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We explore the impact of training with more diverse
datasets, characterized by the number of unique sam-
ples, on the performance of self-supervised learning
(SSL) under a fixed computational budget. Our findings
consistently demonstrate that increasing pretraining
data diversity enhances SSL performance, albeit only
when the distribution distance to the downstream data
is minimal. Notably, even with an exceptionally large
pretraining data diversity achieved through methods like
web crawling or diffusion-generated data, among other
ways, the distribution shift remains a challenge. Our
experiments are comprehensive with seven SSL meth-
ods using large-scale datasets such as ImageNet and
YFCCI100M amounting to over 200 GPU days. The
code and trained models will be available at https :
//github.com/hammoudhasan/DiversitySSL.

1. Introduction

Self-supervised learning (SSL) has recently emerged as a
new paradigm to pretrain large vision models at scale [26,
27, 46]. Leveraging the ability to learn from unlabelled
data, pretraining on millions—or even billions [27, 52]—
of images turned from an unachievable goal to a com-
mon practice. This exposure to extremely diverse datasets,
i.e., composed of a remarkable number of unique samples,
granted impressive performance and unprecedented gener-
alization capabilities to a growing number of vision mod-
els [46]. Large-scale datasets, in conjunction with sub-
stantial computational resources, have been the key driving
forces for the success of SSL-based approaches. For in-
stance, SEER [26], pretrained for approximately 11 GPU
years on a billion images, exemplifies the massive compu-
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Figure 1. Impact of Diversity on Pretraining: Self-supervised
learning (SSL) can be used to pretrain vision models on smaller
datasets closely aligned to downstream task data, e.g., pets classifi-
cation, hence with a small distribution shift (top, wild animals pre-
training). Conversely, we could pretrain on an extensively varied
dataset, with wide distribution differences (outdoor scenes, bot-
tom). We demistify the role of pretraining diversity in SSL under
a fixed computational budget, and highlight its effects in relation-
ship to the distribution shift.

tation and data resources employed for these models. It has
become the implicit norm that increasing computation and
data is beneficial, without any detailed analysis of how they
separately impact SSL effectiveness. In particular, it is not
clear to what extent large datasets are responsible for the im-
pressive generalization capabilities of SSL models. Indeed,
consider the example in Figure 1. Assuming a fixed mon-
etary budget, in the form of computational expenses, for
pretraining a vision model under the SSL paradigm, does
iterating over a large set of images work best given a down-
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stream task, or it is better to train repeatedly on a smaller set
of samples visually close to the ones of the downstream? In
this context, we face the ever-lasting problem of distribution
shift on vision models [58]. Without a proper understanding
of the impact of data, there could be a wrong allocation of
efforts in increasing data or computation, leading to ineffi-
ciencies in the deployment process of SSL models.

In this paper, we study the role of the diversity of the SSL
pretraining data, under a fixed computational budget, when
the pretraining data matches the distribution of the down-
stream data, as well as when they differ. Our experiments
span various SSL methods [4, 8-10, 14, 28, 65] and multi-
ple datasets [5, 18, 37-39, 43,47, 54,55, 69], and are tested
under several computational budgets amounting to a total of
200 GPU days. We summarize our contributions below:

1. We show that SSL pretraining strategies are currently
data-inefficient in compensating for distribution shifts.
Under normalized computational costs, we verify that
pretraining on large datasets with high diversity cannot
outperform the pretraining on datasets with limited di-
versity, but with a lower distribution shift with respect to
the downstream tasks.

2. We conclude that there is a wide margin for improve-
ment in the performance of current SSL methods on out-
of-distribution classes, and we propose insights for a fair
evaluation. This shows the need for future research on
new SSL techniques leveraging data diversity better, to
improve generalization capabilities beyond the training
data distribution.

3. We propose a novel strategy for a computationally-
normalized evaluation of SSL and a carefully designed
set of experiments focusing on pretraining data diversity,
enabling us to draw our novel conclusions.

Ultimately, our work provides a comprehensive analysis,
from experiments worth 200 GPU days, on the interaction
between data diversity and computational resources, and
their impact on the performance of SSL models, with an
aim to improve pretraining practices. Now, we will analyze
the relevant literature.

2. Related Work

Self-Supervised Learning Early work in self-supervised
learning used simple pretext tasks, such as relative patch
prediction [19, 20], image colorization [67], image ro-
tation prediction [24], or solving jigsaw puzzles [44]
to train feature extractors in absence of annotations.
Representations learned with those methods are limit-
edly effective, hence more recent literature has moved
towards more sophisticated approaches, such as using
image augmentations to generate correlated views of a
training sample, and learning to extract augmentation-
invariant representations for these correlated pairs. Among
these multi-view methods, many exploit contrastive

losses [1, 8, 10, 11, 13, 31, 34, 35, 41, 42, 45], enforcing
similarity between views of the same image (positives)
and dissimilarity from other images (negatives). Due to
the need of many negative samples, contrastive methods
often require large batch sizes to work effectively [10, 14].
Cluster-based methods such as SWAV [8], DINO [9] and
DeepCluster v2 [6] learn generalizable representations by
grouping samples into cluster prototypes. Others exploit
prediction of features with siamese networks [12], learn
features in a teacher-student fashion [28], or use redun-
dancy reduction techniques [4, 65]. Finally, masked image
modeling [3, 32, 63] emerged as a scalable alternative
for Vision Transformers [21], learning representations by
predicting masked image patches as SSL task.

Pretraining at Scale SSL is most effective when pretrain-
ing is conducted at scale, benefiting from large datasets and
great computational resources. Initial attempts at large-
scale pretraining were made via combining contrastive
learning and clustering [7, 56]. The SEER model [26]
was trained on 1 billion internet images using SWAV [8]
applied on a RegNet [48] backbone. The importance
of model scaling to leverage large-scale datasets is also
shown in [25, 27, 64], as well as the need for increasing
training duration [64]. Additional strategies are necessary
to achieve best performance at scale [17, 23, 66]. All
considered works focus on reaching the best representa-
tions, without many considerations about training costs,
thus encouraging unfair comparisons about the efficacy
of data. A preliminary work [15] found for SimCLR [10]
that increasing data from 500 thousand to 1 million images
leads to a modest boost in downstream performance, but
without limiting the training budget. While large uncurated
datasets have been further explored [56], their efficacy in
relationship with the distribution shift under normalized
computation is still limitedly investigated.

Distribution Shift in SSL.  Some studies have investigated
how the pretraining data domain affects downstream perfor-
mance on other domains. For various pretraining datasets,
preliminary works [15, 25, 36, 40] observed that the best
performing representations were learned on datasets that
were similar to the downstream test task. Additionally,
combining datasets before pretraining or combining self-
supervised features learned from various datasets did not
lead to significant improvements in [15]. In [51, 68], they
showcase higher generalization capabilities of SSL mod-
els compared to their supervised counterparts, for several
downstream tasks in the presence of a distribution shift.
In [59], they pretrained on several datasets, and observed
different generalization depending on the object-centric or
scene-centric appearance of the pretraining dataset. Fur-
thermore, initial considerations on the impact of external



data on downstream tasks under distribution shift have been
proposed in [60]. Some compensate the distribution shift
with the scale of training datasets [29]. Although partial in-
formation can be inferred by these works, there is still a lack
of a fair, computation-normalized evaluation that allows to
study the effects of the distribution shift in a controlled en-
vironment.

