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Abstract
Quantum computing is a radical new paradigm for a technology that is capable to
revolutionise information processing. Simulators of universal quantum computer are
important for understanding the basic principles and operations of the current noisy
intermediate‐scale quantum processors, and for building in future fault‐tolerant quantum
computers. As next‐generation quantum technologies continue to advance, it is crucial to
address the impact on education and training in quantum physics. The emergence of new
industries driven by progress in quantum computing and simulation will create a demand
for a specialised quantum workforce. In response to these challenges, the authors present
Psitrum, an open‐source simulator for universal quantum computers. Psitrum serves as a
powerful educational and research tool, enabling a diverse range of stakeholders to un-
derstand the fundamental principles and operations of quantum systems. By offering a
comprehensive platform for emulating and debugging quantum algorithms through
quantum circuits, Psitrum aids in the exploration and analysis of various quantum ap-
plications using both MATLAB and MATLAB application programming interface to use
the software on other platforms. Psitrum software and source codes are fully available at
GitHub.
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1 | INTRODUCTION

Quantum computation is a radical new candidate for a tech-
nology that is capable to make a paradigm shift in information
processing [1]. Quantum computers are now a reality with
available quantum testbeds and variety of quantum algorithms

[2]. Computation based on quantum algorithms have proved to
be more efficient in processing information and solving wide
range of complex problems [3, 4]. Quantum simulators can be
designed using quantum algorithms represented by quantum
circuits and based on mathematical unitary operations [5]. In
this sense, simulators are special purpose quantum circuits

Abbreviations: API, application programming interface; CTM, classical Turing machine; DJ, Deutsch–Jozsa; GUI, graphical user interface; M, number of stages (related to the quantum
circuit simulation); N, number of qubits (related to the quantum circuit simulation); NISQ, noisy intermediate‐scale quantum; QC, quantum computer; QTM, quantum Turing machine;
SDKs, software development kits; VQE, variational quantum eigensolver.
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designed to provide insight about specific physical problems.
Variety of universal logic gates based on quantum mechanics
can be combined to provide very powerful computing features
[6]. Such simulators permit understanding quantum systems
that are challenging to study in laboratories and impossible to
model with the most powerful supercomputers [7, 8].
Universal quantum simulators are based on a QC proposed

by Yuri Manin in 1980 [9] and Richard Feynman in 1982 [10].
Feynman showed that a Classical Turing Machine would not be
able to simulate complex quantum systems because of the huge
amount of information contained with exponential increase in
the required size of computational bits, while his hypothetical
universal QC can mimic many quantum effects, such as su-
perposition and entanglement, which allows to efficiently
simulate quantum systems [11]. Quantum properties have
shown to significantly enhance simulation power and compu-
tational speed when implemented in quantum algorithms
[12, 13].
Quantum simulators may be constructed with generally

programmable quantum computers [14], which would be
capable for solving a wider class of problems using both
classical and quantum algorithms. The later can be defined as a
finite sequence of steps for solving a problem in which each
step can be executed on a QC. [5, 15]. Instead, a QC simulator
can be implemented on the currently available classical hard-
ware to mimic the operation of a real QC, but with limited
number of quantum bits (qubits) [16]. Such simulator allows to
test and implement quantum algorithms for many applications
even before a fully‐controllable QC exists [17]. Quantum
simulators are not to be confused with simulations of quantum
computation on classical hardware which we call a QC
simulator.
A universal simulator of quantum circuits can be imple-

mented based on David Deutsch model for a Quantum Turing
Machine (QTM) [18], which provides a simple model that
captures all the power of quantum computation. Therefore,
any quantum algorithm can be expressed formally as a
particular QTM. The practical equivalent model is a quantum
circuit defined as a quantum algorithm implemented on a gate‐

