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1 Introduction

Compactification is a fruitful tool in the study of quantum field theory. Specifically, starting
with a given higher-dimensional theory we can put it on a manifold with compact directions,
resulting at low energies in a quantum system in lower dimensions. The emerging relation
between the two theories can then be used to extract properties of both the higher and
lower dimensional theories. One of the prime examples of such a relation is the class S
construction [1, 2], in which a 6d superconformal field theory (SCFT) is compactified on a
Riemann surface, resulting in an SCFT in four spacetime dimensions. The ensuing connection
allows us to learn much about the four-dimensional SCFTs — indeed, this method can be
used to realize many 4d SCFTs whose construction by inherently 4d methods would otherwise
be strenuous. Furthermore, this construction allows us to compute and constrain many
of their properties, be it their global symmetries, operator spectrum, conformal manifolds,
or dual descriptions.1

Of particular importance is the relationship between the symmetries of the higher and
lower dimensional theories. The realization through compactification leads to a relation
between the symmetries of the two theories, where knowledge of the symmetries of one theory
can teach us about the symmetries of the other. Unfortunately, such relations are complicated
primarily due to two phenomena. One is the appearance of accidental symmetries that
might emerge at the end of a renormalization group flow. Such accidental symmetries can
lead to the lower-dimensional theory having more symmetries than its higher-dimensional
parent. A common example of this is when the lower-dimensional theory acquires a symmetry
due to an isometry of the compactification surface; such a symmetry is accidental from
the perspective of the lower-dimensional theory, although not from the higher-dimensional
viewpoint, and so can be anticipated when analyzing the higher-dimensional system on the
compact surface. In general, however, it is not possible to predict nor completely rule out
the appearance of accidental symmetries.2

Another complicating feature is that some symmetries present in the higher-dimensional
theory may act trivially in the infrared (IR), in which case the lower-dimensional theory
would have less symmetry than its higher-dimensional parent. While it is not possible to
completely rule out the former possibility, it is possible to rule out the latter in certain cases:
when ’t Hooft anomalies are present. Specifically, symmetries possessing ’t Hooft anomalies

1These aspects have been studied extensively for the compactification of 6d (1, 0) theories on Riemann
surfaces to 4d N = 1 generalizing the class S construction (see e.g. [3] for a review of some of these directions),
and also more recently for 5d N = 1 theories to 3d N = 2 [4–7].

2In certain cases, symmetries that are accidental from the perspective of the lower-dimensional theory can
be identified from the full compactification geometry — for instance, this has been studied in the context of
the class S construction in [8–10].
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cannot act completely trivially in the IR, as there must be some sector in the low-energy
theory that reproduces the anomaly. Fortuitously, the ’t Hooft anomalies of the lower and
higher dimensional theories are also related, by integration over the compactification surface
of the anomaly polynomial for continuous symmetries [11, 12] and the anomaly theory for
discrete symmetries (see e.g. [7]). This allows us to infer whether certain symmetries can
end up acting trivially in the lower-dimensional theory, leading to a clearer relation between
the symmetries of the two theories.

Recently, there has been a renewed interest in the subject of symmetries, motivated by the
discovery of what are now called generalized symmetries [13]. These include both higher-form
symmetries [13, 14], and the more recent non-invertible symmetries (see e.g. [15–28]). Higher
p-form symmetries refer to symmetries acting only on non-local (p-dimensional) operators,
unlike ordinary 0-form symmetries which can also act on local (0-dimensional) operators.
Even though these do not act on local operators, their presence can lead to interesting
constraints on the dynamics [14, 29–34]. This is especially the case when they possess ’t Hooft
anomalies, or mix with 0-form symmetries through what is now known as a higher-group
structure [35, 36]. Non-invertible symmetries, broadly speaking, refer to symmetries that
do not form a group, and in particular the combination of two symmetries yields a direct
sum of operations rather than a single one. These symmetries have a long history of study
in the context of topological line operators in 2d theories, while in more recent years they
have been understood as a generalization of ordinary symmetries. We refer the reader to
the reviews [37–40] for a more complete list of citations. Below we shall be more explicit
regarding the specific generalized symmetry structure that we will consider here.

Given this recent appreciation for more general symmetry structures, it is natural to
ask how the aforementioned relation between standard symmetries and their anomalies in
compactification can be extended to also involve generalized symmetries. One approach in
an attempt to tackle this question is to try to understand how non-invertible symmetries and
higher-group structures arise from the compactification of a higher-dimensional theory. This
has been studied, notably, in the context of the class S construction by various authors [41–
47]. Here, we shall explore what happens to some of the generalized symmetry structures
discovered in four spacetime dimensions when we compactify to lower dimensions, either to
three dimensions on S1 or to two dimensions on S2. Our motivation is to better understand
the implication of the presence of various generalized symmetry structures in the higher
(in this case, four) dimensional theory for the properties of the lower-dimensional theory.
Another motivation meriting the exploration of compactification to 2d is that non-invertible
symmetries are quite ubiquitous there, and it is interesting if these can be related to 4d
symmetry structures.

As previously pointed out, compactification naturally leads to a relation between the ’t
Hooft anomalies of the two theories, and this can be extended also to anomalies involving
higher-form symmetries [7]. It is known that both non-invertible and higher-group structures
can sometimes be related to ’t Hooft anomalies, via certain topological manipulations [16].
It is therefore natural to expect that the relation between the anomalies can facilitate the
understanding of the fate of a generalized symmetry structure upon compactification. Indeed,
we shall rely here on the relation between anomalies to understand various features of the
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compactification of a generalized symmetry structure. We also point out that a natural
generalization of the relation between ’t Hooft anomalies through compactification is that
the symmetry topological field theory (Symmetry TFT) of the higher and lower dimensional
theories can be related by a similar reduction. The Symmetry TFT is a topological field theory
defined in one higher dimension which, along with the specification of its topological boundary
conditions, captures the generalized symmetry structure of the field theory of interest —
see [48–51]. Such a correspondence would then automatically provide a relation encompassing
all such structures related through topological manipulations, since the Symmetry TFT
is invariant under topological manipulations of the field theory. Indeed, we shall use this
approach to motivate some of the relations we observe (see also [46, 52] for some recent
applications of this approach).

We proceed now to specify in more detail the problems we address in this work. We
shall concentrate on specific classes of four-dimensional gauge theories, compactified on S1 to
three dimensions, or on S2 to two dimensions. Notably, the 4d theories we consider possess a
magnetic U(1)(1)M 1-form symmetry that acts on the ’t Hooft lines associated with a U(1)G part
of the gauge group, which we will generally take to be continuous and non-simply connected;
the case of gauge group U(Nc) serves as our quintessential example.

We in particular consider cases in which U(1)G participates in an Adler-Bell-Jackiw
(ABJ) anomaly with a classical U(1)F flavor symmetry, as captured by the following term
in the six-form anomaly polynomial,

I6 ⊃ k

2 c1(F )c1(G)
2 . (1.1)

Here, c1(F ) is the first Chern class for the U(1)F flavor symmetry and c1(G) for the U(1)G

gauge symmetry, and we are suppressing wedge products — see appendix A for more details
on our conventions. This term (1.1) is equivalent to the presence of an ABJ anomaly of the
form Tr U(1)F U(1)2G = k. The invertible part of U(1)F that survives the anomaly (1.1) in
the quantum theory is Zk,3 but as has been recently understood [26, 27], there is actually a
larger non-invertible symmetry that is preserved labeled by rational numbers Q/Z. As we
will review in more detail below, this non-invertible symmetry can be understood either by
stacking the Zk symmetry defect with a suitable TQFT, or by a half-space gauging technique
that involves gauging a subgroup of the magnetic 1-form symmetry. Many other types of
non-invertible symmetries have been discussed recently in the literature, but for the sake of
keeping our discussion tractable we will focus herein on non-invertible symmetries constructed
in this way, arising from an ABJ anomaly.

We will furthermore consider 4d field theories in which various 0-form symmetries are
extended by the magnetic U(1)(1)M 1-form symmetry, leading to a 2-group. As discussed in [35],
this structure is signaled by the presence of gauge-global-global anomalies. In particular, a
2-group involving a U(1)F abelian global symmetry arises from the following anomaly term,4

I6 ⊃ κ

2 c1(F )
2c1(G) , (1.2)

3Throughout this work, we assume the spacetime manifold to be a spin manifold.
4Throughout we will use the letter k to denote a gauge-gauge-global anomaly coefficient, and κ to denote a

gauge-global-global anomaly. Later, we also introduce kF 3 for a global-global-global anomaly, i.e. the ’t Hooft
anomaly for the U(1)F global symmetry.
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which is equivalent to the presence of a mixed anomaly of the form Tr U(1)2F U(1)G = κ.
Under a background gauge transformation AF → AF + dλ of the 1-form background gauge
field associated to the U(1)F flavor symmetry, the action changes by δS = κ

2λc1(F )c1(G),
which can be canceled by a source term for the 2-form U(1)(1)M background connection B.
This leads to the following transformation laws for the background fields (see appendix A.3
for details on our conventions),

AF → AF + dλ , B → B + dΛ− κ

4πλ dAF , (1.3)

with AF , B satisfying the gauge bundle constraint,

H = dB + κ

2AF c1(F ) , dH = πκc1(F )2 , (1.4)

where H is a U(1) 3-form, and is invariant under (1.3).
Evidently, the non-invertible symmetry and 2-group structure are closely tied with

anomalies involving gauge symmetries: anomalies involving a gauge symmetry and two global
symmetries lead to the formation of a 2-group, while anomalies involving two abelian gauge
symmetries and a global symmetry lead to the global symmetry becoming non-invertible. It is
well known that in a compactification, the ’t Hooft anomalies of the lower-dimensional theory
are related to those of the higher-dimensional one by integrating the anomaly polynomial
on the compact surface; as we emphasized earlier, this prescription generally yields the
contribution to symmetries of the lower-dimensional theory that are manifest in the higher-
dimensional one. Below we shall see that something similar also holds for anomalies involving
gauge symmetries. However, gauge symmetries are ultimately a redundancy in the description,
and so are not expected to hold physical meaning. As such, how should we understand the
observed mapping of anomalies involving gauge symmetries under compactification? The
fact that many of these anomalies can be interpreted as leading to a generalized symmetry
structure suggests that the proper interpretation of these observations should be in terms
of said generalized symmetry structures. This would then also suggest the generalization of
these to other cases where the anomaly interpretation is not readily available. We shall try
to motivate these observations from the point of view of generalized symmetries.

1.1 Summary of the results

We will now provide a summary of our main results and a roadmap for the case studies
considered throughout this work. We restrict to classes of four-dimensional gauge theories
with a U(1)G part of the (continuous) gauge group, which possess a U(1)(1)M 1-form magnetic
symmetry acting on the ’t Hooft lines associated with U(1)G, as well as various classical
0-form flavor symmetries, both abelian (U(1)i) and non-abelian (Hi). The anomalies involving
the U(1)G gauge symmetry and the flavor symmetries are captured by the following terms
in the anomaly polynomial,

I6 ⊃ kℓ

2 c1(ℓ)c1(G)
2 +

∑
i

κHic2(Hi)c1(G) +
∑
i,j

κij

2 c1(i)c1(j)c1(G) , (1.5)

where for the purpose of this discussion we have slightly generalized (1.1) and (1.2) to
incorporate multiple flavor symmetries. Theories with non-zero kℓ possess a non-invertible
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symmetry associated with U(1)ℓ rotations by rational angles 2πp
kℓq for coprime p and q. Mean-

while, theories with non-zero mixing coefficients κij = κji or κHi enjoy a 2-group which
extends the participating 0-form flavor symmetries by the magnetic 1-form symmetry. When
both kℓ and κℓi are non-zero, the non-invertible defect acquires higher structure associated
with junctions among defects [53]. Our hallmark example, whose generalized symmetries
we review in section 4, is N = 1 supersymmetric quantum chromodynamics (SQCD) with
gauge group U(Nc) = [SU(Nc)× U(1)V ]/ZNc , with Nf fundamental and anti-fundamental
chiral superfields, and two additional chiral fields in the determinant and anti-determinant
representations of the gauge group whose charges are designed to preserve the continuous
U(1)R symmetry. We will also consider the infrared dual with gauge group U(Nf − Nc).
For this particular case, U(1)G is the baryonic symmetry U(1)B = U(1)V /ZNc of SQCD,
under which the baryons QNc have unit charge.

First, we will consider 4d theories on M3 × S1,5 where the 4d gauge field a has the
following holonomy on the circle,

σ =
∫

S1
a . (1.6)

Probing the system at high enough energy scales, σ is a dynamical, compact scalar with
2π periodicity. The U(1)(1)M 1-form symmetry reduces to the 1-form winding symmetry
whose corresponding charged line operators are the winding defects generating the symmetry
σ → σ + 2πn for n ∈ Z, and a magnetic 0-form symmetry that acts on monopole operators
in the effective 3d theory. The non-invertible symmetry that was constructed by gauging a
subgroup of the winding 1-form symmetry reduces at these scales to the same non-invertible
symmetry, now associated with gauging the winding 1-form and magnetic 0-form symmetry,
so that in particular the Q/Z symmetry associated with the ABJ anomaly in (1.5) reduces
to the same symmetry in this effective theory on the circle. Furthermore, the 2-group labeled
by coefficients κij reduces to a 2-group in 3d labeled by the same κij .

There will be some scale below which the scalar σ decompactifies, which generally will
coincide with the KK scale E ∼ 1/R for R the circle radius. Below this decompactification
scale, the magnetic 1-form symmetry in the effective theory acts trivially, and both the
non-invertible symmetry and 2-group structure disappear along with it. In particular, in
the deep IR limit where E ≪ 1/R, we can consider expanding around a sector of fixed σ;
the winding defects lead to a change in these vacua and are not present in the IR theory,
and the 1-form winding symmetry trivializes.

These general observations are presented in more detail in section 2, and then in section 5
we examine a series of examples in further detail, including SQCD and its dual, and the
electric-magnetic duality defects of pure Maxwell theory. Our case studies are summarized
in table 1.

We then consider the (possibly twisted) compactification of 4d gauge theories on S2.
In general this compactification will result in a direct sum of theories with different integer
values of the gauge flux

∫
S2 c1(G), so that sectors of fixed flux are labeled by their charge

5One can in general introduce a twist by a global symmetry when performing a circle compactification, even
by a non-invertible symmetry (see e.g. [54, 55]), however here we shall limit ourselves to ordinary (untwisted)
circle compactifications.
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Section 4d Theory
Non-invertible

symmetry
2-group

Scale of σ-
decompactification

5.1 U(1) gauge theory S-duality defect
for 2π

e2
4d

∈ Q;

Condensation defect

—– R→ 0

5.3 N = 1 U(Nc) SQCD
with det. matter

kI = 2 κRt, κIt,
κSU(Nf )L,R

E ≪ 1/R

Table 1. A summary of the 4d gauge theories reduced on S1 that are analyzed in the main text.
The third column highlights the non-invertible symmetries that we discuss in the text, and the fourth
column lists the non-zero 2-group mixing coefficients as defined in (1.5), where the index R denotes
the U(1)R symmetry, I denotes the U(1)I symmetry that becomes non-invertible, and other indices
refer to other flavor symmetries. For N = 1 SQCD there is also an axial symmetry which is broken to
Z2Nf

by gauge anomalies.

under a magnetic 1-form symmetry that is inherited from the four-dimensional one. As
each fixed-charge vacuum defines a “universe” in 2d, even at finite volume vol(M2) of the 2d
manifold we can restrict to a single sector in which the 1-form symmetry acts trivially; then,
neither the 2-group structure nor the non-invertible symmetry from (1.5) survive. We examine
the imprint of these structures in the 2d fixed-charge sectors after twisted compactification,
with gauge flux mG and flavor flux mi for a global symmetry U(1)i,∫

S2
c1(G) = mG ∈ Z ,

∫
S2
c1(U(1)i) = mi ∈ Z , (1.7)

with the following results.
In the presence of a non-zero gauge flux mG on the sphere, the 2-group in 4d leads

to purely global ’t Hooft anomalies in the 2d theory, whose form is given by substituting
c1(G) → mG in (1.5). Furthermore, the non-invertible symmetry labeled by kℓ leads to a 2d
ABJ anomaly, so that what remains of the 4d non-invertible symmetry is a discrete invertible
Z|mGkℓ| symmetry. When both kℓ and a mixing coefficient κℓi are nonzero, this discrete
Z|mGkℓ| also possesses a global ’t Hooft anomaly; for instance when κℓℓ is non-trivial, this is a
self-anomaly of the form I4 ⊃ 1

2κℓℓmGβ(ℓ)2, where β(ℓ) denotes the Bockstein map which
acts on Z|mGkℓ|-valued cocycles as β = δ/(|mGkℓ|), for δ the coboundary.

Meanwhile in the zero flux sector mG = 0, the 4d non-invertible symmetry labeled by
kℓ reduces in general to an invertible Q/Z symmetry in 2d, which enacts (now invertible)
rotations by the same angles 2πp

kℓq that were present in 4d.6 Then for any mG, the non-
invertible symmetry always reduces to an invertible symmetry in the sectors with fixed
gauge flux, as anticipated.

In the presence of a flavor flux mi, a non-zero mixed anomaly coefficient κij leads to a 2d
ABJ anomaly that suggests the descendent of the U(1)j symmetry is broken to Z|miκij |. (Note

6In 2d this symmetry might accidentally enhance back to a full U(1) or become part of another U(1)
symmetry — we will see examples of this in section 6.
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Section 4d Theory
Non-invertible

symmetry
2-group Flux Comments on IR

6.2
twist 1 [n>0]

table 6
kI = 2 κR,{R,A,t,x,y}

mG = 0
mR = −1

SUSY-breaking

6.2
twist 1 [n=0]

table 8
kI = 2 κR,{A,t,z}

mG = 0
mR = −1

flow to 2d SCFT

6.3
twist 2
table 12

kI = 2
κR,{R,A,t,x,y}

κIt, κx,{x,y}, κyy

κSU(N1,2,3,f )

mG = 0
mR = −1

. . . . . . . . . . . .
mG = Nc

mR = −1
. . . . . . . . . . . .
mG1 = 1

mG2 = − 1
Nc

mR = −1

accidental SU(2)ISO;
examples highlight
matching of gauge
anomalies between

4d and 2d

6.4
twist 3
table 16

kI = 2 κR,{R,A,t,I,2,3}
mG = 0
mR = −1

accidental SU(2)ISO;
(Q/Z)I → U(1);

4d duality → 2d triality

Table 2. A summary of case studies presented in section 6, from reducing 4d N = 1 U(Nc) SQCD
with determinant matter on the sphere with different R-symmetry twists. The third column highlights
the (Q/Z)I non-invertible symmetry that we discuss in the text, which arises from a classical U(1)I

symmetry. The fourth column lists the non-zero 2-group mixing coefficients, where the index R denotes
the U(1)R symmetry, A denotes the axial symmetry which is broken to Z2Nf

by gauge anomalies, and
other indices refer to other flavor symmetries present in the 4d theory. The values of the gauge and
R-symmetry fluxes defined in (1.7) are denoted in the fifth column. The last column highlights some
features of the IR 2d theories.

that we only consider compactifications with flavor flux mi ̸=ℓ, since twisting with respect to
a subgroup of the 4d non-invertible symmetry leads to a pure gauge anomaly in 2d which
renders the theory inconsistent). More generally, if multiple coefficients κij are nonzero, then
one linear combination of these symmetries will be anomalous in two dimensions. We will
specifically consider supersymmetric examples in which there is a flux for the 4d R-symmetry
on the sphere, and the infrared R-symmetry at the putative 2d fixed point can be determined
as mixing with the remaining non-anomalous symmetries inherited from 4d.

In section 2 we present arguments for these conclusions from a variety of perspectives,
including from integrating the perturbative anomaly polynomials, from the transformations
of the background fields, as well as from reducing the topological defects themselves. In
section 3 we show that the same conclusions may be obtained by reducing the 5d Symmetry
TFT. Then, in section 6 we study a series of examples that arise from 4d N = 1 U(Nc) SQCD
with determinant matter. We reduce this theory and its infrared dual on S2, mixing the
R-symmetry with various subgroups of the abelian flavor symmetries (which we label as twists
1,2,3 ), and threading R-symmetry flux through the sphere so as to obtain N = (0, 2) theories
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in two dimensions. Doing so provides interesting examples for which accidental symmetries
of the 2d theories can be identified from the compactification geometry, for example from
the SU(2)ISO isometry of the sphere, and furthermore allows us to reproduce the 2d triality
of [56]. A summary of our case studies appears in table 2.

2 Reducing generalized symmetries

In this section, we discuss how a non-invertible symmetry arising from an ABJ anomaly of
the form (1.1), and a 2-group arising from an anomaly of the form (1.2), reduce from four
dimensions to three or two dimensions, on S1 or S2 respectively. This section serves as a
general overview of the methods and subtleties involved, as well as a summary of the main
conclusions which arise from the examples studied in later sections.

2.1 Compactifying with gauge holonomy

We consider the reduction of 4d theories on S1 to 3d, and on S2 to 2d, in general with some
flux or holonomy of either gauge symmetry or global symmetry threading the compact space.
The compactification with a flux or holonomy of the global symmetry is the standard twisted
compactification, enacted by demanding the twisted boundary condition of various fields
along the compact direction. However, compactification with a fixed flux or holonomy of a
gauge symmetry is more subtle. The issue is as follows. Consider a gauge theory with gauge
group G on M4. In the path integral, we should sum over all G gauge field configurations.
Different G-configurations can be organized by (for example) the gauge holonomy on a cycle
S1, the gauge flux on S2, and similar quantities defined on higher-dimensional manifolds.
Therefore in the path integral, one should sum over all possible gauge holonomies and fluxes.
However, it is often the case in the literature of compactifications on S1 and S2 that one only
sums over gauge field configurations with fixed gauge holonomy or gauge flux, respectively.
Let us now comment on the validity of such an operation.

2.1.1 Gauge theories on S1 for G continuous

We first discuss the case when the gauge group G is a compact, continuous group. When
we compactify the theory on M3 × S1 and take S1 to be small compared to M3, one can
define the Polyakov loop operator,

Ω(x⃗) = TrRP exp
(
i

∫
S1
a

)
(2.1)

where P is the path ordering operator, and a is the dynamical G gauge field.7 The Polyakov
operator is a local and generically non-topological operator for the 3d compactified theory
that depends on the 3d coordinate x⃗, although it is an extended operator in the 4d theory.
Since we integrate over all possible configurations of a in the 4d path integral, in the 3d path
integral we should also integrate over all possible Ω configurations.

Does it make sense to consider a theory for which we only sum over a subset of Ω
configurations? We argue that it is possible in a special situation, as follows. Generically, a

7We generally reserve lowercase letters for dynamical gauge fields, and uppercase for background fields.
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potential V [Ω] for the scalar Ω(x⃗) can be dynamically generated, and one can solve for its
minimum. Consider a situation in which there are multiple minima of the potential labeled
by ωi, so that in the infinite volume limit Vol(M3) → ∞, all the states in the Hilbert space
split into the direct sum of several superselection sectors according to the ωi’s. In this case
it makes sense to consider a sub-Hilbert space, spanned by the states |ψ, i⟩ with fixed Ω(x⃗)
expectation value, ⟨ψ, i|Ω(x⃗) |ψ, i⟩ = ωi. However, when we deviate away from the deep
infinite volume limit the energy barrier between different superselection sectors becomes
finite, and hence states belonging to different sectors are no longer orthogonal. Thus, for
finite volume one should sum over all possible Ω configurations.

2.1.2 Gauge theories on S1 for G finite and abelian

When G is finite and abelian, we can still consider the loop operator (2.1). The new feature
here is that the Polyakov operator is independent of the coordinate x⃗, and hence is a topological
local operator in 3d, which generates a 2-form symmetry G.8 This 2-form symmetry descends
from the 2-form symmetry generated by the Wilson line of the finite G gauge theory.

It is known that the existence of a topological (d − 1)-form G symmetry implies |G|
number of universes (see e.g. [57] and references therein). The universe is a strengthened
concept of the superselection sector, where the states belonging to different universes have
zero overlap even at finite volume. Therefore, for any M3 (which can have finite volume),
the Hilbert space splits into a direct sum of orthogonal sub-Hilbert spaces, distinguished
by the expectation value of the topological local operator Ω. In summary, it is valid to fix
the value of Ω in the path integral.

2.1.3 Gauge theories on S2 for G continuous

When G is continuous, the flux operator,

Γ = exp
(
iα

∫
S2
c1(G)

)
(2.2)

is a topological operator, and generates a 1-form symmetry. For example, the magnetic
1-form symmetry current for gauge group G = U(1) is jM ∼ ⋆c1(G), so that (2.2) is the
exponentiation of the conserved Noether’s charge. If we put the theory on M2 × S2 and
take the size of S2 to be much smaller than M2, then Γ generates a 1-form symmetry in
2d. For example, when G = U(1) the 1-form symmetry is U(1)(1), and when G = SO(3)
the 1-form symmetry is Z(1)

2 .9 Since Γ is topological, it also defines universes in the 2d
theory. The discussion in the previous case therefore applies, and it is valid to path integrate
over fixed values of Γ.

2.2 Reducing from 4d to 3d

We next discuss general features regarding the reduction of non-invertible symmetries and
2-group structure from 4d to 3d. Our discussion here is focused on theories which possess

8Strictly speaking the symmetry should be Rep(G), but since we are considering abelian G, Rep(G) ≃ G

and we do not distinguish them.
9For G = SO(3), c1(G) is usually referred to as the second Stiefel-Whitney class, and is only mod 2 valued,

hence why the 1-form symmetry is Z(1)
2 in this case.
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an ultraviolet (UV) Lagrangian description, as is the case in all the examples we study in
later sections. As we comment at the end of this subsection, we stress that more general
theories lacking a Lagrangian description might exhibit a different behavior.

It is crucial that we carefully specify the different possible limits in this setup. Throughout,
we will distinguish between the following regimes.

• First we examine the effective 4d theory on S1 with finite radius R, corresponding to
energy scales of order 1/R. This coincides with the standard compactification to lower
dimensions, in which one formulates the quantum theory on M3 ×S1, so that by taking
R→ ∞ one recovers the full four-dimensional theory. As can perhaps be anticipated,
we will see that this effective theory retains much of the generalized symmetry structure
of the 4d parent.

• We next consider the system at energy scales in the deep infrared, much smaller than
1/R. In this limit we probe the system below the scale at which we have integrated
out the KK tower, keeping R small but finite. As we will discuss in detail below, we in
general expect that some of the generalized symmetry structure trivializes in this limit.

• Finally, the limit R → 0 coincides with the strict dimensional-reduction limit, in
which the least hint of the 4d generalized symmetry structure is retained by the
lower-dimensional theory.

2.2.1 Reducing the 1-form symmetry

In compactifying a 4d field theory on M3 × S1, the holonomy of the 4d vector field a on
the circle yields a dynamical compact scalar σ,

σ =
∫

S1
a , σ ∼ σ + 2π . (2.3)

The Wilson line wrapping the circle becomes the exponentiated scalar eiσ, which is the
analogue of the Polyakov operator (2.1). As discussed in the previous subsection, σ is a
non-topological local operator and should not be assigned a fixed value.

The magnetic 1-form symmetry plays a principal part in determining the reduction of
the generalized symmetry structure, and so we first consider the reduction of the U(1)(1)M

symmetry, as discussed in [13].10 Let us first consider the effective theory compactified on
M3 × S1, at finite circle radius R. The ’t Hooft lines wrapping the circle reduce to monopole
operators in 3d, and the symmetry acting on them becomes a 0-form symmetry acting on
said monopole operators. Meanwhile, an ’t Hooft line not wrapping the circle is expected
to reduce to an ’t Hooft line in 3d, which has the property that if we take the Wilson line
operator that wraps the circle around them, then it transforms by a phase eiσ → eiσ+2πin.
This means that the 3d ’t Hooft lines are defined by the property that the scalar undergoes a
2πn rotation when going around them. Therefore the magnetic 1-form symmetry reduces
in the 3d effective theory to a magnetic 1-form winding symmetry that acts on the winding
defect operators (whose conserved current is jw ∼ ⋆dσ), and a “topological” 0-form symmetry

10When the theory lacks matter, there is also a U(1)(1)
E electric 1-form symmetry under which the Wilson

line changes by a phase. This symmetry will play a role in the example in section 5.1.

– 11 –



J
H
E
P
0
7
(
2
0
2
4
)
1
1
0

acting on the 3d monopole operators. In particular, the compactness of the scalar is crucial
to the survival of the 1-form winding symmetry in 3d, since it leads to the winding lines.

In the deep IR, far below the KK scale 1/R, there are two possible scenarios. If there is
no charged matter in the theory, then the scalar σ remains compact and the conclusion of
the previous paragraph continues to hold (although this too is lost in the strict dimensional-
reduction limit where the radius is taken to zero). However, in theories with matter the
scalar will generally decompactify below the scale in which the KK tower is integrated out,
even when R is kept finite. For a concrete example (discussed in section 5.2) consider U(1)
gauge theory with a charged Weyl fermion, and periodic boundary conditions for the fermion
around the compactification circle. After integrating out the KK massive fermions the action
is no longer invariant under shifts of σ → σ + 2π, i.e. the compactness of the scalar is lost
in the restriction to zero modes on the circle, so that the winding lines accounting for the
1-form symmetry are not present.

The natural interpretation of this is as follows. In the compactification, we can introduce
a holonomy on the circle for the 4d gauge field, which sets the background around which
we expand in the IR. The low-energy theory has a moduli space of vacua associated to this
background value, so that the Z shift symmetry σ → σ + 2π of the scalar is spontaneously
broken at low energies. Note that this is compatible with the discussion in the previous
subsection regarding superselection sectors: generically a shift-symmetry-preserving potential
V [σ] is generated, and its minima spontaneously break the shift symmetry. Now, the 3d
winding defects lead to a change in vacua as we go around them. We expect that they become
massive and are thus not present at low energies, so that the 1-form winding symmetry
trivializes.

2.2.2 Consequences for generalized symmetry structure

Let us examine the consequence of the possible trivialization of the 1-form symmetry for
the reduction of the 2-group (1.3), involving the 0-form U(1)F flavor symmetry and U(1)(1)M

magnetic 1-form symmetry. At the level of the background fields, the 4d vector field reduces
to a 3d vector field, a4d → a3d; the magnetic 1-form symmetry background field B4d reduces
to the field which enacts the would-be 3d 1-form symmetry, B3d, and its holonomy on the
circle reduces to a 1-form gauge field that enacts the 3d 0-form symmetry,

∫
S1 B3d → Ã3d.

