7→ t(η) = tanh(η) . (B.46)

Taking the Jacobian into account, eq. (B.45) becomes[
Jℓ(ΦFJ)
F corr

ℓ (ΦFJ)

]
pT

=
∑
ℓ′

pT

8π2

∫ tmax

tmin

dt
1− t2

Jℓ′(Φ̄′
FJ) , (B.47)

with the integration bounds given by

tmin = tanh ηmin = e2ηmin − 1
e2ηmin + 1 ,

tmax = tanh ηmax = e2ηmax − 1
e2ηmax + 1 . (B.48)

C MINNLOPS for colour-singlet plus jet production using 1-jettiness

Here, we briefly review 1-jettiness factorization and the associated evolution equations, and
derive the MiNNLOPS method based on T1. The steps proceed analogously to the case
of T0 that was presented in detail in section 3, to which we refer for more details on key
steps of the derivation.

C.1 Review of T1 factorization and evolution

We begin by reviewing the resummation formalism for 1-jettiness T1 [54]. We denote the
underlying 1-jet Born process and corresponding momenta as

a(qa) + b(qb) → F (q) + j(qj) , (C.1)

where a and b label the incoming partons with momenta qa and qb, respectively, j is the
parton initiating the outgoing jet with momentum qj , and F is the colour-singlet final
state of total momentum q. For an event with M ≥ 1 final-state partons, one requires an
infrared-safe projection onto the 1-jet configuration in eq. (C.1). The projection determines
a 1-jet kinematics of the form in eq. (C.1) with massless reference vectors qµ

i = Ei(1, n⃗i),9

where the incoming momenta qa,b are always aligned along the beam axes. Following ref. [55],
we define T1 as

T1 =
∑

k

min
i∈{a,b,j}

{2qi · pk

Qi

}
=
∑

k

min
{
2qa · pk

Qa
,
2qb · pk

Qb
,
2qj · pk

Qj

}
, (C.2)

9If the jet clustering yields massive jets, one can trivially construct massless reference vectors as qµ
i = Ein

µ
i

with nµ
i = (1, P⃗i/|P⃗i|), where Ei and P⃗i are the energy and momentum of the jet, respectively.
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where the sum runs over all final-state hadronic momenta pk, and qi are the Born-like reference
momenta as described above. The normalization factors Qi in eq. (C.2) allow for different
definitions of 1-jettiness. Different choices of the Qi and algorithms for determining the qi

only affect power corrections to the factorization theorem, but not its functional form. For
later convenience, we also define normalized directions and their scalar products as

q̂µ
i = qµ

i

Qi
, ŝij = 2q̂i · q̂j = 2qi · qj

QiQj
. (C.3)

Note that all qi correspond to physical momenta, and hence all qi · qj > 0.
1-jettiness obeys a factorization theorem in the limit T1 → 0 [54],

dσsing

dΦFJdT1
=
∑

κ

d|Mκ|2

dΦFJ
Hκ(ΦFJ, µ)

∫
dtadtbdtj Ba(ta, xa, µ)Bb(tb, xb, µ)Jj(tj , µ)

× Sκ

(
T1 −

∑
i

ti
Qi
, {q̂i}, µ

)
. (C.4)

Here, the sum runs over all flavour structures κ ≡ {a, b, j} contributing to the process in
eq. (C.1), and Mκ and Hκ denote the corresponding matrix element and hard function,
respectively. In eq. (C.4), Ba,b are the same beam functions appearing for T0, Jj is the jet
function, and Sκ is the T1 soft function. Note that the jet function only differs between quarks
and gluons, while the soft function is sensitive to the full flavour structure κ of the process,
as well as the Born reference momenta {q̂i} and the normalization factors Qi. Performing
the same Fourier transform as in eq. (3.7),

Bi(y, x, µ) =
∫

dt e−ityBi(t, x, µ) ,

Jj(y, µ) =
∫

dt e−ityJj(t, µ) ,

Sκ(y, {q̂i}, µ) =
∫

dT e−iT ySκ(T , {q̂i}, µ) , (C.5)

eq. (C.4) can be written as

dσsing

dΦFJdT1
=
∑

κ

d|Mκ|2

dΦFJ
Hκ(ΦFJ, µ)