model based QC with special logic gates. In such circuits, only
matrix multiplication and tensor products are the advanced
mathematical operations that are used. QTM can be related to
classical and probabilistic Turing machines in a framework
based on transition matrices. As shown by Lance Fortnow [19],
a matrix can be specified whose product with the matrix rep-
resenting a classical or probabilistic machine provides the
quantum probability matrix describing the quantum circuit.
Most of the existing quantum computers are still noisy and

located in research labs [20]. In addition, the hardware and
maintenance of such systems are expensive and not optimised
yet [21]. Hence, only limited public access to these computers
is available. On the other hand, QC simulators can be useful to
overcome such problems. A QC simulator is a software pro-
gram which imitates the functionality of a QC using classical
hardware [22], which allows to design, run and test quantum
algorithms. There are many QC simulators available to the
public [23]. They differ in purpose, language, size, complexity,
performance and technical‐based type (e.g. toolkits) [24].
Companies working in this field (e.g. IBM, Microsoft, Rigetti,
Google, and ETH Zurich) are creating full‐stack libraries for
universal quantum computers with useful simulation tools
[24–26]. Most of these tools are not software, but software
development kits (SDKs) or frameworks, including Qiskit [27],
LIQUi [28], ProjectQ [29], Cirq [30], QX [23] and Quantum-
sim simulator [31]. Other simulators focus in enhancing some
aspects, such as qHiPSTER from Intel [32] that takes
maximum advantage of multi‐core and multi‐nodes architec-
tures, and QuEST [33] which is a multithreaded, distributed
and GPU‐accelerated simulator. There are few software that
allow the user to graphically design a quantum circuit and test
it without writing a programming code and most of them are
web‐based, such as IBM Quantum [34] and Quirk [35]. Details
and features among universal quantum simulators are given in
Table 1.
Many QC simulators focus on increasing the number of

qubits and simulation speed by using different software tools in
order to enable simulating real world quantum algorithms and
use cases that can benefit from quantum computing. For

TABLE 1 Comparative analysis between general‐purpose quantum simulators.

Psitrum Qiskit [27] Cirq [30] QuEST [33]
ProjectQ
[29]

qHiPSTER
[32] Quirk [35]

Platform MATLAB/API Python Python Cþþ/Python Python Cþþ Web‐based

Qubit simulation
limit

Medium Medium Medium High Medium High Medium

Noise simulation Yes Yes Yes Yes Yes No No

Visualisation tools Yes Yes Limited No Limited No Yes

Educational
features

Extensive Extensive Yes No Yes No Yes

GPU acceleration Yes No No Yes No Yes No

Multi‐core support Yes No No Yes Yes Yes No

Unique features User‐friendly
GUI/API

Toolkit for
developers

Google services
integration

High‐
performance

Flexible
SDK

High
performance

Interactive
learning

2 - ALGHADEER ET AL.



example, Quantumsim implemented several optimisations to
enable a full density matrix simulation of surface codes in order
to evaluate its resilience to noise and whether it can benefit
current quantum computing systems to achieve fault‐tolerant
quantum computation [31]. The challenge here is the expo-
nential increase in the dimension of available quantum states
with number of qubits [36, 37]. Furthermore, there are serious
shortcomings in the development of abstractions and visual-
isations of the QC simulation problem. One of these problems
is tracing the state of each qubit after each unitary quantum
operation [38]. Another shortcoming is in providing useful
probabilistic visualisations of the resulted quantum states [39].
In this work, we address these issues with many visualisations
tools. There are other shortcomings that need to be resolved
later, such as using different simulation methods for visualising
quantum states, such as using Feynman path integral formu-
lation [40] and using tensor networks [41].
Quantum computer simulators are important for under-