3. Preliminaries

Pretraining We first outline the general pretraining pro-
cedure common to state-of-the-art self-supervised learning
methods. Specific differences among these methods are de-
tailed in the supplementary material. The overall pretrain-
ing pipeline, common across many SSL approaches [4, 8-
10, 28, 65], goes as follows: (1) Data Sampling: from a
large-scale, unlabeled upstream pretraining dataset, denoted
as DggL, an image x is randomly sampled; (2) View Gen-
eration: two correlated views, x4 and Xp, are generated
from x using two image augmentation functions sampled at
random. These random augmentations include random re-
sized cropping, horizontal flipping, blurring, and color ad-
justments [2], among others; (3) Feature Extraction and
Projection: the correlated views undergo feature extrac-
tion through a network, fy e parameterized by 6, such
as a ResNet [30] or a ViT [21], leading to representations
hy = fo,(Xa) and hp = fp,(Xp). A linear projection
head, gp,, parameterized by 0,, then maps these represen-
tations to a latent space, resulting in z4 = gy, (ha) and
zg = go,(hp); (4) Joint Optimization: The feature ex-
tractor fy, and the projection head gy, are jointly optimized
according to the following objective:

07,0, = argmin Expg, LssL(za,2zB), (1)
05,04

where Lggp is a loss function specific to the chosen SSL
pretraining method.
After pretraining, the feature extractor fg;; can be deployed
for various downstream tasks such as image classifica-
tion, object detection, or segmentation. This is typically
achieved by training a task-specific head. Alternatively,
the feature extractor fy- can either be fine-tuned or used
together with a k-nearest neighbors (kNN) classifier.

Linear Probing There are several ways to evaluate the
performance of a self-supervised learning method such as
linear probing [10, 14, 28], kNN [8, 9, 62, 71], and few-
shot evaluation [22, 26]. Consistent with the general proto-
col established in the literature [10, 15, 31, 67], we use lin-
ear probing to measure the quality of the features extracted
for classification tasks. The procedure is as follows: (1)
a labeled downstream dataset, Dy, consisting of image-
class pairs (x,y) ~ Dy, is selected for evaluation. (2)
For each image x, its representation is extracted using the

pretrained feature extractor fg;;, after which the linear clas-
sification head tg,, parameterized by 6;, is then applied to
obtain tg, ( fg; (x)). (3) The linear head ty, is optimized as
follows:

0: = argemin E(X,y)NDmk ﬁtﬂSk(th (fe;? (X))a Y):| ) (2)
t

Note that only the parameters of the linear head 6; are
optimized, while the parameters 0} of the feature extractor
are kept frozen. The quality of features extracted by fg; is
directly inferred from the classification accuracy achieved
on the test set of Dy,q, which serves as the primary indicator
of the quality of the extracted features.

4. Normalized Evaluation

We stress how for a correct understanding of the impact of
data diversity we need to analyze its effects isolating them
from the impact of increased computation. To enable this,
we introduce (1) a computational budget used to normalize
computation across experiments, and (2) a quantification of
the data diversity seen by models during pretraining.

Computational Budget Current progress in SSL pretrain-
ing simultaneously scales computational budget and dataset
size to achieve the best performance [26]. This makes it
difficult to assess the reasons behind the success of many
SSL algorithms. Do these methods benefit mainly from the
large amounts of computation, i.e., running SSL pretraining
for large numbers of epochs, or do they benefit from data di-
versity in larger datasets containing a vast variety of visual
features? To perform a disentangled evaluation of these two
factors, we first introduce C as a measure of computational
budget, which quantifies the total number of images an SSL
method is allowed to process during pretraining. This is
calculated as C = N - &£, where NV is the number of unique
samples in the pretraining dataset Dgsg;, hence the data
diversity of the dataset, and £ is the number of pretraining
epochs. Constraining multiple models pretrained with SSL
to a fixed computational budget C allows for meaning-
ful comparison, as it is guaranteed that all SSL methods
will have processed the same number of pretraining images.

Quantifying Pretraining Diversity Even under normal-
ized computation C, various SSL approaches may be ex-
posed to different data diversity as they are trained with dif-
ferent datasets. For instance, a model trained for £ = 1000
epochs on a dataset of size N = 1000 will see less diversity
than a model pretrained for £ = 1 epoch on a dataset of size
N = 105, despite that they are both pretrained under nor-
malized computation, processing the same number of im-
ages. Hence, to capture this notion of exposure to diversity
while pretraining under normalized computation C, we de-
fine a pretraining diversity D, which captures the number of
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(x10®) (x107*)| SimCLR B.T. BYOL SwAV VICReg MoCoV3DINO  (x10®) (x107%)| SimCLR B.T. BYOL SwAV VICReg MoCoV3 DINO
5 0.1 37.95 4430 41.14 14.06 44.06 1251 15.74 10 0.2 3691 4098 35.62 3423 37.58 36.56 34.54
25 0.5 50.13 5429 51.01 4544 5037 51.58 35.89 50 1.0 48.77 52.01 48.05 43.63 4875 4645 44.39
50 1.0 58.59 5842 58.28 56.37 55.83 55.61 40.93 100 2.0 49.83 55.60 50.29 47.48 54.10 48.58 47.32

C =50 x 108
(a) CIFAR-100

C =50 x 106
(b) Tiny ImageNet

Table 1. Impact of Data Diversity on CIFAR-100 and Tiny ImageNet SSL Pretraining Performance: We study the effects of diversity
on CIFAR-100 (a) and Tiny ImageNet (b) across seven different methods and three data diversity settings for a ResNet-18 pretraining,
where for all, D« = Dssi. This comparison includes analyzing classification accuracy through linear probing on the training set and
evaluation on the test set of the respective datasets. Although performance fluctuates among different methods, a consistent trend is
observed: higher data diversity typically leads to the generation of higher quality representations.

unique samples encountered during training given a fixed C
as D = N/c = 1/e. A model pretrained with larger D in-
dicates that the model is presented with a larger number of
unique images during training with fixed C, and hence is ex-
posed to more pretraining data diversity. In the next section,
we explore the effects of variations in D on SSL perfor-
mance under a distribution shift, while keeping C constant.

5. Fixed Budget SSL: In & Out-of-Distribution

Training Configuration We evaluate seven SSL methods:
SimCLR [10], MoCoV3 [14], VICReg [4], DINO [9],
BYOL [28], Barlow Twins [65], and SWAV [8]. We use
different datasets for both pretraining Dsgp, and linear prob-
ing Dy, for different sections. We use solo—-learn [16]
as a codebase. For each method, we use the default
parameters provided when available, otherwise, we conduct
a hyperparameter search to ensure proper convergence.

5.1. Performance on the Same Distribution

We aim to answer a first question: does collecting more
samples from the same distribution help SSL pretraining
with a fixed budget? We conduct experiments to capture
how the pretraining diversity D influences SSL pretrain-
ing within a normalized C, focusing on the simplest setting
where the upstream and downstream datasets belong to the
same distribution such that Dgs; = Dy,. This serves as a
fundamental ground for our further experiments.

