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Abstract: Arsenic compounds have been used as therapeutic alternatives for several diseases in-
cluding cancer. In the following work, we obtained arsenic nanoparticles (AsNPs) produced by an
anaerobic bacterium from the Salar de Ascotán, in northern Chile, and evaluated their effects on the
human oral squamous carcinoma cell line OECM-1. Resazurin reduction assays were carried out on
these cells using 1–100 µM of AsNPs, finding a concentration-dependent reduction in cell viability
that was not observed for the non-tumoral gastric mucosa-derived cell line GES-1. To establish if
these effects were associated with apoptosis induction, markers like Bcl2, Bax, and cleaved caspase 3
were analyzed via Western blot, executor caspases 3/7 via luminometry, and DNA fragmentation
was analyzed by TUNEL assay, using 100 µM cisplatin as a positive control. OECM-1 cells treated
with AsNPs showed an induction of both extrinsic and intrinsic apoptotic pathways, which can be
explained by a significant decrease in P-Akt/Akt and P-ERK/ERK relative protein ratios, and an
increase in both PTEN and p53 mRNA levels and Bit-1 relative protein levels. These results suggest
a prospective mechanism of action for AsNPs that involves a potential interaction with extracellu-
lar matrix (ECM) components that reduces cell attachment and subsequently triggers anoikis, an
anchorage-dependent type of apoptosis.

Keywords: arsenic nanoparticles; anoikis; apoptosis; OECM-1; Bit-1; squamous cell carcinoma

1. Introduction

Cancer is a major global health concern that, despite enormous scientific and clinical
efforts, has not shown significant decreases in its mortality rates over the years [1]. This
permanent need for improvement has led to consider different therapeutic approaches [2,3].
One of these strategies is the association of standard chemotherapeutic drugs with nanopar-
ticulated agents to subvert cancer drug resistance mechanisms and increase their overall
selectivity against cancer cells, improving the safety concerns normally associated with
chemotherapy. To succeed on these fields, nanotechnology allows the synthesis of novel
therapeutic materials with particle sizes comparable to intracellular molecules (particle
size < 100 nm) [4,5]. Due to these considerations and exceptional properties like mass
density [6] and surface charge [7], nanoparticles have a relatively large surface area that
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enables their interaction and functionalization with various biomolecules, like DNA [8],
RNA [9], peptides [10], aptamers [11], and antibodies [12], which help to exert their effect
against cancer cells.

Arsenic compounds, such as arsenic trioxide (As2O3) and realgar (As4S4), have been
used as therapeutic agents for more than 2000 years [13] to treat diseases like asthma, chorea,
eczema, pemphigus, pernicious anemia, psoriasis, and Hodgkin’s lymphoma. Despite that
radiotherapy and cytotoxic chemotherapy replaced the use of arsenic-based compounds as
tools for cancer management in the early 20th century mainly due to safety concerns [14],
As2O3 is still used in clinical set-ups, being a first-line agent in acute promyelocytic leukemia
(APL) treatment [15–17]. Arsenic compounds are capable of inducing apoptosis of APL cells
by altering reactive oxygen species balance and cell death-associated genes expression [13].
Because of their improved safety profiles, formulations of arsenic nanoparticles (AsNPs)
have been proposed as potential cancer treatments [18]. AsNPs have been tested in a wide
variety of cancer-derived cell lines such as breast (MCF-7 and MDA-MB-231) [19], APL
(NB4) [20], melanoma (BOWES and A375) [21], and hepatocellular carcinoma (Huh7 and
Bel-7402) [22], showing higher efficacy profiles than their counterparts with higher particle
size. Realgar, a compound with better safety profile than As2O3, has also been tested in
leukemias and solid tumors, and several nanoparticulated variants have been proposed to
improve As2O3 solubility [23].

In nature, biogenic synthesis of metallic, non-metallic, and metalloid nanoparticles
(NPs) such as Au, Ag, Zn, Se, Pt, Pd, Fe, Cu, Ni, Ti, and As nanoparticles can be achieved
using plants [24] and microorganisms such as bacteria [25], algae [26], and fungi [27].
Biogenic NPs exhibit some advantages when compared to physicochemically synthesized
NPs, like improved antimicrobial, anticancer, and larvicidal performances, among other
applications [24]. This improvement in their efficacy is achieved by coating NPs with bio-
logical molecules, which makes them more biocompatible when compared with chemically
produced NPs [26]. Moreover, biogenic NP production is a cost-effective and environ-
mentally friendly alternative to synthesis. Biogenic AsNPs have been manufactured using
microorganisms from the Salar de Ascotán [28], which are capable of reducing arsenate via
arsenate respiration [29].

Several studies have shown that the antiproliferative effects of arsenic on cancer
cells are caused by a combination of several factors, such as modulation of intratumoral
mitochondrial integrity [22,30] and inflammatory response [31], reactive oxygen species
generation [32], and the induction of pro-apoptotic genes and suppression of cell death
resistance mechanisms [33]. Regarding skin lesions treatment, there is evidence both
in vitro and in vivo that supports the use of arsenic compounds in psoriasis [34], plantar
warts [35], and melanoma [36]. These findings portray AsNPs as a promising agent to be
used as adjuvant therapy against other types of tumors where standard chemotherapy has
limited success rates. Among this type of tumors is oral squamous cell carcinoma (OSCC),
a malignancy developed at the oral and oropharyngeal cavity that has several etiological
factors, smoking and alcohol consumption being among the most common, especially
in the Western world, where its prevalence is around 1–4% of all cancers [37]. OSCC
treatment alternatives include surgical excision/resection, radiotherapy, systemic cytotoxic
chemotherapy, and the use of targeted agents like epidermal growth factor receptor (EGFR)
inhibitors. However, despite these approaches, an important margin of 20–30% of surgically
resected OSCC cases, even with tumor-free margins wider than 5 mm, have the chance to
develop local or regional relapse. For this reason, OSCC has a 5-year overall survival (5-y
OS) rate around 50% regardless of gender [38].