standing the operation noisy intermediate‐scale quantum
(NISQ) processors, and for building future quantum com-
puters. Current and near‐term NISQ computers are limited by
the presence of different types of quantum noise that are still
too large to allow solving relevant scientific problems. One
main source of noise is readout errors that occur during
measurements [42, 43]. They typically prevent reading the
correct state of qubits, such as reading zero while the correct
state is one and vice versa. Another important source of
quantum noise is gate errors, which can be classified into
coherent and incoherent noise [44, 45]. Coherent noise pre-
serve state purity of quantum systems and result in mis-
calibration in control parameters [46]. Incoherent noise can be
modelled as coherent noise with stochastic varying control
parameters. This allows to convert coherent errors into inco-
herent errors through randomised compiling [47, 48]. Inco-
herent noise are relatively easier to handle because they can be
modelled as a process that entangles the quantum system with
its environment. One very important class of Incoherent noise
includes depolarising channels.
In the realm of quantum education, the availability of

versatile tools is crucial for effective teaching and learning.
Psitrum offers a significant advantage by providing compati-
bility with both MATLAB and MATLAB Application Pro-
gramming Interface (API). This compatibility expands the
reach of Psitrum, allowing users to leverage the software on
diverse platforms and making it accessible to a broader audi-
ence. The utilisation of MATLAB and MATLAB API en-
hances the educational value of Psitrum, as these widely‐used
tools enable seamless integration with existing educational
materials, workflows, and programming environments. By
incorporating Psitrum's capabilities into quantum education,
educators can harness the power of MATLAB to deliver
comprehensive and immersive learning experiences to stu-
dents, fostering a deeper understanding of quantum principles
and algorithms.
In this work, therefore, we present Psitrum—a universal

gate‐model based QC simulator implemented on user's local

hardware. The simulator allows to emulate and debug quantum
algorithms in form of quantum circuits for many applications
with the choice of adding quantum noise that limit coherence
of quantum circuits. Psitrum allows to keep track of quantum
operations and provides variety of visualisation tools. The
simulator allows to trace out all possible quantum states at each
stage M of an N‐qubit implemented quantum circuit. The
design of Psitrum is flexible and allows the user later to add
more quantum gates and variety of noise modules.

2 | PSITRUM: AN EDUCATIONAL AND
RESEARCH TOOL

Over the time, Psitrum has evolved to be both educational and
research tool. Initially, the aim was to develop a tool that can
conduct quantum computing experiments using laptops and
personal computers with a user friendly interface and more
control options than what is allowed by common tools at the
time. To handle computations involving a larger number of
qubits, efficient programming and a numerical computing
platform equipped with a robust algebra library and adept
sparsity handling are crucial. There are many options; but the
main ones are MATLAB and Python. Certainly, each one has
advantages and disadvantages when compared to the other.
However, MATLAB extends its compatibility to Python users
via ‘MATLAB Engine API’, which is a package to call and
utilise MATLAB in python and other languages. Furthermore,
MathWorks, which is the owner of MATLAB, is trying to make
MATLAB classroom more user friendly for students. This
became very handy to introduce quantum computing to un-
dergraduate students in tutorials and workshops conducted at
King Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia. The educational value of the code became very
apparent then as it allowed demonstrating and simulating
quantum experiments for students. According to MathWorks
datasheet, more than 6500 universities use MATLAB and
Simulink (MATLAB derivative and compatible) for both
educational and research purposes [49, 50] with more than 5
million users [49].
Quantum physics is often perceived as one of the more

challenging subjects for undergraduate students [51–55]. This
perception can be attributed to both intrinsic and extrinsic
factors. Intrinsically, quantum physics is somewhat abstract and
often counter‐intuitive. Extrinsically, its typical placement after
several classical physics courses can lead to misconceptions
rooted in previously established classical frameworks. Several
modifications and solutions have been proposed to address
these challenges [53–57]. One of the key elements in these
solutions is visualisation of quantum phenomena [53, 54, 57].
In Psitrum, visualisation is an essential constituent with a
simple and friendly graphical user interface (GUI). The dy-
namic adjustability of parameters allows users, whether stu-
dents or researchers, to directly experience quantum effects,
promoting deeper understanding and more accurate
interpretations.
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For researchers, Psitrum utilises the rich algebra toolboxes
and sparsity control in MATLAB to run experiments up to 15
qubit in normal personal laptops, with comprehensive exam-
ples presented in Section 5. This can be scaled up using more
computing power and utilising MATLAB parallelisation and
graphics processing unit capabilities. However, using personal
computers is very handy and should allow the users to conduct
more experiments and calculations with a reasonable degree of
control.
Psitrum is made open through via GitHub. Since its

launch, it has gained positive feedback from the quantum
sciences community, evidenced by a good number of down-
loads, comments and contacts. Such engagement underscores
the software's practicality and its resonance with users looking
for a reliable quantum computing tool.