Setup  For pretraining, we use CIFAR-100 [38] and
Tiny ImageNet [39] as Dgsr, which contain 50 x 103 and
100 x 10% images, respectively. We set C = 50 x 106,
chosen such that it allows all methods to converge during
pretraining. In Section 6, we study the effect of varying
the budget C. We pretrain on subsets of Dgg;. with different
sizes N (10%, 50%, and 100% of Dgg; ), enabling us to
observe the effects of pretraining diversity D on training
outcomes where £ is adjusted accordingly to match the
budget C. For example, using 100% of CIFAR-100 involves
1000 epochs of training, while 10% and 50% of the dataset
lead to 10000 and 2000 epochs, respectively. These subsets
of Dggr are created by shuffling the dataset and then

selecting the first 10%, 50%, or 100% split. All models
in this section use a ResNet-18 [30] backbone pretrained
from scratch. For evaluation, we use in-distribution linear
probing, i.e., Dy = Dgssr, where performance is measured
by classification accuracy on the test set.

Results The results of linear probing are presented in Ta-
bles la and 1b for CIFAR-100 and Tiny ImageNet, respec-
tively. While different SSL. methods show varying levels of
performance, we observe that, for all methods, an increase
in the diversity D consistently leads to higher linear prob-
ing accuracy, suggesting that including more in-distribution
samples in Dggp. helps under a normalized C. For exam-
ple, SimCLR achieves an accuracy of 37.95 when 10% of
CIFAR-100 is provided, whereas this performance improve
by around 12% when only 50% of the dataset is provided
and by another 8% after pretraining on 100% of unique
samples. This suggests that SSL methods substantially ben-
efit from having a more diverse pretraining set in computa-
tionally budgeted in-distribution evaluation, a fundamental
verification that allows us to proceed in our analysis.

Insight (1)

When the distributions of the upstream and down-
stream tasks are the same, i.e., Dgg, = Dk, in a
normalized computation setup, increasing pretrain-
ing diversity D proves to be an effective strategy for
enhancing SSL pretraining performance.

5.2. Increasing Data Diversity

As observed in Section 5.1, if Dgsp = Dy having a
more diverse pretraining set benefits SSL. methods, under a
normalized computation assumption. However, to increase
diversity, sampling from the same distribution Dy to
extend Dggp, is not always attainable. In fact, pretraining
data is often sampled from a distribution different than
Dyask- The added samples will then introduce a distribution
shift between Dggr. and Dy
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Figure 2. Data Collection Strategies: We analyze strategies for
collecting additional data (A), i.e., collecting more source data,
crawling the web or using synthetic images. Using a class prior
(top row) simulates In-distribution trainings. We also collect
images without class prior (bottom row) to analize the interactions
between diversity and Qu¢-of-distribution classes.

Then, we raise the following question: is increasing
pretraining diversity still beneficial when there is a distri-
bution shift between Dgsp and Dy, i.e., Dssp # Dyug? We
explore strategies for acquiring new data for increasing D,
namely, including existing samples, crawled internet data,
and data synthetically generated by diffusion models. To
evaluate the effects of the distribution shift in a controlled
scenario, we analyze distributions closer to Dy, by using
a class prior (in-distribution) and without a class prior
(out-of-distribution).

Setup  We use ImageNet-100 [55] as Dy, and we
construct multiple Dgg to evaluate the effects of different
data collection strategies and the distribution shift. We
first introduce a set B composed of 65 x 10® images from
ImageNet-100 (50% of the dataset), which we use as a
baseline for Dgsp with minimum diversity. We denote
the 100 classes in ImageNet-100 as 7Tjp0, and sample B
uniformly including images from all classes. Next, we
compare with pretraining on more diverse datasets as Dggy ,
imposing Dgs;. = B U A where A includes 65 x 103
images sampled with one of three strategies. To highlight
the effects of the distribution shift, we include in A either
images from In-distribution classes, i.e., selecting images
from classes overlapping with 71, or images from Qut-of-
distribution classes, which do not overlap with 71o9. This is
to study the effects of the distribution shift, since we do not
assume access to downstream classes in real scenarios. For
the Qut-of-distribution samples, we define A as (1) random
images sampled from the full ImageNet [18] dataset; (2)
images crawled from Flickr, Bing, and DuckDuckGo; or

(3) images generated with Stable Diffusion V2.1 [50]. We
respectively call these sets AL, AQY, and AQY, .. We
In

Source?

also define their In-distribution counterparts as A
Alr ., and Aé’;,mhcﬁc, respectively. Note how B U A
is the full ImageNet-100, coherently with Section 5.1.
Figure 2 shows each collection strategy, for which we
provide implementation details in supplementary material.
Although many factors (such as the appearance of images)
impact the distribution shift, using a class prior imposes
that any strategy using it would still result in closer
distribution with respect to the same strategy without class
priors [15]. We pretrain a ResNet-18 from scratch, with the
same settings of Section 5.1, and C = 50 x 108. Note that
this results in D = 1.25 x 1072 for pretraining on B, and
D = 2.5 x 1073 for pretraining on B U A, introducing a D
difference of a factor of 2.

Results  We report the linear probing accuracies for
pretraining on each B U A as bars in Figure 3, showing the
C-normalized training on B as a dashed line. Surprisingly,
without class priors (Out), including Ag’,ﬂfrgc, A and
Ag;glhclic underperforms compared to pretraining on B only.
For instance, for SimCLR and while B scores 72.3% ac-
curacy, increasing diversity reduces the accuracy by 1% in
all cases. This might appear to conflict with our findings in
Section 5.1, however, the inclusion of Out samples leads to
Dss. # Drask», since we sample only classes not included in
Dysk- We infer that, with normalized C, increasing D with-
out distribution priors may negatively impact performance.
Conversely, when class priors are available (In), increasing
pretraining diversity D improves performance compared to
B pretraining. For instance, pretraining on AZ, performs
comparably to augmenting with additional ImageNet
samples (AY ), as in the case of SimCLR where the
inclusion of A" . scores only 0.2% lower than A .
Including AIS,;/mhelic data also helps, Synthetic AIS,;mhelic data
helps, although more limitedly due to the visual discrep-
ancies between generated and real images. Ultimately, the
effectiveness of diversity is linked to the distribution shift.
These findings highlight the impact of the distribution shift
on computationally-normalized SSL pretraining and help
define evaluation practices for this task (see Section 7).

Insight (2)

When the distributions of the upstream and down-
stream tasks differ, Dssp. # Dy, and in a normal-
ized computation setup, increasing pretraining di-
versity D may harm SSL pretraining performance,
reflecting the adverse effects of distribution shift.
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Figure 3. Effect of Various Data Sources on SSL Pretraining: We use a baseline set B (black dashed line), comprising 65 x 10% images
from ImageNet-100, for pretraining a ResNet-18 with C = 50 x 10°. Augmenting B with In-distribution images enhances performance
(above black line), while Qut-of-distribution augmentations reduce it (below black line).

SimCLR MoCoV3
D N D Accuracy? D N D Accuracy?