The following study describes for the first time the antitumoral effects of biogenic
AsNPs [39] using OECM-1 cells as a preliminary in vitro model for OSCC and explains the
cellular mechanisms behind their activity. AsNPs showed a cytotoxic effect on OECM-1
cells, and these effects can be explained by the induction of anoikis, a programmed cell
death mechanism triggered by cell detachment from the extracellular matrix (ECM).
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2. Results
2.1. AsNP Preparation and Characterization

Three independent AsNP batches were produced and characterized (Figure 1).
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Figure 1. AsNP characterization. (a) DLS and Zeta potential analysis for three independent AsNP
batches (PdI: polydispersity index). (b) S-TEM micrograph of AsNPs. White arrows indicate AsNPs.
(c) Fluorescent microscopy image of agglomerated AsNPs effectively conjugated with TRITC.

Overall, average particle size was ≈200 nm, with a positive zeta potential of ap-
proximately 40–45 mV, a polydispersity index (pdl) < 0.15 (Figure 1a), and a final arsenic
concentration between 200 and 300 ppm. The latter values were used to calculate AsNP
concentrations for the subsequent in vitro experiments. The production of biogenic realgar
AsNPs involves a low batch-to-batch variability (Figure 1a) [39]. Under the microscope,
AsNPs showed a quasi-spherical appearance (Figure 1b), and their conjugation with TRITC
generated bright orange fluorescent nanoparticles (Figure 1c). These biogenic AsNPs
showed a storage stability at 4 ◦C higher than 100 days. Variations in size, pdl, and zeta
potential observed for one batch of AsNPs between days 1 and 107 after synthesis were
188.5, 0.126, 47.2, and 108.5, 0.134, and 47.9, respectively.

2.2. AsNPs Inhibit OECM-1 Cell Viability by Compromising Cell Adhesion

The cytotoxic effect of AsNPs against OECM-1 cells was established by resazurin
reduction assay. The cell viability and cell morphology were recorded using a 1–100 µM
AsNP concentration range and 48 h incubations (Figure 2).
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Figure 2. AsNP effects on OECM-1 cell viability. (a) Changes in cell viability, measured by resazurin
reduction assay, obtained for 48 h treatments with 1–100 µM of AsNPs. (b) Cell viability in control
cells (C) and in vehicle-treated cells (V), 0.03% chitosan for 48 h. (c) Loss of adherence of OECM-1
cells incubated with vehicle, 60 µM of AsNPs and 100 µM of CisP for 48 h, and stained with 0.2%
methylene blue solution. In (a,b), data are expressed as mean ± SEM of 6 independent experiments.

In general, a concentration-dependent decrease in cell viability was observed for
AsNPs. Maximal proliferation inhibition was 75% for 100 µM of AsNPs, estimating an
IC50 = 45.1 ± 3.0 µM (Figure 2a), these effects being totally absent when OECM-1 cells were
incubated with the AsNP solubilization vehicle 0.03% chitosan (Figure 2b). To establish if the
AsNP effects are selective against cancer cells, GES-1 cells were included as a non-tumoral
control. On these cells, 100 µM of AsNPs, the highest concentration tested, only caused a 35%
inhibition in viability, which translates into an IC50 > 100 µM (Supplementary Figure S1). In
addition to these observations, AsNP-treated OECM-1 cells exhibited a noticeable detach-
ment that reduced cell counts after 48 h treatments. These preliminary observations on cell
adhesion were confirmed by methylene blue staining, which confirmed that, after AsNP
treatment, OECM-1 cells detached from their dishes and became round-shaped, losing their
original polygonal morphology (Figure 2c and Supplementary Figure S3). Conversely, no
morphological changes were observed when OECM-1 cells were treated with cisplatin (CisP;
Figure 2c). To quantify these observations, we determined the percentage of cells in three
different sections of the culture obtaining the following results: 81.0 ± 6.4% in control cells
(Ctrl); 89.0 ± 4.6% in vehicle-treated cells (Veh); 3.0 ± 1.6% in AsNP-treated cells (AsNPs);
and 31.0 ± 3.2% in cisplatin-treated cells (CisP).