The 3d 1-form symmetry associated with the winding lines forms a 2-group with the 3d
0-form symmetry coming from the 4d 0-form symmetry, where the transformation of the
background fields is inherited from the 4d transformation laws (1.3). As such, the survival
of the 2-group structure in 3d requires the scalar σ to be compact, and trivializes in the
limit that it decompactifies. This is consistent with what is expected for a 2-group, in the
following sense. The 2-group is an extension of a 0-form symmetry by a 1-form symmetry,
so that the 1-form symmetry is the subgroup while the 0-form symmetry is the quotient.
When a symmetry acts trivially, the remaining faithfully acting symmetry is the quotient of
the full symmetry by the one that acts trivially, consistent with the fact that we lose the
1-form symmetry without losing the 0-form symmetry.

We next consider the consequence for the 4d non-invertible symmetry arising from (1.1).
Again, whether or not it survives the dimensional reduction depends on whether the scalar
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decompactifies and the 1-form symmetry trivializes, since the 4d non-invertible symmetry
arises from gauging a discrete subgroup of the magnetic 1-form symmetry. We expect it to
reduce in 3d to a non-invertible symmetry which involves gauging a discrete subgroup of the
3d winding symmetry, and thus its fate depends on whether or not this symmetry trivializes.

An example that we will study in some detail is U(Nc) N = 1 supersymmetric QCD. This
theory possesses a non-invertible symmetry whose discrete invertible part is Z2, as well as a
2-group that combines the magnetic 1-form symmetry with various 0-form symmetries.11 In
the effective 3d theory at energy scales of order 1/R, the four-dimensional 2-group structure
reduces to a 2-group involving the 3d 1-form symmetry and the various 0-form symmetries,
and the non-invertible symmetry similarly reduces to a non-invertible symmetry in the
effective theory on M3 × S1. Both of these structures trivialize in the low energy limit where
E ≪ 1/R, in which the compactness of the scalar is lost and the magnetic 1-form symmetry
trivializes. Then, the 4d defects become invertible in 3d.

While we largely focus on non-invertible symmetry defects that arise from an ABJ
anomaly of the form (1.1), it should be noted that other types of non-invertible defects
might exhibit different behavior under circle compactification. One example in which the
non-invertible symmetry survives to the deep IR of the compactification is the non-invertible
electric-magnetic duality symmetry of pure Maxwell theory. In reducing this theory on
a circle, the non-invertible symmetry at special values of the coupling reduces to a non-
invertible symmetry in the effective theory of 3d Maxwell plus a periodic scalar, which can
be constructed purely in three dimensions by gauging discrete subgroups of the shift and
winding symmetries. We will discuss this example in more detail in section 5.1.

2.2.3 Reducing the anomaly polynomial

These features can be studied at the level of reducing the anomaly polynomial. This is of
course somewhat subtle since there are no fermion anomalies in three spacetime dimensions,
but as we will see it is still a useful exercise that reproduces the same conclusions.

Let us first consider the compactification of the ABJ anomaly (1.1) on the circle, which
is achieved by introducing the compact scalar σ =

∫
S1 a. As commented in section 2.1, σ

is a dynamical field and should not be assigned a fixed value. This leads to the following
inflow action for the effective 3d theory12 (our conventions for this action are discussed
around (A.10)),

Ainf
4 ⊃ k

2π

∫
M4

AF ∧ c1(G) ∧ dσ . (2.4)

This can be interpreted as an “ABJ-like” anomaly involving the dynamical G-gauge symmetry,
the (−1)-form U(1) gauge symmetry associated to the dynamical compact scalar σ, and the
U(1)F flavor symmetry. This anomaly implies that again in the effective theory on M3 × S1

(that is at energies of order 1/R), the U(1)F flavor symmetry is broken to a non-invertible
11We will actually focus mainly on the theory with additional matter designed to cancel the ABJ anomaly

involving the R-symmetry, but both this and the original theory have these structures.
12Note that further introducing a twist by the U(1)F flavor symmetry (i.e. U(1)F twisted compactification)

does not lead to an additional anomaly. To see this, suppose the holonomy of U(1)F along S1 is ΣF =
∫

S1 AF .
Then (1.1) induces the 5d term kΣF

2

∫
c2

1(G), which is not an anomaly in the absence of time reversal symmetry.
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symmetry whose invertible subgroup is Zk. In the regime that the scalar is compact and
the 1-form symmetry survives, this non-invertible symmetry can be understood by several
complementary perspectives: (1) starting from this ABJ-like anomaly and stacking with the
appropriate TQFT; (2) half-space gauging a finite subgroup of the 1-form winding symmetry
generated by dσ and magnetic 0-form symmetry generated by c1(G) directly in the effective
3d theory; and (3) by directly compactifying the topological defect on the circle. Notably,
in the R → 0 limit this term explicitly trivializes, and as we will explain in more detail in
section 5.3, these features are no longer present in the IR theory.

We similarly consider the reduction of the global-global-gauge anomaly (1.2). Integrating
over the circle yields the following effective inflow action,

Ainf
4 ⊃ κ

4π

∫
M4

AF ∧ c1(F ) ∧ dσ . (2.5)

This term is canceled by precisely the same 2-group structure (1.4). However, we emphasize
again that this term explicitly goes to zero in the limit that the radius of the circle is
taken to zero.

2.2.4 Regarding the fate of symmetries in dimensional reduction

The above discussion suggests that most of the generalized symmetry structure we observe
in 4d is lost once we compactify to 3d. Central to this claim is that the shift 0-form and
winding 1-form symmetries are usually lost once we flow to the IR (specifically, integrating
out the KK tower). However, we emphasize that this conclusion is based on a Lagrangian
gauge-theory description, and still leaves open the question of what happens when there
is no such description.

For instance, consider 4d N = 4 super Yang-Mills. This theory possesses a conformal
manifold parameterized by the complex coupling, and electric-magnetic duality generically
maps the theory with one value of the coupling to another with a different value, changing
the global form of the gauge group. The theory with gauge group SU(N) has an electric
Z(1)

N 1-form symmetry, while the SU(N)/ZN version instead has a magnetic Z(1)
N symmetry.

If we compactify the weakly-coupled SU(N) version to 3d, then we expect the low-energy
theory to have a Z(1)

N 1-form symmetry, with the 0-form shift symmetry broken. However, if
we compactify the weakly-coupled SU(N)/ZN version, then we expect to get a Z(0)

N 0-form
symmetry, now losing the 1-form winding symmetry.13 So, what symmetry do we expect to
get if we reduce this 4d SCFT on some random point on the 4d conformal manifold where
no Lagrangian description exists? The naive expectation from reducing the gauge theory
is not sufficient to answer this question.

2.3 Reducing from 4d to 2d

We now proceed with a discussion of the compactification of 4d theories to 2d on S2 in the
presence of fluxes for flavor symmetries U(1)F and abelian gauge symmetries U(1)G, whose

13Notice that these two weakly-coupled theories (which have the familiar Lagrangian descriptions) are not
dual to each other, and neither are the theories obtained by compactifying them to 3d. Instead, the dual of
each version of the weakly-coupled theory is given by the other version at strong coupling.
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mixed anomalies imply non-invertible and 2-group symmetries in 4d. In section 6, we will
then consider the example of the reduction of the 4d N = 1 U(Nc) SQCD to 2d on a sphere,
showing how all the features discussed in this section manifest.

2.3.1 Reducing the 1-form symmetry

First let us consider the fate of the 1-form symmetry when compactifying the theory on
M2 × S2. The 4d gauge connection f4d reduces to its 2d counterpart f2d, and its flux∫

S2 c1(G) on the compact space yields a (would-be) dynamical integer-valued scalar. The
2-form background gauge field B4d reduces to a 2-form B2d which enacts the would-be 2d
1-form symmetry, and its holonomy

∫
S2 B4d reduces to a scalar which generates a (−1)-form

symmetry, whose corresponding current is j ∼ ⋆f2d.
Generically, as we argued in section 2.1, the full 2d theory consists of the direct sum

of theories with all different integer-valued gauge fluxes [58]. In the deep IR these different
vacuum sectors should have zero overlap, and one can consider a vacuum labeled by a
fixed gauge flux. In fact, for abelian gauge groups, it is possible to physically realize this
choice as follows. We can consider gauging a Zp subgroup of the magnetic 1-form symmetry.
This eliminates monopole configurations from the sum whose charge is not divisible by p.
Additionally, we gain a new electric Zp 1-form symmetry, and can consider introducing a
holonomy for it on the sphere. This holonomy fixes the value of the magnetic flux modulo
p. This then allows us to fix the magnetic charge if p is taken to be sufficiently large.14

Note that this would not work for monopoles in non-abelian symmetries such as SU(N),
where the ’t Hooft lines do not carry a 1-form symmetry charge. While one still expects
the fixed-charge vacuum to give a well defined theory in such cases, it is not clear how one
can isolate this vacuum in a physical construction.

It is interesting to consider what happens to the 2d 1-form symmetry in the fixed-
flux sector. Recall that the topological operator for it is given by the 4d one (2.2), Γ ∼
exp(iα

∫
S2 c1(G)), wrapping the 2-sphere. However,

∫
S2 c1(G) is fixed in this sector so that

the topological operator appears to become non-dynamical. This suggests that the 2d 1-form
symmetry acts trivially once we focus on a vacuum labeled by a fixed gauge flux. We therefore
expect that neither the 2-group structure nor the non-invertible symmetry will be present
in the IR limit of the compactification, though we shall next show that they still leave an
imprint on the resulting 2d theory.

2.3.2 Reducing the anomaly polynomial

Let us next consider what we can learn from the reduction of the anomaly polynomial of
the 4d theories on S2. We note the following possible behaviors:15

14In practice, the sum over monopole charges appears to eventually truncate so only a finite value of p is
needed, see [58].

15For the purpose of streamlining the discussion we will take (1.1) and (1.2) as our starting point; the
generalization to multiple flavor symmetries of the form (1.5) is straightforward.
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1. First consider a 4d theory with a 2-group originating from the anomaly term (1.2), and
compactify it on S2 with a fixed gauge flux,∫

S2
c1(G) = mG . (2.6)

Integrating (1.2) in the presence of (2.6) yields the following term in the 2d anomaly
polynomial,

I4 ⊃ 1
2κmGc1(F )2 . (2.7)

In other words, the 2-group structure in 4d has reduced in the presence of a gauge flux
to an ’t Hooft anomaly for the 2d remnant of the U(1)F flavor symmetry.

2. Next consider a 4d theory with the same anomaly (1.2), and this time compactify with
a flavor flux, ∫

S2
c1(F ) = mF . (2.8)

Integrating the anomaly polynomial this time yields the 2d gauge anomaly term,

I4 ⊃ κmF c1(F )c1(G) . (2.9)

In other words, the 2-group structure in 4d has reduced after compactification with a
flavor symmetry flux to the anomalous breaking,

U(1)F → Z|mF κ| . (2.10)

3. Now consider the non-invertible symmetry from (1.1), whose invertible part is Zk. In
the presence of the ABJ anomaly (1.1) it does not make sense to compactify with
a non-trivial flavor flux

∫
S2 c1(F ) = mF , as this gives a pure gauge anomaly of the

2d theory I4 ⊃ 1
2kmF c1(G)2, and so we consider only the case of non-trivial gauge

flux. When we compactify with a gauge flux
∫

S2 c1(G) = mG, integrating the anomaly
polynomial yields,

I4 ⊃ kmGc1(F )c1(G) , (2.11)

and therefore an ABJ anomaly in 2d. In other words, if we compactify with gauge flux
a 4d theory with a non-invertible symmetry resulting from an anomaly (1.1), we obtain
in 2d the following anomalous breaking to a discrete invertible symmetry,

U(1)F → Z|mGk| . (2.12)

4. When compactifying the 4d theory with non-invertible symmetry from (1.1) and no
flux for either U(1)F or the gauge symmetry, there is no general statement and the
result will depend on the details. If the 1-form symmetry that participates in the half-
space gauging construction of the non-invertible symmetry trivializes in 2d, then the
non-invertible symmetry would generally become invertible, much as in our discussion
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of the 4d non-invertible symmetry on a circle. This is the case for all the examples
considered in this work.16

These expectations obtained by integrating the anomaly polynomial can also be motivated
otherwise. We will next discuss different such ways of analyzing the outcome of reducing
generalized symmetries on a sphere, and thereby reproduce the expectations presented above
in a gauge-independent setting. Moreover, in section 6 we will verify these expectations in
the example of 4d N = 1 U(Nc) SQCD compactified on a sphere to 2d.

2.3.3 Reducing the background fields

Consider the scenario of the second bullet point 2 above, reducing the 2-group with a non-zero
flavor flux

∫
S2 c1(F ) = mF . Integrating the 2-group transformation (1.3) on the sphere, and

denoting Φ =
∫

S2 B4d, we see that17

Φ → Φ− κmFλ mod 2π . (2.13)

In the 2d theory, Φ =
∫

S2 B4d is the holonomy of the magnetic 1-form symmetry on the
compact surface, which is a constant mod 2π — changing it would change the theory, as per
the discussion around (2.2). This implies λ ∈ 2π

κmF
Z. We thus see that U(1)F is broken to

Z|κmF |, in accordance with the expectation from directly integrating the anomaly polynomial.
We can similarly consider reducing the 2-group with a non-zero gauge flux as per the first

bullet point 1 above, following the similar discussion in [35]. Here we want to consider the 2d
theory obtained in a fixed-flux sector. For this, we formally set c1(G) = mGe2(S2) + c1(G)2d,
where e2(S2) is a unit 2-form on the sphere and c1(G)2d is only valued on the 2d spacetime
(see appendix D.1 for our conventions). We note that the coupling

∫
M4

B4dc1(G) between the
2-form background field for the magnetic 1-form symmetry and the magnetic charge now leads
to the counterterm mG

∫
M2

B2d in the 2d action expanded around the fixed-flux vacuum. Due
to the 2-group transformation law (1.3), this term leads to an anomalous shift under U(1)F

transformations of the form: −mG
2 κ

∫
M2

λc1(F ). This term signals the presence of an ’t Hooft
anomaly of the form 1

2mGκc
2
1(F ), as expected from integrating the anomaly polynomial.

2.3.4 Reducing the topological defects

Another approach for investigating the fate of generalized symmetries under compactification
is to reduce the defects that generate them. Let us begin by considering the first bullet point 1
corresponding to reducing a 2-group symmetry with gauge flux, and examine a junction
of topological defects associated with U(1)F . We can then consider performing an F-move.
That is, we take three of the codimension-one topological defects associated with U(1)F ,

16One might expect that with the right twisted compactification, there are cases for which the non-invertible
symmetry survives as a 2d non-invertible symmetry. We leave the exploration of such examples to future work.

17An alternative way to find (2.13) is by reducing the 2-group bundle constraint (1.4). Denote
∫

S2 H = Σ.
Integrating both equations in (1.4) on S2, we get

Σ = dΦ + κmF AF , dΣ = 2πκmF c1(F ) .

Since H, hence Σ, is invariant under gauge transformations AF → AF → dλ, the transformation of Φ is given
as (2.13).
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Figure 1. An illustration of the reduction of a 2-group structure in 4d to an ’t Hooft anomaly in 2d.
The upper picture illustrates the 4d case while the lower one describes the 2d case. The lines represent
the topological operators of the 0-form symmetry in the 2d spacetime (in 4d these fill the 2 compact
directions that are suppressed in the picture). In 4d, performing the F-move generates the topological
operator associated with the 1-form symmetry, illustrated as the blue dot (here again extending in the
2 compact directions). When reducing on the compact surface, Σ, with fixed gauge flux, this implies
that performing the F-move in 2d leads to a phase, which is the manifestation of an ’t Hooft anomaly.

such that they are parallel in two directions but not in the third. We then consider the
transition from merging 1+2 into 3, to merging 1 with 2+3 (see figure 1). In a 2-group, this
transition results in the generation of the codimension-two topological defect associated with
the 1-form symmetry oriented in the two directions shared by the three codimension-one
topological defects. Now consider compactifying the system on a 2-surface spanning the
two shared directions of all four topological defects. The codimension-one defects would
just reduce to the 2d codimension-one defects generating the 2d U(1)F . As such we get a
similar F-move junction also in 2d. However, note that the codimension-two defect now fully
wraps the 2d surface, and since we consider a gauge flux on the 2d surface it will lead to a
phase.18 This just describes the 2d F-symbols expected from an ’t Hooft anomaly in the
flavor symmetry. As such we see that reducing a 2-group in the presence of gauge fluxes
(fixed charge for the 1-form symmetry on the surface) leads to a standard direct product,
but with an ’t Hooft anomaly for the 0-form symmetry.

Let us next turn to the third bullet point 3 above corresponding to reducing a non-
invertible symmetry on a sphere with gauge flux, and analyze the fate of the symmetry using

18Recall that the topological defect is formally defined as
∫

Σ c1(G) on the surface, where for us Σ = S2. As
such in the fixed-flux sector, it reduces to a fixed phase.
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the explicit description of the defect in terms of its worldvolume theory. Specifically, we
consider the non-invertible axial defect of a 4d theory with the ABJ anomaly (1.1), and
its compactification on a sphere, with a fixed gauge flux mG for the U(1)G factor of the
gauge group on the sphere,

∫
S2 c1(G) = mG. The anomaly (1.1) leads to the following

non-conservation of the axial current jA
(4d),

d ⋆ jA
(4d) =

k

2 c1(G)
2 . (2.14)

We take the 4d spacetime to be M2 × S2 such that the three-dimensional defect wraps the
S2 and one of the cycles of M2, i.e. S1 ⊂M2. Everywhere we assume that M2 is much larger
than S2. For axial rotations by an angle of α = 2πn

k for n ∈ Zk, the topological defects,

D(4d)
2πn

k

= exp
[
i

∫
S2×S1

(2πn
k

⋆ jA
(4d) −

n

4πa ∧ da
)]

(2.15)

generate an invertible Zk subgroup of the anomalously broken U(1)A axial symmetry (we
generally reserve lowercase letters for dynamical gauge fields). However, as shown in [26, 27],
in addition to the invertible defects in (2.15) there are non-invertible ones that generate
more general axial rotations by angles α = 2πp

Nk for coprime p and N . The explicit form
of the non-invertible defect is given by,

D(4d)
2πp
Nk

= exp
[
i

∫
S2×S1

(2πp
Nk

⋆ jA
(4d) +AN,p [da/N ]

)]
, (2.16)

where AN,p [B] is the Hall state TQFT which has a Z(1)
N 1-form symmetry (with background

2-form ZN gauge field B) and an ’t Hooft anomaly labeled by p [59].
Let us now analyze the reduction of the 4d axial defects to 2d, starting with the invertible

ones in (2.15). In this case we can readily see that the resulting defects in 2d obtained by
reducing on the sphere with gauge flux mG are given by

D(4d)
2πn

k

→ exp
[
i

∫
S1

(2πn
k

∗ jA
(2d) − nmGa

)]
, (2.17)

where jA
(2d) = ∗

∫
S2 ⋆jA

(4d) is the 2d axial current and ∗ the 2d Hodge star (in contrast to
the 4d one ⋆). In order to identify the group that these defects span, and to compare it
with the axial anomaly as viewed from the 2d perspective, let us first recall the form of the
defects that generate the discrete subgroup left over by a 2d axial anomaly. The anomaly
equation in 2d takes in general the form,

d ∗ jA
(2d) = k2dc1(G) , (2.18)

and results in the 2d U(1)A axial symmetry being broken to Zk2d
. The defects that realize

this invertible discrete symmetry are then given by19

D(2d)
2πℓ
k2d

= exp
[
i

∫
S1

(2πℓ
k2d

∗ jA
(2d) − ℓa

)]
, ℓ ∈ Zk2d

. (2.19)

19Although the U(1) Wilson line is not topological, as discussed in section 2.1, the combination of the two
terms in this expression is topologically invariant due to the modified conservation equation (2.18).
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Matching (2.19) with (2.17) we find that k2d = mGk, and that the defects in (2.17) resulting
from 4d generate only those elements of Zk2d

corresponding to the Z k2d
mG

= Zk ⊂ Zk2d
subgroup.

In order to obtain the rest of the elements in the Zk2d
group, we need to reduce the 4d

non-invertible axial defects in (2.16) associated with gauging a Z(1)
N subgroup of the magnetic

1-form symmetry. To do so we use the following Lagrangian description of the Hall state
TQFT AN,p (see e.g. [60] and appendix C of [61]) and of the defect (2.16),

D(4d)
2πp
Nk

=
∫
Da⃗ exp

[
i

∫
S2×S1

(2πp
Nk

⋆ jA
(4d) +

1
4π a⃗tK ∧ da⃗ + 1

2π a⃗tv⃗ ∧ da
)]

(2.20)

where the matrix K and the vector v⃗ are given by

K =



+k1 1 0 0 0 · · ·
1 −k2 1 0 0 · · ·
0 1 +k3 1 0 · · ·
0 0 1 −k4 1 · · ·
...

...
...

...
... . . .


, v⃗ = (1, 0, 0, . . .) (2.21)

and are related to the parameters p and N as follows,

p/N = v⃗ tK−1v⃗ . (2.22)

Notice also that a⃗ in (2.20) is a vector of gauge fields living only on the defect, to be
distinguished from the dynamical U(1) gauge field a that lives on the entire M2 × S2. Then,
denoting the flux of a⃗ over the S2 by m⃗, we find at distances much larger than the size of S2,

D(4d)
2πp
Nk

→ exp
(
i
2πp
Nk

∫
S1

∗jA
(2d)

)∑
m⃗

eim⃗tv⃗
∫

S1 a
∫
Da⃗ ei(m⃗tK+mGv⃗t)

∫
S1 a⃗

= exp
(
i
2πp
Nk

∫
S1

∗jA
(2d)

)∑
m⃗

eim⃗tv⃗
∫

S1 aδ0,Km⃗+mGv⃗ (2.23)

where δ0,Km⃗+mGv⃗ is defined as follows,20

δ0,Km⃗+mGv⃗ ≡ δ0,(Km⃗+mGv⃗)1δ0,(Km⃗+mGv⃗)2 · · · (2.24)

and fixes the sum over m⃗ to m⃗ = −mGK
−1v⃗. Substituting back to (2.23) we find

D(4d)
2πp
Nk

→ exp
(
i
2πp
Nk

∫
S1

∗jA
(2d)

)
e−imGv⃗tK−1v⃗

∫
S1 a (2.25)

which using (2.22) can be put in the form21

D(4d)
2πp
Nk

→ exp
[
i

∫
S1

(2πp
Nk

∗ jA
(2d) −

mG

N
pa

)]
. (2.26)

20More explicitly, we have δ0,Km⃗+mGv⃗ = δ0,k1m1+m2+mG δ0,m1−k2m2+m3 δ0,m2+k3m3+m4 · · · .
21It is tempting to derive (2.26) from the presentation of the axial defect using the improperly-quantized

Chern-Simons term,

exp
[

i

∫
S2×S1

(2πp

Nk
⋆ jA

(4d) −
p

4πN
a ∧ da

)]
.

Upon reduction to 2d on a sphere with gauge flux
∫

S2
da
2π

= mG we still get the same expression for the
invertible defect exp

[
i
∫

S1

( 2πp
Nk

∗ jA
(2d) −

mG
N

p a
)]

, and the condition of N |mG in (2.27) can be inferred from
the invariance under large gauge transformations

∫
S1 a →

∫
S1 a + 2π.
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Notice that in order for the fluxes m⃗ to be integers in this computation, N should divide mG.
Comparing now (2.26) with (2.19) we find again that k2d = mGk and obtain the final result,

D(4d)
2πp
Nk

→

exp
[
i
∫

S1

(
2π
k2d

mG
N p ∗ jA

(2d) −
mG
N p a

)]
N |mG

0 N ∤ mG

(2.27)

in which the elements of Zk2d
that are not captured by (2.17) are realized. We therefore

reproduce the entire invertible Zk2d
= ZmGk group in 2d.

In summary, we see that the 4d non-invertible axial defects reduce in the presence of
a nonzero gauge flux on the sphere to invertible axial defects in 2d, in such a way that the
anomaly we can associate to them (responsible for the breaking of the U(1) group from the
2d perspective) is given by the 4d anomaly coefficient k multiplied by the gauge flux.

Let us finally comment on the case of a vanishing gauge flux, discussed in bullet point 4.
In this case, we can substitute mG = 0 in (2.26) and are left with 2d invertible axial rotations
by any rational angle that we had in 4d. Therefore, the Q/Z non-invertible symmetry reduces
in 2d to a Q/Z invertible symmetry.22

2.4 Comments on reducing dualities

Another issue we will examine is how the reduction of the generalized symmetry structure
interplays with the reduction of 4d dualities to 3d or 2d dualities. Suppose that two field
theories participate in an IR-type duality in four dimensions, meaning that at energies much
smaller than their respective strong-coupling scales, they flow (within some conformal window
of parameter space) to the same conformal fixed point. Let us denote these theories by TA

and TB , whose strong coupling scales ΛA,B satisfy Λb = e−8π2/g2
4d , for b the appropriate 1-loop

β-function coefficient and g4d the running coupling. The statement of duality is that both
TA and TB are described by the same CFT T∗ at energies which satisfy,

E ≪ ΛA, ΛB . (2.28)

While the microscopic description may look very different on either side of the duality, in
order for the duality to be consistent both TA and TB must share the same global symmetries.
In particular, if theory TA enjoys a non-invertible symmetry, then for the duality to hold it
must be true that theory TB shares the same non-invertible symmetry.

The prototypical example of such a duality is Seiberg duality of 4d N = 1 SQCD with
gauge group G = SU(Nc) or U(Nc) [62]. The U(Nc) theory has an ABJ anomaly of the
form (1.1), which involves the baryonic U(1)B part of the gauge group, and the U(1)R

symmetry. We will generally consider the pair of dual theories with additional matter fields
transforming in the determinant representation of the gauge group, designed to cancel the
anomaly involving U(1)R in favor of a global U(1)I symmetry under which the determinant
matter is charged. Then, the theories enjoy a non-invertible symmetry implementing U(1)I

symmetry rotations by a rational angle, while still preserving a continuous R-symmetry. In
section 4.2, we will explicitly demonstrate how the non-invertible symmetry defects of the
four-dimensional theories map across the duality.

22In all the examples considered later the Q/Z invertible symmetry is enhanced to a U(1) symmetry in 2d.
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Now, we consider placing the 4d theories on a manifold M3 × S1, denoting the radius of
S1 by R. As was emphasized in [63], in the most naive dimensional-reduction limit whereby
the radius is taken to zero with the 3d couplings g23d = g24d/(2πR) kept finite, we would obtain
two 3d theories T 3d

A/B that flow to distinct SCFTs at low energies E ≪ g23d,A, g
2
3d,B. In order

to obtain a 3d IR duality in which the two theories flow to the same fixed point, we should
instead consider a “less naive” compactification limit in which one keeps the radius finite
while considering energy scales much smaller than the KK scale 1/R,

E ≪ ΛA, ΛB,
1
R
. (2.29)

In this limit, the two theories flow to the same effectively three-dimensional SCFT T 3d
∗ .

Another way to see why this is the case is that the effective 3d dual pairs that flow to
T 3d
∗ must also share the same global symmetries. However, as we will see below, it is not

naively obvious in this construction that the global symmetries automatically match. The
underlying reason is the same one that we have emphasized in section 2.2: it is only in
the limit that the scalar σ =

∮
S1 a decompactifies — in which case the 1-form symmetry

trivializes, and the 2-group structure and non-invertible symmetries that were present in
4d are lost — that the effective 3d theories are dual.

One can also try to look for two intrinsically three-dimensional theories that flow to the
SCFT T 3d

∗ in the IR and are thus dual. As discussed in [63, 64], these are usually obtained
by deforming the theories T 3d

A/B coming from the naive dimensional-reduction limit by a
suitable monopole superpotential. This deformation has in particular the effect of breaking
certain symmetries in the theories T 3d

A/B that accidentally arise in the naive reduction of the
4d theories TA/B and that prevent them from being dual.

Next we consider compactifying the 4d dual theories on S2. These types of compactifica-
tions have been discussed e.g. in [58, 65] (see also [66–68]). Again, it is only in the limit (2.29)
that the effective 2d theories are expected to flow to the same SCFT T 2d

∗ , where now R is the
radius of the S2. Hence, the 2d theories T 2d

A/B obtained from a naive dimensional reduction
of TA/B on S2 above their strong-coupling scales will in general not be dual. Similarly to
the reduction to 3d discussed above, this is usually related to the emergence of accidental
symmetries in the dimensional reduction. Unfortunately, in this case it is less clear how the
theories T 2d

A/B can be deformed to obtain two genuinely dual 2d theories that flow to the same
SCFT T 2d

∗ to which also the effective 2d theories arising from the limit (2.29) flow. However,
it is often the case that in the reduction there are no accidental symmetries, and the theories
T 2d

A/B obtained from the naive dimensional reduction are still dual.23

3 Reducing the symmetry topological field theory

In section 2, we described several approaches for analyzing the reduction of generalized
symmetries on S1 and S2, including the reduction of the 5d anomaly inflow action or
anomaly polynomials, and making use of the background fields and the topological defects

23One should be careful when the 2d theories have non-compact directions in the target space, see e.g. [69, 70],
however we do not discuss this here. This issue can be avoided by considering the duality between the massively
deformed theories, where most of the vacua are lifted so that we are left with discrete isolated vacua.
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corresponding to a certain generalized symmetry. One loophole of the discussion so far is that
the 2-group structure and non-invertible symmetry are discussed separately, i.e. either k = 0 or
κ = 0, and their interplay has not been addressed. When both k and κ are non-vanishing, not
only does the expression of the non-invertible defect (2.16) gets modified, but also the junction
between three such defects, as well as higher-codimensional junctions between four such defects
(associated with the F -move), are also modified depending on κ and the cubic self anomaly,
kF 3 . The detailed discussion of these higher structures can be very complicated, see [53] for
extensive discussions. In this section we take an alternative route, by taking advantage of the
recently developed Symmetry TFT (SymTFT) for continuous symmetries [48–50, 71, 72], as
a convenient tool for studying the higher structure of the non-invertible symmetry.

