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A data science roadmap for open science
organizations engaged in early-stage drug
discovery

A list of authors and their affiliations appears at the end of the paper

The Structural GenomicsConsortium is an international open science research
organization with a focus on accelerating early-stage drug discovery, namely
hit discovery and optimization. We, as many others, believe that artificial
intelligence (AI) is poised to be a main accelerator in the field. The question is
then how to best benefit from recent advances in AI and how to generate,
format and disseminate data to enable future breakthroughs in AI-guided drug
discovery. We present here the recommendations of a working group com-
posed of experts from both the public and private sectors. Robust data man-
agement requires precise ontologies and standardized vocabulary while a
centralized database architecture across laboratories facilitates data integra-
tion into high-value datasets. Lab automation and opening electronic lab
notebooks to data mining push the boundaries of data sharing and data
modeling. Important considerations for building robust machine-learning
models include transparent and reproducible data processing, choosing the
most relevant data representation, defining the right training and test sets, and
estimating prediction uncertainty. Beyond data-sharing, cloud-based com-
puting can be harnessed to build and disseminate machine-learning models.
Important vectors of acceleration for hit and chemical probe discovery will be
(1) the real-time integration of experimental data generation and modeling
workflowswithin design-make-test-analyze (DMTA) cycles openly, and at scale
and (2) the adoption of a mindset where data scientists and experimentalists
work as a unified team, and where data science is incorporated into the
experimental design.

A growing federation of scientists share the goal of generating che-
mical modulators for all druggable human proteins by the year 20351.
Under the umbrella nameTarget 2035, the rationale for this initiative is
that selective chemical probes are precious tools to study functional
genomics and reveal novel targets for unmet medical needs. Artificial
intelligence (AI) may be the accelerator needed to reach this over-
ambitious goal. However, AI can only fulfil this promise if trained on
datasets that are large, reliable and machine interpretable2. The

Structural Genomics Consortium (SGC) is a multi-national open sci-
ence public-private partnership invested in the goal of Target 2035. In
January-February 2023, a working group of experimentalists, data
management experts and data scientists from the public and private
sectors discussed the best mechanisms to enable data science for hit
discovery and optimization. The resulting document provides a set of
best practices for data management, data dissemination and data
science in early, pre-competitive drug discovery, and a template for
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efforts in the Target 2035 initiative. Above all, we believe that a novel
mindset is necessary where data science is fully integrated within
experimental plans and workflows, even before experiments are con-
ducted. The field expertise resides with experimentalists, while data
scientists develop the knowledge discovery engine. Both must speak
the same language and be engaged at each step of data generation,
curation, modelling, and data- and model-driven experimental design.
This white paper provides strategic and operational guidance for the
SGC and Target 2035 to fuel and benefit from progress in the data
science of drug discovery. We hope it will inspire further discussion in
other research institutions ready to contribute open science datasets
and embrace AI for early-stage drug discovery.

Best practices and recommendations for data
management
Planning early for data science applications
It is universally recognized that all data generation/collection, at least
from the public sector, needs to adhere to FAIR principles: Findability,
Accessibility, Interoperability and Reusability3. The next frontier is to
generate, process and curate data explicitly with a focus on compu-
tational knowledge discovery. To achieve this goal, it will be essential
to work across boundaries and have data scientists and experi-
mentalists come together and agree on how to structure, curate and
annotate data to enable data mining.

Defining precise ontologies and vocabulary
To be machine-interpretable, data should be ontologized (Nicola
Guarino 19984), which means that the different categories and rela-
tionships of data should be well-defined (Box 1). In other words, the
data should be described with a pre-defined, formalized vocabulary to
enable interpretation by machine learning models (e.g., for protein
production and chemical screening), as discussed in more detail
below. Descriptions should reflect datas quality, precision and/or
reproducibility. “Negative” data as defined by experimentalists,
meaning data that behave similarly to the negative control, should be
collected with the same care as “positive” data and included in the
experimental datasets. For some data ontologies it is inherent to the
process to collect the “negative” data, for example in compound
screening, whereas failed protein expression is rarely captured, lead-
ing to missed opportunities in data science (and future experiments).
Metrics such as the number of experimental repeats should be pro-
vided to assess the risk of false positive and negative data points. A
concrete example is given in the DNA Encoded Libraries (DEL)
section below.