2.3. AsNPs Induce Apoptosis in OECM-1 Cells

After these initial experiments, the possibility that AsNPs reduced cell proliferation
through apoptosis induction on OECM-1 cells was explored. With this aim, protein levels
of several apoptotic markers were evaluated by treating cells with 60 µM of AsNPs (con-
centration capable of reducing cell viability by ≈50%), 0.03% chitosan vehicle, and 100 µM
of cisplatin (as a positive control) for 48 h. Initially, intrinsic apoptotic pathway mediators
were assessed by establishing a protein level ratio between Bcl-2 (as anti-apoptotic marker)
and Bax (as pro-apoptotic marker), observing a significant decrease in this ratio for both
AsNP and cisplatin treatments (p < 0.01 and p < 0.001, respectively; Figure 3a,b). In addition,
cleaved caspase 3 relative protein levels were determined as an active executor caspase
marker, finding that both AsNP and cisplatin treatments significantly increased cleaved
caspase 3 protein levels (p < 0.01 and p < 0.001, respectively; Figure 3c,d).
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Figure 3. AsNP effects on apoptosis induction. (a) Bcl-2 and Bax immunodetection in OECM-
1 cells incubated with 0.03% chitosan (vehicle), 60 µM of AsNPs, and 100 µM of CisP for 48 h.
(b) Relative Bcl2/Bax protein ratio quantification. (c) Cleaved caspase 3 immunodetection in OECM-1
cells incubated with vehicle, 60 µM of AsNPs, and 100 µM of CisP for 48 h. (d) Densitometric
analysis of figure (c). (e) Caspase 3/7 activities assay in OECM-1 cells incubated with 1, 30, 60,
and 100 µM of AsNPs for 48 h. Data are expressed as mean ± SEM of 4 independent experiments.
Parametric analysis was performed by Student’s t-test. Significance level was established at p < 0.05 (*),
0.001 ≤ p < 0.01 (**) and p < 0.001 (***).

To support the findings observed for cleaved caspase 3, executor caspases 3/7 activity
was determined under different concentrations of AsNPs, observing a significant increase
from 30 µM of AsNPs onwards (p < 0.05, Figure 3e). Lastly, late-stage apoptotic events
were evaluated in OECM-1 cells via TUNEL assay (Figure 4).

In control and vehicle conditions (Figure 4a,b), we did not observe DNA fragmenta-
tion; in contrast to that observed with 30 and 60 µM AsNP treatments (Figure 4c,d). For
these experiments, AsNP incubation time was reduced to 6 h to obtain a greater number of
cells adhered to coverslips. Positive controls using CisP and DNAase also induced DNA
fragmentation (Figure 4e,f). Considering this, a significant increase in TUNEL-positive
cell percentage was observed after both 30 and 60 µM AsNP treatments (54.7 ± 16.6% and
85.8 ± 21.9%, respectively; p < 0.01, Figure 4g). When comparing the TUNEL-positive cells’
percentages obtained for the vehicle and medium-treated conditions, no significant differ-
ences were found (Figure 4a,b). Lastly, cisplatin showed 39.0 ± 12.5% and 58.1 ± 10.6% of
TUNEL-positive cells after a 6 and 12 h treatment, respectively (Figure 4g).
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0.03% chitosan (vehicle, (b)), and 30 and 60 µM AsNP treatments for 6 h ((c,d), respectively) was
performed in OECM-1 cells. Positive controls correspond to 100 µM CisP for 12 h (e) and DNase
I for 6 h (f). White arrows in (c–f) represent TUNEL-positive cells examples for each treatment
condition. (g) Percentages of TUNEL-positive cells obtained by quantifying 100 cells per condition.
C = control; V = vehicle). Parametric analysis was performed via Student’s t-test. Significance level
was established at 0.001 ≤ p < 0.01 (**) and p < 0.001 (***).

2.4. AsNPs Induce Anoikis Signaling in OECM-1 Cells

To establish if the pro-apoptotic signaling triggered by AsNP treatment on OECM-1
cells is linked to their detachment from the ECM, additional assays involving specific
features of anoikis signaling were performed in Western blot (Figure 5).

As it is widely known, anoikis modifies classic cell survival pathways like Erk and
Akt, thus their relative phosphorylation ratios were evaluated via Western blot, finding
that the p-Erk/Erk protein ratio decreased significantly in cells incubated with AsNPs
and cisplatin (p < 0.01 and p < 0.05, respectively; Figure 5a,c). When the p-Akt/Akt
protein ratio was studied, a decrease in its phosphorylated form was observed only in
the AsNP-treated condition (p < 0.05, Figure 5b,c). In addition, there were no significant
differences at both ratios when the vehicle-treated and untreated conditions were compared
(p = 0.299 to pAkt/Akt, and p = 0.650 to pErk/Erk, Figure 5c). This Akt phosphorylation
reduction observed in AsNP-treated OECM-1 cells was consistent with the increase in PTEN



Int. J. Mol. Sci. 2024, 25, 6723 7 of 17

expression observed only for AsNP treatments (Figure 5d). Regarding p53 expression levels,
a significant increase in its mRNA levels was observed for the 0.03% chitosan- (p < 0.05),
AsNP- (p < 0.01), and CisP-treated conditions (p < 0.01; Figure 5d). To evaluate an anoikis-
specific protein marker, Bit-1 relative protein levels were established via Western blot,
observing a significant increase in Bit-1 relative levels in the presence of AsNPs (p < 0.001;
Figure 5f), this effect being absent after CisP treatment (p = 0.453; Figure 5e,f).
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Figure 5. AsNPs trigger apoptosis via anoikis. (a,b) Erk, p-Erk, Akt, and p-Akt immunodetection in
OECM-1 cells incubated with 0.03% chitosan (vehicle), 60 µM of AsNPs, and 100 µM of CisP for 48 h.
(c) Densitometric analysis of p-Akt/Akt and p-Erk/Erk relative protein ratios. (d) Quantification of
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OECM-1 cells incubated under the same experimental conditions. (f) Densitometric analysis of figure (e).
Data are expressed as mean ± SEM of 4 independent experiments. Parametric analysis was performed
by Student’s t-test. Significance level was established at p < 0.05 (*) and 0.001 ≤ p < 0.01 (**).