3 | SOFTWARE STRUCTURE

In this work, we use MATLAB to build Psitrum based on
universal quantum gates. A set of single‐ and multi‐qubits gates
is defined as the basic building blocks of Psitrum. Any other
arbitrary multi‐qubits operation can be simply implemented by
applying successive tensor products and multiplications of the
basic gates. It is sufficient to implement these specific gates as a
sequence of arithmetic operations on the input state vector in
order to implement any quantum logic operation [58]. The
definition of the basic set of quantum gates is presented in
section of additional information below. In addition, MATLAB
is a well‐known software environment that can handle and
manipulate matrices in form of unitary operations very effi-
ciently [59]. Psitrum calculates the resulting circuit matrix of
any quantum circuit and, in parallel, the software calculates the
density matrix as well for applying noise models on the
simulation problem. Both the circuit and density matrices are
usually very Sparse matrices and, for large circuits, the Sparse
packages provided by MATALB makes the simulation problem
very efficient in which it subsequently reduce the memory size
requirement and speedup the simulation up to a reasonable
number of qubits. While this software was built using MAT-
ALB, Psitrum is a toolbox that can also be used externally in
other platforms, such as python, by using MATLAB APIs.

3.1 | Basic operation

For a given quantum circuit and an initial vector state, Psitrum
calculates the algorithm matrix, the density matrix and the
output quantum states which are used to provide useful visu-
alisations. The simulation process of Psitrum starts by
replacing each quantum gate by its unitary matrix. Next, the
different M stages are combined by applying N‐1 tensor
products and M‐1 matrix multiplications. Then, the output
vector state of N qubits is calculated by multiplying the algo-
rithm matrix by the initialised input vector state of the qubits.

The state of an elementary storage unit of a QC is a qubit,
described by a two‐dimensional vector of Euclidean length
one. The normalised state jΦ〉 of a qubit can be written as a
linear superposition of two orthogonal basis 0j 〉 and 1j 〉:

jΦ〉 ¼ a0 0j 〉þ a1 1j 〉 ð1Þ

where a0 and a1 are complex numbers that satisfy the nor-
malisation condition a0j j2 þ a1j j2 ¼ 1. In general, the nor-
malised state jΨ〉 of N qubits is accordingly described by 2N
dimensional unit vector:

jΨ〉 ¼ að0…00Þ 0…00j 〉þ að0…01Þ 0…01j 〉þ…að1…10Þ 1…10j 〉
þ að1…11Þ 1…11j 〉

ð2Þ

where now the complex coefficients must satisfy the normal-
isation condition:

X2
N−1

n¼0
anj j2 ¼ 1 ð3Þ

where a0 = a(0…00), a1 = a(0…01)….and a2N−1 ¼ að1…11Þ. In
order to satisfy this condition in Equation 3, the complex‐
valued amplitudes an are rescaled such that 〈ΨjΨ〉¼ 1. State
representation of qubits in Psitrum follows the convention in
quantum computing literature where the qubits are labelled
from 0 to N − 1, that is the rightmost (leftmost) bit corre-
sponds to the 0 (N − 1) qubit [60].