Aiming for a centralized database architecture
Asmuch as possible, a unified data structure should be adopted across
all activities within data-generating institutions, such as the SGC.
Database schemas for protein production and library screening, as two
examples, should be shared across laboratories. For the SGC, this will
facilitate the generation of global datasets with increased impact.
Adoption of a shared datamanagement tool will help achieve this goal
and should be encouraged. One potential benefit of establishing a
unified, robust and highly populated database architecture might be
that other organizations generating similar data adopt this schemaand
contribute to an expanding dataset. Importantly, the data schema
should be compatiblewith that ofwell-established repositories such as
ChEMBL5 to facilitate data dissemination.

ELN and LIMS, data management cornerstones for
experimentalists
Many organisations use both a laboratory information management
system (LIMS) and an electronic lab notebook (ELN) for the manage-
ment of data and protocols. In the former, the data from a specific
workflow are captured in a controlled vocabulary format, whereas in

the latter the actual experiment is generally described in free-text
form, includingmethods and results. To standardise ELNwrite-ups, the
use of pre-defined templates is recommended. For the experi-
mentalist, the first step in the data management process is to design
and record the experimental setup,materials andmethods, results and
summary in a “write-up” in the ELN. Sub-division of the ELN into
project-specific notebooks should be considered, as it facilitates
access and enables team collaboration within a project, across geo-
graphical and/or organisational boundaries. The write-up in the ELN is
followed by the registration of the raw and refined data into the LIMS
system. This can be done manually by the scientist, or by automated
data upload from the instrument to the LIMS system. Preferably, the
ELN should be integrated with the LIMS system via an application
programming interface (API) to link data to protocols. Deployment of
data management systems as described above enables stakeholders in
organisations to quickly find the information/data linked to a specific
project.

Pushing the boundaries of data recording with lab automation
In principle, even highly detailed metadata such as purity of reagents
or ambient temperature for chemical reactions, to name just a few,
should be judiciously recorded. This level of compliance in experi-
mental recording may eventually only be achieved with highly auto-
mated instrumentation, such as self-driving laboratories and/or
SMART labs6. One can think and should prepare for a future where AI-
operated laboratories generate large, rich and reliable training sets to
build AI models that guide experimental design.

Opening ELNs to data mining
Experimental protocols and conditions recorded within ELNs repre-
sent a rich source of information that should beopen todata scientists.
To achieve this goal, a concerted effort to make ELN records machine-
readable should be considered. For instance, drop-downmenus could
be used to select catalysts in chemical reactions or reaction conditions.
ELNs could also be a vehicle to flag failing chemical reactions, a critical
knowledge that is otherwise never shared. As mentioned above, for-
matting records in ELNs to support data mining may often prove too
demanding for experimentalists. One may envision a future where
large language models are used instead to mine free text in ELNs to
yield structured data. Here again, the adoption of a unified ELN and
database system across geographical sites, or at least across sites
focused on the same scientific activity (e.g., protein production or
chemistry) is highly recommended.

Deploying integrated ELN and LIMS solutions
Adopting integrated LIMS and ELN solutions from the same software
provider is recommended. Examples include ICM Scarab, collabora-
tively developed by the SGC andMolSoft LLC, or CDD Vault offered by
Collaborative Drug Discovery7. An established platform to register
protocols is https://www.protocols.io/. Alternatively, databases from
different vendors can be integrated via API. For example, the Inter-
national Bioscience Information System (IBIS) for the definition of
protocols, test parameters and target information with test results
being reported and analysed in Genedata Screener8.

Curation of legacy datasets
Integration of legacy data can be a powerful method to increase the
size and coverage of available datasets. For example, the Stockholm
and Toronto sites of the SGC manage large and complementary pro-
tein production datasets. Such legacy data need to be curated before
being considered for any type of downstream data mining effort.
A prerequisite is that data have been collected in a LIMS
system using controlled vocabularies. The quality, ontologies and
vocabulary of each dataset should be evaluated during the data cura-
tion effort9.
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Data management case studies
Experimentalists and data scientists should first agree on the data and
meta-data to be recorded in the database. Indeed, data management
operations, while guided by common principles, can vary significantly,
depending on the experiment. Here, we detail specific data manage-
ment operations for a low-to-medium throughput and a high
throughput workflow: protein production and DNA Encoded Libraries
(DEL) screening.

