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ABSTRACT

Many important physical and mathematical problems do not allow analytical treat-

ment, and are difficult to solve numerically on classical computers. Quantum com-

puting is anticipated to perform vastly better for some of these problems. Exam-

ples include simulating other quantum mechanical systems like molecules, some

optimisation tasks (e.g. combinatorial optimisation and data fitting), and number-

theoretical problems like prime factorisation. Being able to efficiently find answers to

these questions would enable the accelerated development in other fields of science,

like chemistry and engineering.

This work uses analytical and numerical methods to tackle several sub-problems

in the field of quantum computing, and provides tools and algorithms that allow

more efficient utilisation of the (anticipated) hardware capabilities. The considered

problems span a wide range of possible quantum device capacities, from their classical

simulation, via near-term intermediate scale (NISQ) and early fault-tolerant hardware,

all the way to fully error corrected platforms. Covered topics include an exploration

of the problem to automatically generate an efficient implementation of any arbi-

trary quantum algorithm using the available resources, more accurate techniques for

simulating electrons in molecules, a method for extracting information about energy

levels in a system from minimal data, and an effort to prepare defined states in a

controlled manner. The challenge of modelling perfect or noisy quantum computers

themselves using conventional computers is also addressed through the development

of an easy-to-use interface to a powerful quantum emulator.

Each one of the discussed contributions represents an advance of the theoretical

capabilities towards the goal of utilising quantum hardware — which is rapidly being

developed alongside theoretical efforts — to its full potential.
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If you don’t know where you are going, any road
will get you there.
Paraphrased exchange between Alice and the Cheshire Cat.

— Lewis Carroll’s Alice in Wonderland

1
INTRODUCTION

Contents

1.1 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Digital quantum computers and formalism . . . . . . . . . . . . . . 5
1.3 Eras of quantum computing . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Error models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

In physics, many interesting problems lie within the realm of quantum mechan-

ics. Any sufficiently small system must be treated according to the its laws to make

accurate predictions about its behaviour. Examples cover the description of electrons

in atoms, molecules, and crystals, explaining their various properties like geometry,

spectra, magnetism, etc., as well as scattering problems involving electromagnetic

waves and particles, and even models for gauge theories, exploring the fundamentals

of our universe.

By its very nature, quantum mechanics operates in a Hilbert space, whose di-

mensionality grows very quickly with the number of particles considered. Although

some problems can be solved analytically, and a wide range of clever approximate

techniques exists, many systems remain very challenging. One way to deal with those

is to numerically store their state on a classical computer and calculate properties

1



2 1.1. A brief history

numerically. Unfortunately, due to the size of the Hilbert space growing exponentially

with the number of particles, such numerical treatment quickly meets its limits.

One approach how to simulate large systems is to not employ classical computers,

but instead simulate one quantum mechanical (QM) system with another. After all, its

Hilbert space size grows just as quickly as that of the system we are trying to simulate.

This idea gave rise to the field of quantum computing. While its first concepts were

concerned mainly with the just described simulation of one QM system with another

— and this is still a very highly anticipated use case for the research efforts today —

more algorithms emerged that could harvest the quantum mechanical properties

of such a device to solve some problems more efficiently than classical computers

could. Well-known examples include prime factorisation, (approximate) optimisation

problems, and even searching in a list.

In this chapter, I will give a brief overview of the history and background of quantum

computing, and introduce some notation. The following chapters will then discuss

the state of the art regarding some open problems in the field, and present novel

contributions to the subfields of quantum compiling, Hamiltonian time evolution,

state spectroscopy, and Hamiltonian eigenstate preparation. Finally, I will concisely

describe a tool I developed during my doctorate, which provides easier access to

classically simulated quantum computers.

1.1 A brief history

This section gives a short overview of the history of quantum computing to put the

rest of the present thesis into historical context. In the interest of brevity, it will only

cover the most important milestones.

The first description of using one QM system to simulate another is often credited

to a keynote speech given by Richard Feynman in 1981 at MIT titled “Simulating Physics

with Computers” [1]. However, several physicists had already worked on precursors

to quantum computing, most notably Paul Benioff in a paper published in 1980 [2],

which he later expanded on in 1982 [3].
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The subsequent important milestone was David Deutsch giving a formal descrip-

tion of a universal quantum computer in 1985 [4], which could simulate any physical

system. He speculated that, if implemented, such a machine would be able to perform

calculations faster than a classical Turing machine, but no actual examples were

known at the time. Several years later, in 1992, Deutsch and Jozsa [5] provided the

first instances of problems which can be solved exponentially faster on a quantum

computer via the Deutsch–Jozsa algorithm.1 This was an important result, proving

the existence of problems which could be solved significantly (and asymptotically)

quicker on a quantum device.