∫ dy
2πe

iyT1 Ba

(
y

Qa
, xa, µ

)
Bb

(
y

Qb
, xb, µ

)
Jj

(
y

Qj
, µ

)
× Sκ(y, {q̂i}, µ) . (C.6)

In Fourier space, the RGEs of the hard, beam, jet and soft functions are given by

d
d lnµ lnHκ(ΦFJ, µ) = γκ

H({qi}, µ) ,
d

d lnµSκ(y, {q̂i}, µ) = γκ
S(y, {q̂i}, µ) ,

d
d lnµ lnBi

(
y

Qi
, x, µ

)
= γi

B

(
y

Qi
, µ

)
,

d
d lnµ ln Jj

(
y

Qj
, µ

)
= γj

J

(
y

Qj
, µ

)
. (C.7)
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In eq. (C.7) we have made explicit the flavour index i, j for initial and final state legs for
clarity. We write the anomalous dimensions as [118]

γκ
H({qi}, µ) = (nqCF + ngCA)Γ̂C [αs(µ)] ln

Q2

µ2 + γκ
H [{qi}, αs(µ)] ,

γi
B

(
y

Qi
, µ

)
= 2Γi

C[αs(µ)] ln
yµ2

Qy0
+ γi

B[Qi, αs(µ)]

= γi
J

(
y

Qi
, µ

)
,

γκ
S(y, {q̂i}, µ) = −2(nqCF + ngCA)Γ̂C [αs(µ)] ln

yµ

y0
+ γκ

S [{q̂i}, αs(µ)] . (C.8)

Here, as before y0 = −ie−γE , nq and ng denote the number of quarks and gluons for the
flavour structure of κ, respectively, and Γ̂C is the colour-stripped cusp anomalous dimension.
The noncusp anomalous dimensions read

γκ
H({qi}, αs) = −Γ̂C(αs)

∑
i ̸=k

(Ti · Tk) ln
2qi · qk

Q2 + γκ
H(αs) ,

γi
B(Qi, αs) = Γi

C[αs(µ)] ln
Q2

Q2
i

+ γi
B(αs) ,

γκ
S({q̂i}, αs) = Γ̂C [αs(µ)]

∑
i ̸=k

(Ti · Tk) ln
2qi · qk

QiQk
+ γκ

S(αs) . (C.9)

The Ti are the colour-charge operators, and the appearing products can be evaluated using

Ti · Tk = 1
2(T

2
l − T2

i − T2
k) , l ̸= i, k , (C.10)

which follows from colour conservation of the 2 → 1 process. Here, γκ
H(αs), γi

B(αs) and γκ
S(αs)

are the standard noncusp anomalous dimensions, while the logarithmic terms encode the
measure dependence. The hard and soft anomalous dimensions are reported in appendix A,
whereas the noncusp anomalous dimension of the beam function, which is identical to that
of the jet function, read, up to two loops [92–96]

γ
q (1)
B = 3CF , (C.11)

γ
q (2)
B = CF

[
CA

(
−20ζ3 +

11π2

18 + 1769
108

)
+ CF

(
12ζ3 − π2 + 3

4

)
− nf

121 + 6π2

54

]
,

γ
g (1)
B = 4πβ0 , (C.12)

γ
g (2)
B = CA

[
CA

(
−8ζ3 −

11π2

18 + 548
27

)
+ nf

27
(
3π2 − 92

)]
− CFnf .

To minimize the logarithms in eq. (C.8), we choose the same canonical resummation
scales as in eq. (3.11),

µH = Q , µa = µb = µJ =
√
Qy0
y

= √
µHµS , µS = y0

y
. (C.13)
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Furthermore, we also evolve the hard and soft functions such that they are evaluated in
terms of αs(µB). To be precise, we first define the hard, jet and soft functions at their
respective canonical scales as

H̄κ(ΦFJ, Q) ≡ Hκ(ΦFJ, µH = Q) =
∞∑

n=0

[
αs(Q)
2π

]n

H(n)
κ (ΦFJ) ,

J̄j

(
Q

Qj
, µJ

)
≡ Jj

(
y

Qj
, µ = µJ

)
=

∞∑
n=0

[
αs(µJ)
2π

]n

J
(n)
j (Q/Qj) ,

S̄κ({q̂i}, y0/y) ≡ Sκ(y, {q̂i}, µS = y0/y) =
∞∑

n=0

[
αs(y0/y)