2.5. Interactions of AsNPs with OECM-1 Spheroids

To further explain the mechanisms behind AsNP pro-apoptotic effects, it is relevant
to establish if these nanoparticles exert their effects by interacting with OECM-1 cells at
intra- and/or extracellular levels. For this, spheroids cultured in a collagen matrix with
10% FITC-conjugated type I collagen were incubated with 60 µM of TRITC-conjugated
AsNPs for 30 min. The confocal image shows the interaction of AsNPs at the 3D model of
the OECM-1 cells sphere (Figure 6).

A homogeneously distributed fluorescent collagen matrix was observed around the
3D OECM-1 culture in the untreated condition (Figure 6a). In AsNP-treated cells, an
important disruption of these collagen matrix assemblies, noticed by the evident loss of
FITC signal, was observed (Figure 6c). When the distribution of the TRITC signal was
analyzed, both intra- and extracellular staining was found, finding that AsNP-TRITC
aggregates outside large OECM-1 spheroids (Figure 6b) and shows a greater intracellular
TRITC intensity in smaller spheroids, where the nuclei of the cells exhibit an apparent
degree of fragmentation (Figure 6c). Finally, and in order to discard if TRITC conjugation
can compromise AsNP antiproliferative activity on OECM-1 cells, additional resazurin
reduction assays were performed, finding that TRITC-conjugated AsNPs have similar
effects as their non-conjugated counterpart (Supplementary Figure S2).
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3. Discussion

With more than 10 million annual deaths, cancer is an ongoing global concern that
increases as life expectancy increases worldwide. For this reason, novel therapeutic and/or
adjuvant strategies are critical to controlling this disease [40]. One promising strategy is the
development of specific, safe, and efficient nanoparticles for cancer treatment [2]. NPs can
be used as a carrier for known or novel anticancer agents, or they can interact directly with
cancer cells, triggering cell death as reported for mineral nanoparticles [3–5]. For example,
arsenic trioxide (As2O3) and realgar arsenic nanoparticles are capable of inducing cytotoxic
effects on various cancer cell models [5,19–21]. The polymer-coated AsNPs used in this
work showed an average size between 200 and 250 nm (Figure 1), determined by DLS,
which has been described as a proper size for cell internalization [41–43]. We can see this
in our results, where the TRITC-conjugated AsNP signal can be found at both intra- and
extracellular levels (Figure 6b,c). Extracellular agglomerates of TRITC-AsNP signal could
be explained by the interaction of the cationic polymer layer of AsNPs with the negatively
charged cell membrane.

Our results showed antiproliferative effects for the human OSCC cell line OECM-1,
in which biogenic AsNPs inhibited cell proliferation with an IC50 ≈ 45 µM after a 48 h
treatment. This is the first report about the effect of AsNPs (biogenic or non-biogenic)
in OSCC cell lines. This effect is similar but more potent than the activities reported
for a 72 h treatment of non-biogenic AsNPs in different cancer-derived cell lines such as
MCF-7 (breast cancer), HepG2 (hepatocellular carcinoma), and A549 (lung carcinoma)
cells (IC50 = 39.9, 34.3, and 30.3 µM, respectively) [5]. Biogenic AsNP potency is even
higher than the cytotoxicity levels observed for the OSCC cells CAL 27, HSC 3, and
SCC 4 treated with arsenic trioxide (ATO) for 72 h (IC50 > 126.4, 37.4, and >126.4 µM,
respectively) [44]. In contrast, biogenic AsNPs only partially inhibited cell proliferation of
the non-tumoral gastric mucosa cell line GES-1 (IC50 > 100 µM), which supports the notion
that these AsNPs have a selective antiproliferative effect against cancer-derived cells. These
observed differences could be due to the enhanced capacity of cancer cells to incorporate
nanoparticles when compared to control cells [45]. In the study by Azizi and colleagues,
LD50 of albumin-coated silver NPs (AgNPs) was found to be several times lower for human
breast cancer cell lines (MDA-MB-231 and MCF-7) than the human non-tumoral breast
epithelia cell line MCF10A and primary human white blood cell cultures [46]. These authors
found that a greater amount of AgNPs could be found inside the studied breast cancer
cell lines, which led to an increase in reactive oxygen species that induced mitochondrial
damage and subsequent apoptosis [45]. In a similar fashion, our experiments revealed that
OECM-1 cells are capable of incorporating AsNPs, as shown in Figure 6.