3.2 | Framework of psitrum

Quantum algorithms can be fed into Psitrum as string matrices
in form of quantum circuits. Rows of the matrices represent N
qubits, and columns represent the execution of M operations
of the input algorithms. Each element of the circuit represent a
gate that applies a specific unitary operation. The definition of
each level of a circuit implemented in Psitrum is shown in
Figure 1. This framework allows the user to initialise qubits, set
parameters of quantum gates and select the output qubits to be
measured.
Psitrum is a gate‐model QC simulator that follows the

workflow of many full‐stack quantum simulators [61–64]. First,
the problem is defined at a high‐level of abstraction, and based
on the type of the problem a quantum algorithm is selected in
such a way that maximise the output probabilities of the so-
lution. Next, the quantum algorithm is expressed in form of a
quantum circuit that applies unitary operations. This circuits
then needs to be compiled to a specific set of quantum gates.
Finally, the circuit is executed on Psitrum which in turn acts
like a quantum compiler. Figure 2 shows the workflow of
Psitrum with examples and details at each level.
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3.3 | Decoherence and quantum noise

Simulating quantum errors in Psitrum is possible by simply
adding the unitary operation corresponding to a specific
noise model. This can be done in the backend of Psitrum.
Here, we show how to do that by implementing depolarising
channel which is an important type of incoherent noise. The
depolarising noise model is given by the following [65]:

ξðρÞ ¼ ð1 − pÞρþ
pI
2n

ð4Þ

where ξ denotes the depolarising noise channel, ρ is the density
matrix, n is the number of qubits and p is the error rate in
range 0 ≤ p ≤ 4n

4n−1. The parameter p represents the probability
that the qubits are depolarised and replaced with completely
mixed state I

2n, while 1 − p is the probability that the qubits are

still in their pure states ρ. Psitrum gives the choice to select p as
a stochastic error rate or at overshoot. The effect of the
depolarising channel is basically a uniform contraction of all
axes on the Bloch sphere as function of p.

4 | USER INTERFACE AND
VISUALISATION

There are few user friendly and easy‐accessible software that
allow to graphically design, run, and test quantum algorithms
as most of the available QC simulators are SDKs or frame-
works. Also, there are even fewer software that allow to
represent the simulation results with variety of visualisation
tools. Psitrum is a software that provides all of these services in
an integrated environment. Psitrum provides a simple, friendly,
and dynamic GUI, which is divided into four sections that
provide the main services of the software, including circuit
designer, quantum state tracer, visualisation graphs and nu-
merical representations.

4.1 | Circuit designer

This section allows the user to graphically design quantum
circuits with a defined universal set of quantum gates. The user
can add qubits and stages to the circuit as many as needed, and
limited only by the available computational power on the user's
hardware. The user can then set the initial state of each qubit
and which of the output qubits to be measured. Also, it is
possible to add additional parameters to some quantum gates,
like phase angles of rotations on Bloch sphere. Finally, when
the user has designed circuit, next it can be executed on the

F I GURE 1 Different level of a basic quantum circuit implemented in
Psitrum. This framework allows to set/reset qubits, set parameters of
quantum gates and choose which output qubits to be measured.

F I GURE 2 Workflow of Psitrum, which follows a full‐stack gate‐model quantum computer simulator [64]. In this way, the selected quantum algorithm for a
specific problem needs to be expressed in form of a circuit using a set of defined gates. Psitrum then simulates the operation of an actual quantum compiler that
executes this circuit. Finally, a set of visualisation tools is available for the user, including Bloch sphere diagrams, state and density tracers, 3D and heatmap
diagrams.
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simulator which dynamically presents the outputs in multiple
result windows.

4.2 | Visualisation diagrams

Quantum computers are probabilistic systems and the output
of a quantum circuit is based on probabilities. Diagrams can be
useful to visualise probabilities, heatmap and Bloch Spheres.
These diagrams are provided in Psitrum to visualise algorithm
matrix, output states and density matrices.

4.3 | State and density tracers

The implementation of the quantum state and density matrix
tracers in the GUI are another useful features provided by
Psitrum. These allow the user to trace out the quantum state of
all qubit and desity matrix at each stage after any quantum
operation. Psitrum visualises each step on N qubit in N
different Bloch Sphere diagrams to show quantum states at
every stage of the circuit. Each qubit is visualised by calculating
its Bloch vector. The user can trace out the evolution of all
qubits after each stage, either by choosing to access the Bloch
vector of each stage or the output Bloch vectors after
executing all operations. Similarly, Psitrum shows all density
matrices after M stages with and without quantum noise.