2π

]n

S(n)
κ ({q̂i}) , (C.14)

where ΦFJ encodes the dependence on the kinematics of the Born F+jet configuration. For
clarity, we use the modified symbols H̄κ and S̄κ to distinguish these functions from the
original hard and soft functions Hκ and Sκ. Importantly, the right-hand side depends on
the scale only through the coupling, and do not contain explicit logarithmic terms.10 We
can now evolve these functions to the beam scale similar to eq. (3.14),

H̄κ(ΦFJ, Q) = H̄κ(ΦFJ, µB) exp
[∫ Q

µB

dµ′

µ′
γH̄κ

[ΦFJ, αs(µ′)]
]
,

S̄κ({q̂i}, y0/y) = S̄κ({q̂i}, µB) exp
[∫ y0/y

µB

dµ′

µ′
γS̄κ

[{q̂i}, αs(µ′)]
]
, (C.15)

where the anomalous dimensions are given by

γH̄κ
[ΦFJ, αs(µ)] =

d ln H̄κ(ΦFJ, µ)
d lnµ = −4πβ0

H
(1)
κ (ΦFJ)

H
(0)
κ (ΦFJ)

[
αs(µ)
2π

]2
+O(α3

s) ,

γS̄κ
[{q̂i}, αs(µ)] =

d ln S̄κ({q̂i}, µ)
d lnµ = −4πβ0

S
(1)
κ ({q̂i})
S

(0)
κ ({q̂i})

[
αs(µ)
2π

]2
+O(α3

s) . (C.16)

By making the choice in eq. (C.13) and evolving all functions to the common scale µ = µB,
we obtain

dσsing

dΦFJ dT1
=
∑

κ

∫ dy
2π e

iyT1 Lκ(y0/y) e−Sκ(y0/y) . (C.17)

Here, the canonical luminosity is defined as

Lκ(y0/y) =
d|Mκ|2

dΦFJ
H̄κ(ΦFJ,µB)B̄a

(
y

Qa
, xa,µB

)
B̄b

(
y

Qb
, xb,µB

)
J̄j

(
Q

Qj
,µB

)
S̄κ({q̂i},µB)

=
∑
a′,b′

d|Mκ|2

dΦFJ
H̄κ(ΦFJ,µB)(C̄⊗f)a

(
y

Qa
, xa,µB

)
(C̄⊗f)b

(
y

Qb
, xb,µB

)

× J̄j

(
Q

Qj
,µB

)
S̄κ({q̂i},µB)
S(µB)

. (C.18)

10Strictly speaking, H
(n)
κ (ΦFJ) also depends on Q through ΦFJ.
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In the second step, we divided the T1 soft function S̄κ by the T0 soft function S as defined in
eq. (3.13), such that the Cij are the same matching coefficients of the beam functions onto
the PDFs as in eq. (3.18). The canonical Sudakov form factor is defined as

Sκ(y0/y) = 2
∫ Q

√
Qy0/y

dµ′

µ′

{
Aκ[αs(µ′)] ln

Q2

µ′2
+Bκ

H [ΦFJ, αs(µ′)]
}

+ 2
∫ y0/y

√
Qy0/y

dµ′

µ′

{
Aκ[αs(µ′)] ln

(y0/y)2

µ2 +Bκ
S [{q̂i}, αs(µ′)]

}
. (C.19)

Here, the first exponential is the hard evolution, while the second is the soft evolution. The
A and B coefficients are given by

Aκ(αs) =
1
2(nqCF + ngCA)ΓC(αs) ,

Bκ
H(ΦFJ, αs) =

1
2γ

κ
H({qi}, αs)−

1
2γH̄κ

(ΦFJ, αs) ,

Bκ
S({q̂i}, αs) =

1
2γ

κ
S({q̂i}, αs)−

1
2γS̄κ

({qi}, αs) . (C.20)

Comparing eqs. (C.18) and (C.19) to eq. (3.20), we see that the overall structure of the
resummed T1 spectrum is very similar to that of T0. The key difference is the explicit
dependence of the hard and soft functions and their anomalous dimensions on the flavour
channel κ, as well as the additional jet function.