The process by which these nanoparticles induce apoptosis could involve different
mechanisms, since we observed increased activity of both executor caspases 3 and 7 in these
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cells, a contribution of both extrinsic and intrinsic pathways. Several mechanisms have
been proposed to explain the pro-apoptotic action of nanoparticles in cancer cells, such as
reactive oxygen species increase (ROS), up- and down-regulation of proteins, immunologi-
cal interventions, inhibition of transcription, site-specific cytotoxicity, among others [47,48].
Both arsenic compounds and arsenic nanoparticles can increase ROS, leading to a decrease
in the mitochondrial membrane potential, resulting in an increased expression of Bax
and subsequent cytochrome c release and subsequent apoptosis induction via intrinsic
pathway [47,48]. In OECM-1 cells, we confirmed the involvement of the intrinsic pathway
by the decrease in the Bcl2/Bax ratio in cells exposed to AsNPs (Figure 3). Although we
did not quantify ROS levels in our study, this Bcl2/Bax imbalance is capable of inducing
apoptosis. This pro-apoptotic activity was further confirmed by TUNEL assay, which
demonstrated that 30 and 60 µM of AsNPs also induced DNA fragmentation (Figure 4).

Next, we studied in more detail the specific type of apoptosis induced by AsNPs.
Because our primary findings showed that AsNPs not only killed but also quickly detached
OECM-1 cells (Figure 2), we tested if AsNPs induced apoptosis via inducing anoikis, a
particular type of apoptosis that is triggered by loss of cell anchorage to the ECM. To prove
this, first we measured changes in protein phosphorylation of Erk and Akt kinases, which
mediate cell processes related to proliferation, promoting cell survival when activated, and
whose function is affected during anoikis [49,50]. Consistent with these reports, we observed
that AsNPs decreased both Erk and Akt phosphorylation, and also decreased the relative
levels of these proteins (Figure 5). It has been demonstrated in other studies that arsenic
compounds can induce changes at protein kinase levels [21,51]. Pastorek and collaborators
observed that the modulation of Akt, Erk1/2, and IκB kinases were differentially induced
in the BOWES melanoma cell line, depending on the type of arsenic compound involved.
These signaling pathways are central to various cellular responses [21]. The Erk1/2 pathway
is capable of inhibiting apoptosis in response to a wide variety of stimuli, such as tumor
necrosis factor (TNF), Fas ligand, TNF-related apoptosis-inducing ligand (TRAIL), radiation,
osmotic stress, hypoxia, among others [52]. Similarly, the PI3K/Akt pathway is one of the
most potent intracellular mechanisms to promote cell survival [53]. For example, in a study
that analyzed four downstream effectors of growth factor receptors, PI3K, Ras, Raf, and
Src, PI3K was the only one capable of inhibiting apoptosis after serum withdrawal [53,54].

To further confirm that AsNPs induce anoikis in OECM-1 cells, we measured the
expression levels of phosphatase and tensin homolog (PTEN). PTEN is a phosphatase that
acts as a tumor suppressor gene that negatively regulates the Akt signaling pathway [53,54].
We found a robust increase in the expression of PTEN in AsNP-treated OECM-1 cells,
which is in agreement with its described antitumor activity. Finally, we measured a specific
anoikis marker, Bit-1, a 179-residue mitochondrial protein [55]. This protein is released from
mitochondria when cells lose their anchorage and forms a complex with the transcriptional
regulator protein Amino-terminal Enhancer of Split (AES). The formation of the Bit1-AES
complex initiates a caspase-independent form of apoptosis [55,56]. The expression of
this protein was augmented in AsNP-treated but not in CisP–treated cells, indicating
that only AsNPs can induce anoikis. Interestingly, both AsNPs and CisP increased the
expression of p53, a tumor suppressor gene, indicating that AsNPs can induce apoptosis
by triggering both anoikis-specific and canonical pro-apoptotic pathways. In a final set
of experiments, we observed the morphological changes induced by AsNPs on OECM-
1 spheroids (Figure 6). Here, AsNP treatment disrupted the collagen matrix in which
spheroids were embedded, further supporting the notion that AsNPs can have multiple
effects, both promoting detachment via interaction with ECM and inducing cell death via
anoikis, and enhancing other pro-apoptotic pathways via AsNP uptake. The former AsNP
effects on anoikis induction can explain the results of previous reports showing that similar
AsNPs prevent bone colonization by metastatic breast cancer by affecting their migration
and invasion capabilities [57–59].

Regarding oral and skin cancer treatment, there is evidence of the potential advantages
of using nanoparticles against these malignancies [60,61]. Teraoka and co-workers found
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that using 1.0 nM of gold nanoparticles combined with 4 Gy X-ray irradiation significantly
reduced the total number of cells compared to 4 Gy X-ray irradiation alone in the human
head and neck carcinoma cell line HSC-3. Furthermore, chitosan has been used as a drug
delivery system for skin cancer treatment, being a versatile polymer with favorable proper-
ties [62–64], even with some reports showing its capability to induce p53 expression [65],
which is something that was also found in our qPCR results for OECM-1 cells treated with
0.03% chitosan. Similarly, there is evidence of an antiproliferative effect and apoptosis
induction of arsenate and As2O3, on A375 melanoma-derived cells [66]. Moreover, realgar
nanoparticles are also able to induce apoptosis and autophagy in this cell line [66]. Future
experiments should determine in preclinical and clinical models if these AsNPs could be
useful as an alternative therapeutic approach for oral and skin cancer treatment.