4.4 | Numerical tables

It is useful, especially for small circuits, to track the state of
qubits during the simulation. The ability to observe the
numeric values of the output is useful for large circuits where
visualisation tools are now more needed. In addition, Psitrum
also provides several output numerical tables that can be
exported, including the output table of the algorithm matrix, its
density matrix and the output quantum states. The user can
then save the data and have a complete reference of the so-
lution to the simulated quantum algorithm.

5 | TESTING AND VALIDATION

This section is about testing Psitrum to validate its perfor-
mance by implementing four quantum algorithms, quantum
full‐adder [66], Deutsch–Joza [67], Grover Search [68] and
prime factorisation [69] algorithms. These circuits are good
benchmark problems for a universal QC simulator [70–73].

5.1 | Quantum full‐adder

Full‐Adder circuit adds the input bits of A and B plus a carry
input bit Cin to produce the sum S and a carry output Cout bits.
Classical full‐adder requires three input and two output bits.
However, the quantum version requires the same number of

input and output qubits, since the circuit must be reversible.
The truth table of the full‐adder with assigned qubits is given
in Table 2, and the corresponding quantum circuit is shown in
Figure 3.
Next, quantum full‐adder is modelled in Psitrum while

introducing depolarising noise channels, given in Equation (4).
Figure 4a shows a heatmap of the simulated circuit and
Figure 4b shows the corresponding probabilities of the
measured output qubits, matching the truth table in Table 1.
Depolarising channels are introduced at all stages of the circuit
in Figure 3, with p = 0.05 at overshoot. The effect of this noise
model can be seen on the output density matrix. Figure 4c,
d shows the output density matrices with and without noise.
Clearly, depolarising channels reduce the amplitudes of the
density matrix without introducing dephasing on qubits.

5.2 | Deutsch–Joza

Deutsch–Jozsa (DJ) algorithm finds whether an oracle is
constant or balanced. If all outputs qubits are only zeros or
ones then the function is constant, whereas if the function is
balanced then exactly half the output qubits are measured to be

TABLE 2 Truth table of a full‐adder circuit. A quantum full‐adder
requires at least five qubits with the same number of inputs and outputs so
it becomes reversible. q0 and q1 represent the input bits with q3
representing the input carry bit. The output sum and carry bits are
represented by q3 and q4, respectively.

A B Cin S Cout

q0 q1 q2 q3 q4

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

F I GURE 3 Circuit diagram of a five qubits quantum full‐adder in
Psitrum. The first three qubits take the input and output bits are measured
in the last two qubits.
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zeros and the other half are ones. To apply DJ algorithm, first
all qubits are initialised to zero states followed by Hadamard
gates to create superposition. Next, the circuit of the oracle to
be tested is constructed followed Hadamard gates on all qubits.
Finally, the upper N‐1 qubits are measured to find out whether
this function constant or balanced. Figure 5 shows DJ algo-
rithm for a balanced function.
Next, DJ circuit is modelled in Psitrum with depolarising

noise channels. Figure 6a shows a heatmap of the simulated
circuit and Figure 6b shows the measured probabilities of the
first four qubits. All qubits are measured at the 1111j 〉 state,
indicating that this is a balanced function. Depolarising chan-
nels are introduced at all stages of the circuit in Figure 5, with
p = 0.05 at overshoot. The effect of this noise model can be
seen on the output density matrix. Figure 6c,d show the output
density matrices with and without noise. At both cases, the
measured qubits are all still at the 1111j 〉 state with much
smaller amplitudes.