We complete this section by presenting explicit expressions for the jet and soft func-
tions for T1.

T1 jet function. The jet function RGE in eq. (C.8) predicts that

Ji

(
y

Qj
, µ

)
= 1 + αs(µ)

2π

[
L2

j

2 Γi (1)
C + Lj

2 γ
i (1)
j + ji

1

]

+
(
αs(µ)
2π

)2{L4
j

8 (Γi (1)
C )2 +

L3
j

4 Γi (1)
C

(
γ

i (1)
j + 4

3πβ0

)

+
L2

j

2

[
Γi (2)

C + Γi (1)
C ji

1 +
1
4γ

i (1)
j (γi (1)

j + 4πβ0)
]

+ Lj

2
[
γ

i (2)
j + ji

1
(
γ

i (1)
j + 4πβ0

)]
+ ji

2

}
+O(α3

s) . (C.21)

Here, we define Lj = ln[yµ2/(Qjy0)], and i = q, g distinguishes between quarks and gluons.
The cusp anomalous dimension is given in eq. (A.7), the βn are given in eq. (A.2), and
the noncusp anomalous dimensions are provided in eq. (C.11). The jet-function constants
ji

n are known up to three loops [119, 120], and are collected up to two loops in ref. [30].
They are commonly expressed in momentum space, where instead of the logarithms Lj in
eq. (C.21) one obtains plus distributions. The conversion between these induces additional
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terms. Taking these into account they are given by

jq
1 = CF

(
7
2 − π2

3

)
,

jq
2 = CF

[
CA

(
−9ζ3

2 − 1
720π

2
(
775 + 37π2

)
+ 53129

2592

)
+
(
234π2 − 4057

)
nf

1296

]

+ C2
F

(
−3ζ3

2 + 61π4

360 + 205
32 − 97π2

48

)
(C.22)

for the quark case, while for gluons they read

jg
1 = 1

18
(
67− 6π2

)
CA − 5nf

9 ,

jg
2 = C2

A

1296
(
−9504ζ3 + 153π4 − 4344π2 + 40430

)
+ 1

108CAnf (67π2 − 72ζ3 − 760)

+ CFnf

(
2ζ3 −

55
24

)
+

n2
f

162
(
50− 3π2

)
. (C.23)

The coefficients J (n)(Q/Qj) in eq. (C.14) are obtained from eq. (C.21) by setting Lj =
ln(Q/Qj).

T1 soft function. The fixed-order structure of the single-differential soft function can be
found in ref. [30], where it is expanded as

Sκ(k, {q̂i}, µ) =
∑

n

[
αs(µ)
4π

]n
[
S

(n)
κ,−1({q̂i})δ(k) +

2n−1∑
m=0

S(n)
κ,m

1
µ
Ln

(
k

µ

)]
. (C.24)

Here, the S(n)
κ,m are those given in ref. [30], which uses different conventions than in this

work. We require the Fourier-transformed soft function at its natural scale µ = µs = y0/y

as defined in eq. (C.14),

S̄κ({q̂i}, y0/y) ≡ Sκ(y, {q̂i}, µS = y0/y)

= 1 + αs(µ)
2π S(1)

κ ({q̂i}) +
[
αs(µ)
2π

]2
S(2)

κ ({q̂i}) +O(α3
s) . (C.25)

Evaluating the Fourier transform using eq. (3.7) and adjusting to our conventions, we obtain

S(1)
κ ({q̂i}) =

1
2S

(1)
κ,−1({q̂i})− C Γ̂(1)π

2

6 ,

S(2)
κ ({q̂i}) =

7π4

360
(
C Γ̂(1)

C

)2 + C Γ̂(1)
C

[
−2Γ̂(1)

C Lζ3 −
8
3πβ0ζ3 −

π2

12S
(1)
κ,−1({q̂i})

]
− π2

6 C Γ̂(2)
C

+
(
L Γ̂(1)

C

) [1
3π

3β0 +
π2

12
(
L Γ̂(1)

C

)]
+ 1

4S
(2)
κ,−1({q̂i}) , (C.26)

where S(2)
κ,−1({q̂i} can extracted from refs. [38, 41] (an independent calculation of the two-loop

coefficients has been used in ref. [29]) and

C =
∑

i∈{a,b,j}
Ci , L =

∑
i ̸=k

(Ti · Tk) ln
2qi · qk

QiQk
. (C.27)
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C.2 MINNLOPS formalism based on T1

Due to the similarity between the resummed T0 and T1 formulae, the derivation of the
MiNNLOPS method using T0, presented in detail in section 3.2, carries over to the case
of T1 almost unchanged. Thus, here we only briefly review the key steps, while referring
for more details to section 3.2.