SSL (x10%) (x107%) ImageNet Cars Flow. Pets Places Food SSL (x10%) (x1073) ImageNet Cars Flow. Pets Places Food

o ImageNet 0.128 1.31 56.9 43.0 823 739 454 599 o [ImageNet 0.128 1.31 58.1 406 81.8 76.04 451 639
‘> ImageNet  0.256 2.61 61.1 455 840 760 470 644 ‘2 ImageNet 0.256 2.61 62.9 453 850 798 476 687
Z ImageNet  0.640 6.54 63.7 468 842 788 483 672 2 ImageNet  0.640 6.54 65.4 484 86.1 819 492 710
é ImageNet  1.281 13.0 64.5 464 84.6 795 488 68.0 &ﬁ) ImageNet  1.281 13.0 65.9 488 86.6 826 495 719
YFCC 98.17 1000 57.3 372 766 589 501 621 YFCC  98.17 1000 60.4 422 826 663 507 673

o ImageNet 0.128 1.31 54.2 372 818 703 446 643 o ImageNet 0.128 131 579 334 828 780 467 678
= ImageNet 0.256 2.61 61.3 395 838 777 472 694 = ImageNet 0.256 2.61 63.7 350 853 829 484 710
[CE ImageNet  0.640 6.54 65.5 399 84.6 804 491 731 ﬁ ImageNet  0.640 6.54 67.2 395 850 858 497 728
> ImageNet 1.281 13.0 66.7 39.5 837 817 50.0 73.6 5 ImageNet 1.281 13.0 68.8 419 865 865 503 73.8
YFCC 98.17 1000 54.5 250 725 597 495 654 YFCC 98.17 1000 57.2 252 703 438 503 640

C =98 x10° C =98 x 108

Table 2. Performance of ImageNet and YFCC100M SSL Pretraining on Various Downstream Tasks: We train ResNet-50 and ViT-
B/16 under normalized computation (C = 98 x 10°) using SimCLR (left) and MoCoV3 (right) on ImageNet and YFCC100M (YFCC)
with multiple D. Despite the significantly larger D when trained on YFCC100M, these models cannot offset the effects of the distribution
shift and are outperformed by models pretrained on ImageNet in the majority of downstreams.

5.3. Scaling Pretraining Diversity

We showed that diversity improves pretraining performance
when the training set and downstream task share the same
data distribution (IDgs;. = Dyaex ), as discussed in Section 5.1.
This may change when a distribution shift is introduced, as
explored in Section 5.2. However, it is still unclear from
Section 5.2, whether including a larger number of samples,
and thus increasing considerably the pretraining diversity,
can compensate for the negative effects of the distribution
shift. To address this, the following section presents larger-
scale experiments, employing significantly varied D values,
aiming to explore the interplay between pretraining di-
versity and different distributions using millions of samples.

Setup For our large-scale pretraining experiments, we
set Dggr. to be two datasets of significantly different sizes:
ImageNet [18] and YFCCI100M [54], comprising 1.28
million and 98 million images, respectively. Following
Section 5.1, we explore multiple D values for pretraining.
We set C = 98 x 10°, which corresponds to one epoch on
YFCC100M, iterating once through each of its 98 million

images to maximize diversity (D = 1). Normalizing C (see
Section 5.1), we pretrain on ImageNet for approximately
77 epochs, cumulatively utilizing 98 million samples.
Due to the extensive cost of these experiments, we focus
on SimCLR and MoCoV3 only. We also employ larger
architectures, namely ResNet-50 [30] and ViT-B/16 [21],
to leverage the extensive scale of the pretraining datasets.
We also use multiple Dy, including ImageNet [18], Stan-
ford Cars [37], Flowers-102 [43], Oxford-IIIT Pets [47],
Places365 [69], and Food-101 [5].

Results The results of our large-scale experiments are
detailed in Table 2. Consistently with findings in Sec-
tion 5.1, increasing D leads to better pretraining efficacy
when Dgs;, = Dyg. This is evident when ImageNet is
used for both pretraining and downstream classification, re-
inforcing that our observations hold even at a larger scale.
Instead, models pretrained on YFCC100M show substan-
tially lower performance compared to those pretrained on
ImageNet, although having much higher D. This high-
lights the inefficiency of collecting data indiscriminately
without considering distribution shifts. To stress this,



note how the model pretrained on YFCC100M (D = 1)
often performs similarly to those pretrained with drasti-
cally lower D on ImageNet (D = 1.31 x 1073). This
aligns with our observations in Section 5.2, emphasiz-
ing that distribution differences remain a significant fac-
tor even when training with large datasets. However, the
YFCC100M-pretrained model outperforms the ImageNet-
pretrained model in Places365, suggesting a closer distribu-
tion relationship between YFCC100M and Places365. We
explore this hypothesis further in Section 6, where we an-
alyze distribution distances with existing metrics. Ulti-
mately, our analysis highlights that scaling the data is not
an effective solution for compensating the distribution shift,
when computational resources are normalized.

Insight (3)

Even an extremely large data diversity cannot miti-
gate the distribution shift under normalized compu-
tation. This emphasizes the importance of further
research in how effectively SSL pretraining algo-
rithms generalize.

6. Additional Analysis

Previously, we proposed a computationally-normalized
evaluation to assess the role of D with and without the
distribution shift. We highlighted that, although pretraining
diversity helps when Dss;, = Dk, vision models are
unable to compensate for the distributional differences
under normalized computation. Now, we analyze additional
elements that support our previous observations.

Distribution Distances Using FID & VisualDNA In
Section 5.3, we showed that pretraining on ImageNet typi-
cally outperforms YFCC100M on a variety of downstream
tasks, with Places365 being the exception. We speculate
that the distribution of ImageNet is more aligned with
those of the downstream tasks compared to YFCC100M.
To verify this, we evaluate the similarity between the
datasets using FID [33] and VisualDNA [49] and report
results in Table 3. With both FID or VisualDNA, the
distribution of ImageNet is always closer to the down-
stream tasks, except for Places365 where YFCC100M
is closer. This aligns with the lower performance of
ImageNet on this dataset only (Table 2), further suggesting
that the performance drop is caused by the distribution shift.

Importance of Normalized Computation  We now
study the impact of normalizing computation on the
performance of SSL methods. We aim to understand if C
1s not normalized across methods, this will lead to mis-
leading conclusions, and thus motivating our normalized
computation. In Table 4, we compare the performance of

VisualDNA |

Dsst. Backbone ImageNet Cars Flow. Pets Places Food

ImageNet MUGS 0.00 1149 1246 6.09 7.19 9.08
YFCC MUGS 3.72 11.57 1271 793 620 9.72

ImageNet DINO v2 0.00 705 695 443 352 726
YFCC DINO v2 2.37 712 746 575 274 790

FID|
ImageNet  Cars Flow. Pets  Places  Food

14340 19289 88.85 6491 11492
17427 21478 14579 38.86 15451

Dssr. Backbone

ImageNet  Inception 0.00
YFCC Inception 48.14

Table 3. Comparing VisualDNA and FID Scores Across
Datasets: We assess the relationship between VisualDNA [49]
and FID Score [33] for various large-scale Dss1. and several down-
stream tasks. For VisualDNA, activations are extracted as sug-
gested [49] with MUGS [70] with ViT-B/16 (MUGS) or DINO
v2 [46] with ViT-B/16 (DINO v2), while FID activations are ob-
tained via an Inception network [53]. Consistently, across all met-
rics, the ranking of dataset distances between Dgssi, and various
Dk aligns with the accuracy ranking in Table 2. Models exhibit-
ing lower VisualDNA/FID scores benefit more from the diversity
in pretraining data for SSL.

ResNet-50 and ViT-B/16 models pretrained using MoCoV3
with C = 98 x 10° (as used in Section 5.3) against a tripled
budget of C = 294 x 10°. We show that inconsistencies
arise when pretraining data diversity D and computation
C are not fairly compared. For instance, in scenarios
highlighted in red, we notice that a lower pretraining
diversity coupled with a higher computational budget can
yield better results. We observe that under pretraining
diversity of only D = 13 x 1072 and a computational
budget of C = 98 x 10% ResNet-50 only enjoys a 65.9%
accuracy compared against with 69.8% with a smaller
pretraining diversity of 2.17 x 10~3 but with a larger com-
putational budget of 294 x 10°. This shows that without
normalized computation, it could be incorrectly concluded
that pretraining diversity does not play a significant role.