As mentioned in the introduction, a natural generalization of the relation between
anomaly theories under compactification is that their SymTFTs should be related by a
similar dimensional reduction. Here we shall show how one can indeed recover the previous
statements by reducing the 5d SymTFT, describing the 2-group structure or non-invertible
symmetry and their anomalies, on S2.24

3.1 Symmetry TFT and boundary conditions

We begin by specifying the SymTFT and its topological boundary conditions for the 4d theory
with Q/Z axial symmetry. Such a SymTFT was recently found in [73, 74] (see also [72]),
and here we will follow the description in [73].

We start with the SymTFT of a U(1)G × U(1)F 0-form global symmetry, where the 6d
anomaly polynomial and 5d anomaly inflow action obtained by descent are

I6 =
k

2 c1(G)
2c1(F ) +

κ

2 c1(G)c1(F )
2 + kA3

6 c1(F )3 ,

Ainf
5 =

∫
X5

(
k

2AF c1(G)2 +
κ

2AF c1(F )c1(G) +
kF 3

6 AF c1(F )2
)
, (3.1)

where AF is the background gauge field for U(1)F . We have introduced the self ’t Hooft
anomaly coefficient kF 3 for the classical U(1)F symmetry. The SymTFT is obtained by
gauging the U(1)G × U(1)F global symmetry, leading to,

S5 =
∫

X5

( 1
2πb3 ∧ da1 +

1
2πb′3 ∧ da′1 +

k

8π2a1 ∧ da
′
1 ∧ da′1

+ κ

8π2a1 ∧ da1 ∧ da
′
1 +

kF 3

24π2a1 ∧ da1 ∧ da1
)
.

(3.2)

Since there are many fields with various degrees, in this section we introduce subscripts to
denote the form degree. The fields labeled by standard fonts such as ai, a

′
i are U(1)-valued

gauge fields, while those labeled by mathsf fonts such as bi, b′i are R-valued fields. The
U(1)G × U(1)F global symmetry is obtained by specifying the Dirichlet boundary conditions
for a1 and a′1.

We then gauge the U(1)G symmetry in 4d. Unlike the finite symmetry case where it is
sufficient to change the topological boundary condition while keeping the SymTFT unchanged,

24As alluded to in section 2.2, in the strict 3d limit the interesting generalized symmetries decouple. We
therefore focus on the S2 compactification only.
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for the continuous symmetry, the SymTFT needs to be modified as well. Following the
discussion in [73], we simply need to change

da′1 → f2, b′3 → db2 . (3.3)

The SymTFT of the Q/Z non-invertible symmetry and 1-form symmetry is then,

S5 =
∫

X5

( 1
2πb3 ∧ da1 +

1
2π f2 ∧ db2 +

k

8π2a1 ∧ f2 ∧ f2

+ κ

8π2a1 ∧ da1 ∧ f2 +
kF 3

24π2a1 ∧ da1 ∧ da1
)
.

(3.4)

The boundary condition is modified to the Dirichlet boundary condition for a1, b2.
To see the global symmetry after gauging U(1)G, we study the topological operators

in the SymTFT (3.4). Those that are not trivialized by the Dirichlet boundary condition
when pushed to the boundary become the topological defects of the global symmetry. One
way to determine the topological operators is to impose gauge invariance. We first find the
gauge transformation of a1, b2, b3, f2 under which the action (3.4) is gauge invariant, and then
identify the operators invariant under gauge transformations. Another easier, and equivalent,
way to determine the topological operators is to use the equations of motion,

da1 = 0 , db2 +
k

2πa1 ∧ f2 +
κ

4πa1 ∧ da1 = 0 ,

df2 = 0 , db3 +
k

4π f2 ∧ f2 +
κ

2πda1 ∧ f2 +
kF 3

4π da1 ∧ da1 = 0 . (3.5)

We thus derive the topological defects

Wn[γ1] = exp
(
in

∫
γ1
a1

)
, Tn[γ2] = exp

(
in

∫
γ2
b2

)
Bn[γ2; a1, f2] ,

Vα[γ2] = exp
(
iα

∫
γ2

f2
)
, Up,N [γ3] = exp

(
i
p

Nk

∫
γ3

b3
)
Ap,N [γ3; f2] , (3.6)

where n, p,N ∈ Z and α ∈ U(1).
Let us comment on the properties of these operators. First, both Wn and Vα are invertible

operators. For Tn, the first factor ein
∫

b2 is invertible, while the second factor Bn[γ2; a1, f2]
is a 2d TQFT coupled to a1 and f2 fields with the anomaly kn

2πa1 ∧ f2, so that its anomaly
cancels the contribution of the b2 field coming from its equation of motion. A representative
example is a Zkn gauge theory. Finally, for the operators Up,N , the second factor Ap,N [γ3; f2]
is a 3d TQFT coupled to f2 field with the anomaly p

4πN f2 ∧ f2. The fact that these operators
are topological follows from the equations of motion. Notice that the first equation in (3.5)
implies that these defects depend only on the coefficient k (and not on κ and kF 3).

With the chosen boundary conditions the operators Wn and Tn are trivialized when
taken to lie on the boundary, and thus do not survive as topological operators in the 4d field
theory. They can, however, end on the boundary, giving rise to a local operator charged under
the axial symmetry and to an ’t Hooft line charged under the magnetic 1-form symmetry,
respectively. Meanwhile, the operators Vα and Up,N can be pushed to the boundary and
result in the 1-form and Q/Z axial non-invertible topological defects. The properties of the
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topological defects, e.g. fusion rules and F-symbols, can be analyzed in principle, but they
are beyond the scope of this paper. We will be mainly interested in how the symmetries
reduce upon compactification, which will be explained in the subsections below.

3.2 Reducing on S2 with gauge flux

We would next like to compactify the SymTFT (3.4) to 2d on a sphere with gauge flux
mG for the gauge field of the boundary theory. Since the bulk operator Vα corresponds
to the magnetic 1-form symmetry operator on the boundary, the gauge flux mG implies a
corresponding holonomy for f2 on the sphere,∫

S2
f2 = 2πmG . (3.7)

Taking X5 = X3×S2, we therefore obtain (assuming a vanishing flux for a1 since we assumed
zero flavor flux),

S3 =
∫

X3

( 1
2πb1 ∧ da1 +

1
2π f2 ∧ db0 +mGdb2 +

kmG

2π a1 ∧ f2 +
κmG

4π a1 ∧ da1
)
, (3.8)

where
b1 =

∫
S2

b3 , b0 =
∫

S2
b2 . (3.9)

The boundary condition is the Dirichlet boundary condition for a1, b0, b2. Note that the third
term in (3.8) is a total derivative and hence can be dropped.

In order to interpret (3.8) as the SymTFT of a 2d theory and match it with our previous
analysis, let us first find the SymTFT of a 2d theory with an anomalous axial symmetry.
Following [73], we start from the 3d SymTFT for two 0-form global symmetries U(1)G×U(1)F

with a mixed anomaly, and a self anomaly of U(1)F ,

S ′
3 =

∫
X3

( 1
2πb1 ∧ da1 +

1
2π c1 ∧ dv1 +

k2d

2π a1 ∧ dv1 +
kF 2,2d

4π a1 ∧ da1
)
, (3.10)

and then gauge U(1)G, which amounts to replacing dv1 → f2 and c1 → db0 for f2 an R 2-form
field and b0 a compact scalar (see [73] for more details). We then obtain the SymTFT,

S3 =
∫

X3

( 1
2πb1 ∧ da1 +

1
2π f2 ∧ db0 +

k2d

2π a1 ∧ f2 +
kF 2,2d

4π a1 ∧ da1
)

(3.11)

with Dirichlet boundary conditions for a1, b0. The mixed anomaly implies that the global
symmetry U(1)F is anomalously broken to Z|k2d|. Moreover, the self anomaly of U(1)F implies
the self anomaly for Z|k2d| valued in kF 2,2d mod k2d.

Comparing (3.8) with (3.11), we see that the SymTFTs indeed match under the com-
pactification, with the identification

k2d = kmG, kF 2,2d = κmG . (3.12)

The 4d non-invertible symmetry reduces to a Z|k2d| = Z|kmG| invertible symmetry in 2d.
Moreover, the 2-group structure of the non-invertible symmetry, which depends on κ, reduces
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to the self anomaly of Z|kmG|, valued in κmG mod kmG. The self-anomaly of the non-
invertible symmetry in 4d does not influence the properties of the symmetries in 2d. There
is also a (−1)-form symmetry generated by eiα

∫
f2 which does not mix with the discrete

0-form symmetry.
The above result automatically contains the special cases discussed in section 2.3. When

k = 0 and κ ̸= 0, the U(1)F symmetry in 4d reduces to a U(1)F symmetry in 2d, and the 2-
group structure in 4d reduces to a self anomaly of U(1)F in 2d. When κ = 0 and k ̸= 0 instead,
the non-invertible symmetry in 4d reduces to an invertible symmetry in 2d, again as expected.

3.3 Reducing on S2 with flavor flux

We finally compactify the SymTFT (3.4) to 2d on a sphere with flavor flux mF . Since the
bulk field a1 reduces to the background field for the flavor symmetry AF by imposition
of the Dirichlet boundary conditions, the flavor flux mF implies a corresponding flux for
a1 on the sphere, ∫

S2
da1 = 2πmF . (3.13)

Taking X5 = X3 × S2, we therefore obtain (considering a vanishing holonomy for f2 since
we assumed zero gauge flux),

S3 =
∫

X3

(
mF b3 +

1
2πb1 ∧ da1 +

1
2π f2 ∧ db0 +

kmF

4π CS(f2)

+ κmF

2π a1 ∧ f2 +
kF 3mF

4π a1 ∧ da1

) (3.14)

where

b1 =
∫

S2
b3, b0 =

∫
S2
b2 . (3.15)

We have defined CS(f2) by dCS(f2) = f2 ∧ f2, which is possible since f2 is an R-valued field.
Since we are interested in the case with Dirichlet boundary conditions for a1, b0, a1, it is only
possible for f2 to have Neumann boundary condition. The action (3.14) is compatible with
this boundary condition only when kmF = 0, since otherwise the term CS(f2) would indicate
that the gauge symmetry is anomalous in 2d, which is inconsistent with the observation in
bullet point 3. Below, we thus assume k = 0, that is we are only interested in an invertible
2-group symmetry. Further noting that the first term in (3.14) decouples from the rest of
the terms, the SymTFT (3.14) reduces to

S3 =
∫

X3

( 1
2πb1 ∧ da1 +

1
2π f2 ∧ db0 +

κmF

2π a1 ∧ f2 +
kF 3mF

4π a1 ∧ da1
)
. (3.16)

Comparing (3.16) with (3.11), we obtain,

k2d = κmF , kF 2,2d = kF 3mF . (3.17)

This result means that the invertible continuous 2-group symmetry whose Postnikov class
is related to κ and whose self anomaly is related to kF 3 in 4d, reduces to a discrete Z|κmF |
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symmetry with self anomaly kF 3mF mod κmF in 2d. There is also a (−1)-form symmetry
generated by eiα

∫
f2 which does not mix with the discrete 0-form symmetry. These results

are again consistent with the special case kF 3 = 0 and κ ̸= 0 discussed in section 2.3.

4 4d N = 1 supersymmetric QCD with U(Nc) gauge group

In the rest of this work we will focus on a series of specific examples of 4d gauge theories and
their dimensional reductions that exhibit the general features discussed in sections 2 and 3.
In this section we begin by reviewing the symmetries of 4d N = 1 supersymmetric QCD with
U(Nc) gauge group, focusing on aspects of its generalized symmetry structure.

4.1 Generalized symmetries

We consider 4d N = 1 SQCD in four dimensions, with gauge group U(Nc) and Nf flavors of
fundamental and antifundamental chiral superfields Q, Q̃. At the classical level, the global
0-form symmetries are,

SU(Nf )L × SU(Nf )R × U(1)A × U(1)R

(ZNf
)L × (ZNf

)R × Z2
. (4.1)

Here, U(1)R is the R-symmetry under which the gauginos have unit charge; the SU(Nf )L ×
SU(Nf )R global symmetry corresponds to separate rotations of the Q and Q̃; and U(1)A is
the classical chiral axial symmetry. The charges of the fields under these symmetries are
listed in table 3. The quotient by (ZNf

)L × (ZNf
)R is as the center of the two SU(Nf ) groups

can be mimicked by rotations in U(1)A and the U(1) gauge part. The quotient by the Z2
is as the Z2 part of U(1)A acts identically to the Z2 part of the U(1) gauge group. This
theory is obtained from the one with SU(Nc) gauge group by gauging the baryonic vector-like
symmetry. The model with U(1)B = U(1)V /ZNc gauged possesses a magnetic U(1)(1)M 1-form
symmetry that acts on the ’t Hooft lines associated with U(1)B.

There are several anomalies involving the gauge symmetry, captured by the following
terms in the six-form anomaly polynomial,

I6 ⊃ 2Nfc1(A)c2(U(Nc)) +Nfc1(A)c1(B)2 − c1(R)c1(B)2

+ [c2(SU(Nf )L)− c2(SU(Nf )R)] c1(B) .
(4.2)

In this expression, c1(A) denotes the first Chern class for the classical U(1)A symmetry,
c1(R) for the U(1)R symmetry, and c1(B) for the U(1)B part of the gauge group — see
appendix A for more details on our conventions. Let us discuss each of these anomalies
in turn. Because the second Chern class c2(U(Nc)) is integer-valued on spin manifolds,
the first term in (4.2) implies that the classical U(1)A axial symmetry is broken to Z2Nf

.
Then, the background gauge field AA for this symmetry should be understood as a Z2Nf

gauge field, regarded as a 1-cochain ÂA valued in Z2Nf
and related to the U(1)A uplift as

AA → 2π
2Nf

ÂA (so that 2πÂA is pure gauge). Accordingly, the curvature FA = dAA is to
be understood as the Bockstein homomorphism β(ÂA) ∈ H2(M4,Z), so we should replace
c1(A) = dAA

2π → β(ÂA). As was emphasized in [75], this discrete Z2Nf
subgroup of the axial

symmetry can be absorbed into the (gauged) vector-like U(1)V symmetry, which assigns
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SU(Nc) U(1)V SU(Nf )L SU(Nf )R U(1)A U(1)R U(1)I U(1)t

Q □ 1 □ 1 1 Nf−Nc

Nf
0 0

Q̃ □ −1 1 □ 1 Nf−Nc

Nf
0 0

λ adj 0 1 1 0 1 0 0
Ω± 1 ±Nc 1 1 0 2 1 ±1

Table 3. The charges of the fields under the classical 0-form symmetries of U(Nc) SQCD, including the
fields Ω± in the determinant representation discussed in section 4.3. U(1)R is the classical anomaly-free
R-symmetry. The baryonic gauge symmetry is U(1)B = U(1)V /ZNc

, so that the charges of the fields
under U(1)B are divided by a factor of Nc. The U(1)I and U(1)t symmetries are only present in the
theory with the determinant matter included.

SU(Ñc) U(1)
Ṽ

SU(Nf )L SU(Nf )R U(1)
Ã

U(1)R U(1)I U(1)t

q □ 1 □ 1 1 Nc
Nf

0 0
q̃ □ −1 1 □ 1 Nc

Nf
0 0

M̃ 1 0 □ □ −2 2(Nf−Nc)
Nf

0 0
λ̃ adj 0 1 1 0 1 0 0
Ω̃± 1 ±Ñc 1 1 0 2 1 ±1

Table 4. The charges of the fields under the symmetries of the magnetic dual of U(Nc) SQCD, whose
gauge group is U(Ñc = Nf −Nc). The generators of the dual U(1)

Ṽ
and U(1)

Ã
groups are related to

the electric versions according to (4.12).

charges ±1 to the quark superfields. This is because the composition of a U(1)V rotation with
the action of the (ZNf

)L × (ZNf
)R center of the non-abelian flavor symmetries can always

be chosen to cancel an overall Z2Nf
-valued phase on Q and Q̃.

The remaining global-gauge-gauge anomalies in the first line of (4.2) involve the instanton
number nB for the U(1)B gauge symmetry, which is an integer class on spin manifolds,
written in terms of the U(1)B gauge field aB as,

nB = (daB)2
8π2 = 1

2c1(B)2 ,
∫

M4
nB ∈ Z . (4.3)

Therefore the axial anomaly is trivialized by the previously determined breaking of U(1)A →
Z2Nf

, while the ABJ anomaly involving the R-symmetry implies that U(1)R is partially
broken, with discrete invertible remainder (Z2)R. In our notation from (1.1), kA = 2Nf

for the gauge-axial anomaly in (1.1), and kR = −2 for the gauge-R symmetry anomaly. In
fact, following the arguments of [26, 27] one concludes that the U(1)A symmetry is still
explicitly broken to Z2Nf

as it participates in the mixed anomaly with the non-abelian gauge
symmetry U(Nc), while an R-symmetry rotation by any rational angle πp/q for co-prime
integers p and q is preserved and enacted by a non-invertible topological defect, one argument
for which goes as follows.25

25While previously (around (2.16)) we used p and N for the coprime integers, here we switch to p and q so
as to not confuse with Nc, Nf .
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By itself, the codimension one defect Uα(M3) = exp[iα
∫
M3

⋆jR] that enacts an R-
symmetry rotation by angle α = 2πp

|kR|q = πp
q is not topological due to the ABJ anomaly,

but the composition,

exp
[
iπp

q

(∫
M3

⋆jR − 2
∫

M4
nB

)]
, gcd(p, q) = 1 , M3 = ∂M4 (4.4)

is both gauge-invariant and topological. In order to promote (4.4) into a genuinely three-
dimensional defect that does not depend on the 4d bulk, we stack it with an abelian 3d
TQFT with Z(1)

q 1-form symmetry, whose anomaly is labeled by the integer p ∈ Zq. Every
such TQFT can be decomposed into a minimal one with M4 bulk dependence,26

exp
[
i

(∫
M3

Aq,p(B̂) + 2πp
q

∫
M4

P(B̂)
2

)]
, (4.5)

and one that is neutral under Z(1)
q [59]. Here, P(B̂) is the Pontryagin square operation,

with B̂ ∈ H2(M4,Zq) the background gauge field for the Z(1)
q 1-form symmetry. The four-

dimensional bulk magnetic 1-form symmetry couples with the internal 1-form symmetry
of the degrees of freedom living on the defect, so that by identifying B̂ with c1(B) mod q,
the bulk dependence will precisely cancel that in (4.4). There are thus an infinite number
of non-invertible 0-form defects in the U(Nc) SQCD labeled by the rational numbers p/q,
given by the following,

Dπp
q
(M3) = exp

[
i

∫
M3

(
πp

q
⋆ jR +Aq,p(c1(B))

)]
. (4.6)

As discussed in [26, 27], this non-invertible symmetry can be obtained equivalently by gauging
a Z(1)

q subgroup of the U(1)(1)M magnetic 1-form symmetry, performing the chiral rotation by
the angle πp/q, and then gauging the dual Z(1)

q electric 1-form symmetry.
We comment that one must be careful to account for the non-canonical quantization

of the background R-symmetry gauge field AR in drawing the conclusions of the previous
paragraphs. Since the anomaly-free U(1)R symmetry in table 4 assigns non-integer charges to
the fields, AR should be regarded as a U(1)/ZNf /gcd(Nc,Nf ) gauge field, with flux satisfying,∫

S2
c1(R) ∈ Nf

gcd(Nc, Nf )
Z . (4.7)

This subtlety can be addressed by changing bases to one in which all fields have integral
charges. In such a basis, the canonically normalized background fields AR′ ∼ AR′ + 2π and
AA′ ∼ AA′ + 2π are related to the original ones as,27

AA′ = AA + Nf −Nc

Nf
AR mod 2π , AR′ = AR mod 2π

Nf/gcd(Nc, Nf )
. (4.9)

26A presentation of the Lagrangian density Aq,p in terms of an abelian CS theory was given in appendix C
of [61]. We have already encountered it in section 2.3 in analyzing the S2 reduction of the non-invertible axial
defect.

27The now-integral U(1)R′ and U(1)A′ charges of an operator O are related to the charges in table 3 as,

R′(O) = R(O) − Nf − Nc

Nf
A(O) , A′(O) = A(O) . (4.8)
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A more careful analysis of the anomalies (4.2) in terms of these integer quantized gauge
fields yields the same conclusions that we have presented above, with pertinent anomaly
terms written in (B.2).

Moving on to the second line of (4.2), the presence of anomalies linear in the U(1)B gauge
symmetry implies an extension of the 0-form symmetry participating the mixed anomaly by
U(1)(1)M , as pointed out in [35]. This model then exhibits a 2-group involving the non-abelian
SU(Nf )L/R flavor symmetries

H = dB + 1
4π
(
CS(ASU(Nf )L

)− CS(ASU(Nf )R
)
)
,

dH = 1
4π
(
TrF 2

SU(Nf )L
− TrF 2

SU(Nf )R

)
.

(4.10)

Note that the 2-group structure does not involve the R-symmetry and hence does not mix
with the non-invertible symmetry.

We emphasize that the theory with U(Nc) gauge group has several important features
that are new relative to the case of SU(Nc) gauge group, related to the presence of the U(1)(1)M

magnetic 1-form symmetry. Principally, the theory exhibits the non-invertible defects Dπp
q

,
which implement a Q/Z symmetry which is not present in the SU(Nc) theory. By contrast,
the SU(Nc) ABJ anomaly I6 ⊃ 2Nfc2(SU(Nc))c1(A) cannot be trivialized by stacking with
a TQFT associated to the axial symmetry defect, essentially since π1(SU(Nc)) is trivial
and so the second Chern class cannot be written as a Pontryagin square. Furthermore, the
U(Nc) theory enjoys the 2-group (4.10).

Consequences of the non-invertible symmetry. Let us briefly comment on the implica-
tion of the non-invertible R-symmetry. For the SU(Nc) case in the conformal window, we
have a UV gauge theory that flows to an interacting SCFT at low energies. After gauging the
U(1)B symmetry, will the same conclusions hold also for the U(Nc) theory in the conformal
window? On the one hand, the issue with the R-symmetry is quite dramatic, since gauging
U(1)B breaks the continuous R-symmetry to the Q/Z non-invertible symmetry. However, the
anomaly which leads to the R-symmetry breaking comes entirely from the U(1)B part of the
gauge group, which we expect to become weakly coupled in the IR. Then, we would expect
that the U(Nc) case should flow to a weakly gauged version of the SCFT of the SU(Nc)
case. Indeed, normally in 4d N = 1 theories we do not expect phase transitions to occur
as scales cross one another, leading us to expect that we can perform the gauging of the
SCFT in the IR, and this should be the same regardless of the size of the couplings, as long
as they are not strictly taken to zero or infinity.

This is subtle, however, since the SU(Nc) part of the gauge group flows to strong coupling,
and in principle the SU(Nc) strong dynamics might generate new superpotential terms now
that the R-symmetry is broken. If said superpotential terms are relevant in the IR then
they might drive the theory to a new fixed point. In said scenario, gauging U(1)B in the IR
would not commute with gauging it at the UV point, as the latter gauging corresponds to
taking the coupling of such terms to be strictly zero. For this reason it might be difficult
to rule out (for example) the generation of new superpotential terms that only violate the
continuous R-symmetry, if all we had to go on was the remaining invertible discrete part
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of the R-symmetry. However, note that the non-invertible part allows us to closely mimic
any continuous R-symmetry rotation, as the rationals are dense in R. Therefore, any such
putative superpotential terms would be forbidden by the non-invertible symmetry and we
can indeed argue that the U(Nc) case should just flow to the SCFT associated with the
SU(Nc) case, but with its U(1)B symmetry weakly gauged.

4.2 Mapping symmetries across Seiberg duality

Having identified a large class of global symmetries of SQCD implemented by the non-invertible
defects (4.6), one should next verify that these symmetries are matched across duality. Both
the SU(Nc) and the U(Nc) SQCD indeed participate in electric-magnetic Seiberg dualities [62],
where the magnetic dual theory has gauge group SU(Nf −Nc) or U(Nf −Nc) accordingly,
with Nf chiral superfields q, q̃ in the fundamental and antifundamental representations of
the gauge group, and a gauge singlet M̃ which couples via the superpotential Wmag = qM̃ q̃

(Throughout a tilde over a letter will denote the magnetic analogue of an electric variable, with
the exception that Q̃, q̃ denote anti-quarks and B̃, b̃ anti-baryons). The charges of the fields in
the magnetic dual under the classical 0-form symmetries are listed in table 4. The magnetic
description is useful for values of Nf greater than Nc +1: in the range Nc +2 ≤ Nf ≤ 3/2Nc

the dual is IR free, indicating that the theory is in a free magnetic phase consisting of massless
magnetically charged fields; meanwhile, in the conformal window of 3/2Nc < Nf < 3Nc,
both the electric and magnetic theories are asymptotically free and flow at low energies to
the same nontrivial superconformal fixed point.

We begin by considering how the (invertible) global symmetries are mapped across duality
for the case of SU(Nc) gauge group. The first step is to note that the baryonic U(1)B =
U(1)V /ZNc symmetry of SU(Nc) SQCD is mapped to the baryonic U(1)

B̃
= U(1)

Ṽ
/ZNf−Nc

symmetry of its magnetic dual up to a shift with the discrete Z2Nf
remnant of the axial

symmetry. Regarding this discrete subgroup as embedded in its U(1)A predecessor — as
per the comments below (4.2), practically this amounts to the replacement FA = dAA →
2πβ(ÂA) — the background field strengths for the axial and vector symmetries are related
across the duality as follows,

F
Ã
= −FA , (Nf −Nc)FṼ

= NcFV −NfFA . (4.11)

An equivalent expression to (4.11) can be given in terms of the symmetry generators of these
groups; denoting the generators of (Z2Nf

)A and U(1)V by a and v respectively, and similarly
for the generators ã and ṽ of the magnetic (Z2Nf

)
Ã

and U(1)
Ṽ

symmetries, these satisfy,28

ã→ a−1 , ṽ → v
Nc

Nf −Nc a
−

Nf
Nf −Nc . (4.12)

The relations (4.12) are required by matching the charges of the gauge-invariant opera-
tors. In particular, using the charges in table 3 one may verify that the electric mesons
M i

j = QaiQ̃aj , baryons Bi1...iNc = ϵa1...aNc
Qa1i1 . . . QaNc iNc , and antibaryons B̃i1...iNc

=
ϵa1...aNc Q̃a1i1 . . . Q̃aNc iNc

carry the following charges under (Z2Nf
)A × U(1)R × U(1)V ,

M ∼ a2 r
2(Nf −Nc)

Nc , B ∼ (a v)Nc r
Nc(Nf −Nc)

Nf , B̃ ∼
(
a

v

)Nc

r
Nc(Nf −Nc)

Nf . (4.13)

28These can also be understood as the fugacities in the supersymmetric index or S3 × S1 partition function.
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The electric mesons M map to the magnetic gauge singlets M̃ , while the electric baryons B, B̃
map to the magnetic baryons b, b̃ up to contraction with the ϵ symbol for SU(Nf ). The charges
of the gauge-invariant operators in the magnetic theory are then computed from table 4 as,

M̃ ∼ ã−2 r
2(Nf −Nc)

Nf , b ∼ (ã ṽ)Nf−Nc r
Nc(Nf −Nc)

Nf , b̃ ∼
(
ã

ṽ

)Nf−Nc

r
Nc(Nf −Nc)

Nf . (4.14)

Using (4.12) and a2Nf = ã2Nf = 1, the dual pairs of gauge-invariant operators evidently
carry the same charge under all global symmetries.

In order to examine the dual theories with unitary gauge group, we gauge the baryonic
U(1)B symmetry on the electric side of the duality, and U(1)

B̃
on the magnetic side of the

duality, keeping in mind that the gauge fields are related as in (4.11) (where now FV → fV is
the curvature of a dynamical gauge field, and similarly for F

Ṽ
→ fV in the dual). The two

partition functions will still be dual, differing only up to a counterterm exp( iNf

2π

∫
M4

B ∧ daA)
that arises from coupling to the 1-form magnetic U(1)(1)M symmetry background field. One
should also keep in mind that after gauging U(1)B the baryons are no longer individually
gauge-invariant operators, as only the combinations BB̃ and bb̃ are gauge invariant. As we
show explicitly in appendix B, one can verify that all ’t Hooft anomalies — including those of
the discrete Z2Nf

symmetries — match across duality after applying the identification (4.11).29

The matching of the non-invertible defects can then be accomplished as follows. From
our discussion in the previous subsection, the non-invertible defects on the electric side of the
duality follow from the Tr U(1)2BU(1)R = −2 anomaly in (4.2). The corresponding term in
the anomaly polynomial of the magnetic dual leads to Tr U(1)2

B̃
U(1)R = −2, and so by the

same logic the dual has an infinite set of Q/R symmetries enacted by non-invertible defects
which are the analogues of (4.6). Because the R-symmetry matches on either side of the
duality, the defects Dπp

q
enacting an R-symmetry rotation by rational angle πp/q are mapped

in the dual to defects D̃πp
q

, which are labeled by the same co-prime integers p and q.

4.3 Adding determinant matter

As we have seen, the R-symmetry of U(Nc) SQCD has a mixed anomaly with the gauge
symmetry U(1)B, with the non-anomalous part being the non-invertible (Q/Z)R symmetry.
Since we would like to compactify the 4d theory on S2 (which will be elaborated on in
section 6), generically all supersymmetries are broken due to the non-trivial curvature of
S2, and we lose control over the compactified theory. On the other hand, it is possible
to preserve half of the supercharges via an R-symmetry twist, which requires U(1)R to be
unbroken. This motivates us to consider a modified theory by introducing two chiral fields
Ω± in the determinant of the fundamental and antifundamental representations respectively
of the U(Nc) gauge symmetry, whose charges are designed to cancel off the Tr U(1)2BU(1)R

anomaly [58]. This theory classically possesses two additional global symmetries U(1)I and
U(1)t that act on Ω±. The charges of the fields under these symmetries are listed in table 3.