The starting point for the MiNNLOPS method is the cumulant of eq. (C.17),

dσsing(T1)
dΦFJ

=
∑

κ

∫ T1

0
dT ′

1

∫ dy
2π e

iyT ′
1 Lκ(y0/y) e−Sκ(y0/y) . (C.28)

We expand it around y0/y ∼ T1, i.e. in Ly = ln(T1y/y0) ≪ 1. By keeping only Sκ(T1)
exponentiated and expanding all other terms at NNLO accuracy, we obtain [cf. eq. (3.30)]

dσsing(T1)
dΦFJ

=
∑

κ

e−Sκ(T1)
[
Lκ (T1)

(
1− ζ2

2 [(S ′
κ)2 − S ′′

κ ]− ζ3S ′
κS ′′

κ + 3ζ4
16 (S ′′

κ)2 + ζ3
3 S ′′′

κ

)
+ L′

κ(T1)
(
ζ2S ′

κ + ζ3S ′′
κ

)
− ζ2

2 L′′
κ(T1) +O(α3

s)
]
, (C.29)

where the derivatives are defined in eq. (3.26). Next, we evaluate all derivatives in eq. (C.29)
and exponentiate all resulting logarithms, while the remaining terms are absorbed by redefining
the luminosity. This yields

dσsing(T1)
dΦFJ

=
∑

κ

L̃κ(T1)e−Sκ(T1) . (C.30)

Defining µB =
√
QT1 and LT = 1

2 ln(Q/T1), the modified luminosity is defined similar to
eq. (3.40) as

L̃κ(T1) =
d|Mκ|2

dΦFJ
H̃κ(ΦFJ, µB)J̄j

(
y

Qj
, µB

)
S̄κ({q̂i}, µB)

S(µB)[
(C̃ ⊗ f)a(xa, µB) (C̃ ⊗ f)b(xb, µB)

− ζ2(P̂ ⊗ f)a(xa, µB) (P̂ ⊗ f)b(xb, µB)
]

− d|Mκ|2

dΦFJ

(
αs

2π

)2
c
′κ
1,1LT

[(
P̂ (0) ⊗ f)a(xa, µB) fb(xb, µB)

+ fa(xa, µB)(P̂ (0) ⊗ f)b(xb, µB)
]
, (C.31)

where the modified hard function and matching coefficients follow from eq. (3.41),

H̃κ(ΦFJ, µB) = H̄κ(ΦFJ, µB)
[
1 + αs

2πc
κ
1,0 +

(
αs

2π

)2
cκ

2,0 +O(α3
s)
]
, (C.32)

C̃ij(x, µB) = C̄ij(x, µB)

−
(
αs

2π

)2 [ζ2
2
(
P̂ (0) ⊗ P̂ (0))

ij
(x) +

(
c
′κ
1,0 − ζ2πβ0

)
P̂

(0)
ij (x)

]
+O(α3

s) . (C.33)

– 45 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
5

The Sudakov factor is given by

S(T1) = 2
∫ Q

√
QT1

dµ′

µ′

[
Aκ[αs(µ′)] ln

Q2

µ′2
+Bκ

H [ΦFJ, αs(µ′)]
]

+ 2
∫ T1

√
QT1

dµ′

µ′

[
Aκ[αs(µ′)] ln

(T0)2

µ′2
+Bκ

S [{q̂i}, αs(µ′)]
]
, (C.34)

where the Aκ coefficients are given in eq. (C.20) and the Bκ
H,S are defined in eq. (C.20). The

constants cκ
n,m and c

′κ
n,m appearing in eqs. (C.31)–(C.32) are identical to those in eq. (3.34),

up to changing the A and B coefficients to those in eq. (C.20). In particular, they inherit
the dependence of the Aκ and Bκ

H,S coefficients on the flavour channel κ and the phase
space ΦFJ, which is kept implicit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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