Two years later, in 1994, Peter Shor presented Shor’s algorithm [6] for efficient

integer factorisation using quantum computers. The procedure is still very relevant

today and commonly cited as one of the main prospective applications of quantum

hardware. In contrast to the result by Deutsch and Jozsa, Shor’s algorithm has an

important practical use. Amongst others, the widely used RSA cryptosystem relies on

the assumption that factoring large numbers is hard, so it could in theory be broken

with a high-performance quantum computer running Shor’s algorithm, making its

development a very significant milestone.

Only one year later, in 1995, Shor made another important contribution [7]. He

described the first error correcting code to combat decoherence on quantum devices.

External disturbances to the state of a controlled system plague quantum hardware

to this day, and will likely continue to do so for the foreseeable future. Therefore,

error correction is a crucial subfield in quantum computing, and any large-scale

implementation will be using this concept, making its first introduction an important

event. Section 1.3.1 will go into some more detail about the implications of noisy

hardware and the ability to correct its errors.

In 1996, one more important quantum algorithm was published, this time by

Grover [8]. He showed that — given a quantum subroutine that marks a specific state

with a negative sign efficiently — quantum computers can find and prepare such a

state quadratically faster than any classical approach. This is due to classical methods

1The Deutsch–Jozsa algorithm is a generalisation of Deutsch’s algorithm, which operates only on a
single bit and thus did not provide an exponential speedup.
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having to check each element individually, resulting in a cost linear in the number of

possible elements. Conversely, the more efficient quantum variant uses a technique

based on amplitude amplification that became known as Grover’s algorithm.

The following year, Kitaev [9] suggested using topological features to protect

quantum states against decoherence. Variations of this proposal are currently amongst

the candidates for the first fully error corrected quantum computers [10].

Several other important contributions to algorithm design were made in the follow-

ing years. Some examples include an algorithm to solve linear systems of equations

by Harrow, Nassidim, and Lloyd (HHL) [11] in 2008, the first proposal of variational

methods by Peruzzo et al. [12] in 2014, as well as mechanisms for error mitigation by

Li and Benjamin [13] and Temme et al. [14] in 2016.

Of course, all of these concepts need appropriate hardware to run on, which is a

major experimental challenge. The devices used for such calculations typically must

be extremely cold and very well decoupled from the rest of the universe to minimise

disruptions to its state. Additionally, they must be controllable with high precision

to make the results accurate. After a period of many important theoretical advances

in the early 1990s, experimentalists have made considerable progress in developing

such hardware. Some of the most important demonstrations are the first 2-qubit NMR

quantum computer solving Deutsch’s problem by Jones and Mosca [15] in 1998, the

earliest quantum annealing demonstration by Brooke et al. [16], the first usage of a

superconducting circuit as a qubit by Nakamura et al. [17], both in 1999, the successful

factorisation of 15 = 3×5 using Shor’s algorithm by Vandersypen et al. [18] in 2001,

and the implementation of the Deutsch–Jozsa algorithm on an ion trap quantum

computer by Gulde et al. [19] in 2003.

Since then, countless improvements have been made to all of these platforms.

A significant announcement was made by Arute et al. [20] at Google in 2019, claim-

ing to have reached quantum supremacy on a superconducting quantum processor

executing random circuits. The term quantum supremacy was popularised by John

Preskill [21] to characterise quantum devices which can solve problems that are not

computable in a reasonable amount of time by classical processors. Though the
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research team of Ref. [20] claimed that executing the circuit they used would take about

10000 years on today’s most powerful supercomputers, this assertion was disputed

by Pednault et al. [22], who argue it would be simulable in only around 2.5 days. In

either case, the demonstration was solely intended as a proof-of-concept, and the

executed circuit has no real practical application besides showcasing the increasing

capabilities of quantum hardware.

Another important investigation in this context was published by Kim et al. [23],

who argue to have found evidence for the utility of quantum computing before fault

tolerance by simulating a two-dimensional Ising model. Despite not directly claiming

to have demonstrated quantum supremacy, the publication received considerable

pushback from researchers arguing that the system in question can be quite quickly

solved using advanced classical simulation techniques [24, 25]. It seems likely that this

back-and-forth between authors reporting solutions to complicated tasks on quantum

hardware, and the response from other community members arguing that a solution

is feasible on classical hardware, will continue for some time, until an indisputable

and clear quantum supremacy result is reported. When this might happen depends

on both experimental and theoretical advances in the field.

1.2 Digital quantum computers and formalism

Historically, there have been two fundamentally different approaches to quantum

computing. The idea described by Feynman [1] relates to the concept of analogue

quantum computing, more precisely analogue quantum simulation, while later devel-

opments introduced the concept of digital quantum computing. In this section, I want

to briefly motivate analogue quantum computing, before describing the digital version

in more detail, as the rest of this thesis will only be concerned with the latter.