Model Saturation In Section 5.3, we evaluated the
effects of extreme differences in D. We aim to understand
the trend in pretraining on YFCC100M, and if adding
more samples could compensate the distribution shift with
ImageNet. Hence, we extend the YFCC100M experiments
from Section 5.3, examining various subsets—specifically
0.1%, 1%, 10%, and 100% of the dataset. Again, we
normalize the computational budget to C = 98 x 10°,
equivalent to one epoch on YFCCIO0OM. The results
of linear probing models pretrained using SimCLR and
MoCoV3 with ResNet-50 and ViT-B/16 on ImageNet are
shown in Figure 4. Interestingly, we obtain a performance
plateau. This observation points to a saturation point in
performance, showing that simply increasing the dataset
further would not bridge the gap between the Dgg; and
Dysk- Hence, arbitrarily increasing pretraining diversity D



MoCoV3 SimCLR
C N D Accuracy? N D Accuracy?
Network — Dss. (000 (108 (x10-%)  TmageNet Network  Dssi(,10%) (x107%) | 5% 10% 50% 100%
ImageNet 98 0.128 1.31 58.1 ResNet-50 I“?Fgéget ;'822 11(')?)1) gg'i i:? gzlt.(7) g‘;‘g
ImageNet 98 0.640 6.54 65.4 i Net 12.8 31 ‘55'2 59'4 65.6 66.7
ImageNet 98 1.281 13.0 65.9 T mageie : - . - : .
ResNet:s0 WL T 2 T L B VITB/IO “vEcc 982 1000|407 457 533 545
ImageNet 294 0.128 0.43 574 — 5
ImageNet 204  0.640  2.17 69.8 C=98x10
ImageNet 294 1.281 435 714 MoCoV3
N D Accuracy?
ImageNet 98 0.128 131 57.9 Network — Dsst 506y (x10-%) | 5% 10% 50% 100%
imagege‘ 98 ?gg? ?'353 gg'é ResNeLgo mageNet 128 131|521 562 638 659
ViTB/1g mageNet 98 1281 130 | 68 2 YECC 982 1000 |42.8 482 577 60.4
ImageNet 294 0.128 0.43 56.9 VIT-B/16 ImageNet 1.28 131 [59.3 63.0 68.3 68.8
ImageNet 294 0.640 2.17 719 YFCC 98.2 1000 |43.9 49.0 560 572
ImageNet 294 1.281 4.35 74.9 C— 03 x 10°

Table 4. Importance of Normalization. We report the accuracy
of MoCoV3 trained on ImageNet with different data diversity and
variable C, for the in-distribution assumption (Dss;, = Dyae). For
a given network, cells in red highlight inconsistencies where al-
though the model trained with C = 294 x 10° has seen less sam-
ples, it outperforms the best model trained with one third of the
computational budget (C = 90 x 10°), showing the importance of
normalization for understanding how models exploit data.

SimCLR MoCoV3
601 60 /\’/ﬁ
Q
> e
50 1 501
0001 001 0.1 10 0001 001 0.1 1.0
601 601
Q
<
50 1 50
0001 001 01 10 000l 00l 01 10
D D
—8— ResNet-50 ViT-Base

Figure 4. Data Diversity Impact on YFCC100M Pretraining
Performance: Pretraining (C = 98 x 10%) of networks with
Dsst = YFCC100M and D = ImageNet for several dataset
subsets. In the presence of a distribution shift, performance tends
to saturate and does not benefit from additional data diversity.

is not sufficient to bridge the distribution shift problem.
Here Dgsp. # Dyask, hence still aligning with our findings in
Section 5.1.

Label Quantity A question that arises in our setting
is whether having a higher pretraining diversity leads to
requiring less labeled samples during linear probing. In
this section, we focus on understanding the impact of
increased D on the number of labeled samples required for
effective linear probing in downstream tasks. We use the
same trained models from Section 5.3, i.e., SImMCLR and

Table 5. Evaluating Network Accuracy With Varied Label
Quantity: We evaluate the accuracy of networks trained on Im-
ageNet and YFCC with different labeling percentages of Dy =
ImageNet. The increased diversity still does not compensate for
the distribution shift. However, for in-distribution data, one can
get away with fewer labels with more diverse pretraining data.

MoCoV3, with ResNet-50 and ViT-B/16 architectures. In
this setup, we set Dk« = ImageNet, with two upstream
dataset scenarios: ImageNet (where Dgsp = Dy) and
YFCC100M (where Dgsp # Dygk). Our experiments are
summarized in Table 5. We note that with ViT-B/16, if
ImageNet is used for pretraining, linear probing with just
5% labeled samples can surpass the performance achieved
using 100% labeled data when YFCCI100M serves as
Dgsp. This also implies that when Dggp, # Dyask, a higher
quantity of labeled data is necessary to attain competitive
performance, and increasing D does not bring considerable
benefits on label quantity under distribution shift. This
implies that our findings in Section 5.3 hold regardless of
the linear probing labeled set. We note that in scenarios
where Dgsp. = Dk, using only 50% of the labeled data
can achieve similar performance as utilizing the full 100%
of labeled samples, implying that increasing D leads to
reduced label requirement efforts for downstream tasks.

7. Discussion

Here, we discuss the implications of our findings. We
highlight inefficiencies in current strategies, and provide
takeaways for good SSL practices.

Main Conclusions Our set of experiments leads to Insight
(3) in Section 5.3, revealing that with normalized compu-
tational costs, SSL pretrainings with large diversity cannot
compensate for the distribution shift. This is surprising,
since the variety of information that SSL algorithms could
benefit from during training is much higher in large generic
datasets than in small ones. Hence, since our evaluation
is cost-normalized, (3) also implies that SSL strategies are



not efficiently exploiting the pretraining diversity on large
datasets for representation extraction. This inefficiency
reflects in a wide margin for improvement of generalization
performance of SSL models, making better use of the com-
putational power involved for training. The role of existing
models must also be discussed in this context. Following
Insights (1) and (2), respectively in Sections 5.1 and 5.2,
we have studied how in-distribution and out-of-distribution
data impact performance in a controlled scenario. We
argue that this behavior should be taken into account in
the evaluation of the performance of SSL models. Indeed,
training at scale may enlarge the in-distribution space,
including classes of the downstream tasks in the training
set. In recent literature, this is a design choice to maximize
performance on popular benchmarks [46]. While this
allows for achieving impressive results in many tasks, we
stress that this does not permit a fair evaluation. Now, we
summarize practical takeaways.

Training Takeaways Coherently with our findings in Sec-
tion 5.1 and similarly to prior art [15, 25, 36], we find
that aligned distributions benefit performance, in particu-
lar increasing Dggp. diversity helps in learning better fea-
ture extractors as long as the distribution of the new sam-
ples match those of the downstream task data. Differently
from the state-of-the-art, we demonstrate that this holds also
in a computationally-normalized setting, implying that col-
lecting large scale in-distribution data matching the down-
stream task could be an effective and efficient approach to
improving SSL. Hence, for practical applications distribu-
tion priors should be used, if available. On the contrary, for
a fair evaluation of models, this should not be the case, as
specified below.