Protein production
Protein production involves several steps including construct design,
screening of experimental conditions at small-scale, large-scale
expression, purification and quality control (QC). The associated
data management workflow is illustrated in Fig. 1. First, constructs are
designed for expression in host organisms such as E. coli, insect cells
and mammalian cells. Since DNA sequences can be codon optimised
for the host organism used for expression, it is critical to record the
final DNA sequence of the expressed construct in the LIMS system.
Constructs are often sourced from an external vendor with a success
rate for cloning being almost 100%. Thus, there is no need to record
the cloning success rate in the database. The next step is the small-
scale expression and one-step affinity purification of the constructs in
the selected host organism. At this step soluble expression yield
should be captured in the LIMS system by controlled vocabulary,

together with host strain, volume of culture and expression medium
used. The registered data should be accompanied by a protein size
descriptor. Protein yield and size are both typically assessed by per-
forming denaturing gel electrophoresis, where yield and size com-
pared to a protein standard are visualised. Yield can be estimated by
quantifying the amount of the target protein compared to the protein
standard in the stained gel, using densitometric analysis. At this stage,
it is important to also capture the constructs that do not express
soluble protein variants.

For a typical campaign, up to 96 different variants of a single
protein are assessed to identify domain boundaries and tags that
enable soluble protein expression. Commonly, up to 12 of the best-
expressing samples might progress to larger-scale expression and
purification. Again, experimental parameters (culture volume and
yield) should be captured in the LIMS system, as often yields do not
scale proportionately. The type of data will define whether they are
entered via controlled vocabulary or descriptors. Data types include
the aggregation status of purified protein samples measured by size
exclusion chromatography (vocabulary: aggregated/non-aggregated),
melting temperature, a surrogate for protein stability (descriptor: Tm
in Celsius) and whether the protein identity was confirmed by mass
spectrometry (vocabulary: yes/no). Buffer composition varies exten-
sively and thus should be entered as free text/descriptor like the purity
of the protein, which is an estimate by eye. Adherence to this data

BOX 1

keywords and concepts that are described in the text
Keyword/abbreviation Description

API—application programming interfaces Software interface between twodifferent software systems. For example, data in a LIMS system
can be linked to a protocol in an ELN via the API.

Controlled vocabulary Set of formalized terms used to describe data types. Often accessed via drop-downmenus in a
table format. This enables ML-ready data.

Data curation Data curation is the organisation, annotation and standardisation of different datasets that
reside within the same data ontology (e.g.: protein production datasets).

Database schema A blueprint of the database architecturewhich commonly includes a visual representation. The
schema does not contain any data, instead, it defines how data are organised. Most databases
contain tables, and the database schema describes the relationships between the different
tables.

ELN—electronic lab notebook An electronic notebook is used in the laboratory to record material and methods, results, and
summary. Depending on the field, ELNs include varying levels of free-text annotations. For
example, synthetic reactions recorded in ELNs can have a structured format and be machine-
readable, while comments or attachments on protein production would be less machine-
readable than a LIMS system.

LIMS—laboratory information management
system

A LIMS is a software to capture data related to experimental workflows. For example, in a
protein production workflow, data related to the cloning of a gene, protein expression, pur-
ification, and quality control is captured. Data is generally entered in a controlled vocabulary
format allowing the data to be easily searchable. LIMS systems can be integrated with
laboratory automation allowing automatic upload of data into the system.

Metadata Metadata adds information/describes the data generated. In an ELN or LIMS system metadata
include when an experiment was performed and by whom.

Multimodal data Data of different types are typically derived using different experimental approaches to
investigate a common biological system or sample.

Ontology Ontologywithin data science aims todescribe the connectivity of differentmethodsanddata in
a machine-readable format. For example, Bioassay Ontology (BAO) describes biological
screening assays and their results, including high-throughput screening data, for the purpose
of categorizing assays and associated data https://www.ebi.ac.uk/ols/ontologies.

Raw data Raw data is unprocessed data. Examples include direct reads from instruments in the lab.

Refined data Refined data has been processed and/or interpreted

Relational database It is a database where data is stored in one or more tables linked to one another.
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registration workflow will enable machine learning models to learn
how the DNA sequence (and amino acid sequence) of protein con-
struct affects the yield of protein expression, protein thermal stability
and aggregation status.

Organizations such as the SGC could encourage partnering cen-
tres to implement similar data management protocols, leading to the
generation of larger and more impactful collective datasets to
empower machine learning. This may enable the development of
powerful predictive models for construct design.

DNA Encoded Library screening
Capitalizing on the success and efficiency of modern chemistry10 and
next-generation sequencing11, DEL technology (conceptualized by
Benner and Lerner more than 30 years ago12) is a useful screening
technique for the identification of high-affinity ligands. DEL selection
allows simultaneous screening of billions of compounds in small
volumes, against a target in a single experiment. This allows for DEL
selection to have a dramatically lower screening cost and shorter
experimental runtime, with only minor costs coming from the
sequencing of DNA from the screening results13–15. The efficiency of
DEL screening in comparison to that of the conventional HTS tech-
nologies has been extensively discussed and reviewed14,16,17.