29As we noted below (4.2), the discrete Z2Nf chiral symmetry is contained in the continuous symmetries,
and therefore the Z2Nf anomalies are automatically matched and do not present a new check of the duality.
However, we find that it is useful to present the global symmetries as in (4.1) in order to describe the mapping
of the non-invertible topological defects of the theory that arise after gauging U(1)B .
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We may now repeat the analysis from the previous subsections to determine the symme-
tries of this model. The anomalies involving the dynamical gauge fields are now captured
by the following terms in the anomaly polynomial,

I6 ⊃ 2Nfc1(A)c2(U(Nc)) +Nfc1(A)c1(B)2 + c1(I)c1(B)2

+ [2c1(t) (c1(R) + c1(I)) + c2(SU(Nf )L)− c2(SU(Nf )R)] c1(B) .
(4.15)

The Tr U(Nc)U(1)A anomaly implies that U(1)A is again broken to Z2Nf
, which can be

absorbed by a combination of a U(1)V and SU(Nf )L×SU(Nf )R rotation. The Tr U(1)2BU(1)I

anomaly implies that U(1)I will be broken to a non-invertible Q/Z symmetry, associated to
defects Dπp

q
that perform a U(1)I rotation by a rational angle πp/q. The defect is of the

same form as (4.6), which we reproduce here,

Dπp
q
(M3) = exp

[
i

∫
M3

(
πp

q
⋆ jI +Aq,p(c1(B))

)]
. (4.16)

The terms on the second line of (4.15) lead to a 2-group involving the non-abelian flavor
symmetries, in addition to an extension of the U(1)R and U(1)t global symmetries by U(1)(1)M .
The background fields are then related by

H = dB + 1
2πARdAt +

1
4πCS(ASU(Nf )L

)− 1
4πCS(ASU(Nf )R

) ,

dH = 1
2πFR ∧ Ft +

1
4πTrF 2

SU(Nf )L
− 1

4πTrF 2
SU(Nf )R

.
(4.17)

However, unlike in the case without determinant matter where the 0-form symmetries
participating in the 2-group and the non-invertible symmetries do not mix, here the situation
is more involved. In particular, the U(1)I symmetry participates in both the anomaly
quadratic in c1(B), breaking U(1)I to a non-invertible symmetry, and the anomaly linear
in c1(B), leading to higher structure of the non-invertible defects that is encoded in the
junctions among these defects [53]. Here instead of discussing such higher structure of non-
invertible defects in detail, we point out that it is conveniently packaged into the SymTFT
and its boundary conditions, thanks to the recent developments of SymTFT for continuous
symmetries [48–50, 71, 72], which we have discussed in section 3. Moreover, we have also
seen that after compactifying the 4d theory on S2 with a non-trivial gauge flux in c1(B),
the resulting anomaly of the 0-form symmetries of the 2d theory depends sensitively on the
c1(B) linear anomaly in (4.15). As such, further analysis of the SymTFT in this example can
provide a useful probe for the presence of higher structure for non-invertible symmetries in 4d.

5 From four to three dimensions

In this section we will consider a series of examples of 4d gauge theories compactified on
a circle, which illustrate the features discussed in section 2.2.

5.1 Maxwell theory on a circle

Let us first discuss the case without matter, and consider free Maxwell theory in four
spacetime dimensions. The 4d gauge connection aµ, µ = {0, 1, 2, 3} reduces to the 3d vector
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field ai, i = {0, 1, 2}, and a compact scalar σ coming from the holonomy of the 4d vector
field along the circle direction (2.3),

σ =
∫

S1
a , σ ∼ σ + 2π . (5.1)

The pure 4d gauge theory possesses a U(1)(1)E electric 1-form symmetry under which the
Wilson line changes by a phase, and a magnetic U(1)(1)M 1-form symmetry under which the
’t Hooft line changes by a phase. On general grounds, each of these 1-form symmetries
reduces to a 1-form and 0-form symmetry when compactified on a circle, which can be seen
as follows [13]. The 4d Wilson line that does not wrap the circle reduces to the 3d Wilson
line, which is acted upon by the 3d 1-form symmetry. Meanwhile, the Wilson line wrapping
the circle becomes the exponentiated scalar eiσ, whose rotation by a phase is equivalent to a
shift of the scalar field, σ → σ + α. Therefore, the U(1)(1)E electric 1-form symmetry reduces
to a 3d electric 1-form symmetry, and a 0-form symmetry that acts by shifting the scalar.

We can similarly consider what happens to the ’t Hooft lines. The ’t Hooft line not
wrapping the circle gives rise to an ’t Hooft line in 3d, which has the property that the
Wilson line around them transforms by phase which is an integer multiple of 2π, so that in
particular the scalar σ undergoes a multiple of 2π shift when going around them. Meanwhile,
the ’t Hooft lines wrapping the circle become 3d monopole operators. In this way the
magnetic 1-form symmetry reduces to a 3d magnetic 1-form symmetry that acts on the
winding defects, and a 0-form symmetry (sometimes also called the topological symmetry)
acting on the monopole operators.

Let us next explore the reduction of non-invertible symmetry in this example. Free
Maxwell theory is known to enjoy electric-magnetic duality exchanging f and ⋆f . This
transformation, in addition with 2π shifts of the θ angle, generates the SL(2,Z) duality group
of free Maxwell theory. Here we shall for simplicity set θ = 0, and concentrate only on the
electric-magnetic duality. The action of the theory is then given by,

S4d = − 1
2e24d

∫
da4d ∧ ⋆da4d . (5.2)

Under a duality transformation the coupling constant changes as e24d → (2π)2

e2
4d

, so that for
generic values of the coupling, the duality relates Maxwell theories with different values of
e4d. At the special value of e24d = 2π, however, the theory is invariant under electric-magnetic
duality and this transformation becomes a symmetry. More generally, whenever 2π

e2
4d

is rational,
Maxwell theory possesses a non-invertible electric-magnetic duality symmetry — we refer
the reader to [76] for details about this structure. Here we shall be concerned with the fate
of this symmetry upon a circle reduction to three dimensions.

For this, we begin by reducing the action (5.2) on the circle to three dimensions, obtaining,

S4d → S3d =− 1
2e23d

∫
da3d ∧ ⋆da3d −

1
2e23d(2πR)2

∫
dσ ∧ ⋆dσ . (5.3)

Here we have identified the gauge couplings as e24d = (2πR)e23d, and used that σ ≃ 2πRa3.30

Next, we can dualize the 3d gauge field to a scalar using da3d = ⋆dφ. The scalar φ is periodic,
30Since σ is taken to be independent of x3, we can effectively rewrite σ = 1

2πR

∫
S1 dx3σ and identify

σ ≃ 2πRa3.
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which can be seen by performing an integral
∫

L φ over a line L starting at a point, expanding
to some circle, and then contracting back to a point. In particular, we have that

∫
L φ =

∫
Σ dφ,

where Σ is a surface bounded by L. It is possible to choose a continuous deformation
of L so that Σ will trace a sphere, in which case

∫
Linitial

φ −
∫

Lfinal
φ =

∫
Σ dφ =

∫
Σ ⋆da3d.

However, Linitial and Lfinal are both a point, so we just have that φ = φ+
∫
Σ ⋆da3d, which

requires φ to be periodic with period
∫
Σ ⋆da3d = e23d.31 We thus conclude that φ is a periodic

scalar with period e23d.
Now that there are two periodic scalars, σ and φ, one might envision a symmetry

exchanging the two. For this to actually be a symmetry of the action, we must have that
(a) both scalars have the same period, and (b) the kinetic terms of the two scalars agree.
As to the first point, we are clearly free to redefine the scalars to ensure that they have the
same period. For instance, we can define φ′ = 2π

e2
3d
φ, so that φ′ is 2π periodic. In terms

of these fields, the action takes the form,

S3d = − e23d

2(2π)2
∫
dφ′ ∧ ⋆dφ′ − 1

2e23d(2πR)2
∫
dσ ∧ ⋆dσ . (5.4)

The exchange of φ′ and σ is evidently a symmetry when e23d = 1/R, or equivalently when
e24d = 2π, which is precisely the condition for the presence of the duality symmetry in 4d. We
now see that this invertible symmetry of Maxwell theory reduces to an invertible symmetry
of the theory on the circle, which acts by exchanging the two periodic scalars φ′ and σ.

What about other values of e4d? For this let us first redefine σ such that the kinetic
terms are equal. This requires setting σ = e2

4d
2π σ

′, where now σ′ satisfies σ′ = σ′ + (2π)2

e2
4d

. The
only thing now impeding the symmetry is the different periods of σ′ and φ′. However, note
that we can change the period of the scalars by gauging various subgroups of the zero- or
1-form symmetries. Specifically, by gauging a Zk subgroup of the shift symmetry of σ′, we can
change its period such that it satisfies σ′ = σ′ + (2π)2

ke2
4d

. Similarly, by gauging a Zk subgroup
of the 1-form winding symmetry of φ′, we can change its period such that φ′ = φ′ + 2πk.
As such we see that if 2π

e2
4d

= N for integer N , we can still obtain a symmetry as follows.
First, we gauge a ZN subgroup of the 0-form shift symmetry of σ′ (or a ZN subgroup of
the 1-form winding symmetry of φ′). After this, the two scalars have the same period and
there is a symmetry exchanging them. We can then perform said symmetry transformation,
and return back to the original period by gauging the dual ZN . The combined operation
becomes a non-invertible symmetry, which is the 3d reduction of the non-invertible symmetry
of Maxwell theory at e24d = 2π

N . More generally, we expect to be able to define non-invertible
symmetries in a similar manner whenever 2π

e2
4d

∈ Q.
In conclusion, we see that the non-invertible electric-magnetic duality symmetry of 4d

Maxwell theory reduces to a non-invertible symmetry of 3d Maxwell theory plus a periodic
scalar, which arises by compactifying the four-dimensional theory on a circle. Said symmetry
can be interpreted as exchanging the periodic scalar and the dual photon. Notably, the
presence of the periodic scalar was necessary for the operation of the symmetry. Furthermore,

31The more common convention is that
∫

⋆da gives the electric charge e rather than e2, which is related to
our convention here by absorbing a factor of e into the gauge field.
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gauging discrete subgroups of the shift and winding symmetries was required to recover the
non-invertible symmetry for any rational value of 2π

e2
4d

.

5.1.1 Reducing the topological defects

Let us next expand more on the reduction of non-invertible symmetries in 4d Maxwell theory
from the perspective of reducing the corresponding defects themselves, and investigate in
more detail their action on operators in the resulting 3d theory. We focus for simplicity on
two of the many non-invertible defects in the theory: the (electric) condensation defects, and
the S-duality defects we discussed above. The former can be obtained by higher gauging
of a Z(1)

N subgroup of the electric 1-form symmetry on a codimension one submanifold, and
can be described by the (Euclidean) action,

1
2e24d

∫
x<0

da
(L)
4d ∧ ⋆da(L)

4d + 1
2e24d

∫
x>0

da
(R)
4d ∧ ⋆da(R)

4d + iN

2π

∫
x=0

ã ∧
(
da

(L)
4d − da

(R)
4d

)
, (5.5)

where we consider a planar defect placed at x = 0 and where ã is a gauge field living on it. The
latter, as previously discussed, exist at 2π

e2
4d

= N (for integer N)32 and correspond to the action,

N

4π

∫
x<0

da
(L)
4d ∧ ⋆da(L)

4d + N

4π

∫
x>0

da
(R)
4d ∧ ⋆da(R)

4d + iN

2π

∫
x=0

a
(L)
4d ∧ da(R)

4d . (5.6)

Notice that fusing two duality defects (5.6) with opposite orientation results in the con-
densation defect (5.5).

We will next explore what happens to these defects upon reduction on a circle to 3d.
For the condensation defect (5.5) we obtain
iN

2π

∫
x=0

ã ∧
(
da

(L)
4d − da

(R)
4d

)
→ iN

2π

[∫
x=0

ϕ̃
(
da

(L)
3d − da

(R)
3d

)
+ ã ∧

(
dσ(L) − dσ(R)

)]
(5.7)

where we have defined the defect compact scalar ϕ̃ as,

ϕ̃ =
∫

S1
ã , ϕ̃ ∼ ϕ̃+ 2π . (5.8)

We see that the non-invertible condensation defect of 4d Maxwell theory reduces to that
of 3d Maxwell theory (given by the first term on the r.h.s. of (5.7)), and to a defect in the
free scalar theory which we now address. One can show (see e.g. appendix E of [76]) that
this latter defect can be rewritten as,∫

Dã exp
[
iN

2π

∫
x=0

ã ∧
(
dσ(L) − dσ(R)

)]

→
N−1∑
η̃=0

∫
Dã exp

[
− i

2π

∫
x=0

dã

(
σ(L) − σ(R) + 2π

N
η̃

)]
,

(5.9)

where η̃ = 0, 1, . . . , N − 1 is an integer-valued field, which in turn evaluates to the following
sum of 0-form defects,

N−1∑
η̃=0

exp
(
2πη̃
N

1
e23d (2πR)

2

∫
x=0

⋆dσ

)
. (5.10)

32While defects with the same action on local operators (which hence can also be called S-defects) exist for
other values of e2

4d as well, for simplicity we will only consider the ones at 2π
e2

4d

= N .
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In other words, the reduction of the 4d condensation defect to the 3d scalar theory results
in a non-simple defect, which is given by the projection operator associated with the Z(0)

N

0-form symmetry of this 3d theory (coming from a Z(1)
N subgroup of the 4d electric 1-form

symmetry). In particular, it annihilates all the local operators exp (ikσ) for k ∈ Z, except
for those with k = NZ. However it is not a genuine non-invertible symmetry, but just the
sum of familiar 0-form defects.

Let us present an alternative argument for the non-simplicity of this defect. The 4d
condensation defect (5.5) results from 1-gauging the Z(1)

N subgroup of the electric 1-form
symmetry along a 3d submanifold (say x = 0). When reducing to the 3d scalar theory, this
submanifold becomes two dimensional, but the electric defects remain of the same dimension
(that is two dimensional), and so we obtain the 1-gauging of a 0-form symmetry which is
simply a projection operator.

Before turning to the reduction of the duality defect (5.6), let us briefly discuss another
type of condensation defect in 4d Maxwell theory, corresponding to a higher gauging of a
Z(1)

N subgroup of the magnetic 1-form symmetry. In this case the defect is (see e.g. [27, 77])∫
DãD˜̃a exp

[
i

∫
x=0

(
N

2π ã ∧ d
˜̃a+ 1

2π ã ∧ da4d

)]
, (5.11)

where ã, ˜̃a are gauge fields living on the defect, and its reduction on the circle is given by∫
DãD˜̃aDϕ̃D ˜̃ϕ exp

[
i

∫
x=0

(
N

2π ϕ̃ d
˜̃a+ 1

2π ϕ̃ da3d

)
+ i

∫
x=0

(
N

2π ã ∧ d
˜̃ϕ+ 1

2π ã ∧ dσ
)]

.

(5.12)
The defect in the first line of (5.12) exists in 3d Maxwell theory, and integrating out ˜̃a sets
ϕ̃ = 2πη̃/N where η̃ is the integer-valued field we discussed above in (5.9). One can similarly
see that the defect is non-simple and given by the sum,

N−1∑
η̃=0

exp
(2πiη̃

N

∫
x=0

da3d

2π

)
. (5.13)

The second defect in (5.12) is a genuine condensation defect in the 3d scalar theory, given
by higher gauging its 1-form symmetry. As can clearly be seen, this discussion of the 4d
magnetic condensation defect is dual to that of the electric one.

Let us finally reduce the duality defect (5.6). Here we have,

iN

2π

∫
x=0

a
(L)
4d ∧ da(R)

4d → iN

2π

∫
x=0

σ(L)da
(R)
3d + iN

2π

∫
x=0

a
(L)
3d ∧ dσ(R) (5.14)

and the vanishing of the field variations on the defect (when also taking into account the
bulk contributions) yields,

x = 0 : ⋆da
(L)
3d = − i

2πRdσ
(R) , ⋆da

(R)
3d = i

2πRdσ
(L) . (5.15)

Since at e24d = 2π
N (where we consider the defect) we have e23d = e2

4d
2πR = 1

NR , we can
rewrite (5.15) as,

x = 0 : da
(L)
3d = −N ie23d

2π ⋆ dσ(R) ,
ie2(3d)
2π dσ(L) = 1

N
⋆ da

(R)
3d . (5.16)
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For N = 1 these are exactly the familiar relations mentioned above between the free 3d
photon and its dual compact scalar with periodicity 2π, and we conclude that the 4d invertible
duality defect reduces to the sum of two topological 3d duality interfaces in 3d Maxwell
theory plus a compact scalar. Alternatively, this 4d defect reduces to the invertible symmetry
exchanging the scalar obtained from the holonomy of the 4d gauge field around the circle,
with the scalar which is the dual of the 3d photon, as discussed below eq. (5.4). For N > 1,
the extra factors of N in (5.16) correspond to supplementing the sum of duality interfaces
for N = 1 with gauging a Z(1)

N subgroup of the 1-form symmetry of 3d Maxwell theory and
a Z(0)

N subgroup of the 0-form symmetry of the scalar theory (which are both equivalent to
rescalings of the corresponding fields) in the half space to the right of the interfaces, for the
present choice of orientation. This is indeed clearly a reduction of supplementing (for N > 1)
the N = 1 duality defect of 4d Maxwell theory, with the gauging of a Z(1)

N subgroup of its
electric 1-form symmetry in the half space to the right of the defect.

Let us examine how the sum of interfaces (5.14) acts on operators in the theory, which as
discussed is given by 3d Maxwell theory and a free compact scalar. We begin by identifying
the symmetries and some operators that are acted upon non-trivially by them, which will
be useful for describing the action of the sum of interfaces. First, in addition to the two
Z2 0-form symmetries which act as a3d → −a3d and σ → −σ, there are two U(1) 0-form
symmetries with charges,

Q(0)
a =

∮
da3d

2π , Q(0)
σ = − ie

2
3d

4π2
∮
⋆dσ , (5.17)

under which the flux n monopole of a3d and the operator exp (inσ) have charge n, respectively.
Second, there are two U(1) 1-form symmetries with charges,

Q(1)
a = − i

e23d

∮
⋆da3d , Q(1)

σ =
∮
dσ

2π , (5.18)

that act non-trivially on the Wilson line exp (in
∫
a3d) and on the disorder σ-line around

which σ has a nontrivial winding σ → σ + 2πn. Then, using these charges (5.17) and (5.18)
we can rewrite the matching conditions (5.16) across the interfaces as follows,

Q(0)L
a = NQ(0)R

σ , Q(1)L
a = −NQ(1)R

σ , Q(1)L
σ = 1

N
Q(1)R

a , Q(0)L
σ = − 1

N
Q(0)R

a . (5.19)

This form makes the action of the sum of interfaces on the operators of the theory quite
manifest. For example, bringing from the left a flux n monopole with Q

(0)L
a = n and

passing it across the interfaces results in Q
(0)R
σ = −n/N which corresponds to the operator

exp
(
−i n

N σ
(R)
)
. For n ̸= NZ this operator breaks the periodicity of σ(R), and is therefore

not a genuine local operator but in fact the line operator exp
(
i n

N

∫
dσ(R)

)
stretching between

the defect (or interface) and the point under consideration. Similarly, moving a parallel
Wilson loop exp

(
in
∮
a
(L)
3d

)
with Q

(1)L
a = n across the interfaces from the left results in a

σ(R) winding loop with Q
(1)R
σ = −n/N which for n ̸= NZ corresponds to the disc operator

exp
(
−2πn

N

e2
3d

4π2
∫

D ⋆dσ(R)
)

, where the boundary of D is the loop of the σ(R) winding operator.
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5.2 Adding matter

The previous discussion demonstrates that the compactness of the scalar, as well as the
presence of shift and winding symmetries, can play an important role in the reduction of
non-invertible symmetries. In the pure gauge theory case, the scalar σ remains compact even
at energies E ≪ 1/R, and it only decompactifies in the dimensional reduction limit in which R
is taken to zero. Adding matter qualitatively changes this conclusion, as we will now illustrate.

Let us consider the case of a four-dimensional U(1) gauge theory with a Dirac fermion
of integer gauge charge q, with action

S4d = − 1
2e24d

∫
M4

da4d ∧ ⋆da4d +
∫

M4
d4x iψ̄ /Dψ . (5.20)

The covariant derivative is Dµ = ∂µ − iqaµ and /D = γµDµ. The charged fermion breaks
the electric 1-form symmetry to Z(1)

q , while the magnetic U(1)(1)M 1-form symmetry remains
unbroken. Taking spacetime to decompose as M4 =M3 × S1 and integrating over the circle
of radius R, we naively obtain,

S3d = − 1
2e23d

∫
M3

da3d ∧ ⋆da3d −
1

2e23d(2πR)2
∫

M3
dσ ∧ ⋆dσ

+ (2πR)
∑

j=1,2

∫
M3

d3x iψ̄j,3d /D3dψj,3d + q
∑

j=1,2

∫
M3

d3x (−1)jσ(iψ̄j,3dψj,3d) ,
(5.21)

where ψ̄j,3d = ψ†
j,3dσ

3 for σ3 the third Pauli matrix, and we have again identified the gauge
couplings as e24d = (2πR)e23d, and used (5.1) to identify σ in terms of (a4d)3. In the reduction,
the 4d Dirac spinor (with four complex components) splits into two independent Dirac spinors
with two complex components each.

We can now ask, what becomes of the 4d 1-form symmetries in the 3d model? Due to
the last term in (5.21), the action is no longer invariant under shifts of σ → σ + 2π/q. This
would imply that σ is no longer periodic, so that the shift symmetry (coming from the 4d
electric 1-form symmetry) is completely broken, and the winding lines accounting for the
magnetic 1-form symmetry are not present. However, we would have expected to retain at
least some 0-form shift symmetry — and what happened to the winding symmetry?

This puzzle is resolved by recalling that in the compactification we expand the fields
in KK modes, and that the action (5.21) only keeps the tree-level terms of the zero modes
in the limit E ≪ 1/R. To keep track of the KK tower for the fermion (we shall not need
to track the KK tower for the gauge fields), we expand

ψ(x⃗, z) =
∑
n∈Z

ψ1,n(x⃗)
ψ2,n(x⃗)

 e inz
R , (5.22)

so that the terms on the bottom line of (5.21) become,∫
M4

d4x iψ̄ /Dψ →
∑

n∈Z, j=1,2

∫
M3

d3x iψ̄j,n

[
(2πR) /D3d + (−1)j (qσ − 2πn)

]
ψj,n . (5.23)

Evidently this action is invariant under a shift of σ → σ + 2π, which mixes the KK modes
as n → n − q. We identify the shift symmetry σ → σ + 2π as a gauge symmetry, and
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the part σ → σ + 2π/q as the 0-form symmetry coming from the Z(1)
q 1-form symmetry,

which essentially shifts the entire KK tower by one. We conclude that the compactness of
the scalar is only retained in the effective theory with its full KK tower intact, and lost
in the restriction to zero modes.

We can further ask what happens once we integrate out the KK tower — is the shift
symmetry broken explicitly, spontaneously, or does it just act trivially? It appears to be
spontaneously broken, for the following reason. When we compactify, we have the freedom of
introducing holonomies on the circle for both background and dynamical gauge fields. Such
a holonomy sets the background around which we expand in the IR, as

∫
S1 a = H0 + σ, so

that the low-energy theory depends on the choice of vacuum labeled by H0. Since the shift
symmetry maps one choice of vacuum to another, this symmetry is spontaneously broken
in the IR. In accordance with this discussion, we propose that the σ → σ + 2π/q 0-form
shift symmetry is spontaneously broken, and that in the limit E ≪ 1/R the dynamical
scalar σ can be regarded as non-compact.

It remains to determine what happens to the winding symmetry in this limit. The
natural proposal is that said symmetry just acts trivially in the IR. This is because the
winding defects still exist, but now lead to a change in vacua as we go around them. This
is similar to the vortex solutions in spontaneously broken U(1) gauge theories, which are
massive. As such we expect the winding defects to become massive, leading to them being
integrated out and not present in the IR theory.

5.3 N = 1 U(Nc) SQCD with determinant matter

As we emphasized in section 2.2, the survival of the 1-form winding symmetry in 3d depends
crucially on the compactness of the scalar, which does not survive the IR limit in the theory
with matter. We will next explore how this affects the generalized symmetries of N = 1
supersymmetric QCD, when compactified on a circle to a three-dimensional N = 2 theory.

We consider SQCD with U(Nc) gauge group on R3×S1, leading to an effective 3d N = 2
theory with the same gauge group and Nf chiral multiplets, and monopole superpotential
(to be reviewed below). The charges of the fields present in the 3d theory under the classical
0-form global symmetries are given in table 5. The features of this theory will depend on
the energy scale at which we examine it. We will first consider the effective theory with
the circle radius R small but finite, at energies above the scale 1/R so that we have not
yet integrated out the KK tower, and then note how the conclusions change as we lower
the energy. The 4d and 3d gauge couplings are related as g24 = 2πRg23, so that the 4d
strong coupling scale Λ satisfies,

η = Λb1 = e−8π2/g2
4 = e−4π/(Rg2

3) , (5.24)

where b1 = 3Nc −Nf is the one-loop β-function coefficient. Note that compared with the
same theory with SU(Nc) gauge group, the U(Nc) theory has a dynamical compact scalar σ
associated with the holonomy of the SU(Nc) vector field on the circle, as well as a compact
scalar associated with the U(1)B gauge field which we will denote by σB.33

33We expect that gauging U(1)B in the SU(Nc) theory only commutes with the compactification/reduction
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As reviewed in section 4.1, the Tr U(1)2BU(1)R ABJ anomaly (4.2) leads to a breaking
of U(1)R → Q/Z enacted by non-invertible defects. The fact that this theory does not
preserve a continuous U(1)R leads to subtletites in the 3d reduction, and for this reason we
will instead consider the theory with the additional chiral multiplets Ω± in the determinant
representation of U(Nc), whose charges, listed in table 3, are designed to cancel the offending
ABJ anomaly and thus preserve a continuous U(1)R. Recall from section 4.3 that this theory
has a non-invertible symmetry coming from the classical U(1)I symmetry that acts on the
determinant matter, whose discrete invertible part is Z2, and also exhibits a 2-group that
extends the various 0-form symmetries by the U(1)(1)M magnetic 1-form symmetry.

The theory on a circle exhibits the following features.

1-form symmetry. Firstly, the magnetic 1-form symmetry U(1)(1)M reduces to the topological
0-form symmetry of the 3d theory which we will denote by U(1)J , and whose conserved
current is related to the reduction of the U(1)B field strength to 3d, j ∼ ⋆(fB)3d ; and a
magnetic 1-form winding symmetry, whose conserved current is jw ∼ ⋆dσB. Furthermore,
the 2-group structure (4.17), reduces to a 2-group in the effective 3d theory involving this
1-form symmetry, and the various 0-form symmetries. As we have discussed, the 3d 1-form
symmetry trivializes in the limit that the scalar decompactifies.

Monopole superpotential. The KK monopole along the circle direction plays an important
role in the compactification, leading to a non-perturbative monopole superpotential Wη in the
effective 3d theory, which explicitly breaks the axial symmetry U(1)A to a discrete subgroup.
Let us briefly review the origin of this superpotential.

At a generic point on the Coulomb branch of the 3d theory, the U(Nc) gauge group is
broken to U(1)Nc . We denote the scalars dual to these abelian gauge fields as φ1, . . . , φNc ,
which are paired with Nc scalars σi coming from the eigenvalues of the compact scalars σ and
σB. Weyl transformations can be used to arrange these eigenvalues in descending order, as
σ1 ≥ · · · ≥ σNc . The scalars σi and dual photons φi can be organized into chiral multiplets
Vi that classically parametrize the Coulomb branch,

Vi ∼ exp
[
4π/g23 σi + iφi

]
, i = 1, . . . , Nc . (5.25)

Each Vi is associated to a 3d instanton that is obtained from compactifying the Nc independent
4d ’t Hooft Polyakov monopoles. Moreover, the reason for the ∼ symbol is that the coordinates
Vi are only a semi-classical description of the monopole operators that parametrize the
quantum Coulomb branch (see e.g. [78] for further discussion). Quantum mechanically, they
acquire charges due to zero modes in the monopole background, as we review in appendix C.

Most of the Coulomb branch is lifted by instanton effects via Affleck-Harvey-Witten type
superpotentials [79, 80], except for two coordinates V+ and V− which are oppositely charged
under the topological U(1)J which shifts the dual photons φi in the exponent. There is a KK
monopole wrapping the circle direction, leading to an additional superpotential,

Wη = ηV . (5.26)

limit in the deep IR limit E ≪ 1/R, since reducing U(Nc) leads to the additional compact scalar σB which is
not present when gauging baryon number directly in three dimensions.
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SU(Nc) U(1)V SU(Nf )L SU(Nf )R U(1)A U(1)R U(1)I U(1)t U(1)J

Q □ 1 □ 1 1 Nf−Nc

Nf
0 0 0

Q̃ □ −1 1 □ 1 Nf−Nc

Nf
0 0 0

λ adj 0 1 1 0 1 0 0 0
Ω± 1 ±Nc 1 1 0 2 1 ±1 0
V 1 0 1 1 −2Nf 2 0 0 0

Table 5. The charges of the fields under the classical 0-form global symmetries of 3d U(Nc) SQCD,
including Ω± in the determinant representation. We have also listed the charges of the monopole
operator V .

V can be represented semi-classically as

V ∼ exp
[
4π/g23 (σ1 − σNc) + i(φ1 − φNc)

]
, (5.27)

however it should really be understood as the quantum monopole operator. As reviewed
in appendix C, this is the only monopole operator with U(1)R charge 2 and U(1)A charge
0 mod 2Nf that preserves the topological U(1)J symmetry, and it manifestly breaks U(1)A →
Z2Nf

.34 Moreover, it is a monopole only for the SU(Nc) part of the gauge group, and so the
superpotential (5.26) only lifts the corresponding direction of the Coulomb branch, while
it does not lift the direction associated with the U(1)B part. This superpotential (5.26)
manifestly vanishes in the dimensional reduction limit of R→ 0, when η = Λb1 goes to zero,
but is present in the effective theory at small R.