4. Materials and Methods
4.1. Nanoparticles Preparation and Characterization

AsNPs were produced through the recently described metabolism of the anaerobic
bacteria Fusibacter ascotence [29], isolated from the Salar de Ascotán. The AsNPs were then
purified by acid treatment, centrifugation, and sonication, following the methodology
described by Demergasso et al. [39] with some modification because Chitosan (0.2%)
was used as the nanoparticles’ stabilizing agent. AsNPs were characterized by scanning
transmission electron microscopy (S-TEM), dynamic light scattering (DLS), X-ray diffraction
(DRX), and zeta potential measurements to analyze their shape, size, polydispersity index
(pdl, stability on size distribution), mineralogy, and surface charge. For S-TEM studies,
0.1 g of each dried sample of nanoparticles were suspended in 1 mL of ethanol and
deposited on the sample holder. The images were acquired using FSEM Hitachi SU5000
equipment (Hitachi, Japan) coupled to a Deben’s STEM detector. DLS and zeta potential
analysis were performed on AsNP suspensions using a Zetasizer Nano ZS 90 instrument
(Malvern Panalytical, Malvern, Worcestershire, UK). Briefly, concentrated AsNPs were
diluted in the same buffer used for the polymer addition for DLS measurements. The
total arsenic content in every AsNP batch was measured using a Millennium Excalibur
spectrometer (PS Analytical, Orpington, Kent, UK). During manufacture, the treatment of
nanoparticle surfaces with chitosan (0.2%) as a cationic agent provided amino groups [67]
for subsequent functionalization. Tetramethylrhodamine-5-isothiocyanate (TRITC; Thermo
Fisher Scientific, Waltham, MA, USA), an orange fluorescent agent, was linked to the amino
groups as previously reported [68]. After conjugation, reaction was dialyzed to remove the
excess of TRITC, and the obtained fluorescent AsNPs were stored at 4 ◦C.

4.2. Cell Culture

Human oral squamous carcinoma cell line OECM-1 was acquired from AddexBio
(RRID:CVCL_6782; C0050019; AddexBio, San Diego, CA, USA), and human non-tumoral
gastric epithelial cells (GES-1) were kindly donated by Dr. Dawit Kidane from the University
of Texas at Austin, USA. Cells were maintained using Dulbecco’s Modified Eagle Medium
(DMEM; Corning, Corning, NY, USA) supplemented with 10% fetal bovine serum (Biological
Industries, Beit HaEmek, Israel), 1% of a 100,000 U/mL penicillin and 100,000 µg/mL strep-
tomycin antibiotic solution (Corning, Corning, NY, USA). Cells were cultured in plastic cell
culture dishes and flasks at 37 ◦C in a humidified atmosphere containing 5% CO2.

4.3. Resazurin Reduction Assay

OECM-1 cells were seeded in 96-well plates (Corning, Corning, NY, USA) following
a 3000 cells/well proportion to achieve 40–50% confluence after an overnight incubation
at 37 ◦C under a 5.0% CO2 atmosphere to promote cell adhesion. After this, cells were
treated using an AsNP concentration gradient ranging from 1 to 100 µM for 48 h. In
preliminary experiments, we tested 24 and 48 h incubation times, finding optimal effects
with 48 h incubation. An additional untreated control consisting of a 0.03% chitosan (used
as an AsNP suspension vehicle) in supplemented DMEM solution was included. After
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incubation, treatments were replaced with a 70 µM resazurin (Sigma-Aldrich, St. Louis,
MO, USA) in supplemented DMEM solution. Fluorescence measurements were performed
after a 4 h incubation at 37 ◦C under a 5.0% CO2 atmosphere. Relative Fluorescence Unit
(RFU) measurements were performed using a NOVOstar Plate Reader (BMG Labtech, Or-
tenberg, Germany), detecting 570 nm and 590 nm as excitation and emission wavelengths,
respectively. Cell proliferation percentages were obtained by comparing AsNP-treated
RFU measurements with those acquired for the vehicle control. Median inhibitory con-
centrations (IC50) for AsNPs were calculated for every cell batch treated with 1–100 µM of
AsNPs. Each functionality curve was adjusted to an exponential fit using GraphPad Prism
(RRID:SCR_002798) version 9.0 (GraphPad Software, San Diego, CA, USA), and final IC50
values were obtained by calculating the mean ± S.E.M. of all the batches tested.

4.4. Methylene Blue Staining

OECM-1 cells were seeded (100,000 cells/dish) on 35 mm dishes in order to achieve
50–60% cell confluence after an overnight incubation at 37 ◦C under a 5.0% CO2 atmosphere.
After this, dishes were treated for 48 h with 60 µM of AsNPs, 100 µM of cisplatin (CisP),
which was used as a positive control, and 0.03% chitosan in supplemented DMEM as a
vehicle control. In addition, a control group without any treatment was used to calculate
the basal proliferation. After treatment, culture medium was discarded from each dish, and
cells were washed with ice-cold PBS, fixed with 50% ice-cold ethanol for 10 min, and stained
with a 0.2% methylene blue solution for 5 min. Afterwards, cells were washed twice with
ice-cold PBS and visualized using a Leica optical microscope (DM500, Leica Microsystems,
Wetzlar, Germany), acquiring images with an ICC50W camera (Leica Microsystems, Wetzlar,
Germany). For cell quantification, three different 1091 × 944 pixel sections were chosen
for each immunostaining after treatment, and the percentage of cells was established
by calculating the total cell-covered area on each section using Image J v1.52a software
(RRID:SCR_003070; National Institutes of Health, Bethesda, MD, USA).