This substantial increase in time and cost efficiency comes with
some trade-offs. Notably, DEL screening only detects the binding of a
compound to a target and neither accurately determines association
constants nor detects whether such binding will cause the desired

biological effect. In addition, the small concentrations used and reli-
ance on PCR amplification of DNA can result in substantial noise,
producing both false positives and false negatives, even after steps are
taken to decrease noise. The last key deficiency of a DEL screening is
the need to re-synthesize hits without their DNA tag to confirm bind-
ing, which can be laborious and costly.

To circumnavigate some of these limitations, the conventional
DEL approach can be complemented by machine learning, known as
DEL-ML18. The key components of the DEL-ML approach include (i)
training quantitative structure-activity relationship (QSAR) models on
DEL screening data; (ii) using these models to computationally screen
commercially available compounds or design de novo molecules with
desired properties and high affinity for the protein target. A consensus
model incorporating QSAR models built on DEL screening data and
structure-based approaches such as molecular docking (when a 3D
structure of the target is available), can virtually screen billions of
commercially available molecules (such as the Enamine REAL space19

currently comprising 46 billion compounds) to predict high affinity
hits for a specific target of interest.

The typical workflow of a DEL screen consists of incubation of
pools of billions of molecules with DNA tags from multiple chemical
libraries with a protein of interest, isolation of the protein with bound
molecules, washing away less avidly bound or non-specifically bound
molecules, and then releasing the bound molecules so they can be
subjected to another cycle of enrichment. The feasibility of this cycle
depends on the target protein of interest. Indeed, poorly soluble
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Fig. 1 | Data management workflows for protein production and chemical
library screening. Controlled vocabulary and descriptors are used in data man-
agement workflows for protein production (top) and DEL screening (bottom).

Materials &methods (M&M), protocols and results are recorded in an electronic lab
notebook (ELN). DEL: DNA encoded library; ID: identifier; LIMS: laboratory infor-
mation management system; Tm: melting temperature.
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proteins such as G-coupled protein receptors may be more challen-
ging. Emerging approaches including stabilization of a protein in
detergent20 or nanodisk21, or screening in live cells17,22, enable DEL
screening for such problematic targets.

After multiple screening cycles, the DNA tags of the selected
compounds are amplified and sequenced. Comparing the sequence
count of the DNA corresponding to selected compounds (or their
respective building blocks/synthons) with a control experiment con-
ducted in the absence of protein produces an enrichment score for
each DNA/molecule. The data management workflow includes con-
trolled vocabulary such as the source library of pooled compounds,
the selection status of compounds or the enrichment status of syn-
thons (yes/no). Records include the ID and chemical structures of the
compounds, the sequence count of selected DNA tags or the enrich-
ment score of selected hit molecules or synthons (Fig. 1).

Before any DEL screening data are ingested, a cloud-based data-
base of the fully enumerated DEL compounds, with the DNA tag linker
replaced with a methyl cap, should be assembled to avoid costly on-
the-fly enumeration. Each library can be saved as an individual table
with a column for the chemical structure in the SMILES format and a
unique standardized ID. The chemical structure should be standar-
dized following best practices (e.g., structure validation, ring aroma-
tization and normalization of specific chemotypes)23, to allow
downstream cheminformatics tasks including calculation of chemical
descriptors and the development ofmachine learningmodels. The IDs
should be unique across all libraries in the database for effective
indexing and rapid queries. Ideally, they should also reflect the source
library and the DEL building blocks that make up the individual DEL
compound. Additional columns including building block ID’s, linker
information, DNA tag information, or other compound information
can also be included. A table used to map building block ID’s to che-
mical structures in a many-to-one relation can be used to minimize
storage redundancy. In many cases, numerical embeddings of DEL
compounds are required for example to conduct chemical similarity
searching on the database. Additional tables mapping DEL ID’s to
compressed representations of precomputed chemical fingerprints,
like extended connectivity fingerprints (ECFP), can be helpful. This
table would come at the expense of additional storage but may be a
wise investment when the on-the-fly compute cost of fingerprints is
high. DEL libraries can easily encode billions of chemicals and,
dependingon the additional information included, can easily span tens
of terabytes even when compressed. The use of a cloud-based data
warehouse (like BigQueryorRedShift) is crucial for the efficient scaling
of both compute and storage resources.