Reduction of the 4d anomaly action. The axial symmetry is not preserved in the
effective 3d theory on S1, being explicitly broken by the monopole superpotential (5.26).
Another perspective on this symmetry breaking arises from the reduction of the anomaly
polynomial I6 of the 4d theory on the circle, given in (4.15). Taking the anomaly inflow action
Ainf

5 satisfying dAinf
5 = 2π

∫
M6

I6, decomposing the gauge fields into their three-dimensional
components which are taken as usual to be independent of the circle direction, and then
reducing on M5 =M4 × S1, leads to the following inflow action for the 3d theory involving
the compact scalars,

Ainf
4 ⊃ 1

4π2
∫

M4

[
2NfAATr f3d ∧Dσ + 2AI(fB)3d ∧ dσB

+
(
2(AI +AR)dAt +CS(ASU(Nf )L

)− CS(ASU(Nf )R
)
)
∧ dσB

]
.

(5.28)

Here f3d is the U(Nc) field strength of the three-dimensional theory, and (fB)3d is the 3d
U(1)B field strength, namely (fB)µν → {(fB)ij , (fB)i3 = 1

2πR∂iσB}. To derive this expression

34Much as is the case in 4d, for some values of Nf non-perturbative effects generate a further contribution to
the effective superpotential, which can depend on the monopole operators as well as the other gauge invariant
moduli. For simplicity we focus on large enough values of Nf where this is not the case.
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we used in particular the following reductions of 4d characteristic classes,∫
S1

R

c2(U(Nc))4d = 1
4π2 [Trf3d ∧Dσ − (fB)3d ∧ dσB] , (5.29)∫

S1
R

(nB)4d = 1
4π2 (fB)3d ∧ dσB , (5.30)

where recall that the integer-valued instanton number for the U(1)B part of the gauge group
is nB = 1

2c1(B)2. For simplicity, we also restricted ourselves to ordinary compactification
(as opposed to twisted compactification) for which the holonomy of the background fields
are assumed to be trivial.

The terms in (5.28) can be interpreted as anomalies involving the dynamical gauge
symmetry, the (−1)-form U(1) gauge symmetries associated to the dynamical compact
scalars, and the global 0-form U(1)A and U(1)I symmetries. These anomalies are of course
trivialized if we demand that σ and σB are constants. However, allowing for configurations in
which the scalars have non-trivial winding on 3-cycles in spacetime, the inflow action (5.28)
can have a fractional part that is not cancellable by counterterms, implying that the partition
function shifts by a non-trivial phase. Then, the first term in (5.28) reproduces the fact that
U(1)A is broken to Z2Nf

in the effective theory on the circle, consistent with the subgroup
of U(1)A that is unbroken by the monopole superpotential (5.26). We emphasize that this
effect explicitly trivializes in either the R→ 0 limit or the decompactification limit, and so
should be viewed exclusively as a feature of the effective 4d theory on a circle — of course,
there are no ABJ anomalies in the usual sense in 3d QFTs.

Non-invertible symmetry. As discussed in section 4, the mixed gauge-global anomaly (4.15)
implies that the U(1)A axial symmetry is explicitly broken to Z2Nf

, and the U(1)I symmetry
becomes non-invertible. Here, we discuss the fate of the non-invertible defect in 4d under
compactification on S1 in several approaches. For the discussion to be interesting, we keep
the radius R of S1 finite and we do not integrate out the KK modes.

In the first approach, we start with the “ABJ” anomaly (5.28) after the compactification.
The first term in (5.28) means that U(1)A is explicitly broken to Z2Nf

because it involves the
non-abelian gauge symmetry. The second term in (5.28) means that U(1)I is explicitly broken
to the Q/Z non-invertible symmetry, with Z2 being its invertible part. The reasoning for the
non-invertible symmetry is precisely in parallel with that in 4d: the anomaly means that
the worldvolume of the U(1)I defect supports degrees of freedom that have gauge anomaly
2α(fB)3d ∧ dσB, and to cancel this gauge anomaly we introduce a TQFT localized on the
defect worldvolume. Such a TQFT exists only when 2α is a rational number multiple of 2π,
i.e. α = πp

q . The last term in (5.28) implies the 2-group involving U(1)R,U(1)t, SU(Nf )L,R

and U(1)(1)M . The two-group structure is captured precisely by (4.17). Finally, the anomaly
1

4π2 2AIdAtdσB implies the higher structure of the non-invertible symmetry. This approach
has a conceptual issue that gauge symmetry is not a symmetry, and as such it would be
nice to have an alternative derivation of the non-invertible symmetry that keeps track of
the global symmetries only.

In the second approach, we directly reduce the non-invertible defect (4.16) (similarly to the
discussion around (2.20) reducing the defect to 2d). For example, consider (p, q) = (1,MN),
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TA TB

T∗

T 3d,eff
A [R, η] T 3d,eff

B [R, η]

T 3d
A [η] T 3d

A T̂ 3d,eff
A [R, η] T̂ 3d,eff

B [R, η] T 3d
B T 3d

B [η]

T 3d
∗

S1
R S1

R

E ≪ ΛA E ≪ ΛB

E ≪ ΛA E ≪ ΛB

E ≪ g3d,A E ≪ g3d,B

E ≪ g3d,A E ≪ g3d,B

R→ 0 R→ 0E ≪ 1/R E ≪ 1/R

E ≪ 1/R

+Wη +Wη

Figure 2. Compactifying 4d SQCD with SU(Nc) or U(Nc) gauge group (TA) and its magnetic dual
(TB) on a circle, in the conformal window. Red arrows indicate strong coupling limits, blue arrows
indicate small radius limits, and dotted arrows are used for limits that specifically involve dimensional
reduction R→ 0. The theories above the top dashed horizontal line are defined in 4d; the intermediate
level consists of the effective 3d theories above the KK scale; and the bottom level theories are defined
after integrating out the KK towers. This figure may be viewed as a refinement of figure 1 in [63].

and taking the TQFT A1,N to be the minimal TQFT U(1)N , such that the defect is,∫
Da exp

[
i

∫
M3

(
π

N
⋆ jI +

N

4πa ∧ da +
1
2πa ∧ daB

)]
. (5.31)

On S1, we have σB =
∫

S1 aB and ϕ =
∫

S1 a, and the defect reduces to,∫
DaDϕ exp

[
i

∫
M3

(
π

N
⋆ (jI)2d +

N

2πϕ da +
1
2πϕ daB + 1

2πa ∧ dσB

)]
. (5.32)

The last three terms are precisely the TQFT mentioned in the previous approach.

5.4 Comments on infrared dualities

Let us now comment on how the generalized symmetry structure interplays with the reduction
of 4d dualities to 3d dualities. For concreteness we will focus on 4d U(Nc) SQCD as our
starting point, although the structure of the diagram in figure 2 is the same for the SU(Nc)
case. In the UV we begin with 4d N = 1 U(Nc) gauge theory with Nf fundamentals and
anti-fundamental chirals, denoted TA in figure 2. The Seiberg dual with U(Nf −Nc) gauge
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group, Nf fundamental and anti-fundamental chirals q, q̃ under the new gauge group, and
singlets M that couple via a superpotential W ∼Mqq̃, is denoted TB. The strong coupling
scales η = Λb1 of the dual theories are related as,

ηAηB = (−1)Nf−Nc . (5.33)

In the conformal window, theories TA and TB flow to the same interacting SCFT at energies
satisfying E ≪ ΛA,ΛB.

Compactifying each of these 4d theories on a circle with small but finite radius R, and
including the full KK tower, results in theories we denote by T 3d,eff

A [R, η] and T 3d,eff
B [R, η],

where the arguments are meant to indicate the explicit dependence of these theories on the
radius R and on the strong coupling scale η through their superpotential. The 4d and 3d
gauge couplings are related as g24d = 2πRg23d. As per our discussion in section 5.3, the theories
T 3d,eff

A [R, η] and T 3d,eff
B [R, η] include the following features. Firstly, they possess compact

scalars from the holonomies of the gauge fields on the circle, leading to a compact moduli
space of the effective 3d N = 2 theory, and preserving a 0-form shift symmetry. The U(1)(1)
1-form winding symmetry is preserved, leading to the non-invertible symmetry and 2-group
structure. They generate a superpotential Wη coming from the KK monopole on the circle,
which also explicitly only preserves a Z2Nf

subgroup of the classical U(1)A axial symmetry.
Finally, the anomaly (5.28) implies that the U(1)A symmetry is non-perturbatively broken
to the Z2Nf

subgroup.
Integrating out the KK tower and flowing to energies E ≪ 1/R, the shift 0-form

and winding 1-form symmetries are lost. We denote the resulting low-energy theories by
T̂ 3d,eff

A [R, η], and T̂ 3d,eff
B [R, η]. For these theories, the scalar decompactifies, so that the 0-form

shift symmetry that acts on it is spontaneously broken and the moduli space is no longer
compact. The 1-form winding symmetry now acts trivially, so that both the non-invertible
symmetry and 2-group trivialize. Furthermore the U(1)A axial anomaly trivializes, although
the Wη superpotential still explicitly breaks U(1)A → Z2Nf

. It is in this limit that the effective
3d N = 2 theories are dual to each other, so that at energies E ≪ ΛA,ΛB they are expected
to flow to the same 3d SCFT, T 3d

∗ . As emphasized in [63], this duality — which involves the
additional monopole superpotential — is not the same as 3d N = 2 Aharony duality [81],
although the latter can be recovered from it by considering real mass deformations.

The 3d SCFT T 3d
∗ is expected to match onto the theory obtained by first putting the 4d

SCFT T∗ on the circle, and then taking the E ≪ 1/R limit; i.e. the E ≪ ΛA,ΛB and E ≪ 1/R
limits commute. However, we emphasize that this might not hold for other theories or choices
of gauge groups, for the following reason. Our conclusion that the shift 0-form and winding
1-form symmetries are lost in the IR is based on our use of the Lagrangian gauge-theory
descriptions of the theories. We have been considering a scenario in which a 4d UV gauge
theory with a 1-form symmetry flows to an interacting SCFT in the IR. Compactifying the
UV gauge theory to 3d, we have argued that we do not expect to get both the 0- and 1-form
symmetries. However, compactifying the IR SCFT may lead to a different 3d theory, and it is
in principle possible for the resulting 3d theory to retain both the 0- and 1-form symmetries.

For the theories at hand that are based on unitary gauge groups, this possibility does
not seem to be realized, due to the following. Consider first a U(1) gauge theory. Then, the
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IR theory is the same as the UV gauge theory, so we expect the result to be the same for
both. The non-abelian U(Nc) case is more subtle due to the SU(Nc) part, which can flow to
strong coupling. However, the SU(Nc) sector by itself has no 1-form symmetry — all the
generalized symmetry structure comes from the U(1) part (as we also emphasized at the end
of section 4.1). Now, say we gauge the U(1) baryon symmetry of SU(Nc) SQCD. Since the
2-group and non-invertible structure stem from mixed anomalies involving only the U(1), we
expect them to be the same for both the UV and IR theories. Compactifying these theories
to 3d, the UV U(Nc) gauge theory just turns to a 3d UV gauge theory, where we expect the
previous results regarding the fate of the 4d 1-form symmetry to apply. In the 4d IR, however,
we expect to get a U(1) gauge theory that weakly gauges whatever 4d SCFT the SU(Nc) gauge
theory flows to. Upon compactification to 3d, this should then give a 3d U(1) gauge theory
that weakly gauges whatever 3d SCFT is obtained from compactifying the 4d SCFT. While
we may not know the precise details of the 3d SCFT resulting from the compactification of
the 4d SU(Nc) part, we do know what happens to the U(1). And since the 1-form symmetry
only involves the U(1) part, our previous arguments should still hold, and we expect the
generalized symmetry structure mentioned so far in the U(Nc) theories to trivialize upon
compactification to 3d. By contrast, if the part of the gauge group that is engaged in the
1-form symmetry also has non-trivial IR dynamics — as for instance is the case for SO(Nc)
gauge group — we might be led to a different conclusion. For this reason it would be especially
interesting to examine SO(Nc) gauge theories, although we leave this to future work.

Returning to figure 2, it remains to consider the dimensional reduction limit R→ 0. As
was emphasized in [63], the R→ 0 limit does not commute with the E ≪ ΛA,ΛB limit, and in
general the theories obtained from dimensional reduction are not themselves dual in 3d. In the
diagram, these theories obtained by dimensionally reducing the two 4d Seiberg-dual theories
are denoted by T 3d

A and T 3d
B . In the strong-coupling limits where E ≪ gA

3d, g
B
3d, these theories

do not flow to the same fixed point. However, upon deforming the dimensionally-reduced
theories T 3d

A and T 3d
B by the appropriate relevant monopole superpotential, we can indeed

obtain 3d theories which are dual, and are expected to flow to the same 3d SCFT T 3d
∗ .

6 From four to two dimensions

We shall next consider the compactification of 4d field theories on a sphere, focusing on the
cases of four-dimensional N = 1 SQCD with SU(Nc) or U(Nc) gauge group compactified
to N = (0, 2) models in two dimensions.

6.1 Generalities of the S2 compactification

We begin with some general considerations for compactifying four-dimensional SU(Nc) or
U(Nc) SQCD on S2. This type of compactification was studied in [58, 65] (see also [66–
68]), and we shall review some of their results here. The curvature of the S2 breaks all
supersymmetry, but it is possible to preserve half of the supercharges via an R-symmetry
twist, by turning on a non-trivial R-symmetry background that cancels against the spin
connection. This amounts to introducing an R-symmetry magnetic flux mR = −1, such that∫

S2
c1(R) = −1 . (6.1)
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One complication is that as we turn on a magnetic flux, we should ensure that the Dirac
quantization condition is obeyed. Since the R-symmetry flux on S2 should be −1, all R-
charges must therefore be integers. While this is obviously not obeyed by the superconformal
R-symmetry of SQCD (see table 3), it is sufficient to twist using any R-symmetry and
not necessarily the one at the superconformal point. The solution adopted in [58] is to
mix the R-symmetry with a U(1) subgroup of the SU(Nf )L non-abelian flavor symmetry,
in such a way that all R-charges become integer. We shall implement such a shift in the
examples we study below.

Then, the topological twist that preserves N = (0, 2) supersymmetry in two dimensions
amounts to shifting the first Chern class of the R-symmetry bundle that is associated to a
U(1)R symmetry under which all fields have integer charges, as

c1(R) = −1
2 t+ ĉ1(R) . (6.2)

Here we have denoted by t the Chern root of the tangent bundle to the sphere, related to
the global angular form of the SU(2)ISO isometry of the sphere by t = 2e2(S2), and which
integrates to the Euler characteristic as,35∫

S2
t = χ(S2) = 2 . (6.3)

We denote by ĉ1(R) the first Chern class of the R-symmetry bundle of the 2d theory, so as to
not burden the characteristic classes with (4d) versus (2d) subscripts. Our conventions are
spelled out in appendix D.1. In this way, (6.2) ensures that (6.1) is automatically satisfied.

The compactification on S2 was thereby carried out in [58] based on the analysis of
the T 2 × S2 partition function [65, 82, 83]. By supersymmetric localization, this partition
function takes the schematic form,

I =
∑

m⃗G∈Λ∨
w(G)

∮
JK

rkG∏
a=1

dza

2πiza
Z(z⃗) , (6.4)

where m⃗G is the gauge flux which takes values in the co-weight lattice of the gauge group
G, and z⃗ are gauge fugacities over which we have to integrate with a specific choice of
contour known as the Jeffrey-Kirwan (JK) countour [84] (see also [85] for a pedagogical
explanation). The key observation of [58] is that for each value of m⃗G, the corresponding
integral over z⃗ takes the form of the elliptic genus, or T 2 partition function, of a 2d N = (0, 2)
theory [85–88]. The expression for the T 2 × S2 partition function of the original 4d theory
can indeed be re-interpreted as the sum of the partition functions of the 2d theories obtained
by compactification on the S2 (see section 6.3 for more details), since there is no dependence
on the radius of the sphere thanks to the topological twist. This observation thus tells us
that from the topologically-twisted compactification of a 4d theory on S2 we can get a direct
sum of different 2d theories, in agreement with our discussion in section 2.1.

In [58] it was also pointed out that if we choose an R-symmetry for the topological
twist such that all chiral fields have a non-negative integer R-charge, then the summation

35Equation (6.2) holds more generally for an n-punctured Riemann surface of genus g upon substituting
χ(Σg,n) = 2 − 2g − n, although we focus on g = n = 0.
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over m⃗G actually truncates to the single m⃗G = 0⃗ sector. In this case we obtain a single
2d theory from the compactification, whose field content can be deduced from that of the
original 4d theory by re-interpreting the T 2 × S2 partition function as a 2d elliptic genus.
The resulting rule is as follows:

• a 4d N = 1 chiral multiplet of R-charge r gives rise in 2d to r − 1 Fermi multiplets if
r > 1, 1− r chiral multiplets if r < 1, and no field if r = 1;

• a 4d N = 1 vector multiplet gives rise to a 2d N = (0, 2) vector multiplet.

In the following we will both consider examples in which the sum over magnetic fluxes
truncates to the zero sector, and cases in which it does not. When there is no truncation,
then the above rule gets modified in a way that depends on the specific value of m⃗G and on
the representation of the fields under the gauge group. In particular, since the gauge flux m⃗G

breaks the gauge group G to some residual subgroup H, then the 4d N = 1 vector multiplet
in the adjoint representation of G will decompose into a 2d N = (0, 2) vector multiplet
in the adjoint of H and Fermi multiplets, according to the branching rule for the adjoint
representation of G with respect to the subgroup H. We will see this in more detail later
in examples. In particular, we will see that each term in the sum of the T 2 × S2 partition
function can be understood as associated to a 2d theory obtained by S2 compactification
with a topological twist and a flux for the gauge symmetry.

6.2 N = 1 U(Nc) SQCD with determinant matter

We begin with the compactification of U(Nc) SQCD on S2, including the determinant matter.
As per the previous discussion, we mix the R-symmetry with an abelian subgroup of the
SU(Nf )L flavor symmetry, so that all R-charges become non-negative integers. We therefore
consider the breaking pattern,

SU(Nf )L →

 SU(N1)× SU(2n)× SU(N3)× U(1)x × U(1)y n > 0
SU(N1)× SU(N3)× U(1)z n = 0

(6.5)

where the integers N1, n, and N3 are related as,

N1 + 2n+N3 = Nf , n+N3 = Nf −Nc . (6.6)

The latter constraint is for gauge-anomaly cancellation. We separately consider the cases
n > 0 and n = 0, as their compactifications exhibit qualitatively different features. The
charges of the four-dimensional fields under the classical 0-form symmetries are given in
table 6 for the n > 0 case, and table 8 for the n = 0 case. The Seiberg-like duals of these
theories are given in tables 7 and 9. We shall refer to the breaking pattern (6.5) leading to
the non-negative integer R-charges written in these tables as twist 1 to differentiate it from
the two other R-symmetry twists we will consider in subsequent subsections, and accordingly
we denote the twisted R-symmetry with a subscript, R1.

The perturbative anomalies of these 4d theories are computed in appendix D.3, and
lead to the following features.36 The gauge-gauge-flavor anomalies, written in (D.13), are

36The anomalies for the case of SU(Nc) gauge group also appear in appendix D.2.
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SU(Nc) U(1)V SU(N1) SU(2n) SU(N3) SU(Nf )R U(1)x U(1)y U(1)R1 U(1)A U(1)I U(1)t

Q1 □ 1 □ 1 1 1 0 −2n 0 1 0 0
Q2 □ 1 1 □ 1 1 −N3 N1 1 1 0 0
Q3 □ 1 1 1 □ 1 2n 0 2 1 0 0
Q̃ □ −1 1 1 1 □ 0 0 0 1 0 0
Ω± 1 ±Nc 1 1 1 1 0 0 2 0 1 ±1

Table 6. The charges of the fields for 4d U(Nc) SQCD, including the determinant matter Ω±, upon
twisting U(1)x,y ⊂ SU(Nf )L with the original R-symmetry to obtain the charges listed in the table
(twist 1 ). Here N1 + 2n+N3 = Nf , and n+N3 = Nf −Nc.

SU(Ñc) U(1)
Ṽ

SU(N1) SU(2n) SU(N3) SU(Nf )R U(1)x̃ U(1)ỹ U(1)R1 U(1)
Ã

U(1)I U(1)t

q1 □ 1 □ 1 1 1 2n 0 2 1 0 0
q2 □ 1 1 □ 1 1 −N1 N3 1 1 0 0
q3 □ 1 1 1 □ 1 0 −2n 0 1 0 0
q̃ □ −1 1 1 1 □ 0 0 0 1 0 0
M̃1 1 0 □ 1 1 □ −2n 0 0 −2 0 0
M̃2 1 0 1 □ 1 □ N1 −N3 1 −2 0 0
M̃3 1 0 1 1 □ □ 0 2n 2 −2 0 0
Ω̃± 1 ±Ñc 1 1 1 1 0 0 2 0 1 ±1

Table 7. The U(Ñc = Nf −Nc) dual of the theory described in table 6.

SU(Nc) U(1)V SU(N1) SU(N3) SU(Nf )R U(1)z U(1)R1 U(1)A U(1)I U(1)t

Q1 □ 1 □ 1 1 −N3 0 1 0 0
Q3 □ 1 1 □ 1 N1 2 1 0 0
Q̃ □ −1 1 1 □ 0 0 1 0 0
Ω± 1 ±Nc 1 1 1 0 2 0 1 ±1

Table 8. Taking n = 0 in table 6 and twisting the R-symmetry with U(1)z ⊂ SU(Nf )L.

SU(Ñc) U(1)
Ṽ

SU(N1) SU(N3) SU(Nf )R U(1)z̃ U(1)R1 U(1)
Ã

U(1)I U(1)t

q1 □ 1 □ 1 1 N3 2 1 0 0
q3 □ 1 1 □ 1 −N1 0 1 0 0
q̃ □ −1 1 1 □ 0 0 1 0 0
M̃1 1 0 □ 1 □ −N3 0 −2 0 0
M̃3 1 0 1 □ □ N1 2 −2 0 0
Ω̃± 1 ±Ñc 1 1 1 0 2 0 1 ±1

Table 9. The U(Ñc = Nf −Nc) dual of the theory described in table 8.
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the same for any n ≥ 0 and given as follows,

I6
∣∣
gauge = 2Nfc1(A)

(
c2(U(Nc)) +

1
2c1(B)2

)
+ c1(B)2c1(I) . (6.7)

These are the same terms that were discussed in section 4.3. The last term implies that
U(1)I is broken to a non-invertible symmetry labeled by the rational numbers Q/Z, whose
invertible part is Z2 — namely, k = 2 in (1.1). Furthermore, the first term implies that the
classical axial symmetry is broken to the discrete subgroup U(1)A → (Z2Nf

)A.
Much as was the case in section 4.3, there are also anomalies linear in U(1)B that lead to

a 2-group structure. These are written in full in equations (D.15) and (D.18) in appendix D.3,
and here we highlight the terms involving the R-symmetry for which we turn on the flux (6.1),
and so are relevant for the compactification,

I6
∣∣
2-group ⊃ c1(B)c1(R1) (2(Nf −Nc)c1(A) + 2c1(t))

+ c1(B)c1(R1) ·

−nc1(R1) + 2n(N3c1(x) +N1c1(y)) n > 0
2Nc(Nf −Nc)c1(z) n = 0

 (6.8)

For simplicity, in this expression we treat the discrete axial symmetry as embedded in the
classical continuous U(1)A. As was also previously discussed, the non-invertible symmetry
participates in the 2-group as signaled by a term 2c1(B)c1(I)c1(t) in I6, although we will
not discuss this feature further.

We proceed to compactify these theories on the sphere, threaded with flavor flux mR = −1
for the R-symmetry as in (6.2). The compactification to 2d results in the field content given
in table 10. The fundamental and anti-fundamental chiral fields in 4d lead to N1 fundamental
chiral multiplets P , N3 fundamental Fermi multiplets Ψ, and Nf anti-fundamental chiral
multiplets Φ; the 4d N = 1 vector multiplet leads to a (0, 2) vector multiplet; and the
determinant matter leads to two Fermi multiplets Γ±. Defining the supercharge to have
positive chirality, then the chiral fields contain positive chirality fermions, and the (0, 2)
vector and Fermi multiplets contain negative chirality fermions. The perturbative anomalies
of the 2d theories as computed from table 10—including the gauge anomalies — precisely
match those obtained from reducing the 4d anomaly polynomial on S2, and are written in
full in (D.17) for the case n > 0, and in (D.20) for n = 0.37

The ABJ anomalies of the 2d theories are captured by the following terms,

I4 ⊃ − 2c1(B) (c1(t) + (Nf −Nc)c1(A))

+ 2c1(B) ·

 nĉ1(R1)− n (N3c1(x) +N1c1(y)) n > 0
−Nc(Nf −Nc)c1(z) n = 0

 (6.9)

37In table 10 we have defined (Z2Nf )A as the discrete subgroup of the axial symmetry that is non-anomalous
in 4d. However from the purely 2d perspective, there is a priori no reason to expect that the corresponding
axial symmetry is broken to (Z2Nf )A. As we comment below (6.19), one hint in favor of the occurrence
of this breaking can be inferred from the 2d duality. One option is that this is due to some mechanism
happening in the compactification, similar to the monopole superpotential that is dynamically generated in
the compactification from 4d to 3d reviewed in section 5 (and see e.g. [58] for a related discussion). We leave
further investigation of this phenomenon for future work.
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SU(Nc) U(1)V SU(N1) SU(N3) SU(Nf )R (Z2Nf
)A U(1)R1 U(1)I U(1)t U(1)x U(1)y U(1)z

n > 0 n = 0
P □ 1 □ 1 1 1 0 0 0 0 −2n −N3

Ψ □ 1 1 □ 1 1 1 0 0 2n 0 N1

Φ □ −1 1 1 □ 1 0 0 0 0 0 0
λ adj 0 1 1 1 0 1 0 0 0 0 0
Γ± 1 ±Nc 1 1 1 0 1 1 ±1 0 0 0

Table 10. The 2d matter content that results from compactifying 4d U(Nc) SQCD with determinant
matter on the sphere, using twist 1 in tables 6 and 8, and where N1 + 2n + N3 = Nf , and 2n +
2N3 = 2(Nf − Nc). For n = 0, the U(1)x,y symmetries reduce to a single U(1)z. For n > 0, the
(Z2Nf

)A symmetry can be reabsorbed by a combination of the other abelian symmetries and the gauge
symmetry.

SU(Ñc) U(1)
Ṽ

SU(N1) SU(N3) SU(Nf )R (Z2Nf
)
Ã

U(1)R1 U(1)I U(1)t U(1)x̃ U(1)ỹ U(1)z̃
n > 0 n = 0

Ψ̃ □ 1 □ 1 1 1 1 0 0 2n 0 N3

P̃ □ 1 1 □ 1 1 0 0 0 0 −2n −N1

Φ̃ □ −1 1 1 □ 1 0 0 0 0 0 0
M̃1 1 0 □ 1 □ −2 0 0 0 −2n 0 −N3

M̃3 1 0 1 □ □ −2 1 0 0 0 2n N1

λ̃ adj 0 1 1 1 0 1 0 0 0 0 0
Γ̃± 1 ±Ñc 1 1 1 0 1 1 ±1 0 0 0

Table 11. The 2d matter content that results from compactifying the duals in tables 7, 9.

These terms match the integration of the 2-group terms (6.8) on the sphere and imply a
symmetry breaking pattern in the 2d theory in accordance with our general discussions in
section 2.3 and section 3. Indeed, the U(1)R1 symmetry inherited from 4d is anomalous in
the n > 0 theory, resulting in the breaking U(1)R1 → Z2n. This is precisely in accordance
with the discussion in point 1 of section 2.3, since the pertinent 2-group coefficient from (6.8)
is κ = 2n, so that U(1)R1 → Z|κmR|=2n. More precisely, the symmetry that is broken to a
discrete subgroup is a particular combination of all the abelian symmetries in the theory,
while the remaining independent combinations survive as non-anomalous symmetries in 2d.
For example, we can redefine the field strength for U(1)A as,

FA′ = FA +


1

Nf−Nc
(Ft − nFR1 + n (N3Fx +N1Fy)) n > 0

1
Nf−Nc

Ft +NcFz n = 0

 (6.10)

so that the anomaly (6.9) becomes (for both n > 0 and n = 0)

I4 ⊃ − 2c1(B)(Nf −Nc)c1(A′) . (6.11)

In other words, the redefinition (6.10) changes the charges of the fields under the abelian
symmetries so that only the axial symmetry is anomalous. The anomaly indicates that the
new U(1)A′ symmetry is broken to U(1)A′ → Z2(Nf−Nc). However, we should remember
that for n = 0 the axial symmetry was actually (Z2Nf

)A′ (for n > 0 this symmetry can be
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reabsorbed with a combination of the other abelian symmetries and the gauge symmetry),
so that overall we find the symmetry breaking pattern,

U(1)A′ →

Z2(Nf−Nc) n > 0 ,
Z2 gcd (Nf ,Nc) n = 0 .

(6.12)

6.2.1 Reduction of the 4d duality

Let us now consider the 4d duality in the new parameterization of the global symmetries that
we used to perform twist 1. First consider the duality for the U(Nc) theory with n > 0, with
the field content and symmetries given in table 6. The pertinent composite chiral operators in
the original theory include the gauge invariant mesons Mi = QiQ̃ for i = 1, 2, 3; the baryons
B(α1,α2,α3) = (Q1)α1(Q2)α2(Q3)α3 ; and the antibaryons B̃ = Q̃Nc . The baryon indices satisfy
α1 + α2 + α3 = Nc, so that all gauge indices are contracted by an epsilon tensor with Nc

indices, and αi ≤ Ni (defining N2 = 2n) so that the flavor indices are not over-saturated.
These operators carry the following charges under (Z2Nf

)A ×U(1)R1 ×U(1)V ×U(1)x ×U(1)y,

M1 ∼ a2 y−2n , M2 ∼ r1 a2 x−N3 yN1 , M3 ∼ r2 a2 x2n ,

B(α1,α2,α3) ∼ rα2+2α3 aNc vNc x−N3α2+2nα3 y−2nα1+N1α2 , B̃ ∼ (a/v)Nc ,
(6.13)

where here we use the same notation as in section 4.2, so that a, r, v, x, y can also be understood
as fugacities in the supersymmetric index. Since U(1)B is gauged, only baryon/anti-baryon
pairs are gauge invariant, and additionally the operators Ω+Ω− composed of the determinant
matter are gauge invariant.