5.3 | Grover search

Grover algorithm requires iterations that scale as the square
root of length of the list. This is a quadratic speed over classical

algorithms. First, qubits are initialised at the desired state to be
found, followed by Hadamard gates to create superposition
states. Next, Grover circuit applies selective phase inversion of
the states followed by inversion about the mean in order to
amplify the probability of measuring the correct state. Figure 7
shows two iterations of Grover algorithm for three‐qubit
search of 110j 〉 state.
Next, Grover circuit is modelled in Psitrum with depo-

larising noise channels. Figure 8a shows a heatmap of the

F I GURE 4 Results after running quantum full‐adder in Psitrum. (a) Shows heatmap of the simulated circuit matrix, and (b) shows the output states
probabilities of measured qubits. (c) and (d) show the density matrix of the output with and without depolarising noise channels, respectively. All stages are noisy
depolarised with p = 0.05 at overshoot.

F I GURE 5 Diagram of a Deutsch–Jozsa circuit of a balanced function
in Psitrum. The first four qubits are measured to find out whether the
oracle is balanced or constant.
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simulated circuit and Figure 8b shows the measured proba-
bilities of qubits after the second iteration. The correct answer
is found in just two iterations, in which standard classical
search would require at least eight iterations. Depolarising
channels are introduced at all stages of the circuit in Figure 7,
with p = 0.05 at overshoot. The effect of this noise model can
be seen on the output density matrix. Figure 8c,d show the
output density matrices with and without noise. The correct
state still appears after depolarising channels with smaller
amplitudes.

5.4 | Prime factorisation using variational
quantum eigensolver

Unlike Shors algorithm that makes use of the period to
compute the factors of the number to be factorised [73], here
we compute factors of a given number through solving an
optimisation problem. The cost function used is given by
(N − pq)2, where N is the number to be factorised, while p and
q are factors to be identified and expressed in binary form as
qubits over which the optimisation is performed. Refer [69] for
a complete discussion on how the cost function is constructed
and its complexity. The authors there made use of imaginary
time evolution to solve for the factors. Here, instead we only
make use of the gradients to the cost function through stan-
dard Variational Quantum EigenSolver (VQE). We would like
to note that the updates in the imaginary time evolution differs
from VQE only by a factor of the fisher information that
works similar to the hessian for gradient updates.
We use a hardware efficient ansatz (Figure 9) to implement

a variational circuit that consists of repeating layers to allow for
a low error in the cost function output, but not representative
enough to result in barren plateaus. The initial parameters of

F I GURE 6 Output of running Deutsch–Jozsa algorithm of a balanced function. (a) Shows heatmap of the simulated circuit matrix, and (b) shows the
output states probabilities of measured qubits. (c) and (d) show the density matrix of the output with and without depolarising noise channels, respectively. All
stages are noisy depolarised with p = 0.05 at overshoot.

F I GURE 7 Circuit diagram of two iterations of three qubits search
algorithm. The qubit states are initialised at 110j 〉 representing the state to
be searched.
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the circuit were randomly initialised. The learning rate was set
to 0.1 and the convergence threshold for the amplitude of
factors was set to 0.90 at least. Results of simulating this
variational circuit for factorising 91 are shown in Figure 10.
We plot training of the cost function and the amplitude of

the solutions at the end of 100 iterations for the factorisation
of numbers 77 and 91 starting with the same set of initial
parameters in either case and compare the results with IBM
Qiskit Aqua framework (Figure 11). 77 has factors of 11 (1101)
and 7 (111), and 91 has factors of 13 (1110) and 7 (111). Given

that the least significant digit of all prime numbers begin with
1, we have a total of five qubits over which the optimisation is
to be performed.