Evaluation Takeaways  Our analysis reveals that to
permit a fair evaluation of SSL. methods, computationally
normalized tests are necessary to avoid inconsistencies, as
shown in Section 6. Moreover, it is crucial to identify out-
of-distribution downstream tasks for a correct evaluation
of generalization performance. By evaluating only on Dy,
with a low distribution shift, there is a risk of reporting in-
flated metrics, not representative of a real gain in generaliza-
tion. This is important, since new SSL approaches may be
reporting higher downstream performance when pretrained
on a different dataset. We relate this to Sections 5 and 6,
where we show that increasing the computation and the
in-distribution data, respectively, can improve performance.
Ultimately, wrong practices may result in incorrectly
concluding that an SSL algorithm is performing better.

Differences With Language Models In Section 5.3
we showed that even very diverse datasets, such as
YFCC100M, fall short in satisfactory generalization per-
formance. Beyond paving the way for further exploration
into generalization for SSL pretraining, this open doors
to investigating why language models enjoy enhanced

generalization when exposed to a wide SSL pretraining
diversity compared to vision models [61].
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On Pretraining Data Diversity
for Self-Supervised Learning
Supplementary Material

In this supplementary material, we present additional experiments and insights on our findings presented in the main paper. First, we
further develop the inconsistencies found within an incorrectly-normalized framework (Section A). Then, we propose different settings for
our analysis at scale (Section B). We extend our analysis on label quantity in Section C. Finally, we introduce additional details about our
settings and implementations (Section D). For reproducibility of our results, we will share on GitHub our codebase, along the fine-tuned
parameters and the data ordering files.

For improved readability, all references to the main paper Sections and Tables in blue (e.g. “Section 17).

A. Importance of Normalization of Computation

In this section, we aim to complement our experiment in Section 6, providing further proof highlighting the importance of having a
normalized computational budget when evaluating the performance of SSL methods. In the following experiments, we show that if
computation is not normalized properly, one might fall into unfair comparisons and misleading conclusions.

A.1. Increasing Total Computation

In our first setup, we pretrain SIimCLR [10] and MoCoV3 [14] on Tiny ImageNet with various D, over a range of increasing amounts of
budget C. We assume Dss. = Diask. We take the same subsets of Tiny ImageNet as in Section 5.1, which consist of 10%, 50% and 100%
of the training data. We vary C from 5 x 10°® to 100 x 10°, and we measure the accuracy of the pretrained models on the Dy, test set,
results of which are shown in Table 6. Note that we refer to models in this section using the data diversity IV instead of pretraining diversity
D, as each cell in Table 6 has a different D. Following our previous experiments, we argue that comparison between different diversities
only hold as long as the computation is normalized. This implies that comparisons only hold within any given C. In agreement with our
prior findings, the third row with the highest diversity always outperforms the lower pretraining diversity models on in-domain evaluation,
for both SimCLR and MoCoV3. However, only when we compare between different columns, i.e. different amounts of computation, we
may observe that models pretrained with lower diversity may outperform higher diversity models. For example, for both SimCLR and
MoCoV3, the models pretrained with N = 50 x 10% and C = 10 x 10° outperform the models with higher data diversities N = 100 x 10°
but less computation C = 5 x 10°. As a result, we see that models with lower pretraining diversity can still outperform models with
higher diversity, given that more computation is used. This highlights the importance of normalizing computation costs when evaluating
the effects of diversity.

A.2. Epoch-based normalization

In Section 5.2, we adhered to a fixed computational budget of C = 50 x 10°, pretraining models on Dss;. = B for 800 epochs, and on
B U A for 400 epochs, considering that the latter dataset was twice the size. We further demonstrate the importance of a computationally-
normalized evaluation by exposing the inconsistencies of an alternative epoch-based normalization, hence in which networks are trained
for 400 epochs, regardless of the dataset size.

We propose this alternative scenario in Figure 5, where the compute-normalized baseline (the black dashed line in Figure 3) is replaced
with an epoch-normalized baseline (indicated by the red dashed line), obtained by pretraining for 400 epochs on B. Here, we observe that
augmenting with additional samples consistently enhances performance, irrespective of the data augmentation technique used and whether
the sample labels are in or out of distribution. This finding does not align with the insights from Section 5.2, and we highlight that it does
not take into account the difference in costs for training models for the same number of epochs, but on a dataset twice the size. Hence,
this constitutes an unfair comparison that may lead to incorrect conclusions, advocating for the effectiveness of our computational-based
normalization.



SimCLR MoCoV3

N C (x10%) N C (x10%

(x10%) 5 10 25 50 100 (x10%) 5 10 25 50 100
10 36.92  36.63 36.30 3691 35.03 10 39.78  41.82  40.06  36.56 28.92
50 40.76 4430 47.69 48777 4891 50 39.88 4342  46.68 4645 48.14
100 4143 4476 4932 4983 51.62 100 40.35 44.03 47.63 4858 50.71

Table 6. Pretraining Diversity With Increasing Computational Budget: We show for both SimCLR (left) and MoCoV3 (right) that
increasing pretraining diversity always leads to better in-domain downstream accuracies, given that computation is normalized, i.e., com-
parisons hold within the columns of the tables. Comparing models between different columns may lead to inconsistencies, where lower
diversity models with more computation obtain higher results than higher diversity models with less computation.

SimCLR Barlow Twins BYOL SwAV VICReg MoCoV3 DINO

80.0

725
8 65.0
& .

575

50.0

Figure 5. Impact of Epoch Normalization on SSL Pretraining Performance: This figure contrasts an epoch-normalized baseline (red
line) with the trained methods in the main paper, Figure 3. Under epoch normalization, we notice contrasting findings, i.e. more diverse
trainings, irrespective of their origin (source, web, or synthetic) and label distribution (in or out-of-distribution), consistently enhances
performance. This is an unfair comparison due to the greater costs of each augmented pretraining if epochs are normalized. This illustrates
how alternative normalization can lead to wrong conclusions compared to compute normalization. DINO B epoch-normalized baseline is
shown in text only (Acc. 41.14) for ease of visualization.

Barlow Twins BYOL
D N D Accuracy ! D N D Accuracy?

SSL (x109) (x1073)|ImageNet Cars Flow. Pets Places Food SSL (x109) (x1073)|ImageNet Cars Flow. Pets Places Food
ImageNet 0.128 1.31 57.17 51.51 85.84 75.81 45.87 63.72 ImageNet 0.128 1.31 61.82 46.62 85.84 80.28 46.91 67.01
ImageNet 1.281 13.0 65.40 59.56 89.16 83.89 49.19 70.42 ImageNet 1.281 13.0 68.39 52.51 88.77 84.75 49.96 73.52

YFCC  98.17 1000 57.85 44.76 83.46 67.21 50.01 65.20 YFCC  98.17 1000 60.73  42.78 84.38 68.63 50.92 68.63
C =98 x 108 C =98 x 108

Table 7. Non-contrastive pretraining: We explore two more pretraining methods, namely, Barlow Twins and BYOL, for our large-scale
pretraining experiments. Again, the budget is set to C = 98 x 10°, we find that our earlier conclusions still hold here: (1) ImageNet pre-
training outperforms YFCC100M (YFCC) pretraining except for Places365 due to the distribution shift (2) Increased pretraining diversity
D generally correlates with improved downstream performance with the exception. Those findings are consistent for both Barlow Twins
and BYOL.