In the magnetic dual theory with U(Ñc = Nf −Nc) gauge group, with field content and
charges given in table 7, we have the gauge singlets M̃i, as well as the magnetic baryons
b̃ = q̃Nf−Nc , and b(α̃1,α̃2,α̃3) = (q1)α̃1(q2)α̃2(q3)α̃3 , where α̃1+ α̃2+ α̃3 = Nf −Nc, and α̃i ≤ Ni.
These operators carry the following charges under the magnetic (Z2Nf

)
Ã
×U(1)R1 ×U(1)

Ṽ
×

U(1)x̃ × U(1)ỹ symmetry,

M̃1 ∼ ã−2 x̃−2n , M̃2 ∼ ã−2 r1 x̃N1 ỹ−N3 , M̃3 ∼ ã−2 r2 ỹ2n ,

b(α̃1,α̃2,α̃3) ∼ r2α̃1+α̃2 ãNf−Nc ṽNf−Nc x̃2nα̃1−N1α̃2 ỹN3α̃2−2nα̃3 , b̃ ∼ (ã/ṽ)Nf−Nc .
(6.14)

The magnetic operators match onto those on the electric side of the duality as follows,

Mi ↔ M̃i , B̃B(α1,α2,α3) ↔ b̃b(α̃1,α̃2,α̃3) with αi + α̃i = Ni , i = 1, 2, 3 (6.15)

as well as Ω+Ω− → Ω̃+Ω̃−, where again we have used the shorthand notation N2 = 2n. This
implies the following identification of symmetry generators,

x̃ = y , ỹ = x , ã = a−1 , ṽ = v
Nc

Nf −Nc a
−

Nf
Nf −Nc , a2Nf = 1 , (6.16)

or equivalently, the following relation between the field strengths,

F
Ã
= −FA , (Nf −Nc)fṼ

= NcfV −NfFA Fx̃ = Fy , Fỹ = Fx . (6.17)
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As expected, this reproduces the same mixing between U(1)V and U(1)A that was obtained
in (4.11) before breaking the SU(Nf )L flavor symmetry, and we have also learned that
the U(1)x and U(1)y flavor symmetries are exchanged by the duality. The classical U(1)I

symmetry that leads to the non-invertible symmetry is identified on either side of the duality.
It is straightforward to generalize to the case of n = 0, with dual theories enumerated

in tables 8)–(9. In this case, the mapping of the global symmetries between the two sides
of the duality is as follows,

z̃ = z , ã = a−1 , ṽ → v
Nc

Nf −Nc a
−

Nf
Nf −Nc , a2Nf = 1 , (6.18)

with the gauge-invariant operators mapped according to,

Mi ↔ M̃i , B̃B(α1,α3) ↔ b̃b(α̃1,α̃3) with αi + α̃i = Ni , i = 1, 3 . (6.19)

The perturbative anomalies can be shown to match between the electric and magnetic dual
theories, as we verify explicitly in appendix D.3.3.

We next consider the compactification of the dual 4d theories on the sphere. The magnetic
U(Ñc) theory results in a 2d (0, 2) theory with matter content given in table 11. One may
verify that the 4d duality reduces to a duality between the two 2d theories, again with the
symmetries matched on either side of the duality according to (6.16) or (6.18). For this it
is crucial to also redefine the symmetries as in (6.10) for the original theory (and similarly
in the dual theory up to the map (6.18)), and to impose that the new U(1)A′ symmetry is
broken by the ABJ anomaly as in (6.12). This is in line with our general expectation that
as long as the compactification of the 4d theories to 2d is restricted to the zero-flux sector,
they will yield a consistent duality amongst the resulting 2d theories.

6.2.2 Comments on the infrared behavior

Finally, let us make some remarks about the IR behavior of the 2d theories obtained from the
S2 compactification of the U(Nc) SQCD with determinant matter via twist 1. As we discussed
above, from (6.9) we have that for n > 0 the R-symmetry that was used to perform the
twist is anomalous in 2d. However, this does not necessarily mean that the 2d theory breaks
supersymmetry at low energies, since this R-symmetry will in general mix with the other
abelian symmetries to possibly yield a new non-anomalous R-symmetry in the IR. Instead, a
good diagnostic tool for supersymmetry breaking is the vanishing of the elliptic genus. As we
reviewed before, the elliptic genus takes the form of an integral of dimension equal to the rank
of the gauge group, which will in general vanish if the integrand does not provide enough poles.
The poles are in particular provided by chiral fields, while Fermi fields do not contribute any
pole. Our analysis is thus similar to the one done in [56], since our theory differs from the one
of [56] only for the representation of the Fermi fields Γ± in the determinant representation.

The chiral fields P and Φ only come in the fundamental and anti-fundamental rep-
resentations of the U(Nc) gauge group. When computing the integral, we can take the
residues provided by either of the two. Thus, the integral will vanish whenever the rank of
the gauge group Nc is bigger than both the number of fundamental and anti-fundamental
chirals. We can also exploit the duality to obtain similar constraints in the dual theory.
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Overall we arrive at the conditions,

N1 < Nc , Nf < Nc , N3 < Ñc , Nf < Ñc . (6.20)

Using (6.6) and that the dual rank is Ñc = Nf −Nc, we see that one condition is redundant,
and that the remaining three are

Nc < 0 , Nf < Nc , n > 0 . (6.21)

The first two conditions coincide with the requirements for the original 4d theory and its
Seiberg dual to exhibit supersymmetry breaking. The last condition suggests that in the
theory for n > 0 supersymmetry is broken, while for n = 0 it is not. Although in the 4d theory
we are forced to have n ≥ 0, the 2d theory is technically well defined even for n < 0. We expect
that for n < 0 we would also get a consistent 2d theory that does not exhibit supersymmetry
breaking, however this case cannot be obtained by compactification from 4d (see [56]).

We can next investigate whether the n = 0 theory flows to an SCFT or not. For this,
we need to determine the superconformal R-symmetry using c-extremization [89, 90]. We
define a trial U(1)Rtrial R-symmetry by mixing the U(1)R1 we used for the twist with all
the other U(1) symmetries listed in table 10,

qRtrial = qR + qtRt + qIRI + qzRz , (6.22)

where qi are the charges and Ri the mixing coefficient for each symmetry. We then compute
the trial right-moving central charge as,

ctrial = Tr U(1)2Rtrial =N1Nc(−N3Rz − 1)2 −N3Nc(1 +N1Rz)2

+NfNc(−1)2 − (1 +RI +Rt)2 − (1 +RI −Rt)2 −N2
c .

(6.23)

Notice that due to the anomaly (6.9) one combination of the mixing coefficients has to
be set to zero, since this corresponds to the U(1)A′ symmetry that is broken to a discrete
subgroup and thus cannot mix,

Rt + (Nf −Nc)(RA +NcRz) = 0 . (6.24)

Moreover, one must be careful with non-compact directions in the target space, which
are associated with additional symmetries that cannot mix. To identify these, we have to
impose that the gauge invariant chiral operators corresponding to such directions have zero
R-charge. One such operator is PΦ (with the contraction of gauge indices understood),
which leads to the constraint

2RA −N3Rz = 0 . (6.25)

Another operator is Γ+Γ−, which gives,

RI = 0 . (6.26)

Overall, we have three conditions that the four mixing coefficients have to satisfy. Hence, ctrial
depends on a single mixing coefficient, with respect to which we extremize to determine the
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SU(Nc) U(1)V SU(N1) SU(2n) SU(N3) SU(Nf )R U(1)x U(1)y U(1)R2 U(1)A U(1)I U(1)t

Q1 □ 1 □ 1 1 1 0 −2n 1 1 0 0
Q2 □ 1 1 □ 1 1 −N3 N1 2 1 0 0
Q3 □ 1 1 1 □ 1 2n 0 3 1 0 0
Q̃ □ −1 1 1 1 □ 0 0 −1 1 0 0
Ω± 1 ±Nc 1 1 1 1 0 0 2 0 1 ±1

Table 12. The charges of the fields for 4d U(Nc) SQCD with determinant matter Ω±, with the new
R-symmetry U(1)R2 (twist 2 ). Recall that N1 + 2n+N3 = Nf , and n+N3 = Nf −Nc.

exact infrared R-symmetry at the putative fixed point. This gives the following non-trivial
value for the right-moving central charge,

cIR = N2
c

(
3− 4Nc

Nf +Nc

)
− 2 , (6.27)

which indicates that the theory flows to an interacting SCFT.

6.3 Compactification with negative R-charges

We next consider the twisted compactification on S2 of U(Nc) SQCD with Nf flavors and
determinant/anti-determinant matter, now with a choice of R-symmetry such that not all
fields have a non-negative R-charge. As mentioned above, this implies that the summation
over gauge fluxes m⃗G is not truncated to the zero flux sector, thus allowing us to study the
effect of compactifying with a non-trivial gauge flux.

For this, we once again break the SU(Nf )L flavor symmetry as in (D.3) with n > 0, but
we now mix the various abelian flavor symmetries with the R-symmetry so as to obtain a
new R-symmetry that we denote by R2. Namely, we mix the R-symmetry with a subgroup
U(1)x × U(1)y of the SU(Nf )L symmetry, so that the anti-fundamental chiral superfields
have R-charge −1, and the rest of the chiral fields have R-charges listed in table 12. We
shall refer to this twist of U(Nc) SQCD as twist 2.

The perturbative anomalies of the resulting 4d theory are computed in appendix D.4.
We will not repeat the analysis of the gauge anomalies, which are the same as in (6.7), but
will highlight the 2-group terms involving the U(1)R2 , which in this basis take the form,

I6
∣∣
2-group ⊃ c1(B)c1(R2)

(
− c1(R2)(2Nc + n) + 2c1(A)(2Nf −Nc) + 2c1(t)

+ 2nN1c1(y) + 2nN3c1(x)
)
.

(6.28)

We proceed to compactify this theory on a sphere with flavor flux for the R-symmetry
as in (6.2). Since with this twist there is no truncation to the zero gauge-flux sector, to
determine the content of the 2d theory in a non-trivial flux sector we cannot use the rule
reviewed in section 6.1. Instead, in order to study the compactification, we look explicitly at
the T 2 × S2 partition function of the theory with the assignment of symmetries of table 12
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(following the conventions of [58]),

I =
∑

m⃗G∈ZNc

g
∑Nc

k=1 mk

∮ Nc∏
k=1

dzk

2πizk

(
q2Nc ; q

)
∞

∏Nc
k<l θ(zkz

−1
l )θ(z−1

k zl)∏Nc
k=1

∏N1
i=1 θ(zku

−1
i y−2na)mk

× 1∏Nc
k=1

[∏2n
i=1 θ(zkv

−1
i x−N3yN1a)mk−1∏N3

i=1 θ(zkw
−1
i x2na)mk−2

]
× 1∏Nc

k=1
∏Nf

i=1 θ(z−1
k fia)2−mkθ

(∏Nc
k=1 ιzkt

)∑
k

mk−1
θ
(∏Nc

k=1 ιz
−1
k t−1

)−∑
k

mk−1
(6.29)

where θ(x) = (x; q)∞
(
qx−1; q

)
∞ and we have also turned on an FI parameter whose ex-

ponentiation we denoted by g, which will be useful in the next subsection to recover the
triality. Moreover, we denoted the fugacities by z⃗ for the U(Nc) gauge group, by u⃗ for
SU(N1)L, by v⃗ for SU(2n), by w⃗ for SU(N3)L, by f⃗ for SU(Nf )R, and by x, y, a, ι, t for
U(1)x × U(1)y × U(1)A × U(1)I × U(1)t.

First of all, we notice that with this choice of R-symmetry the zero-flux sector m⃗G = 0⃗ is
not the only one for which the integrand has poles that lead to a non-trivial contribution to
the integral. This indicates that the sum over m⃗G does not truncate to the zero-flux sector,
and that in the compactification we get a direct sum of distinct 2d theories. Moreover, we
can easily read off the matter content of the 2d theory in each flux sector by remembering
that the contribution to the elliptic genus of a 2d N = (0, 2) chiral multiplet of R-charge r,
in a representation RH with weights ρ of the residual gauge group H ⊂ U(Nc) preserved by
m⃗G, and in a representation RF with weights ρ̃ of the flavor symmetry group F , is

I(r)
chir(z⃗; u⃗; q) =

∏
ρ∈RH

∏
ρ̃∈RF

1
θ
(
q

r
2 z⃗ρu⃗ρ̃; q

) , (6.30)

while that of a Fermi multiplet is

I(r)
ferm(z⃗; u⃗; q) =

∏
ρ∈RH

∏
ρ̃∈RF

θ
(
q

r+1
2 z⃗ ρu⃗ρ̃; q

)
. (6.31)

The multiplicity of these fields is given by the exponent of the corresponding theta function
in (6.29), and thus depends not only on their R-charge but also on their representation under
the gauge group and the value of the gauge flux m⃗G. Finally, the contribution to the elliptic
genus of a 2d N = (0, 2) vector multiplet is,

Ivec(z⃗; q) = (q; q)2 rkH
∞

∏
α∈h

θ (z⃗ α; q) , (6.32)

where α are the roots of the Lie algebra h of the residual gauge group H. We can see
that when the flux m⃗G breaks the gauge group U(Nc) to a subgroup H, then the 4d vector
multiplet in the adjoint of U(Nc) whose contribution to the T 2 × S2 partition function is
given by the numerator in the first line of (6.29) gives rise not only to a 2d vector multiplet
in the adjoint of H, but also to some Fermi multiplets according to the decomposition of
the adjoint representation of U(Nc) with respect to H.
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SU(Nc) U(1)V SU(2n) SU(N3) SU(Nf )R SU(2)Ψ3 SU(2)Φ U(1)A U(1)R2 U(1)I U(1)t U(1)x U(1)y

Ψ2 □ 1 □ 1 1 1 1 1 1 0 0 −N3 N1

Ψ3 □ 1 1 □ 1 □ 1 1 2 0 0 2n 0
Φ □ −1 1 1 □ 1 □ 1 −1 0 0 0 0
λ adj 0 1 1 1 1 1 0 1 0 0 0 0
Γ± 1 ±Nc 1 1 1 1 1 0 1 1 ±1 0 0

Table 13. The 2d matter content that results from compactifying 4d U(Nc) SQCD with determinant
matter on the sphere, using twist 2 in table 12, in the m⃗G = (0, . . . , 0) flux sector. The parameters
satisfy N1 + 2n+N3 = Nf , and 2n+ 2N3 = 2(Nf −Nc).

SU(Nc) U(1)V SU(N1) SU(N3) SU(Nf )R SU(Nc − 1)P + SU(Nc + 1)Γ− U(1)A U(1)R2 U(1)I U(1)t U(1)x U(1)y

P1 □ 1 □ 1 1 1 1 1 1 0 0 0 −2n
Ψ3 □ 1 1 □ 1 1 1 1 2 0 0 2n 0
Φ □ −1 1 1 □ 1 1 1 −1 0 0 0 0
λ adj 0 1 1 1 1 1 0 1 0 0 0 0
P+ 1 Nc 1 1 1 □ 1 0 2 1 1 0 0
Γ− 1 −Nc 1 1 1 1 □ 0 1 1 −1 0 0

Table 14. The 2d matter content that results from compactifying 4d U(Nc) SQCD with determinant
matter on S2, using twist 2 in table 12, in the m⃗G = (1, . . . , 1) flux sector.

SU(Nc − 1) U(1)G U(1)V SU(N1) SU(2n) SU(N3) SU(Nf )R SU(2)Ψ3 SU(2)Φ SU(2)Γ− U(1)A U(1)R2 U(1)I U(1)t U(1)x U(1)y

P1 1 1−Nc 1 □ 1 1 1 1 1 1 1 1 0 0 0 −2n
Ψ2 □ 1 1 1 □ 1 1 1 1 1 1 1 0 0 −N3 N1

Ψ(1)
3 □ 1 1 1 1 □ 1 □ 1 1 1 2 0 0 2n 0

Ψ(2)
3 1 1−Nc 1 1 1 □ 1 1 1 1 1 2 0 0 2n 0

Φ(1) □ 1 −1 1 1 1 □ 1 □ 1 1 −1 0 0 0 0
Φ(2) 1 Nc − 1 −1 1 1 1 □ 1 1 1 1 −1 0 0 0 0
Σ+ □ Nc 0 1 1 1 1 1 1 1 0 1 0 0 0 0
Σ− □ −Nc 0 1 1 1 1 1 1 1 0 −1 0 0 0 0
Γ− 1 0 −Nc 1 1 1 1 1 1 □ 0 1 1 −1 0 0

Table 15. The 2d matter content that results from compactifying 4d U(Nc) SQCD with determinant
matter on S2, using twist 2 in table 12, in the m⃗G = (1, 0, . . . , 0) flux sector.

In the following we will consider the 2d theories corresponding to a few representative
choices of flux, and demonstrate how they can be interpreted as the twisted compactification
on S2 with magnetic gauge flux, by studying the corresponding anomalies. In particular,
we will see that also the anomalies involving gauge symmetries are preserved under the
compactification and determine the breaking of various symmetries in 2d, in accordance with
our general discussions in section 2.3 and section 3.

Flux m⃗G = (0, . . . , 0). We start by considering the sector with a vanishing magnetic flux
for the gauge symmetry. The matter content of the theory in this flux sector is summarized in
table 13, and consists of the (0, 2) vector multiplet; the Fermi fields Ψ2,Ψ3 descending from the
4d fundamental chirals Q2, Q3; the chiral multiplet Φ descending form the anti-fundamental
chirals Q̃; and the Fermi fields Γ± descending from the determinant matter. The fields Ψ3
and Φ each appear in two copies after the compactification, transforming in the fundamental
representation of an accidental SU(2)Ψ3 × SU(2)Φ symmetry.
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We have verified that the anomaly polynomial of the 2d theory consisting of the matter
content in table 13 is reproduced by integrating the anomaly polynomial of the original 4d
theory, with result given in (D.25). Notably, due to the topological twist of the R-symmetry,
the compactification of the 2-group terms in I6 from (6.28) directly reproduces the gauge
anomalies of the 2d theory, which take the form

I4
∣∣
gauge = 2c1(B)

(
ĉ1(R2)(2Nc + n) + c1(A)(Nc − 2Nf )− c1(t)

− n (N3c1(x) +N1c1(y))
)
. (6.33)

These imply that a combination of the various classical abelian symmetries is broken to a
discrete subgroup, including the U(1)R2 symmetry which descends from the four-dimensional
R-symmetry. However much as was the case with the twist 1 example examined in section 6.2,
we expect that the anomaly-free R-symmetry in the 2d theory is given by mixing with the
global abelian symmetries, and can be determined by a c-extremization analysis.

As we have noted, the 2d theory contains symmetries SU(2)Ψ3×SU(2)Φ that are accidental
from the perspective of the compactification from 4d. These can be related to the SU(2)
isometry of the sphere, which we will denote by SU(2)ISO, as follows. The Bott-Cattaneo
formula implies that the integration of the Chern root satisfies,∫

S2
t3 = −8c2(SU(2)ISO) . (6.34)

This formula follows from (D.2) in appendix D.1. Upon decomposing the Pontryagin class
for the spacetime tangent bundle as p1(T4) = p1(T2) + t2, and applying this formula in the
integration of the six-form anomaly polynomial I6 over the sphere, we can identify the result
with the anomalies for the accidental SU(2)Ψ3 × SU(2)Φ symmetry computed from table 13,
yielding the following identification,

Nfc2(SU(2)Φ)−N3c2(SU(2)Ψ3) = (Nf −N3)c2(SU(2)ISO) . (6.35)

This anomaly matching indicates that the isometry group of the sphere is identified with
the diagonal subgroup of the accidental SU(2)Ψ3 × SU(2)Φ symmetry.

Flux m⃗G = (1, . . . , 1). The other sectors correspond to having non-trivial flux for the
gauge symmetry. We will consider fluxes of increasing complexity, starting from one which
is only in the U(1)B part of the gauge group and not the SU(Nc) part. The minimal such
flux is m⃗G = (1, · · · , 1), which corresponds to decomposing c1(B) as follows,

c1(B) = Nc

2 t+ ĉ1(B) ⇒
∫

S2
c1(B) = Nc . (6.36)

The matter content of the 2d theory in this flux sector is summarized in table 14, and the
result of integrating the 4d anomaly polynomial is given in (D.28). The 2d theory has an
accidental SU(Nc − 1)P + × SU(Nc + 1)Γ− symmetry, as there are Nc − 1 identical copies of
the chiral field P+ and Nc + 1 copies of the Fermi field Γ− in the compactification.

Again we find perfect matching between the anomaly polynomial of the 2d theory with
matter content and charges given in table 14, and the one obtained by integrating the 4d
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anomaly polynomial over the S2, with details presented in appendix D.4. In particular, we
again observe that the 2d gauge anomalies can be reproduced in this way, leading to

I4
∣∣
gauge = 2ĉ1(B)

[
(2Nc + n)ĉ1(R2) +Ncc1(I) + (Nc −Nf )c1(A)

− c1(t)− nN1c1(y)− nN3c1(x)
]
. (6.37)

Notice that these descend from the 4d anomalies that are both quadratic in U(1)B from (6.7),
and linear in U(1)B from (6.28). Also in this case there are accidental symmetries SU(Nc −
1)P + × SU(Nc + 1)Γ− , with anomalies

I4 ⊃ c2(SU(Nc − 1)P +)− c2(SU(Nc + 1)Γ−) . (6.38)

These should be compared with the anomaly for the sphere isometry (from (D.28)),

N2
c c2(SU(2)ISO) . (6.39)

Indeed, we can embed SU(2)ISO inside SU(Nc −1)P + ×SU(Nc +1)Γ− such that the anomalies
match as follows. We first consider the SU(2) subgroup of SU(Nc − 1)P + such that the
fundamental representation of the latter reduces to the (Nc − 1)-dimensional representation
of the former. Similarly, we consider the SU(2) subgroup of SU(Nc + 1)Γ− such that the
fundamental representation of the latter reduces to the (Nc + 1)-dimensional representation
of the former. Finally, SU(2)ISO is identified with the diagonal combination of these two
SU(2)’s. At the level of the characteristic classes, this embedding implies

c2(SU(Nc − 1)P +) = −(Nc − 1)((Nc − 1)2 − 1)
6 c2(SU(2)ISO) ,

c2(SU(Nc + 1)Γ−) = −(Nc + 1)((Nc + 1)2 − 1)
6 c2(SU(2)ISO) , (6.40)

upon which (6.38) reduces to the expected anomaly for the sphere isometry from the com-
pactification.

Flux m⃗G = (1, 0, . . . , 0). We finally consider a more complicated flux that breaks the
gauge symmetry U(Nc) to a subgroup H. The minimal such flux is m⃗G = (1, 0, · · · , 0) and
it breaks the SU(Nc) part of the gauge symmetry as follows,

SU(Nc) → SU(Nc − 1)× U(1)G , (6.41)

where the embedding is,

Nc → (Nc − 1)1 ⊕ (1)1−Nc . (6.42)

This branching rule corresponds to the following decomposition of characteristic classes,

c2(SU(Nc)) = c2(SU(Nc − 1)) + Nc(Nc − 1)
2 c1(G)2 . (6.43)

The flux vector can be rewritten as

m⃗G = (1, 0, · · · , 0) =
( 1
Nc

+ Nc − 1
Nc

,
1
Nc

− 1
Nc
, · · · , 1

Nc
− 1
Nc

)
, (6.44)

– 59 –



J
H
E
P
0
7
(
2
0
2
4
)
1
1
0

and so we see that this corresponds to flux 1
Nc

for the U(1)V part of the gauge group (or
equivalently 1 for U(1)B), and − 1

Nc
for the U(1)G in (6.41), so that we may express

c1(B) = t

2 + ĉ1(B) , c1(G) = − t

2Nc
+ ĉ1(G) ,

⇒
∫

S2
c1(B) = 1 ,

∫
S2
c1(G) = − 1

Nc
.

(6.45)

The matter content of the theory in this flux sector is summarized in table 15. Notice that each
4d field can give rise to multiple fields in 2d due to the breaking of the gauge symmetry. In
particular, the Fermi fields Σ± descend from the broken part of the 4d U(Nc) vector multiplet.

Again we can match the anomaly polynomial of this 2d theory with the one obtained by
integrating the anomaly polynomial of the 4d theory over the S2, given in (D.31), although
the latter computation now requires some additional steps due to the fact that we have a flux
for the SU(Nc) part of the gauge group which partially breaks it. Indeed, we need to first
decompose the SU(Nc) Chern class c2(SU(Nc)) in accordance with the branching rule (6.43),
and then substitute (6.45) (see appendix D.4 for more details). We stress again that in this
way we are also able to reproduce the gauge anomalies of the theory obtained after the
compactification. In particular, we find the following gauge anomalies involving U(1)B , which
descend from those that led to a 2-group and to a non-invertible symmetry in 4d,

I4 ⊃ 2ĉ1(B)
[
ĉ1(R)(2Nc + n) + c1(A)

(
Nc − 2Nf + Nf

Nc

)
+ c1(I)− c1(t)− n (N1c1(y) +N3c1(x))

]
. (6.46)

Moreover, we have the following gauge anomaly involving U(1)G, which comes only from the
anomaly for the 4d SU(Nc) symmetry (6.7) that breaks U(1)A → Z2Nf

in 4d,

I4 ⊃ −2Nf (Nc − 1)ĉ1(G)c1(A) , (6.47)

and indicates that only Z2Nf
is preserved as well in 2d.

This case also features accidental symmetries, SU(2)Ψ3 × SU(2)Φ × SU(2)Γ− × SU(2)Σ,
with anomalies,38

I4 ⊃ −N3(Nc − 1)c2(SU(2)Ψ3) +Nf (Nc − 1)c2(SU(2)Φ)
− c2(SU(2)Γ−)− (Nc − 1)c2(SU(2)Σ) . (6.48)

These should be compared with the anomaly for SU(2)ISO from the compactification
(from (D.31)),

[Nc − (Nc − 1)(Nc + n)] c2(SU(2)ISO) . (6.49)

Again we can see that the two match if we identify SU(2)ISO with the diagonal combination
of SU(2)Ψ3 × SU(2)Φ × SU(2)Γ− × SU(2)Σ.

38Recall that a Fermi multiplet with R-charge r and in a representation R is equivalent to a Fermi multiplet
with R-charge −r and in the complex-conjugate representation R. Hence, Σ± are identical fields and they are
rotated by an accidental SU(2)Σ symmetry.
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SU(Nc) U(1)V SU(N1 − 3)L SU(N1)R U(1)1 U(1)2 U(1)3 U(1)R3 U(1)A U(1)I U(1)t

Q1 □ 1 1 1 0 1 0 1−N2 1 0 0
Q2 □ 1 1 1 0 0 1 1 +N3 1 0 0
Q3 □ 1 1 1 3−N1 −1 −1 1 1 0 0
Qi>4 □ 1 □ 1 1 0 0 1 1 0 0
Q̃ □ −1 1 □ 0 0 0 0 1 0 0
Ω+ 1 Nc 1 1 0 0 0 3 0 1 1
Ω− 1 −Nc 1 1 0 0 0 1 0 1 −1
M1 1 0 1 □ 0 −1 0 1 +N2 −2 0 0

Table 16. A different parametrization of the symmetries for the 4d U(Nc) SQCD with N1 flavors
(twist 3 ). Here N1 +N2 −N3 = 2Nc.

SU(Ñc) U(1)
Ṽ

SU(N1 − 3)L SU(N1)R U(1)1 U(1)2 U(1)3 U(1)R3 U(1)A U(1)I U(1)t

q1 □ 1 1 1 0 −1 0 1 +N2 −1 0 0
q2 □ 1 1 1 0 0 −1 1−N3 −1 0 0
q3 □ 1 1 1 N1 − 3 1 1 1 −1 0 0
qi>4 □ 1 □ 1 −1 0 0 1 −1 0 0
q̃ □ −1 1 □ 0 0 0 0 −1 0 0
Ω̃+ 1 Ñc 1 1 0 0 0 3 0 1 1
Ω̃− 1 −Ñc 1 1 0 0 0 1 0 1 −1
M̃2 1 0 1 □ 0 0 1 1 +N3 2 0 0
M̃3 1 0 1 □ 3−N1 −1 −1 1 2 0 0
M̃i>4 1 0 □ □ 1 0 0 1 2 0 0

Table 17. The U(Ñc = N1 −Nc) Seiberg dual to table 16.