4.5. Immunoblotting

OECM-1 cells were seeded on 100 mm dishes in order to reach 80–90% cell confluence
after an overnight incubation. Cells were incubated for 48 h with 60 µM of AsNPs, 0.03%
chitosan in supplemented DMEM (vehicle), and 100 µM of cisplatin as a positive control.
Later, cells in dishes were homogenized using RIPA buffer, and total protein concentration
was measured using the bicinchoninic acid assay with bovine serum albumin as the stan-
dard (Thermo Fisher Scientific, Waltham, MA, USA). Due to the loss of cell adhesion after
AsNP treatment, culture medium with suspended cells was centrifuged at 900 g for 10 min,
and the lysis buffer was added to the obtained pellet. Protein samples (40 or 50 µg/lane)
were run on 10% SDS-polyacrylamide gels and transferred to polyvinylidene fluoride
(PVDF) membranes (Thermo Fisher Scientific, Waltham, MA, USA) using a Mini Trans-Blot
(Bio-Rad, Hercules, CA, USA) device. Blocking was performed using a 5% skimmed milk
in TBS-Tween 20 (0.01%) solution for 30 min, and membranes were then incubated with
anti-Bcl2, anti-Bax, anti-BID, anti-AKT (1/2/3), anti-Erk (1/2), anti-pErk (1/2), anti-Bit-1,
and anti-Actin antibody solutions overnight at 4 ◦C. After primary antibody incubation,
membranes were washed with TBS-Tween 20 solution and then incubated for 2 h at room
temperature with HRP-conjugated secondary antibodies against rabbit or mouse IgG. In
the particular case of anti-cleaved caspase 3 and pAKT (1/2/3) primary antibodies, 5%
BSA in PBS-Tween 20 (0.01%) was used as a blocking solution, and antibody dilutions
and membrane washes were performed using PBS-Tween 20. After secondary antibody
incubation and washing, specific bands were revealed using a SuperSignal West Pico
Plus Chemiluminescent Substrate (34580, Thermo Fisher Scientific, Waltham, MA, USA),
and images were acquired using a C-Digit Blot Scanner documentation system (LI-COR
Biosciences, Lincoln, NE, USA). Quantitative immunoblotting analysis was carried out
using Image J (RRID:SCR_003070) v1.52a software (National Institutes of Health, Bethesda,
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MD, USA). Details about the antibodies used for these experiments are summarized in
Supplementary Table S2.

4.6. Caspase 3/7 Activity Assay

Caspase 3/7 activity was quantified by seeding OECM-1 cells at a density of
5000 cells/well in flat-bottom white opaque 96-well plates (136101; Thermo Fisher, Waltham,
MA, USA) and incubated overnight at 37 ◦C under a 5.0% CO2 atmosphere for cell attach-
ment. The next day, cells were treated with a range of 1–100 µM of AsNPs for 48 h. As
control conditions, caspase 3/7 activity was measured in cells treated with 0.03% chitosan
in supplemented DMEM (vehicle control), 100 µM of cisplatin (positive control), and sup-
plemented DMEM (negative control) solutions. After this incubation, culture medium
was removed, and caspase 3/7 activity was measured using a Caspase-Glo® 3/7 Assay
kit (G8090; Promega, Madison, WI, USA), following the manufacturer’s instructions. In
short, the activity of executor caspases in the samples can cleave the pro-luciferin-DEVD
substrate provided in the kit, releasing aminoluciferin, which acts as substrate for luciferase,
producing a chemiluminescent signal in the presence of ATP. Relative Light Unit (RLU)
assessments were performed using a NOVOstar Plate Reader (BMG Labtech, Ortenberg,
Germany), and relative caspase 3/7 activities were calculated as the RLU ratio between
AsNP-treated, CisP-treated, or vehicle-treated conditions with their corresponding negative
control condition.

4.7. TUNEL Assay

Cells were seeded on 12 mm coverslips and incubated with 30 and 60 µM of AsNPs
for 6 h, using 0.03% chitosan in supplemented DMEM and 100 µM cisplatin solutions as
vehicle and positive control conditions, respectively. Terminal deoxynucleotidyl transferase
dUTP nick-end labeling (TUNEL) assay was carried out using the Click-iT TUNEL Alexa
Fluor Imaging Assay kit (C10245; Thermo Fisher, Waltham, MA, USA) in accordance with
the manufacturer’s instructions. Fluorescence images were captured using an Eclipse
Ts2R-FL inverted fluorescence microscope equipped with a DS-Fi3 Camera (Nikon, Tokyo,
Japan). Analysis was performed using Image J1.52a software (National Institutes of Health,
Bethesda, MD, USA), transforming images to grayscale to quantify TUNEL-positive cells.