B. Alternative Settings
B.1. Non-Contrastive Methods

For large-scale experiments in section 5.3 we only considered SimCLR [10] and MoCoV3 [14], both of which are contrastive SSL methods.
Here we show that the results are consistent for the non-contrastive methods Barlow Twins [65] and BYOL [28]. We highlight that these
experiments are computationally intensive, hence we explore a reduced setting with a single backbone and lower D variability. We
pretrained a ResNet-50 backbone using Barlow Twins and BYOL on ImageNet and the same subsets from Section 5.3, as well as on the
full YFCC100M dataset, ensuring that the total compute is equal to a single epoch on YFCC100M, i.e. C = 98 x 10°. Again, we show
linear evaluation on multiple downstream datasets including ImageNet [ 18], Stanford Cars [37], Flowers-102 [43], Oxford-IIIT Pets [47],
Places365 [69], and Food-101 [5] in Table 7. In accordance with Section 5.3, we observe that pretraining on higher diversities leads to
improved downstream accuracies when Dssi, = Dy, 1.€. pretraining and evaluating on ImageNet. Also, the highest pretraining diversity
in ImageNet leads to the best results for all downstream datasets, except for Places365, for which pretraining YFCC100M performs best,
for which we refer again to distribution distances analysis in Section 6. Again for these methods, the maximum diversity of YFCC100M is
not enough to diminish the effects of the domain gap between the pretraining data and the datasets other than Places365.



MoCoV3

D C N D Network
SSE(x10%) (x10%) (x107%)| ResNet-50 ResNet-101  Vit-S/16 ViT-B/16
ImageNet 98  0.128 1.31 58.1 58.9 56.3 57.9
ImageNet 98  0.640 6.54 65.4 67.2 64.7 67.2
ImageNet 98  1.281 13.0 65.9 67.7 65.4 68.8
ImageNet 294 0.128 0.43 57.5 59.0 52.9 56.9
ImageNet 294 0.640 2.17 69.8 71.4 68.9 71.9
ImageNet 294 1.281 4.35 71.4 73.3 71.4 74.9

Table 8. Pretraining Diversity With Different Architectures Sizes: We investigate how pretraining diversity, total computation budget
and model architecture size interact for MoCoV3 when pretraining and evaluating on ImageNet. Regardless of C and the architecture
choice, increasing pretraining diversity remains a reliable method to improve downstream results. Further, increasing model size also
seems to consistently lead to better learned representations. Again, comparing pretraining diversity values only holds when the model
architecture and C are fixed.

B.2. Different Architectures

We investigate how pretraining diversity interacts with varying backbone architecture sizes, as well as the total computational budget. With
this, we aim to highlight how different models react to pretraining diversity. To benchmark the interaction of these factors, we focus on
MoCoV3 and pretrain and evaluate on ImageNet using C = 98 x 10° and the tripled amount C = 294 x 10°. We use two different
architecture sizes for ViT backbones as well as ResNet backbones: ViT-Small/16 paired with ViT-Base/16 and ResNet-50 paired with
ResNet-101.

Results are shown in Table 8, and the first observation we make, is that for any combination of architecture size and total amount
of computation, the model pretrained with largest amount of pretraining diversity D = 13.0 x 10™% always has the highest in-domain
downstream performance. Increasing pretraining diversity thus remains a reliable method to improve the quality of learned representations,
regardless of the architecture size. Secondly, we see that for every diversity value, regardless of the backbone type or the amount of
computation, an increase in backbone size, i.e. ResNet-50 to ResNet-101 or ViT-S/16 to ViT-B/16, leads to an increased performance.
It is thus again of importance to only compare models with different pretraining diversities for fixed model size, as we did with fixed
computational budget.

Finally, keep in mind that the larger architectures require more computation, which is not incorporated in C as this term only describes
the number of images that are seen during pretraining.

B.2.1 A note on MAE

Masked Autoencoders (MAE) [32] is a Transformer-specific pretraining method based on an autoregressive loss. This differs considerably
from what has been presented in Section 3, and it has significant impact on the components needed for our normalized analysis. Indeed,
for a C = 98 x 10° budget, MAE is far from providing optimal performance [32], making comparisons unfair without incurring in
unsubstainable costs. Also, the reconstruction task used for supervision extracts features requiring a deep decoder for best performance in
linear probing [32], and it results in considerably better performance with full finetuning exclusively. We will analyze pretraining diversity
effects for MAE in a future work.

B.3. Convergence insights

The convergence of models trained on YFCC and Imagenet leading to our Insight 3 must be further discussed (see main paper, Section 5.3).
One may argue that although C = 98 x 10° maximizes pretraining diversity on YFCC100M, this may not enough for making trained models
fully converge. First, we highlight how relevant literature sets similar training budget C = 100 x 10° requirements for drawing reliable
conclusions [10]. Secondly, we stress how bringing to convergence both models pretrained on Imagenet and YFCC100M would inevitably
result in a different sizing of the computational budget, preventing a fair evaluation. Alternatively, increasing the computational budget
for a complete convergence of both settings would inevitably lead to the overfitting of the model trained on Imagenet. This may lead
to misleading results, since the overfitting-related loss of performance could lead to wrong conclusions related to the distribution shift
impact. Instead, our setup guarantees a reliable evaluation, by preventing overfitting while training enough for a reasonable representation
extraction. Moreover, we relate to relevant literature highlighting the importance of single-epoch training for representation extractors [57].



SimCLR MoCoV3

N D Accuracy N D Accuracy?

Network — Dsst106) (x10%)[ 5% 10% 50% 100% Network — Dssi106) (x10%)| 5% 10% 50% 100%
ImageNet 0.128 131 |42.1 454 532 569 ImageNet 0.128 131 |43.9 47.4 552 58.1

ImageNet 0256  2.61 |46.8 50.3 57.8 61.1 ImageNet 0.256  2.61 [49.0 52.7 60.4 62.9
ResNet-30 | geNet 0.640 654 |49.1 53.0 60.6 637 ResNet-30 | weNet 0.640  6.54 |51.3 554 63.1 65.4
ImageNet 1281  13.0 |50.3 54.2 61.7 64.5 ImageNet 1.281  13.0 |52.1 56.2 63.8 65.9

ImageNet 0.128 131 |40.5 44.8 53.0 54.2 ImageNet 0.128 131 |47.2 51.3 58.0 57.9

. ImageNet 0.256 2.6 |48.0 522 59.6 61.3 . ImageNet 0256  2.61 |53.5 57.6 63.1 63.7
VIT-B/I6 | eeNet 0.640 654 |53.4 57.6 643 65.5 VIT-B/I6 | eeNet 0.640 654 |57.9 617 66.7 67.2
ImageNet 1281  13.0 |55.2 59.4 65.6 66.7 ImageNet 1281 13.0 |59.3 63.0 68.3 68.8

Table 9. Evaluating Network Accuracy With Varied Label Quantity: We evaluate the accuracy of networks pretrained on ImageNet
with various pretraining diversities and evaluate with different labeling percentages of D« = ImageNet. For in-distribution data, one can
get away with fewer labels using more diverse pretraining data.