6.4 Recovering 2d triality

In this subsection we revisit the derivation from [58, 67] of the 2d N = (0, 2) triality [56]
as starting from the 4d N = 1 Seiberg duality for U(Nc) SQCD with determinant matter,
placing particular emphasis on the structure of the 0-form symmetries of the 2d theories from
the perspective of the compactification. In particular, we show that all the symmetries of
the 2d theories are already manifest in 4d and that their mapping under the 2d triality can
be understood from the one for the 4d duality. For this it will be crucial to focus on the
compactification of the anomaly polynomial (whose details we relegate to appendix D.5), with
particular attention paid to the fate of the gauge anomalies (similarly to the discussion of the
previous subsections), since they lead to the correct parameterization of the 2d symmetries
that is needed in order to obtain the triality. This also allows us to identify a discrete
symmetry that is not affected by the gauge anomalies and to map it across the triality.
Hence, the fact that also gauge anomalies are preserved under compactification, which we
understood in section 2 in terms of the reduction of generalized symmetry structures, provides
us a deeper understanding of the structure of 0-form symmetries in the 2d triality, and
how they can be derived from 4d.
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For uniformity with the existing literature on the 2d N = (0, 2) triality, in this section
we denote the total number of flavors Q, Q̃ of 4d SQCD by N1 rather than Nf . We also
need to perform yet a different twist, which we call twist 3, as follows. We decompose
the fundamental chirals Qi into four sets Q1, Q2, Q3 and Qi for i = 4, · · · , N1. Moreover,
we introduce some singlets M1 flipping the meson Q1Q̃. Accordingly, we parametrize the
symmetries as in table 16, denoting the R-symmetry by U(1)R3 . In particular, the symmetries
U(1)R3 , U(1)t and U(1)i for i = 1, 2, 3 are chosen to be non-anomalous provided that the
following constraint is satisfied,

N1 +N2 −N3 = 2Nc , (6.50)

while as usual U(1)A has a mixed anomaly with the non-abelian part of the gauge group
that breaks it to (Z2N1)A, and a combination of U(1)A, and U(1)I is involved in the ABJ
anomaly with the abelian part of the gauge group, see eq. (D.32). Moreover, we have the
2-group anomalies (D.34), of which we will only need the part involving the R-symmetry
for the purposes of the twisted compactification,

I6
∣∣
2group ⊃ c1(B)c1(R3)

(1
2(4−N1 +N2

2 +N2
3 )c1(R3) + c1(A)(N1 −N2 +N3)

+ 2c1(I) + 2c1(t)−N2c1(U(1)2) +N3c1(U(1)3)
)
. (6.51)

We accordingly perform a similar splitting of the chirals in the Seiberg dual theory, where
now we only have the singlets M̃2, M̃3 and M̃i for i = 4, · · · , N1 because the singlets M1 we
have added give a mass to M̃1 in the dual. The charges of the dual fields are summarized in
table 17, where the symmetry map can as usual be determined by comparing the charges of
the operators that map to each other under the duality. In particular one has

F
Ṽ
= Nc

N1 −Nc
FV − N1

N1 −Nc
FA , (6.52)

familiar from (4.11). As usual, with this assignment of charges one can match the anomaly
polynomials of the Seiberg dual theories, where again it is crucial to consider that U(1)A

is broken to (Z2N1)A by the gauge anomaly.
As we have already seen, when we perform a twisted S2 compactification by an R-

symmetry under which some of the 4d chirals have a negative R-charge, we do not get a
single 2d theory but rather a sum of theories, each of which corresponds to a sector with
a different magnetic flux for the gauge symmetry through the S2. However, it is possible
to map the theories obtained sector by sector across Seiberg duality. Indeed, as mentioned
around (6.29), we can refine the T 2 × S2 partition function with an FI parameter g which
appears differently in each flux sector, so that the matching of this refined partition function
across Seiberg duality implies relations between the distinct flux sectors of the dual theories.
In order to recover the triality, we consider the part of the T 2 × S2 partition function with
a trivial g dependence, which receives contribution only from the zero gauge flux sector on
each side of the duality. This implies a matching of the T 2 partition functions associated to
these zero flux sectors that we can interpret as a 2d duality, pictured in figure 3. From the
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R-charges in table 16 we can read off the matter content of the 2d theory and the charge
assignment under the same symmetries that we defined in 4d (see table 18).39

Similarly to what we did in the previous sections, the anomaly polynomial of this 2d
theory can be reproduced by integrating that of the 4d theory over the S2 and taking into
account the non-trivial flux for the R-symmetry (see appendix D.5). This includes the mixed
global-gauge symmetry anomalies, which descend from the 2-group anomalies (6.51) in 4d,

I4
∣∣
gauge = c1(B)

(
N2c1(U(1)2)−N3c1(U(1)3) +

(
N1 −N2

2 −N2
3 − 4

)
c1(R3)

− (N1 −N2 +N3)c1(A)− 2(c1(I) + c1(t))
)
. (6.53)

Moreover, the SU(2)ISO isometry symmetry of the two-sphere is identified with a subgroup of
the accidental SU(N2)L × SU(N3)L × SU(2)Γ flavor symmetry that appears in the 2d model.
The embedding is similar to those of the previous examples; specifically we consider the
SU(2) subgroups of SU(N2)L and SU(N3)L such that their fundamental representations are
mapped to the N2-dimensional and N3-dimensional representations of SU(2) respectively, and
we consider the diagonal combination of these two SU(2)’s and SU(2)Γ which gets identified
with SU(2)ISO. At the level of the Chern classes this implies,

c2(SU(Ni)L) =
Ni(N2

i − 1)
6 c2(SU(2)ISO) , i = 2, 3

c2(SU(2)Γ) = c2(SU(2)ISO) .
(6.54)

Another observation that we can make from table 18 is that the symmetry U(1)1 ends up
acting trivially in 2d, while U(1)t is redundant since it coincides with U(1)I . Moreover, one
combination of the remaining abelian symmetries including the R-symmetry is anomalous
due to (6.53), which leaves us with four independent non-anomalous U(1) symmetries. In
order to conform with some previous literature on the 2d triality, we decide to solve the
anomaly cancellation constraint by redefining the symmetries as follows,40

F2 = −Fa − Fb +
N1(N2 − 3) +N2(N2 +N3 + 1)−N3

N1 +N2 +N3
FR′ ,

F3 = −Fa + Fc −
N3(N1 +N2 + 1) +N1 −N2 +N2

3
N1 +N2 +N3

FR′ ,

FA = Fa + N1 −N2 +N3
N1 +N2 +N3

FR′ ,

FI = −1
2 (N1Fa +N2Fb +N3Fc)− 2FR′ ,

(6.55)

and FR3 = FR′ , where the equalities are between the background field strengths. However,
there is a discrete subgroup of the anomalous U(1) symmetry which is not anomalous, which
we can parameterize such that the charge assignment of the fields is the same as under the

39Notice that here we are treating the axial symmetry as a U(1)A symmetry. As we shall see momentarily,
this is broken by gauge anomalies to the discrete group Z2(N1−Nc) which is a different group than the Z2N1

that is preserved in 4d. However, the duality only requires the breaking U(1)A → Z2(N1−Nc),A.
40In particular, the R-symmetry coincides with the superconformal R-symmetry as shown in [56].
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SU(Nc) U(1)V SU(N2)L SU(N3)L SU(2)Γ SU(N1)R U(1)1 U(1)2 U(1)3 U(1)R3 U(1)A U(1)I U(1)t

P □ 1 □ 1 1 1 0 1 0 1−N2 1 0 0
Ψ □ 1 1 □ 1 1 0 0 1 N3 1 0 0
Φ □ −1 1 1 1 □ 0 0 0 0 1 0 0
Γ 1 Nc 1 1 □ 1 0 0 0 2 0 1 1
µ 1 0 □ 1 1 □ 0 −1 0 N2 −2 0 0

Table 18. Field content and charges of the 2d theory obtained from the S2 compactification of 4d
U(Nc) SQCD with N1 flavors, with twist 3. Here N1 +N2 −N3 = 2Nc.

SU(Ñc) U(1)
Ṽ

SU(N2)L SU(N3)L SU(2)Γ SU(N1)R U(1)1 U(1)2 U(1)3 U(1)R3 U(1)A U(1)I U(1)t

Ψ̃ □ 1 □ 1 1 1 0 −1 0 N2 −1 0 0
P̃ □ 1 1 □ 1 1 0 0 −1 1−N3 −1 0 0
Φ̃ □ −1 1 1 1 □ 0 0 0 0 −1 0 0
Γ̃ 1 Ñc 1 1 □ 1 0 0 0 2 0 1 1
µ̃ 1 0 1 □ 1 □ 0 0 1 N3 2 0 0

Table 19. Field content and charges of the 2d theory obtained from the S2 compactification of the
Seiberg dual 4d U(Ñc = N1 −Nc) SQCD with N1 flavors, with twist 3.

SU(Nc) U(1)V SU(N2)L SU(N3)L SU(2)Γ SU(N1)R U(1)a U(1)b U(1)c U(1)R′ Z2(N1−Nc),A

P □ 1 □ 1 1 1 0 −1 0 N2−N1+N3
N1+N2+N3

1
Ψ □ 1 1 □ 1 1 0 0 1 0 1
Φ □ −1 1 1 1 □ 1 0 0 N1+N3−N2

N1+N2+N3
1

Γ 1 Nc 1 1 □ 1 −N1
2 −N2

2 −N3
2 0 0

µ 1 0 □ 1 1 □ −1 1 0 N1+N2−N3
N1+N2+N3

−2

Table 20. The independent non-anomalous symmetries of the 2d theory in table 18.

original U(1)A symmetry. From (6.53) we then see that this would-be abelian symmetry
has the gauge anomaly,

I4
∣∣
gauge = −(N1 −N2 +N3)c1(B)c1(A) = −2(N1 −Nc)c1(B)c1(A) . (6.56)

This implies that U(1)A is broken by the gauge anomaly to the discrete subgroup,

U(1)A → Z2(N1−Nc),A . (6.57)

The charges of the fields under these new symmetries are summarized in table 20. Note
in particular that the 4d non-invertible symmetry, which on general grounds we argued in
section 2.3 should reduce to at least an invertible Q/Z symmetry in 2d, evidently enhances back
to a full U(1), which mixes with the other abelian symmetries to yield the non-anomalous
symmetries listed in the table.

We can proceed similarly with the compactification of the Seiberg dual theory. The
field content and the charges under the symmetries descending from 4d are summarized in
table 19. As before, the anomalies of this 2d theory can be obtained from the 4d anomalies
by integration over the S2, including the mixed global-gauge symmetry anomalies descending
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SU(Ñc) U(1)
Ṽ

SU(N2)L SU(N3)L SU(2)Γ SU(N1)R U(1)a U(1)b U(1)c U(1)R′ Z2(N1−Nc),A

Ψ̃ □ 1 □ 1 1 1 0 0 1 0 −2− Nc
N1−Nc

P̃ □ 1 1 □ 1 1 0 −1 0 N2−N1+N3
N1+N2+N3

−2− Nc
N1−Nc

Φ̃ □ −1 1 1 1 □ −1 1 −1 N1+N2−N3
N1+N2+N3

Nc
N1−Nc

Γ̃ 1 Ñc 1 1 □ 1 N1
2 −N1+N3

2
N1−N2

2 0 0
µ̃ 1 0 1 □ 1 □ 1 0 1 N1+N3−N2

N1+N2+N3
2

Table 21. The independent non-anomalous symmetries of the 2d theory in table 19.

from the 4d 2-group anomalies for the R-symmetry, leading to,

Ĩ4
∣∣
gauge = c1(B̃)

(
N2c1(U(1)2)−N3c1(U(1)3) + (N1 −N2

2N
2
3 − 4)c1(R3)

+(N1 +N2 −N3)c1(A)− 2(c1(I) + c1(t))) . (6.58)

Again we can notice that the symmetry U(1)1 now acts trivially, and that U(1)t is not
independent since it acts as U(1)I . We decide to parameterize the non-anomalous symmetries
as in the original theory so to facilitate the matching across the duality, which is achieved
by specifying,

F2 = −Fa + U(1)b − 2Fc +
(N2 + 1)(N1 +N2) + (N2 − 1)N3

N1 +N2 +N3
FR′ ,

F3 = −Fa + 2Fb − Fc −
N1(N3 − 3) +N3(N2 +N3)−N2 +N3

N1 +N2 +N3
FR′ ,

FA = Fa − Fb + Fc +
N1 +N2 −N3
N1 +N2 +N3

FR′ ,

FI = 1
2 (N1Fa − (N1 +N3)Fb + (N1 −N2)Fc)− 2FR′ .

(6.59)

We would like to parameterize the non-anomalous discrete subgroup of the anomalous abelian
symmetry in such a way that it maps to the one we previously defined in the original theory,
see table 20. For this, we exploit the mapping (6.52) of the U(1)A symmetry across Seiberg
duality. The result is the charge assignment summarized in table 21.41 Computing the gauge
anomaly for this symmetry, we find,

Ĩ4
∣∣
gauge =

2N1(N2 −N3)−Nc(N1 +N2 −N3)
N1 −Nc

c1(B̃)c1(A)

= −2(N1 −Nc)c1(B̃)c1(A) ,
(6.60)

which indeed tells us that such an anomaly is trivialized if the symmetry is restricted to
be Z2(N1−Nc),A.

In this way, the anomaly polynomials of the theories in tables 20 and 21 perfectly match,
which is a highly non-trivial test of the 2d duality. These two duality frames are pictured
in figure 3. Moreover, one can observe that applying this duality twice one does not go
back to the original theory, but rather we obtain a third dual frame. This is because the

41While this charge assignment might look strange due to the fractional charges, one can verify that the
charges of gauge invariant operators are all integers so that the actual symmetry is indeed Z2(N1−Nc),A.
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N1

N2N3

N1+N2−N3
2Γ

µ

N1

N3N2

N1+N3−N2
2Γ̃

µ̃

Figure 3. The two triality frames reached by compactifying the 4d Seiberg-dual pairs with Nf = N1
with twist 3 in the m⃗G = 0 sector, with symmetries given in tables 20 and 21.

duality acts as a cyclic permutation of the three elements (N1, N2, N3). Hence, in 2d we
actually obtain a triality rather than a duality.

Let us conclude by commenting about the compactification of the 4d dual theories in a
non-vanishing gauge flux sector. First of all, one can still derive the content of the 2d theories
and reproduce their anomalies (including the gauge anomalies) by compactifying the anomaly
polynomials of the 4d theories on S2, similarly to what we have already discussed at length.
Moreover, one can match between the two 2d theories the anomalies of the non-anomalous
symmetries that are already manifest from 4d plus the SU(2)ISO isometry of the sphere, in
accordance with the fact that the T 2 × S2 partition function of the 4d dual theories matches
in each magnetic flux sector. However, there are several more accidental symmetries (inside
of which SU(2)ISO is embedded) as compared to the zero flux case, due to the fact that some
of the 4d fields produce multiple fields in 2d because of the higher magnetic flux. When
comparing the theories in the same flux sector on each side of the 4d duality, these accidental
symmetries turn out to be different, thus preventing the 2d theories from being dual. In other
words, the emergence of accidental non-abelian continuous symmetries in the compactification
seems to spoil the duality in 2d. Notice that this is not in conflict with the matching of the
T 2 × S2 partition function mentioned above, since these symmetries are not manifest in 4d
and thus we cannot refine the partition function by fugacities for them.
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A Conventions

A.1 Group theory and lagrangians

Let T a be the Hermitian generators of a Lie algebra satisfying [T a, T b] = ifabcT c, where
fabc are the real structure constants. The quadratic Casimir C(R) and index T (R) of a
given representation R are defined by,

T aT a = C(R)1 , TrR T aT b = T (R)δab , (A.1)

which are related as dim(R)C(R) = dim(adj)T (R). In our chosen normalization, the
generators of SU(N) in the fundamental and adjoint representations satisfy T (□) = 1/2
and T (adj) = N , respectively.

The non-abelian field strength F a
µν is given by,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν ↔ Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] . (A.2)

We are using a notation in which an adjoint field ϕ is given by ϕ = ϕaT a, and note that
in the language of differential forms, A = Aµdx

µ = Aa
µT

adxµ, and F = 1
2Fµνdx

µdxν =
1
2F

a
µνT

adxµdxν . Then, F = dA − iA ∧ A. The covariant derivative for a field Q that
transforms in a representation R is,

DµQ
ℓ = ∂µQ

ℓ − iAa
µ(T a

R)ℓ
kQ

k ↔ DµQ = ∂µQ− iAR
µ Q (A.3)

where AR
µ = Aa

µ(T a
R)i

j , and where T a = (T a
R)ℓ

k is the symmetry group generator transforming
in the (dimR) × (dimR) representation. In the adjoint representation the generators are
(T a

adj)bc = −ifabc, so that the covariant derivative of an adjoint field ϕ = ϕaT a is,

Dµϕ
a = ∂µϕ

a + fabcAb
µϕ

c ↔ Dµϕ = ∂µϕ− i[Aµ, ϕ] . (A.4)

In these conventions, the kinetic term for the non-abelian field strength of an SU(N) gauge
theory is, L ⊃ − 1

2g2 TrFµνFµν = − 1
4g2F

µνaF a
µν , although sometimes we absorb the coupling

g into the definition of A.

A.2 Characteristic classes and anomaly polynomials

Let F denote the Hermitian field strength of a G = SU(N) or U(N) bundle. The 2k-form
Chern classes ck(G) are polynomials in F of degree k, begining with,

c1(G) =
TrF
2π , c2(G) =

1
8π2

[
TrF 2 − (TrF )2

]
. (A.5)

Here and throughout the paper we suppress the wedge products. For an SU(N) bundle
TrFSU(N) = 0, so c1(SU(N)) = 0 and c2(SU(N)) = 1

8π2 TrF 2
SU(N).

One can embed SU(N) in U(N) as U(N) = [SU(N) × U(1)V ]/ZN , with U(1)V /ZN =
U(1)B, so that the U(1) curvatures are related as FB = NFV . This embedding amounts
to the following identification of field strengths,

FSU(N) = FU(N) −
1
N
1NFB , TrFU(N) = FB , (A.6)
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so that the Chern classes are related as,

c2(SU(N)) = c2(U(N)) + 1
2

(
1− 1

N

)
c1(U(1)B)2 , (A.7)

with c1(U(1)B) = FB/(2π).
Perturbative chiral anomalies for 0-form symmetries in even d spacetime dimensions

are encapsulated by the (d+ 2)-form anomaly polynomial Id+2, defined for a Weyl fermion
in a representation of a symmetry G by [91],

Id+2 =
[
Â(R)ch(F )

]
d+2

. (A.8)

Here the (d+ 2) subscript instructs us to extract the (d+ 2)-form in the expansion of the
curvatures. Â(R) is the A-roof genus, whose expansion in terms of the curvature R of the
spacetime tangent bundle is Â(R) = 1 − 1

24p1(R) + . . ., and ch(F ) is the Chern character
for the G-bundle with curvature F . The Pontryagin classes pk are 4k-forms, with the first
p1(R) for a real vector bundle given by p1(R) = − 1

8π2 TrR2.
The anomaly polynomial Id+2 satisfies the descent equations,

Id+2 = dId+1 , δId+1 = dId . (A.9)

The anomaly inflow action Ainf
d+1 and variation of the effective action δS are given in terms

of these quantities by,

Ainf
d+1 = 2π

∫
Md+1

Id+1 , δS = 2π
∫

Md

Id . (A.10)

A.3 2-groups and ABJ anomalies

In this work we have focused on 4d theories and their compactifications. The anomaly polyno-
mial of a 4d theory with an abelian flavor symmetry F = U(1)F , non-abelian flavor symmetry
H = SU(N), and abelian gauge symmetry G = U(1)G might include the following terms,

I6 =
k

2 c1(F )c1(G)
2 + κF

2 c1(F )2c1(G) + κHc2(H)c1(G) (A.11)

where the coefficients are computed by taking the traces,

k = Tr U(1)F U(1)2G , κF = Tr U(1)2F U(1)G , κH = Tr U(1)GH . (A.12)

The forms I5 and I4 can be obtained from (A.9), using the fact that an infinitesimal
background gauge transformation acts on the fields as,

AF → AF + dλF

AH → AH + dλH − i[AH , λH ] , FH → FH − i[FH , λH ] .
(A.13)

Here the curvatures are given by FF = dAF , and FH = dAH − iAH ∧AH . It is also useful to
note that Tr(F 2

H) = −dTr(AHdAH − 2i
3 A

3
H), where again we are suppressing wedge products.

The corresponding current non-conservation equation is,

d ⋆ jF = k

8π2FG ∧ FG + κF

8π2dAF ∧ FG − κH

16π2dAH ∧ FG , (A.14)
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where in our conventions a current j couples to a background field A in the action with a
term S ⊃ −

∫
d4xAµjµ = −

∫
A ∧ ⋆j (or for a non-abelian symmetry, S ⊃ −

∫
d4xAµaja

µ =
−2

∫
Tr(A ∧ ⋆j)).

The first term in (A.14) corresponds to the ABJ anomaly. The 2-group structure derives
from the second two terms. The variation of the effective action is canceled by coupling to
a 2-form background field B which transforms as,42

B → B + dΛ− κF

4π λFdAF + κH

4π Tr(λHdAH) . (A.15)

B Anomaly matching for U(Nc) SQCD

In this appendix we explicitly verify that the ’t Hooft anomalies of the 4d U(Nc) SQCD
match across Seiberg duality, including the discrete Z2Nf

axial symmetry. For this purpose it
is useful to use the “primed” symmetry basis (4.9) under which the fields have integer U(1)R′

symmetry charges. We will denote the classical abelian symmetries of the electric theory by
U(1)V ′ ×U(1)A′ ×U(1)R′ , and those of the magnetic dual by U(1)

Ṽ ′ ×U(1)
Ã′ ×U(1)R′ , where

in the theories with unitary gauge group, U(1)B = U(1)V ′/ZNc is gauged on the electric
side, and U(1)

B̃
= U(1)

Ṽ ′/ZNf−Nc is gauged on the magnetic side. By application of (4.8),
the Q and Q̃ chiral fields have zero U(1)R′ charge, while the gaugino retains unit U(1)R′

charge, and the U(1)A′ and U(1)V ′ charges are unchanged from their unprimed counterparts
in table 3. The magnetic chiral superfields q and q̃ similarly have U(1)R′ charge zero, the
magnetic singlet M̃ has U(1)R′ charge 2, and the U(1)

Ã′ and U(1)
Ṽ ′ charges are the same

as their unprimed counterparts. The Dirac quantization conditions of the various classical
gauge fields in this basis are as follows.

• The U(1)R′ curvature satisfies the canonical quantization conditions
∫

S2 c1(R′) ∈ Z.

• Similarly, the classical U(1)A′ curvature satisfies
∫

S2 c1(A′) ∈ Z, as does its magnetic
dual counterpart

∫
S2 c1(Ã′) ∈ Z.

• In the electric theory with SU(Nc) gauge group, the background curvature for the
U(1)V ′ global symmetry is canonically quantized as

∫
S2 c1(V ′) ∈ Z, and similarly

for the magnetic theory,
∫

S2 c1(Ṽ ′) ∈ Z. However in the electric U(Nc) theory with
U(1)B gauged, it is the gauge curvature fB = NcfV ′ which satisfies the canonical
quantization condition

∫
S2 c1(B) ∈ Z. In the magnetic U(Ñc = Nf − Nc) theory,

U(1)
B̃
= U(1)

Ṽ ′/ZNf−Nc is gauged, so that the gauge curvature f
B̃
= (Nf − Nc)fṼ ′

satisfies
∫

S2 c1(B̃) ∈ Z. We are using lowercase letters to denote dynamical rather than
background gauge fields.

• Combining (4.9) and (4.11), the claim to be verified below is that field strengths on the
electric and magnetic sides of the duality are related as,

F
Ã′ = −FA′ + FR′ , f

B̃
= fB −NfFA′ + (Nf −Nc)FR′ . (B.1)

42For reference, our conventions differ from those in [35], which we dub CDI, as follows. We work in
Minkowski signature, so SCDI = iS. Our currents are defined with an additional factor of i, and for the
non-abelian symmetry, {A, λ, F}CDI = −i{A, λ, F}. Furthermore, they use Tr T aT b = −1/2δab with a minus
sign different from our conventions.
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The anomaly polynomial for U(Nc) SQCD is evaluated in this basis as,

I6 =
[
2(Nc −Nf )c1(R′) + 2Nfc1(A′)

]
c2(U(Nc))

+
[
(Nc −Nf − 1)c1(R′) +Nfc1(A′)

]
c1(B)2

+ [c2(SU(Nf )L)− c2(SU(Nf )R)] c1(B)
+ [c2(SU(Nf )L) + c2(SU(Nf )R)]

[
Nc c1(A′)−Nc c1(R′)

]
+ 1

3NcNfc1(A′)3 + 1
6(N

2
c − 2NcNf − 1)c1(R′)3

+NcNf

[
c1(R′)2c1(A′)− c1(R′)c1(A′)2

]
+ 1

3·16π3NcTr
(
F 3

SU(Nf )L
− F 3

SU(Nf )R

)
,

(B.2)

and for the dual theory with U(Ñc = Nf − Nc) gauge group,

Ĩ6 =
[
−2Ncc1(R′) + 2Nfc1(Ã′)

]
c2(U(Ñc))

+
[
(−Nc − 1)c1(R′) +Nfc1(Ã′)

]
c1(B̃)2

+ [c2(SU(Nf )L)− c2(SU(Nf )R)] c1(B̃)

+ [c2(SU(Nf )L) + c2(SU(Nf )R)]
[
(−Nf −Nc)c1(Ã′) +Nc c1(R′)

]
−Nf (Nf + 1

3Nc)c1(Ã′)3 + 1
6(N

2
c − 1)c1(R′)3 −NfNcc1(R′)2c1(Ã′)

+Nf (Nf +Nc)c1(R′)c1(Ã′)2 + 1
3·16π3NcTr

(
F 3

SU(Nf )L
− F 3

SU(Nf )R

)
.

(B.3)

The ABJ anomalies are trivialized by the subgroup (Z2)R′ × (Z2Nf
)A′ of the R symmetry

and axial symmetry, and similarly by (Z2)R′ × (Z2Nf
)
Ã′ for the magnetic theory.

One can verify that the anomalies (B.2) and (B.3) match as follows. Substituting (B.1)
into Ĩ6, subtracting Ĩ6 from I6, and dropping the gauge anomalies that have already been
trivialized, yields an apparent mismatch which contributes to the 5d inflow action as,

∆Ainf
5 = π

∫
M5

[
− 2

(
(Nc −Nf )ÂR′ +Nf ÂA′

)
((Nc −Nf + 1)βR′ +NfβA′) c1(B)

+ (Nc −Nf )2(Nc −Nf + 1)ÂR′β2R′ +Nf (Nf − 1)ÂA′β2A′

−
(
3N2

f (Nf − 1)−NcNf (1− 3Nf )
)
ÂR′β2A′

+ 3(Nc −Nf )(Nc −Nf + 1)ÂA′β2R′

]
.

(B.4)

We have replaced the background gauge fields for the discrete symmetries with the Z2Nf
-

and Z2-valued cocycles,

AA′ → 2π
2Nf

ÂA′ FA′ → 2πBock(ÂA′) = 2πβA′ , (B.5)

AR′ → πÂR′ FR′ → 2πBock(ÂR′) = 2πβR′ . (B.6)

Each of the coefficients in (B.4) can be shown to be an even integer times π (e.g. by noting
that terms of the form m(m − 1) for m ∈ Z are even), so that ∆Ainf

5 = 2πZ, and the
apparent mismatch is trivialized.
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C Charges of monopole operators in 3d

In this appendix we briefly review the formula to compute the charges of monopole operators
in a 3d N = 2 theory under the abelian global symmetries (see e.g. [92–98]), and apply it
to the particular type of monopoles that show up in the compactification of 4d SQCD as
discussed in section 5.3 of the main text.

The set of allowed monopole operators in a 3d N = 2 gauge theory with gauge group G

is labelled by a magnetic flux m⃗G which lives in the co-weight lattice Λ∨
w(G) of G modulo

Weyl transformations WG, namely,

m⃗G ∈ Λ∨
w(G)/WG . (C.1)

Such a flux is an r-dimensional vector m⃗G = (m1, · · · ,mr), where r = rk(G) is the rank of G,
i.e. the dimension of its Cartan subgroup. The charge of a given such monopole operator under
an abelian symmetry receives contributions from all the fermions in the theory. Denoting
by qi the charge of the i-th fermion which transforms in a representation Ri with weight
vector ρ⃗i of the gauge group G, we have,43

q(m⃗G) = −1
2
∑

i: ferm.
qi

∑
ρ⃗i∈Ri

|ρ⃗i(m⃗G)| . (C.2)

If the symmetry we are considering is not the R-symmetry, then the fermions inside the
3d N = 2 vector multiplets are uncharged so that the sum runs over the 3d N = 2 chiral
multiplets in the theory, for which the charges of the fermions qi coincide with those of all
the other components. In the case of the R-symmetry instead, the fermions in the vector
multiplet have R-charge 1, while the fermions in the i-th chiral multiplet have R-charge
(qR,i − 1), where qR,i is the R-charge of the chiral. Hence, we have that,

qR(m⃗G) = −1
2
∑

i: chir.
(qR,i − 1)

∑
ρ⃗i∈Ri

|ρ⃗i(m⃗G)| −
∑

α⃗∈∆+

|α⃗(m⃗G)| , (C.3)

where α⃗ ∈ ∆+ are the positive roots of G.
As an example, let us consider 3d U(Nc) SQCD with Nf flavors Q, Q̃ and determinant

matter Ω±, whose field content and charge assignments are summarized in table 5. For
convenience, we define a trial R-symmetry U(1)Rtrial obtained by mixing U(1)R with all the
other classical abelian symmetries,

qRtrial = qR + qARA + qtRt + qIRI , (C.4)

where qi are the charges and Ri the mixing coefficients for each symmetry. In this way we
can keep track of the charges of the monopoles under all the symmetries simultaneously: the

43Here we assume that the symmetry for which we are computing the charge of the monopole is not a gauge
symmetry. Otherwise, we should also consider additional contributions from Chern-Simons interactions, and
moreover this gauge charge can also be non-trivial (so that the monopole is not gauge invariant) if the theory
is chiral, i.e. the number of fermions in a representation Ri and those in the complex conjugate representation
Ri are not equal. Furthermore, we assume that there is no monopole superpotential, which would lead to a
mixed Chern-Simons interaction between the symmetry and some abelian subgroup of G that is not just the
ordinary BF coupling with the FI parameter [99].

– 71 –



J
H
E
P
0
7
(
2
0
2
4
)
1
1
0

charge under one of the symmetries is given by the prefactor of the corresponding mixing
coefficient. For a U(Nc) gauge group the allowed magnetic fluxes m⃗G live in Λ∨

w(U(Nc)) = ZNc

modulo Weyl transformations WU(Nc) = SNc , and the charge of a monopole under U(1)Rtrial

is computed as,

qRtrial(m⃗G) = −1
2 (2 +RI +Rt − 1)

∣∣∣∣∣
Nc∑

k=1
mk

∣∣∣∣∣− 1
2 (2 +RI −Rt − 1)

∣∣∣∣∣
Nc∑

k=1
mk

∣∣∣∣∣
−Nf

(
Nf −Nc

Nf
+RA − 1

)
Nc∑

k=1
|mk| −

Nc∑
k<l

|mk −ml| , (C.5)

where in the first line we have the contributions of the determinant fields, and in the second
line those of the flavors and of the vector. This theory also has a U(1)J topological symmetry,
under which the monopoles have charge

qJ(m⃗G) =
Nc∑

k=1
mk . (C.6)

The minimal monopoles that we can have for U(Nc) are (up to Weyl transformations)
of the form m⃗G = (±1, 0, · · · , 0). These are usually denoted by V±, and from the for-
mula (C.5) we find

qRtrial(m⃗G = (±1, 0, · · · , 0)) = −NfRA −RI , (C.7)

meaning that they have charge −Nf under U(1)A, −1 under U(1)I , and zero under all
the other symmetries including U(1)R. Moreover, they have charge ±1 under the U(1)J

topological symmetry.
The monopole operator that appeared in our discussion of the 4d to 3d compactification

in section 5.3, which we called V , is instead the one with magnetic flux m⃗G = (1, 0, · · · , 0,−1),

qRtrial(m⃗G = (1, 0, · · · , 0,−1)) = 2− 2NfRA . (C.8)

This reproduces the charges summarized in table 5, namely charge 2 under U(1)R and −2Nf

under U(1)A. Moreover, this monopole is uncharged under U(1)J . Turning on this monopole
in the superpotential forces it to have R-charge 2 and to be uncharged under all the other
symmetries. This reproduces the breaking of U(1)A to (Z2Nf

)A that in 4d was due to the
anomaly Tr U(1)ASU(Nc)2. In accordance with this, notice that this monopole corresponds
to a flux for the SU(Nc) part of the gauge group and not for its U(1)B part.