The readout of DEL selections is a large collection of sequence
reads. These reads are converted into enrichment values for eachDNA
tag, a proxy for the binding affinity of DEL compounds, using a variety

of approaches. The data at this stage contains a lot of noise. Com-
monly, a negative control with no protein is used to remove some of
the background noise, and compounds that are enriched across
screens of diverse proteins are also flagged and removed. The thou-
sands of compounds enriched in the presence of protein are then
inspected for the shared presence of identical or highly similar build-
ing blocks. If no sensible structure-activity relationship can be found
and there are relatively few enriched compounds, the DEL data is not
likely to provide actionable information. If the selection appears suc-
cessful, the enriched compounds can be extracted, along with a set of
non-enriched compounds to generate a classification set of “active”
and “negative” compounds, respectively.

Best practices and recommendations for data
archiving and dissemination
To best ensure the perennity of the rich data and metadata generated
during protein production, hit discovery and hit optimization, one has
to carefully plan their archiving and, in the context of open science
research activities, maximise their dissemination and impact. While
embracing the Open Science24 and FAIR3 principles, we here delve into
best practices and recommendations for data archiving and dis-
semination (Fig. 2).

Structuring and documenting the data and metadata
While ontologies are adopted during data generation and manage-
ment (Fig. 1), the choice of standards and dictionaries must be well
documented. Thesenot only ensure consistency but also facilitate data
sharing, interpretation, and integration across different platforms and
projects.

Transparent and reproducible data processing
Aggregating and harmonising large datasets to make them amenable
to downstream analysis is a complex, lengthy and error prone
process25. It is well established that scientists spend a large proportion
of their time transforming and structuring data from one raw format
into a desired format with the intent of improving data quality and
making it more consumable (“data wrangling”)26. To fully realise the
value of datasets, the code used to perform quality controls (QC)
normalisation and harmonisation of the data should be made publicly
available (for example via a code repository such as GitHub), clearly
documented and associated with each dataset. This enables users to
scrutinise the way data are processed and annotated and report
potential errors or biases that inevitably creep in large-scale datasets.

Creation of multimodal data objects
Considering the complexity of hit discovery and optimization, the data
generated for each protein is intrinsically multimodal. The use of

Fig. 2 |Workflow for data archiving and dissemination. The data archiving and disseminationworkflow is amultistep process including data ingestion, creation of well-
documented datasets that are made accessible and interoperable for the scientific community to use efficiently.
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diverse high-throughput screening assays such as affinity selection
mass spectrometry (ASMS) andDEL forhit discovery is just an example
of multimodality. Integrating these diverse datasets can create com-
prehensive “protein data packages”. Having multiple data types
included in a single data object allows for verification of its integrity
and completeness. BioCompute objects27,28 allow for detailed tracking
of processing pipelines used to generate datasets, which could be
adopted for the low- and high-throughput data generated by the SGC
and other Target 2035 projects.

Data versioning and archiving
Datasets are not static and can evolve over time. Data updates include
but are not limited to, new quality controls or normalisation approa-
ches that impact past and future data collections, improvement of
ontologies, and the use of next-generation profiling technologies. All
these factors contribute to the production of multiple versions of a
given dataset. While it is beneficial to produce datasets that increase in
quality and size, it becomes challenging to ensure full data prove-
nance, a key aspect of research transparency and reproducibility. It is
therefore recommended to set up a versioning system that auto-
matically tracks and reports on all the changes in the datasets for each
release (change logs). Data nutrition labels29, which are simple stan-
dard labels that allow for visualisation and summarisation of key
characteristics and updates of datasets, could be adopted for low- and
high-throughput data generated by the SGC. Archiving of all versions
of the data, as well as the change logs and data nutrition labels, is
crucial to ensure that data analyses can be made fully reproducible,
thereby better supporting scientific investigations over a long period.