4.8. qPCR

To guarantee quality and reproducibility in these procedures, MIQE Guidelines [69]
were applied to every step of the following methodology. OECM-1 cells were seeded on
60 mm culture dishes at a proportion of 50,000 cells/dish to achieve a 60–80% confluence
after a 24 h incubation. After cell attachment, mRNA was extracted using TRIzol reagent
(Invitrogen, Waltham, MA, USA) according to the manufacturer’s protocols. Yield and OD
purity ratios (260 nm/280 nm and 260 nm/230 nm) were established using a NanoDrop
One microvolume spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
Reverse transcription was performed using an Affinity Script qPCR cDNA Synthesis kit
(Agilent Technologies, Santa Clara, CA, USA), employing 1.0 µg of total RNA per reaction
and including a no-retrotranscriptase control (−RT) for each sample. For qPCR reactions,
Brilliant II SYBR® Green QPCR Master Mix (Agilent Technologies, Santa Clara, CA, USA)
was used, with 50 ng of cDNA and 300 nM as the final primer concentration for each
one of the studied genes. PTEN and p53 were defined as target genes, and B2M was
used as a referential gene. Primer design was performed using Primer-Blast, choosing
primer pairs with an annealing temperature of 60 ◦C and capable of generating amplicon
sizes of 50–250 bp. Primer sequences and characteristics are detailed in Supplementary
Table S1. The thermal protocol used for all of these experiments consisted in an initial
denaturation step of 95 ◦C for 10 min, followed by an amplification phase of 40 cycles
of 30 s at 95 ◦C and 60 s at 60 ◦C, detecting fluorescence at the end of each cycle. After
amplification, melting curves were performed on the amplified products, incubating them
at 95 ◦C for 60 s, ramping down to 55 ◦C, and then increasing temperature to 95 ◦C at
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a rate of 0.2 ◦C/s, measuring fluorescence data continuously. To calculate relative gene
expression, efficiency curves were performed for each gene, choosing the most proper
calculation method between the equations proposed by Livak and Schimittgen [70] or
Pfaffl [71] according to the differences in the amplification efficiency of each one of the
analyzed genes.

4.9. 3D Culture of OECM-1 Cells Spheroids

3D culture of OECM-1 cells was performed partially following the hanging-drop
method described by Chen et al. [72]. Cells were suspended in RPMI medium supple-
mented with 10% FBS, 1% penicillin–streptomycin solution and 2% Matrigel (354234;
Corning, Corning, NY, USA). Then, 30 µL droplets containing ~3000 OECM-1 cells were
added on the inner surface of the lid of 60 mm dishes. After this, the bottom part of
each of these dishes was treated with 3 mL of PBS to prevent droplets from drying. With
this configuration, lids were carefully placed over the bottom of each dish and incubated
at cell culture conditions for 48 h. 3D collagen matrix was prepared by mixing 120 µL
of type I collagen solution (A10483-01, Life technologies, Grand Island, NY, USA) with
12 µL of type I collagen FITC-conjugated solution (C4361, Sigma-Aldrich, St. Louis, MO,
USA). After incubation, 12 µL of OECM-1 spheroids was incorporated into the collagen
mixture. This collagen matrix/spheroids suspension was placed in 24-well plates contain-
ing 12 mm coverslips with 150 µL of RPMI medium supplemented with 10% FBS and
1% penicillin–streptomycin solution. To promote matrix polymerization, matrix–spheroid
mixtures were incubated for 2 h at 37 ◦C under a 5.0% CO2 atmosphere. In the last 15 min
of this incubation, culture medium was replaced with 300 µL of a 1:10,000 Hoechst dilution
in supplemented RPMI. After nuclei staining, a 60 µM TRITC-conjugated AsNP treatment
was performed for 30 min, and samples were visualized in a Zeiss LSM800 confocal mi-
croscope (Carl Zeiss Microscopy, White Plains, NY, USA) at the facility of the Universidad
Católica del Norte. The light source was an argon/krypton laser (75 mW), and several
optical sections (0.1 mm) per field were captured. Images were acquired as 16-bit, avoiding
signal saturation, pinhole adjusted to 1 Airy unit.

4.10. Statistical Analysis

Statistical analysis and graphs were performed using GraphPad Prism
(RRID:SCR_002798) version 9.0 (GraphPad Software, San Diego, CA, USA). To evalu-
ate the normal distribution and homoscedasticity among our variables, Shapiro–Wilk and
Bartlett tests were respectively performed. Parametric analysis was performed by Student’s
t-test, and Mann–Whitney was considered as a non-parametric alternative. For all cases,
significance level was established at α = 0.05, and defining 0.01 ≤ p < 0.05 as statistically
significant (*), 0.001 ≤ p < 0.01 as highly significant (**), and p < 0.001 as whole-level
significance (***).

5. Conclusions

This study established that AsNPs decrease the viability of the OSCC cell line OECM-1
via apoptosis induction. The extensive cell detachment observed after AsNP treatment
suggests that apoptosis is triggered via anoikis induction, which was corroborated by
the increase in Bit-1 protein levels, complemented by the observed increase in caspases
3/7 activities, and the inhibition of Akt and Erk phosphorylation, which are all key points
in the activation of the extrinsic pathway of apoptosis. Aside from these extracellular
effects, the intracellular presence of TRITC-conjugated AsNPs was observed by using 3D
spheroids. This finding allows to explain that AsNPs can be internalized by OECM-1
cells and lead to the activation of the intrinsic apoptotic pathway through changes in the
Bcl2/Bax protein ratio. This confirms that AsNPs reduce cell proliferation by a two-pronged
mechanism that targets apoptosis by affecting both anoikis-specific and canonical pathways.
These changes in cell viability after AsNP treatment (summarized in Figure 7) were not
observed in the non-tumoral cell line GES-1, highlighting the potential selectivity of these
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nanoparticles against cancer cells. These results, although preliminary, describe promising
properties for AsNPs as a potential anticancer agent. Future experiments should establish
in preclinical and clinical models if these compounds could be useful as an alternative
therapeutic approach for oral and skin cancers.
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