D Anomaly polynomials of 4d theories on S2

In this appendix we compute the six-form anomaly polynomials of the various 4d theories
whose compactification on S2 are considered in the main text, as well as the four-form
anomaly polynomials that result from their integration over S2.
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D.1 Flux sectors and Bott-Cattaneo formula

Let us consider a 4d theory compactified on S2. If a U(1) symmetry F of the 4d theory has
q units of flux through the internal space, then its first Chern class is related to the first
Chern class of the 2d theory (denoted by a hat) by,

c4d
1 (F ) = qe2(S2) + ĉ1(F ) , (D.1)

where e2(S2) is the global angular form of the SO(3) isometry of the sphere, related to the
Chern root t of the tangent bundle to the sphere by e2(S2) = t

2 . For the theories under
consideration in section 6, we have introduced a non-trivial R-symmetry flux qR = −1, so
that this prescription amounts to replacing c1(R) = −e2(S2) + ĉ1(R). By the Bott-Cattaneo
formula, e2(S2) satisfies [100],∫

S2

(
e2(S2)

)2s+1
= 2−2s [p1(SO(3))]s , s = 0, 1, 2, . . . (D.2)

with integrals over even powers of the global angular form evaluating to zero. (We will also
use the replacement p1(SO(3)) = −4c2(SU(2)).) This prescription for taking into account
fluxes through an internal S2 was explained in [9] (see also [101], and its application in [102]).

D.2 SU(Nc) with non-negative R-charges (twist 1)

We begin with the compactification of SU(Nc) SQCD on S2, mixing the R-symmetry with
a subgroup U(1)x,y of SU(Nf )L as,

SU(Nf )L → SU(N1)× SU(2n)× SU(N3)× U(1)x × U(1)y , (D.3)

where the Ni are constrained as,

N1 + 2n+N3 = Nf , n+N3 = Nf −Nc . (D.4)

The twist is chosen so as to obtain non-negative integer R-charges for all the fields, with
the charges of the fields under the classical 0-form symmetries given in table 6, and the
new R-symmetry denoted there by U(1)R1 (although, below to save on subscripts we will
simply denote the symmetry by U(1)R). We denote the first Chern class of the abelian
U(1)B = U(1)V /ZNc gauge symmetry by c1(B), and similarly for the global symmetries
U(1)x, U(1)y, U(1)R1 , U(1)A, namely c1(i) for U(1)i. We will separately analyze the case
n = 0 in a subsequent section.

D.2.1 n > 0

The six-form anomaly polynomial contains the following contributions. There is a gauge
anomaly involving the axial symmetry,

I6
∣∣
gauge = 2Nfc1(A)c2(SU(Nc)) , (D.5)

which implies that U(1)A is broken to Z2Nf
. The gravitational anomalies involving the

Pontryagin class p1(T ) for the spacetime tangent bundle are given by,

I6
∣∣
grav = p1(T )

24
[
(N2

c + 1)c1(R)− 2NcNfc1(A)
]
. (D.6)
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Finally, there are the following purely global ’t Hooft anomalies,

I6
∣∣
global = c1(B)2

[
Nf

Nc
c1(A)− c1(R)

]
+ c1(B)

[
− nc1(R)2 + 2c1(R)

(
(Nf −Nc)c1(A) + nN3c1(x) + nN1c1(y)

)
+ n

(
N3(N3 + 2n)c1(x)2 +N1(N1 + 2n)c1(y)2 − 2N1N3c1(x)c1(y)

)
+ c2(SU(N1)) + c2(SU(2n)) + c2(SU(N3))− c2(SU(Nf )R)

]
− 1

6c1(R)
3
(
N2

c + 1
)
+Ncc1(R)2

[
(Nf − n)c1(A) + n (N3c1(x)−N1c1(y))

]
+ c1(R)Nc

[
− c2(SU(N1)) + c2(SU(N3))− c2(SU(Nf )R)−Ncc1(A)2

+ 2nc1(A) (N3c1(x) +N1c1(y)) + 2n2(N3c1(x)2 −N1c1(y)2)
]

(D.7)

+ Nc

48π3
[
TrF 3

SU(N1) + TrF 3
SU(2n) + TrF 3

SU(N3) − TrF 3
SU(Nf )

]
+ c2(SU(N1))Nc

(
c1(A)− 2nc1(y)

)
+ c2(SU(N2))Nc

(
c1(A)−N3c1(x) +N1c1(y)

)
+ c2(SU(N3))Nc

(
c1(A) + 2nc1(x)

)
+ c2(SU(Nf )R)Ncc1(A)

+ c1(A)nNc

[
c1(x)2N3Nf + c1(y)2N1Nf −N1N3 (c1(x) + c1(y))2

]
+ 1

3NcNfc1(A)3 +
1
3n
[
c1(y)3N1(N2

1 − 4n2) + c1(x)3N3
(
4n2 −N2

3

)]
+ nN1N3

(
−N1c1(x)c1(y)2 +N3c1(x)2c1(y)

)
.

Integrating the total anomaly polynomial over S2 with U(1)R flux qR = −1, the pertinent
integrals are as follows,∫

S2
c1(R) = −1 ,

∫
S2
c1(R)2 = −2ĉ1(R) ,

∫
S2
c1(R)3 = −3c1(R)2 − 1

4p1(SO(3)) . (D.8)

The Pontryagin class for the spacetime tangent bundle will also decompose in the reduction
as p1(T ) = p1(T2)+p1(SO(3)). Applying these formulae to (D.5)–(D.7) leads to the following
2d anomaly polynomial,∫

S2
I6 =

1
2
(
N2

c + 1
)
ĉ1(R)2

+ 2ĉ1(R)
[
nc1(B)−Nc(Nf − n)c1(A)−Ncn (N3c1(x)−N1c1(y))

]
+ c1(B)2 − c1(B) [2(Nf −Nc)c1(A) +N2 (N3c1(x) +N1c1(y))]

+N2
c c1(A)2 − 2nNcc1(A) (N3c1(x) +N1c1(y))− 2n2Nc

(
N3c1(x)2 −N1c1(y)2

)
+Nc

(
c2(SU(N1))− c2(SU(N3)) + c2(SU(Nf ))

)
− p1(T2)

24 (N2
c + 1) .

(D.9)

D.2.2 n = 0

Taking n equal to zero in the previous subsection leads to the symmetries and charges listed
in table 8. In this case, the R-symmetry is twisted with the subgroup U(1)z ⊂ SU(Nf )L,
in such a way that the R-charges of all fields are non-negative.
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Both the gauge anomaly I6|gauge and the gravitational anomaly I6|grav are unchanged
from (D.5), (D.6), and so we will not repeat these below. The global anomalies are now
computed as,

I6
∣∣
global = c1(B)2

[
Nf

Nc
c1(A)− c1(R)

]
+ c1(B)

[
(Nf −Nc)

(
2c1(R)c1(A) + 2Ncc1(R)c1(z) +

1
2NcNfc1(z)2

)
+ c2(SU(N1)) + c2(SU(N3))− c2(SU(Nf )R)

]
− 1

6c1(R)
3
(
N2

c + 1
)
+NcNfc1(R)2c1(A)

+ c1(R)Nc

[
− c2(SU(N1)) + c2(SU(N3))− c2(SU(Nf )R)−Ncc1(A)2 (D.10)

+ 2Nc(Nf −Nc)c1(A)c1(z) +
1
2Nc(Nf −Nc)(2Nc −Nf )c1(z)2

]
+ Nc

48π3
(
TrF 3

SU(N1) + TrF 3
SU(N3) − TrF 3

SU(Nf )

)
+ c2(SU(N1))Nc

(
c1(A) + (Nc −Nf )c1(z)

)
+ c2(SU(N3))Nc

(
c1(A) +Ncc1(z)

)
+ c2(SU(Nf )R)Ncc1(A)

+ 1
3NcNfc1(A)3 + 1

2N
2
cNf (Nf −Nc)c1(A)c1(z)2

+ 1
6N

2
cNf (Nf −Nc)(2Nc −Nf )c1(z)3 .

Integrating the total anomaly polynomial over S2 and using (D.8) yields,

∫
S2

I6 =
1
2(N

2
c + 1)ĉ1(R)2 − 2NcNf ĉ1(R)c1(A)

+ c1(B)2 − 2(Nf −Nc)c1(B) (c1(A) +Ncc1(z))

+N2
c c1(A)2 − 2N2

c (Nf −Nc)c1(A)c1(z)−
1
2N

2
c (Nf −Nc)(2Nc −Nf )c1(z)2

+Nc (c2(SU(N1))− c2(SU(N3)) + c2(SU(Nf )R))−
p1(T2)
24 (N2

c + 1) .
(D.11)

D.3 U(Nc) with non-negative R-charges (twist 1)

We next discuss the anomalies of the theories with U(1)B gauged, and including the determi-
nant matter Ω± so as to cancel the R-symmetry gauge anomaly. These can be computed from
the charges in tables 6)–(8, which were chosen so that all R-charges are non-negative. (Again,
in the main text we denote the new R-symmetry by U(1)R1 , although below we will drop the
subscript.) Having already determined the anomalies of the SU(Nc) theories in section D.2,
a straightforward way to proceed is as follows. First, we use (A.7) to rewrite c2(SU(Nc)) in
terms of c2(U(Nc)) and c1(B), where now c2(U(Nc)) and nB = 1

2c1(B)2 are the integer-valued
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classes on spin manifolds. We then add to the SU(Nc) anomalies the following contributions,

∆I6 ⊃ 2(nB + c1(B)c1(t)) (c1(R) + c1(I)) + c1(t)2 (c1(R) + c1(I))

+ 1
3 (c1(R) + c1(I))3 −

1
12p1(T ) [c1(R) + c1(I)]

+ 1
6c1(R)

3 − 1
24p1(T )c1(R) .

(D.12)

The first two lines are due to the determinant matter Ω±, where U(1)t and U(1)I are global
symmetries that act only on these fields, and the last line is due to the extra gaugino. (As
the fields Ω± are not charged under the symmetries that differ between the n = 0 and n > 0
cases, their contributions are the same for either case.) Again, our conventions are to label
the first Chern classes for abelian groups as c1(i) corresponding to U(1)i.

D.3.1 n > 0

Let us first consider the case n > 0. Summing (D.5), (D.6), (D.7), and (D.12), the total
anomaly polynomial can be decomposed into the following terms. Firstly, the gauge-gauge-
global anomalies are given by,

I6
∣∣
gauge = 2Nfc1(A) (c2(U(Nc)) + nB) + 2nBc1(I) , (D.13)

implying that U(1)A → Z2Nf
, and that the invertible part of U(1)I that is preserved is Z2.

The gravitational anomalies are given by,

I6
∣∣
grav = p1(T )

24
[
(N2

c − 2)c1(R)− 2NcNfc1(A)− 2c1(I)
]
. (D.14)

The terms linear in the U(1)B curvature lead to a 2-group structure involving the magnetic
1-form symmetry, and are given by,

I6
∣∣
2-group = c1(B)

[
− nc1(R)2 + 2(Nf −Nc)c1(R)c1(A)

+ c1(R)
(
2n (N3c1(x) +N1c1(y)) + 2c1(t)

)
+ nN3(2n+N3)c1(x)2 + nN1(N1 + 2n)c1(y)2

− 2nN1N3c1(x)c1(y) + 2c1(t)c1(I)

+ c2(SU(N1)) + c2(SU(2n)) + c2(SU(N3))− c2(SU(Nf )R)
]
.

(D.15)

Finally, the purely global anomalies are given by,

I6
∣∣
global = − 1

6c1(R)
3
(
N2

c − 2
)

+ c1(R)2
[
Nc(Nf − n)c1(A) + nNc (N3c1(x)−N1c1(y)) + c1(I)

]
+ c1(R)

[
−Ncc2(SU(N1)) +Ncc2(SU(N3))−Ncc2(SU(Nf )R)

−N2
c c1(A)2 + 2nNcc1(A) (N3c1(x) +N1c1(y))

+ 2n2Nc(N3c1(x)2 −N1c1(y)2) + c1(t)2 + c1(I)2
]

+ Nc

48π3
[
TrF 3

SU(N1) + TrF 3
SU(2n) + TrF 3

SU(N3) − TrF 3
SU(Nf )

]
(D.16)
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+ c2(SU(N1))Nc
(
c1(A)− 2nc1(y)

)
+ c2(SU(N2))Nc

(
c1(A)−N3c1(x) +N1c1(y)

)
+ c2(SU(N3))Nc

(
c1(A) + 2nc1(x)

)
+ c2(SU(Nf )R)Ncc1(A)

+ nNcc1(A)
[
c1(x)2N3Nf + c1(y)2N1Nf −N1N3 (c1(x) + c1(y))2

]
+ 1

3NcNfc1(A)3 +
1
3n
[
c1(y)3N1(N2

1 − 4n2) + c1(x)3N3
(
4n2 −N2

3

)]
+ nN1N3

[
−N1c1(x)c1(y)2 +N3c1(x)2c1(y)

]
+ c1(t)2c1(I) +

1
3c1(I)

3 .

Integration of the total anomaly polynomial obtained by summing (D.13), (D.14), (D.15),
and (D.16) over S2 while utilizing (D.8) yields,∫

S2
I6 =2c1(B)

[
nĉ1(R)− (Nf −Nc)c1(A)− n (N3c1(x) +N1c1(y))− c1(t)

]
+ 1

2
(
N2

c − 2
)
ĉ1(R)2 − 2Nc(Nf − n)ĉ1(R)c1(A)

− 2ĉ1(R)
[
nNc (N3c1(x)−N1c1(y)) + c1(I)

]
+N2

c c1(A)2 − 2nNcc1(A) (N3c1(x) +N1c1(y))

− 2n2Nc

(
N3c1(x)2 −N1c1(y)2

)
− c1(t)2 − c1(I)2

Nc (c2(SU(N1))− c2(SU(N3)) + c2(SU(Nf )))−
p1(T2)
24 (N2

c − 2) .

(D.17)

D.3.2 n = 0

We can perform the same exercise for the case n = 0, where the charges of the fields under
the classical 0-form symmetries are given in table 8, with the following results. The gauge
anomalies I6|gauge are the same as in (D.13), and the gravitational anomalies I6|grav are
the same as in (D.14), which we will not repeat here. The 2-group terms linear in c1(B)
are now given by,

I6
∣∣
2-group = c1(B)

[
(Nf −Nc)

(
2c1(R)c1(A) + 2Ncc1(R)c1(z) +

1
2NcNfc1(z)2

)
+ 2c1(t) (c1(R) + c1(I)) + c2(SU(N1)) + c2(SU(N3))− c2(SU(Nf )R)

]
.

(D.18)

The global anomalies consist of,

I6
∣∣
global = − 1

6c1(R)
3
(
N2

c − 2
)
+ c1(R)2 [NcNfc1(A) + c1(I)]

+ c1(R)
[
−Ncc2(SU(N1)) +Ncc2(SU(N3))−Ncc2(SU(Nf )R)

+N2
c

(
−c1(A)2 + 2(Nf −Nc)c1(A)c1(z)

)
+ 1

2N
2
c (Nf −Nc)(2Nc −Nf )c1(z)2 + c1(t)2 + c1(I)2

]
(D.19)

+ Nc

48π3
(
TrF 3

SU(N1) + TrF 3
SU(N3) − TrF 3

SU(Nf )

)
+ c2(SU(N1))Nc

(
c1(A) + (Nc −Nf )c1(z)

)
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+ c2(SU(N3))Nc
(
c1(A) +Ncc1(z)

)
+ c2(SU(Nf )R)Ncc1(A)

+ c1(t)2c1(I) +
1
3c1(I)

3 + 1
3NcNfc1(A)3 +

1
2N

2
cNf (Nf −Nc)c1(A)c1(z)2

+ 1
6N

2
cNf (Nf −Nc)(2Nc −Nf )c1(z)3 .

Integrating the total anomaly polynomial over S2 and using (D.8) yields,∫
S2

I6 =2c1(B)
[
− (Nf −Nc) (c1(A) +Ncc1(z))− c1(t)

]
+ 1

2(N
2
c − 2)ĉ1(R)2 − 2ĉ1(R)

(
NcNfc1(A) + c1(I)

)
− c1(t)2 − c1(I)2

+N2
c c1(A)2 − 2N2

c (Nf −Nc)c1(A)c1(z)−
1
2N

2
c (Nf −Nc)(2Nc −Nf )c1(z)2

+Nc
(
c2(SU(N1))− c2(SU(N3)) + c2(SU(Nf )R)

)
− p1(T2)

24 (N2
c − 2) .

(D.20)

D.3.3 Matching anomalies across duality

We will next verify that the perturbative anomalies of the U(Nc) theories with determinant
matter match for both the electric and magnetic dual theories. The anomaly polynomials of
the electric theories are given in (D.13)–(D.16) for n > 0, and in (D.18)–(D.19) for n = 0.
The anomaly polynomials of the dual theories can be computed similarly from the matter
content in tables 7 and 9, with result that their difference evaluates to (for any n ≥ 0),

I6 − Ĩ6 =
N2

f

Nc(Nf −Nc)
c1(A)(c1(B)−Ncc1(A))2 + 2Nfc1(A)(c1(R) + c1(I))c1(t) . (D.21)

Here we have utilized (6.17) to express the result in terms of the background fields in the
electric basis, and we have also disregarded the gauge anomalies which lead to the same
breaking pattern of the global abelian symmetries in the two theories.

This naive mismatch can be understood as follows. The first term of (D.21) is cured by
the observation that it contributes to the difference between the anomaly polynomials as,

2NfNcc1(A)
(c1(A)− c1(V ))2

2 − 2Nf (Nf −Nc)c1(Ã)
(c1(Ã)− c1(Ṽ ))2

2 . (D.22)

The combination of curvatures 1
2(c1(A) − c1(V ))2 is an integral class, and similarly for

1
2(c1(Ã) − c1(Ṽ ))2, so that along with the fact that 2Nfc1(A) integrates to an integer,
these terms only contribute a trivial phase to the partition function. Moreover, the terms
proportional to c1(t) in (D.21) are trivialized by accounting for the breaking pattern U(1)I →
Z2, and U(1)A → Z2Nf

, so that the anomalies match as expected.

D.4 U(Nc) with negative R-charges (twist 2)

We next consider the twisted compactification of 4d U(Nc) SQCD with determinant matter on
S2, but this time with a choice of R-symmetry twist such that not all fields have non-negative
R-charge.
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Let us consider the same SU(Nf )L symmetry breaking pattern as in (D.3), but we will
now mix the various abelian symmetries with the R-symmetry as in table 12 so as to obtain
a new R-symmetry that we denote in the main text by U(1)R2 (for twist 2 ), while the
charges of the fields under the other global symmetries remain the same. (Below, we will
drop the 2 subscript on U(1)R2 to simplify the notation.) Doing so, the gauge anomalies
and gravitational anomalies are the same as in (D.13) and (D.14), which we will not repeat
here. The 2-group anomalies are now given by,

I6
∣∣
2-group = c1(B)

[
− c1(R)2(2Nc + n)

+ 2c1(R)
(
c1(A)(2Nf −Nc) + c1(t) + nN1c1(y) + nN3c1(x)

)
+ c2(SU(N1)) + c2(SU(2n)) + c2(SU(N3))− c2(SU(Nf )R)
+ 2c1(I)c1(t) + nN1(n+Nc)c1(y)2 − 2nN1N3c1(x)c1(y)

+ nc1(x)2 (N1(n+Nc) +Nf (nNf − 2Nc))
]
.

(D.23)

The global anomalies that involve the R-symmetry are as follows,

I6
∣∣
global ⊃ − 1

6c1(R)
3
(
7N2

c + 6nNc − 2
)

+ c1(R)2
[
c1(I)−Nc(n+ 2Nc − 4Nf )c1(A) + 3nN3Ncc1(x) + nN1Ncc1(y)

]
+ c1(R)

[
Nc (c2(SU(2n)) + 2c2(SU(N3))− 2c2(SU(Nf )R))

+ c1(I)2 + c1(t)2 −N2
c c1(A)2 + 2nNcc1(A) (N1c1(y) +N3c1(x))

+ nNc

(
(4n+N3)N3c1(x)2 +N2

1 c1(y)2 − 2N1N3c1(y)c1(x)
) ]

.

(D.24)

We will not need the global anomalies involving only non-R symmetries.
The 4d theory compactified on S2 yields a sum over all possible gauge fluxes through

the sphere. For illustrative purposes we will compute the anomaly polynomials of three
different flux configurations. Firstly, when there is no gauge flux on the sphere we may simply
use (D.8) along with the decomposition p1(T ) = p1(T2) + p1(SO(3)) to obtain,∫

S2
I6
∣∣
m⃗=0 = c1(B)

[
2ĉ1(R)(2Nc + n) + 2c1(A)(Nc − 2Nf )− 2c1(t)

− 2n (N3c1(x) +N1c1(y))
]
− p1(T2)

24 (N2
c − 2)

+ ĉ1(R)2
1
2(7N

2
c + 6nNc − 2)

+ 2ĉ1(R)
[
Nc(n+ 2Nc − 4Nf )c1(A)− c1(I) (D.25)

− nNc (3N3c1(x) +N1c1(y))
]
+Nc

(n+Nc)
4 p1(SO(3))

+Nc [−c2(SU(2n))− 2c2(SU(N3)) + 2c2(SU(Nf )R)]
− c1(I)2 − c1(t)2 +N2

c c1(A)2 − 2nNcc1(A) (N3c1(x) +N1c1(y))

+ nNc

(
−N2

1 c1(y)2 + 2N1N3c1(x)c1(y)− (4n+N3)N3c1(x)2
)
.
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The terms in the first two lines that are linear in c1(B) imply that the various classical
symmetries are partially broken to discrete subgroups.

We next consider the case of gauge flux m⃗ = (1, . . . , 1), corresponding to Nc units of
flux in the U(1)B part of the gauge group,

c1(B) = Nce2(S2) + ĉ1(B) . (D.26)

Now in addition to (D.8), we require the following integrals,44∫
S2
c1(B) = Nc ,

∫
S2
c1(B)2 = 2Ncĉ1(B) ,

∫
S2
c1(B)c1(R) = Ncĉ1(R)− ĉ1(B) ,∫

S2
c1(B)c1(R)2 = Ncĉ1(R)2 − 2ĉ1(B)ĉ1(R) +

Nc

4 p1(SO(3)) .

(D.27)

The result of integrating the 4d anomaly polynomial using these formulae is,∫
S2

I6
∣∣
m⃗=(1,...,1) =2ĉ1(B)

[
(n+ 2Nc)ĉ1(R) +Ncc1(I) + (Nc −Nf )c1(A)

− c1(t)− nN1c1(y)− nN3c1(x)
]

+ ĉ1(R)2
(3
2N

2
c + 2nNc − 1

)
+ 2ĉ1(R)

[
Nc(n+Nc − 2Nf )c1(A)− c1(I) +Ncc1(t) (D.28)

− 2nNcN3c1(x)
]
− p1(T2)

24 (N2
c − 2)− N2

c

4 p1(SO(3))

+Nc [c2(SU(N1))− c2(SU(N3)) + c2(SU(Nf )R)]
− c1(I)2 + 2Ncc1(I)c1(t)− c1(t)2

+N2
c c1(A)2 − 2nNcc1(A) (N1c1(y) +N3c1(x))

+ 2n2Nc

(
N1c1(y)2 −N3c1(x)2

)
.

Finally, we consider the case with gauge flux m⃗ = (1, 0, . . . , 0), breaking SU(Nc) →
SU(Nc − 1) × U(1)G such that the characteristic classes decompose as,

c2(SU(Nc)) = c2(SU(Nc − 1)) + Nc(Nc − 1)
2 c1(G)2 , (D.29)

with the following gauge flux for U(1)B and U(1)G,

c1(B) = e2(S2) + ĉ1(B) , c1(G) = − 1
Nc
e2(S2) + ĉ1(G) . (D.30)

The result is,∫
S2

I6
∣∣
m⃗=(1,0...,0) = − 2Nf (Nc − 1)ĉ1(G)c1(A)

+ 2ĉ1(B)
[
ĉ1(R)(2Nc + n) + c1(A)

(
Nc − 2Nf + Nf

Nc

)
+ c1(I)− c1(t)− n(N1c1(y) +N3c1(x)

]
44Note that since the (TrF )2 part of c2(U(Nc)) contributes to the flux, we also must use (A.7).
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− p1(T2)
24 (N2

c − 2) + 1
4
(
N2

c − 2Nc + n(Nc − 1)
)
p1(SO(3))

+ 1
2 ĉ1(R)

2
(
7N2

c − 4Nc + n(6Nc − 2)− 2
)

+ 2ĉ1(R)
[
c1(A) (2Nf +Nc(2Nc − 4Nf + n− 1))− c1(I) + c1(t) (D.31)

− nN1(Nc − 1)c1(y)− nN3(3Nc − 1)c1(x)
]

+ c2(SU(N1))− c2(SU(2n))(Nc − 1)− c2(SU(N3))(2Nc − 1)
+ c2(SU(Nf )R)(2Nc − 1) +N2

c c1(A)2 − c1(I)2 + 2c1(I)c1(t)
− c1(t)2 − 2nNcc1(A) (N1c1(y) +N3c1(x))
+ c1(y)2nN1(n+Nc −N1Nc) + 2nN1N3 (Nc − 1)) c1(x)c1(y)
+ c1(x)2nN3 (2n(1− 2Nc) +N3(1−Nc)) .

D.5 U(Nc) to recover triality (twist 3)

Finally, we consider the 4d U(Nc) theory discussed in section 6.4, which is parameterized
in such a way as to result in the 2d theories that participate in a triality. In the main text
we refer to the R-symmetry in this case by U(1)R3 , although we will drop the 3 subscript
below. The matter content and symmetries of the 4d theory are listed in table 16, with
the integers Ni satisfying N1 +N2 −N3 = 2Nc, leading to the following anomalies. Firstly,
the gauge anomalies take the form,

I6
∣∣
gauge = 2N1c1(A) (c2(U(Nc)) + nB) + 2nBc1(I) . (D.32)

The gravitational anomalies are,

I6
∣∣
grav = p1(T )

24
[
(N2

c −N1N2 − 2)c1(R)− 2N1c1(A)− 2c1(I) +N1c1(U(1)2)
]
. (D.33)

The anomalies linear in U(1)B that lead to the 2-group are,

I6
∣∣
2-group = c1(B)

[
− c2(SU(N1)) +

1
2(4−N1 +N2

2 +N2
3 )c1(R)2

+ c1(R)
(
c1(A)(N1 −N2 +N3) + 2c1(I) + 2c1(t)

−N2c1(U(1)2) +N3c1(U(1)3)
)
+ 2c1(I)c1(t)

+ 1
2(N1 − 2)(N1 − 3)c1(U(1)1)2 + c1(U(1)2)2 + c1(U(1)3)2

+ (N1 − 3)c1(U(1)1)
(
c1(U(1)2) + c1(U(1)3)

)
+ c1(U(1)2)c1(U(1)3)

]
.

(D.34)

Finally, the global anomalies involving the R-symmetry are given by,

I6
∣∣
global ⊃

1
6c1(R)

3
[
N2

c +Nc(−N1 −N3
2 +N3

3 ) +N1N
3
2 + 8

]
+ c1(R)2

[
c1(A)

(1
2Nc(N1 +N2

2 +N2
3 )−N1N

2
2

)
+ 2c1(I) + 2c1(t)

+ 1
2NcN

2
3 c1(U(1)3) +

1
2N

2
2 (Nc −N1)c1(U(1)2)

]
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+ c1(R)
[1
2(−N1 +N2 +N3)c2(SU(N1)) + c1(I)2 + 2c1(I)c1(t) + c1(t)2 (D.35)

+ c1(A) (N3Ncc1(U(1)3) +N2(2N1 −Nc)c1(U(1)2))

+ 1
2
(
c1(U(1)2)2N2(N1 −Nc) + c1(U(1)3)2N3Nc

)
+ c1(A)2(2N1N2 −N2

c )
]
.

There are a number of other global abelian anomalies that we have not written here.
Integration of the total anomaly polynomial consisting of (D.32), (D.33), (D.34), and (D.35)

over S2 in the zero flux sector yields the following,∫
S2

I6
∣∣
m⃗=0= c1(B)

[
ĉ1(R)(N1 −N2

2 −N2
3 − 4)− c1(A)(N1 −N2 +N3)

− 2(c1(I) + c1(t)) +N2c1(U(1)2)−N3c1(U(1)3)
]

+ 1
96p1(T2)

[
8− (N2

1 +N2
2 +N2

3 ) + 2(N1N2 +N2N3 +N1N3)
]

− 1
48p1(SO(3))

[
12 +N2(N2

2 − 1)(N1 −N2 +N3)

+N3(N2
3 − 1)(N1 +N2 −N3)

]
+ 1

2(N1 −N2 −N3)c2(SU(N1))

− 1
4 ĉ1(R)

2
[
(N3

2 −Nc)(N1 −N2 +N3) +N3
3 (N1 +N2 −N3) + 16

]
(D.36)

+ ĉ1(R)
[
− 4(c1(I) + c1(t))−

1
2N

2
3 (N1 +N2 −N3)c1(U(1)3)

+ N2
2
2 (N1 −N2 +N3)c1(U(1)2) + c1(A)(2N1N

2
2 −Nc(N1 +N2

2 +N2
3 )
]

− (c2(I) + c1(t))2 −
1
4N3(N1 +N2 −N3)c1(U(1)3)2

− 1
4N2(N1 −N2 +N3)c1(U(1)2)2 +

1
2(−4N1N2 +Nc(N1 +N2 −N3))c1(A)2

− c1(A)(c1(U(1)3)N3Nc + c1(U(1)2)N2(2N1 −Nc)) .

As discussed in the main text, U(1)t is a redundant symmetry since it coincides with U(1)I .
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