6 | CONCLUSION

We presented Psitrum, a universal QC simulator based on
classical hardware and showed how to run widely popular
quantum algorithms, namely quantum‐full adder, Deutsch–
Joza and Grover search, both in the presence and absence of
quantum gate noise. We made use of visualisation tools avail-
able in the software to demonstrate the simulation of quantum
circuits pertaining to these algorithms on Psitrum. In addition,
we solved the factorisation problem using standard VQE and
were able to run the circuit in Psitrum to factorise prime
numbers. This demonstrates that, Psitrum provides features
for simulating noisy and noiseless quantum circuits to solve a
wide class of quantum algorithms available for NISQ pro-
cessors. Given that Psitrum runs on a local server with a
simplistic MATLAB interface, it provides a base layer for de-
velopers to easily add their own customisation to suit their
needs. In future, we are going to add modules relevant to
implement various machine learning methods directly onto this

F I GURE 8 Results of three qubits Grover algorithm. (a) Shows heatmap of the simulated circuit matrix, and (b) shows the output states probabilities of
measured qubits after the second iteration. (c) and (d) show the density matrix of the output with and without depolarising noise channels, respectively. All stages
are noisy depolarised with p = 0.05 at overshoot.

F I GURE 9 Diagram of five‐qubit variational circuit used to factorise
91. Parameters of the circuits were randomly initialised.
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platform, which will help to provide a good starting point to
newcomers for a good experience with our visual learning
tools.
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APPENDIX A: USER INTERFACE IN
PSITRUM
Psitrum software and source codes are available GitHub with
an installation guide that includes all the necessary details. The
GUI in Psitrum is structured to provide seamless navigation
and interaction with quantum circuits. A clean and minimalistic
design philosophy ensures that users can focus on the task at
hand without distraction.

Psitrum allows users to design quantum circuits using
Psitrum's unique functionality that allows users to quickly
select from a comprehensive set of quantum gates and
combine them to construct complex algorithms. In addition, a
range of visualisation tools, including state vectors, Bloch
spheres, and probability distributions, are available to interpret
the results of quantum simulations (Figure A1).

F I GURE A 1 The Psitrum user interface is engineered to facilitate efficient navigation and interaction within the quantum circuit framework. It adheres to a
minimalist design aspects, optimising the us er's cognitive focus on simulation tasks by reducing visual clutter and interface complexities. The example shown
here is for circuit of a five qubits quantum to simulate a full‐adder using the GUI of Psitrum. The first three qubits take the input and output bits are measured in
the last two qubits (check the results for more details).
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APPENDIX B:QUANTUM GATES IN
PSITRUM
This section provides details of gate operations implemented in
Psitrum. These are the basic quantum gates for many algo-

rithms and are available in this first version of Psitrum. In later
versions, we can easily add more gates. Definitions of single‐
and multi‐qubits gates are given in Table B1.

TABLE B1 Single‐ and multi‐qubits quantum gates defined in Psitrum.

Gate Matrix Symbol

I 1 0
0 1

� �

X 0 1
1 0

� �

Y 0 −i
i 0

� �

Z 1 0
0 −1

� �

H 1 1
1 −1

� �

S 1 0
0 i

� �

T 1 0

0 eiπ4

2

4

3

5

S† 1 0
0 −i

� �

T† 1 0

0 e−iπ
4

2

4

3

5

U1 1 0
0 eiθ

� �

U2 1 −eiθ
eiϕ eiðθþϕÞ

� �

U3 cos
θ
2

� �

−eiλ sin
θ
2

� �

eiϕ sin
θ
2

� �

eiðλþθÞ cos
θ
2

� �

2

6
6
6
6
4

3

7
7
7
7
5
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TAB LE B1 (Continued)

Gate Matrix Symbol

RX cos
θ
2

� �

−isin
θ
2

� �

−isin
θ
2

� �

cos
θ
2

� �

2

6
6
6
6
4

3

7
7
7
7
5

RY cos
θ
2

� �

−sin
θ
2

� �

sin
θ
2

� �

cos
θ
2

� �

2

6
6
6
6
4

3

7
7
7
7
5

RZ e−iϕ
2 0

0 e
iϕ
2

2

4

3

5

SX 1þ i 1 − i
1 − i 1þ i

� �

S†X 1 − i 1þ i
1þ i 1 − i

� �

SWAP 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

2

6
6
4

3

7
7
5

CNOT 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2

6
6
4

3

7
7
5

Toffoli 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5
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