Data hosting
With the creation of the first protein sequence database in 1971,
namely the Protein Information Resource30, the fields of genomics and
chemical biology were at the forefront of the bioinformatics revolu-
tion. Based on this seminal work, well-established repositories have
been implemented for specific data types, such as the Protein Data
Bank (PDB)31, PubChem32 and ChEMBL5. The PDB is a repository that
stores three-dimensional structural data of biological molecules, pri-
marily proteins and nucleic acids, providing a resource for researchers
to access and analyse large amounts of structural data generated from
X-ray crystallography, nuclear magnetic resonance (NMR) spectro-
scopy, and cryo-electronmicroscopy. PubChem, developed by the US
National Centre for Biotechnology Information (NCBI), and ChEMBL,
developed by the European Bioinformatics Institute (EBI), are both
open-access databases compiling detailed data and metadata on che-
mical compounds. They include details on molecular structures,
properties, biological activities, and results frombioassays. They differ
mainly on their scale and level of curation, PubChem provides a more
comprehensive collection of data while ChEMBL focuses on a smaller
set of human-curateddatasets. Researchers can access these resources
to analyse chemical data, predict biological interactions, and explore
structure-activity relationships.

When a dataset is ready for release, it can be hosted in the
relevant repository. However, these existing repositories do not
necessarily handle the storage, access and mining of highly custo-
mised data types such as integrated data objects. We therefore
envision the development of a centralised database to store and
mine the protein data packages and act as a primary source to feed
well-established repositories. This database will handle the struc-
turing and documentation of metadata, transparent and repro-
ducible data processing, the creation of multimodal data objects and
their versioning, and the transformation of datasets to feed the
existing repositories. This hybrid system will ensure data integration
and verification in a centralised database and dissemination of spe-
cific data types via long-standing resources to increase the resilience
and visibility of the data.

Data release
Timely data release is crucial. Immediate releases upon generation and
QC, akin the NIH policies33, promote transparency and community
engagement but are logistically more complex as numerous versions
of the data are produced. Another approach consists of releasing data
with a pre-specified frequency (e.g., every quarter) or aligning releases
with flagship publications that can offer context. Organization of open
benchmarking challenges, such as CACHE34, also provides an oppor-
tunity to release datasets used to train and evaluate machine learning
and artificial intelligence models.

Data (re)usability
For data to be useful, usersmust be able to analyse them as efficiently as
possible. Providing context for each dataset can be achieved through
documentation (e.g., experimental protocols, laboratory notebooks) and
publications. In addition, code to analyse the data and associated output
files from tutorials and workshops provides excellent education mate-
rials for users. This ensemble of educational and training material
derived from datasets will allow users to understand the data and
the analyses that have already been performed by the scientific
community35.

Data analysis
To facilitate the analysis of data generatedby the SGCandother Target
2035 linked efforts, one could use cloud services leveraging a cen-
tralized database to support multiple analytical protocols. The
more traditional “Data2Model” way of working with data consists of
downloading the data from a repository and analysing them on local
infrastructure, such as on-prem high-performance computing36. As
the data becomes increasingly large, reaching multiple terabytes, it is
cumbersome to move the data where the analysis is done and best to
bring the analysis codewhere the data is hosted (Model2Data)36. This is
made possible by the adoption of scalable cloud platforms, such as
Google Cloud, AmazonWeb Services, andMicrosoft Azure, where data
processing resources can be attached to the data-storage buckets for
intensive analysis without moving the data.

User feedback and post-release review
Continuous improvement is crucial to ensure the highest data quality
and useability. Actively seeking user feedback and encouraging post-
publication reviews can reveal opportunities for improvement and
potential biases and limitations of the datasets. The future SGC and
Target 2035 platforms will include a process to collect general feed-
back as well as dataset-specific feedback via a ticketing system.

As the bedrock of drug development, data demands meticulous
management and dissemination. Adhering to best practices ensures
that thewealth of data generated not only guide scientific research and
development to success but also serves as the substrate for future AI-
driven technological breakthroughs. This is a complex activity that not
only requires advanced expertise and resources but also an early and
substantial investment.

Opportunities and challenges in data science
Consistent data processing: a critical prelude to building
AI models
The critical nature of precise storage, management, and dissemina-
tion of data in the realm of drug discovery is universally recognized.
This is because the extraction of meaningful insights depends on the
data being readily accessible, standardized, and maintained with the
highest possible consistency. However, the implementation of good
data practices can vary greatly and depends on the goals, culture,
resources, and expertise of research organizations. A critical, yet
sometimes underestimated, aspect is the initial engineering task of
data preprocessing, which entails transforming raw assay data into a
format suitable for downstream analysis. For instance, quantifying

Perspective https://doi.org/10.1038/s41467-024-49777-x

Nature Communications |         (2024) 15:5640 6



sequencing reads from DNA-encoded library screens into counts is
required for the subsequent hit identification data science analysis
step. Ensuring the correctness of this initial data processing step is
imperative, but it may be given too little priority, potentially leading
to inaccuracies in subsequent analyses. Standardization of raw data
processing is an important step to enable subsequent machine
learning studies of DEL data. Currently, this step is done by compa-
nies or organizations that generate and screen DEL libraries, and the
respective protocols are reported if a study is published (see the
”Methods” section in McCloskey et al. 18). Making data processing
pipelines open source will help establish best practices to allow for
scrutiny and revisions if necessary. While this foundational step is
vital for harnessing data science, it is worth noting that it will not be
the focus of this discussion.