C. Additional Insights on Label Quantity

In Section 6 we considered how pretraining diversity affects the number of labels necessary for the best downstream ImageNet accuracies
when pretrained on ImageNet (Dsst, = Diask) or on YECC100M (Dssi. # Disk). Here explore the setting where upstream and downstream
data are the same, i.e., Dss;. = Dy, and we repeat the experiment with models pretrained on various diversities on ImageNet. Table 9
shows the in-domain results on ImageNet for SimCLR and MoCoV3 pretrained with ResNet-50 and ViT-B/16 backbones. It is clear that for
in-domain evaluation, the models pretrained with largest pretraining diversity always perform the best, regardless of the label quantity used
for linear evaluation. More interestingly, it is possible to achieve better performance with less labels if a model is pretrained with higher
D. For example, for every combination of backbone and SSL method, the models pretrained with maximum diversity D = 13.0 x 1073
using 50% of the labels outperform the models pretrained with D = 2.61 x 10~3 with 100% of the labels. Thus, if models are evaluated
or deployed in few-shot downstream tasks, it may be desirable to use models pretrained with the highest pretraining diversity available.

D. Additional details
D.1. SSL Methods

In Section 3 we described a general framework for self-supervised pretraining that is common to many state-of-the-art SSL. methods.
Although all the methods we use in our experiments mostly follow this procedure, they do differ in loss functions as well as in certain
architectural choices. For each of the methods we use for our experiments, we describe in depth the key aspects that specifically define the
SSL method and make them different from the introduced framework in Section 3. Further details on the methods can be found in their
respective papers and repositories.

SimCLR [10], Barlow Twins [65] and VICReg [4] closely follow the general framework, and mainly differ in the loss function Lssr, used
during optimization. SimCLR makes use of the InfoNCE loss [45], which is applied to the representations of each positive pair of samples in
the batch, and also incorporates negatives from the current batch. Barlow Twins uses a loss function that makes the cross-correlation matrix
between the representations of the distorted samples as close to the identity matrix as possible. As a result, representations of correlated
views of the same sample are forced to become similar, while redundancy between the components of these vectors is minimized. The loss
function used for VICReg is a combination of the mean-squared euclidean distance between representations with an additional variance
and covariance term for feature decorrelation and avoiding representation collapse.

BYOL [28], DINO [9] and MoCoV3 [14] have slightly more evident differences from the proposed framework, as they do not use
shared parameters 6 and 6, for the feature extractor and projection head between the two augmented views. Instead the two augmented
views pass through two different networks: a student network with feature extractor fg, and prediction head ge, , parameterised with 6
and 6,4, and a teacher network with its own respective components féf/ and g’gq/ with unique parameters 64 and 6,,. The weights 0 and
0, in the teacher network are an exponential moving average of the weights 67 and 0, in the student network. The three methods differ
in how they compute Lgg1. from the representations z 4 from the student and zp from the teacher. For BYOL, after the correlated views
are passed through the two networks, an additional predictor network gy, , parameterised with 6, tries to predict the representation of the
teacher network z g from the output of the student network as go,, (z.4 ), and the mean squared error between the teacher representation and
the student prediction is minimised. DINO performs knowledge distillation in the student by minimising the cross-entropy loss between
the direct outputs z 4 and zg. MoCoV3 uses the student and teacher network to generate representations from the augmented views called
queries zp and keys zp, and stores the keys in a queue. The contrastive InfoNCE loss is again used as SSL objective, and uses matching
queries and keys as positive samples and the recent keys from the dictionary as negative samples. For all three methods, a stop-gradient
operator is applied after the teacher network, to avoid any weight updates in the teacher network during backpropagation.



SwAV [8] does share weights for fy ; and gy, between correlated views, but instead relies on additional components. First, the represen-
tations of different views z4 and zp are assigned to prototype vectors, resulting in codes qa and qg. The prototype vectors are trainable
vectors and represent the notion of clusters. A swapped prediction problem is solved afterwards, where the code of one augmented view
is predicted using the other view. The swapped prediction problem is used to define the loss as Lssi.(z4,2z5) = 4(z4,dB) + ¢(zB,qAa),
where ¢ measures the fit between features and codes.

D.2. Data Collection Strategies

This section outlines the data collection strategies for our three approaches detailed in Section 5.2: Source, Web, and Synthetic. We base
these strategies on the Base dataset B (introduced in 5.2), consisting of half of ImageNet100, totaling 65,000 samples.

Source Dataset We expand the dataset B by integrating the remaining half of ImageNet100, forming A .. For AZ“ . we begin by
selecting 100 random, non-overlapping classes from ImageNet. We then gather 65,000 corresponding samples from these classes and add
them to B.

Web Dataset We utilize three search engines—Flickr, Bing, and DuckDuckGo—to gather web samples while employing Safe-Search for
content appropriateness. Our queries, based on class names, are carefully crafted to avoid ambiguity. For Al . we collect approximately
100,000 samples from ImageNet100 classes, selecting the top 65,000 for inclusion in B. Similarly, for A, we follow the same process
for the 100 randomly selected classes from the Source dataset.

Synthetic Dataset For synthetic sample generation, we employ Stable Diffusion V2.1 (SDV2.1). Using the prompt A photo of a
class_name’, we generate images for each class in ImageNet100 for AY , ...and the 100 distinct classes from ImageNet for AZY, ...
Each class contributes 650 images, totaling 65,000 samples. We utilize the DPMSolver++ scheduler with start and end 3 values of 0.00085

and 0.012, respectively. The guidance scale is set at w = 7.5, and each image is generated in 50 steps.

D.3. Details on Distribution Distances

In Section 6 of our study, we explored the relationship between pretraining datasets, specifically ImageNet and YFCC100M, and down-
stream datasets, which include ImageNet, Stanford Cars, Flowers102, OxfordIIITPets, Places365, and Food101. To quantitatively measure
the distance between these datasets, we employed two distinct metrics: VisualDNA (VDNA) and the Fréchet Inception Distance (FID).

Our methodology for calculating distribution distances involved selecting a substantial number of samples from each dataset. We used
50, 000 samples from each dataset for computing the distribution distances, if the dataset is composed from less than 50, 000 samples, the
whole dataset is used. This approach ensured a robust and comprehensive analysis of the dataset distributions. For the implementation of
VisualDNA, we utilized two different architectures: MUGS ViT-B/16, as recommended by the original paper [49], and DinoV2 ViT-B/16.
The FID scores were computed using a standard approach with an Inception network, as detailed in [33].

The results, as discussed in Section 6, revealed consistent findings across both VDNA and FID metrics. Our analysis showed that a
greater distance between the upstream and downstream datasets correlated with a decrease in downstream classification accuracy.

E. Implementation

In all our experiments, we have utilized the solo—learn library [16] as our main codebase. For the ImageNet100 and CIFAR100
experiments, we used to the parameters provided by solo—learn. In the case of ImageNet, while we began with the parameters
provided in the original papers, we made slight modifications to optimize performance. These modifications included changes to the
number of warmup epochs and an adjustment of the learning rate. For the YFCC100M dataset, we found the parameters optimized for
ImageNet to be the most effective, whereas for TinyImageNet, we used the CIFAR100 parameters provided by solo—learn.

To create different fractions of each dataset, our first step involved the creation of an H5 file containing all image paths. This file is then
shuffled and saved. When a specific percentage of the data is required for our SSL pretraining, we simply select the first k% of the image
paths from this H5 file. Since we use a fixed computational budget, we scaled the number of epochs accordingly. This scaling is achieved
by a factor of 1/k x 100. For example, if we utilized 10% of the data for pretraining, we would increase the base number of epochs by a
factor of 10.
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