Examples of AI application in early-stage drug discovery
In drug discovery, data science presents numerous opportunities to
increase the efficiency and speed of the discovery process. Initially,
data science facilitates the analysis of huge experimental data, e.g.,
allowing researchers to identify potential bioactive compounds in
large screening data. Machine learning models can be trained on data
from DEL or ASMS and, in turn, be used for hit expansion in extensive
virtual screens. For example, a model trained to predict the read
counts of a specific DEL screen can be used to identify molecules from
other large compound libraries, which are likely to bind to the target
protein under consideration18.

As the drug discovery process advances to compound optimiza-
tion, data science can be used to analyse and predict the pharmaco-
kinetic and dynamic properties of potential drug candidates. This
includes model-based evaluation of absorption, distribution, metabo-
lism, excretion, and toxicity (ADMET) profiles. ADMET parameters are
crucial in prioritizing and optimizing candidate molecules. Acknowl-
edging their importance, the pharmaceutical industry has invested
substantially in developing innovative assays and expanding testing
capacities. Such initiatives have enabled the characterization of thou-
sands of compounds through high-quality in-vitro ADMET assays, ser-
ving as a prime example of data curation in many pharmaceutical
companies37. The knowledge derived from accumulated datasets has
the potential to impact research beyond the projects where the data
was originally produced. Computational teams utilize these data to
understand the principles governing ADMET endpoints as well as to
develop in-silicomodels for the prediction of ADMETproperties. These
models can help prioritize compound sets lacking undesired liabilities
and thus guide researchers in their pursuit to identify the most pro-
mising novel drug candidates.

Combining correlated data types to improve AI models
Major approaches in early drug discovery data science encompass
classification, regression, or ranking models. They are, for example,
employed in drug discovery to classify molecules as mutagenic, pre-
dict continuous outcomes such as the binding affinity to a target, and
rank compounds in terms of their solubility. Incorporating prior
domain knowledge can further enhance the predictive power of these
models. Often, assays or endpoints that are correlated can be mod-
elled together, even if they represent independent tasks. By doing so,
the models can borrow statistical strength from each individual task,
thereby improving overall performance compared to modelling them
independently. For example, multitask learning models can predict
multiple properties concurrently, as demonstrated by a multitask
graph convolutional approach used for predicting physicochemical
ADMET endpoints38.

Choosing the most relevant data representation
When confronted with training data that have ambiguous labels,
utilizing multiple-instance learning can be beneficial. Specifically, in

the context of bioactivity models, this becomes relevant when mul-
tiple 3D conformations are considered, as the bioactive conforma-
tion is often unknown39. A prevalent challenge in applying data
science for predictive modelling of chemical substances is choosing
a suitable molecular representation. Different representations, such
as ContinuousData-Driven Descriptor (CDDD)40 from SMILES strings,
molecular fingerprints41 or 3D representations42, capture different
facets of the molecular structure and properties43. It is vital to select
an appropriate molecular representation as this determines how
effectively the nuances of the chemical structures are captured. The
choice of the molecular representation influences the prediction
performance of various downstream tasks, making it a critical factor
in AI-driven drug discovery, as discussed in detail in David et al.’s43

review and practical guide on molecular representations in AI-driven
drug discovery. Recent studies have found that simple k-nearest
neighbours on molecular fingerprints can match or outperform
much more complicated deep learning approaches on some com-
pound potency prediction benchmarks44,45. On the other hand,
McCloskey et al. 18 have discovered hits by training graph neural
networks on data from DEL screens, which are not close to the
training set using established molecular similarity calculations.
Whether a simple molecular representation, infused with chemical
knowledge, or a complex, data-driven deep learning representation
is more suitable for the task at hand depends strongly on the training
data and needs to be carefully evaluated on a case-by-case basis to
obtain a fast and accurate model.

Defining the right training and test sets
Sound strategies for splitting data into training and test sets are
crucial to ensure robust model performance. These strategies
include random splitting, which involves dividing the data into
training and test sets at random, ensuring a diverse mix of data
points in both sets. Temporal splitting arranges data chronologically,
training the model on older data and testing it on more recent data,
which is useful for predicting future trends. Compound cluster-wise
splitting devides training and test sets into distinct chemical spaces.
Employing these strategies is essential as inconsistencies between
the distributions of training and test data can lead to unreliable
model outputs, negatively impacting decision-making processes in
drug discovery46.

Estimating prediction uncertainty
The successful application of machine learning requires keeping their
domain of applicability in mind at all stages. This includes using the
techniques described in the previous section for data curation and
model development. However, it is equally important to be able to
estimate the reliability of a prediction made by an AI model. While
generalization to unseen data is theoretically well understood for
classicmachine learning techniques, it is still an active area of research
for deep learning. Neural networks can learn complex data repre-
sentations through successive nonlinear transformations of the input.
As a downside of this flexibility, thesemodels aremore sensitive to so-
called adversarial examples, i.e., instances outside the domain of
applicability that are seemingly close to the training data from the
human perspective44. For this reason, deep learning models often fall
short of providing reliable confidence estimates for their predictions.
Several empirical techniques can be used to obtain uncertainty esti-
mates: Neural network classifiers present a probability distribution
indicative of prediction confidence, which is inadequately calibrated
but can be adjusted on separate calibration data45. For regression
tasks, techniques such as mixture density networks47 or Bayesian
dropout48 can be employed to predict distributions instead of single-
point estimates. For both classification and regression, the increased
variance of a model ensemble indicates that the domain of applic-
ability has been left49.
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Designing virtuous DMTA cycles
With the methods described in the previous paragraphs, we possess
the necessary methodological stack to establish a data-driven feed-
back loop from experimental data, a crucial component for imple-
menting active learning at scale. By leveraging predictive models that
provide uncertainty estimates, we can create a dynamic and iterative
data science process for the design-make-test-analyse (DMTA) cycle.
For instance, these predictive models can be utilized to improve the
potency of a compound by identifying and prioritizing molecules that
are predicted to have high affinity yet are uncertain. Similarly, the
models can be used to increase the solubility of a compound by
selecting molecules that are likely to be more soluble, thus improving
delivery and absorption. This process continuously refines predictions
and prioritizes the most informative data points for subsequent
experimental testing and retraining the predictive model, thereby
enhancing the efficiency and effectiveness of drug discovery efforts.
An important additional component is the strategy to pick molecules
for subsequent experiments. By intelligently selecting the most infor-
mative samples, possibly those that themodel ismost uncertain about,
the picking strategy ensures that each iteration contributes maximally
to refining the model and improving predictions. For example, in the
context of improving compound potency, the model might prioritize
molecules that are predicted to have high potency but with a high
degree of uncertainty. These strategies optimize the DMTAprocess by
ensuring that each experimental cycle contributes to the refinement of
the predictive model and the overall efficiency of the drug discovery
process.

Scalability of AI predictions for virtual screening
When applying the computational workflow depicted in Fig. 3 on large
compound libraries, scientists encounter a rather uncommon scenario
for machine learning: usually, the training of deep neural networks
incurs the highest computational cost sincemany iterations over large
datasets are required, while comparatively few predictions will later be
required from the trainedmodel within a similar time frame. However,
when inference is to be performed on a vast chemical space, we face
the inverse situation. Assessing billions of molecules for their physi-
cochemical parameters and bioactivity is an extremely costly proce-
dure, potentially requiring thousands of graphics processing unit
(GPU) hours. Therefore, not only predictive accuracy but also the
computational cost of machine learning methods is an important
aspect that should be considered when evaluating the practicality of
a model.

Conclusion
While the roadmap presented here is primarily designed to guide data
management, data dissemination, and data science operations at the
Structural Genomics Consortium, a pre-competitive public-private

partnership focused on open-science drug discovery, it is drawn from
the collective experience of scientists across multiple sectors and can
be applied, fully or partially, to research operations in diverse settings.
Domain experts may be more inclined to embrace data science if ML
models are able to predict seemingly erratic behaviours such as
activity cliffs in chemical series and if predictions are not perceived as
arbitrary but grounded on an explainable interpretation of the physics
and chemistry underlying experimental results. Indeed, the domain
knowledge of organic, process and medicinal chemists could be best
leveraged by explainable AI. Beyond the adoption of best practices
presented here, we believe that future breakthroughs will depend on
the adoption of a different mindset, where experimentalists see for
themselves how data science augments the impact of their work,
where data scientists understand the language of experimentalists,
and where data science applications are incorporated into the
experimental design.
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