In some cases, a direct mapping of a problem to a quantum mechanical system can

be found. This also includes instances where the problem itself is the simulation of an-

other quantum mechanical system. In analogue quantum computers, such a mapping

is exploited by carefully manipulating the stand-in setup realised in a laboratory, which

represents the system in question. This, in turn, allows the investigation of properties of
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the original problem. Besides analogue simulation, quantum annealing and adiabatic

quantum computation also fall into this category of analogue quantum computing.

In contrast to the direct mapping onto a controllable quantum system in the

analogue case, digital quantum computers encode information about the system of

interest in a more abstract form. This type of quantum computer is closer to the

description by Deutsch [4] in 1985. He proposed to consider a collection of N two-

level quantum systems, today called qubits, to perform calculations. These qubits

are usually called |0〉 and |1〉, using the well-established bra–ket notation [26] for

quantum states. Following the standard formalism in quantum mechanics, a single

qubit can exist in a superposition of |0〉 and |1〉, as in |ψ〉 =α |0〉+β |1〉, with α,β ∈C
and |α|2 +|β|2 = 1. The Hilbert space of N such qubits is then 2N -dimensional, and

consists of all possible combinations of zeros and ones on every qubit. A collection

of qubits is often referred to as a quantum register.

Changes to the state in a register are induced by unitary operators U . Deutsch

showed that with this setup of qubits and unitary transformations, a quantum com-

puter is universal, meaning it can simulate every finite physical system with arbitrarily

high precision, which automatically makes it Turing complete. Furthermore, he argues

that because U acts on all N qubits at once, it is to be expected that quantum computers

could exceed the speed of Turing-type machines.

Today, U is usually not described as a single, large matrix acting on all qubits at

once, but instead is prescribed as a series of gates, analogous to logic gates like NOT and

XOR in classical computing, each acting on only one or a few qubits at once. A collection

of such gates, for which it makes sense to group them together logically, is usually

called a quantum circuit. Graphically, they are often depicted as lines (representing

the qubits) with boxes on them (meaning the application of a gate). Examples of such

circuit diagrams are plentiful throughout this thesis.

When working with circuits and gates, it is important to keep in mind that they

are already an abstraction of the physics of any specific quantum hardware, which

implements them as a series of actual physical operations, like laser pulses or the
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generation of electric fields. The consequences of this are discussed in more detail

in the Literature Review.

There are several established standard sets of gates used in the field of quantum

computing, and the decision for one or the other often depends on the context. This

topic is more closely inspected in Section 2.1. Irrespective of what specific set is used,

each gate can always be described as a particular unitary matrix of dimension 2N ,

where N is the number of qubits it acts on simultaneously. Some typical, often-used

examples are the Pauli gates

σx =
(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
,

arbitrary single-qubit rotations

Rx(θ) = e−iθσx /2 R y (θ) = e−iθσy /2 Rz(θ) = e−iθσz /2,

and Hadamard (H), phase (S), and T -gates

H = 1p
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
T =

(
1 0
0 e iπ/4

)
.

Common two-qubit gates are the controlled NOT (CNOT), which acts on the second

qubit like a Pauli-x gate if and only if the first qubit is in the |1〉-state, and the SWAP

gate, which exchanges the states of the two qubits. Their matrix representations are

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

There is a wide range of other possible gates used in various contexts, including

controlled and multi-controlled versions of the ones listed above. The given examples

are solely to give some intuition about what quantum gates typically look like.

With this notion of gates making up a circuit to produce a unitary operator U , an

important question to ask which set of gates is sufficient to create any U , either exactly,

or up to some error ε. A gate set capable of this is then called universal. Section 2.1

lists some popular choices and discusses the context in which they are most likely to

appear. Universal gate sets can contain parameterised gates, like the Pauli rotations, or
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have only a finite number of fixed gates in them. It would be reasonable to expect that

parameterised gates span a larger space than their non-parameterised counterparts,

but the Solovay-Kitaev theorem [27] guarantees that even with a discrete set, any

unitary U can be approximated to within an error of ε with at most O(logc (1/ε)) gates.

The constant c of an optimal algorithm is as of yet unknown, but can be bounded by

1 ≤ c ≤ log5
log3/2 ≈ 4, and may be in the region of c ≈ 2 [26, App. 3].

1.3 Eras of quantum computing

As the title of this thesis suggests, it is anticipated that the development of quantum

computing can be roughly divided into eras, each of which is characterised by the

hardware capabilities of available quantum devices. Naturally, these will overlap

and influence one another. The following briefly describes the categories consid-

ered in this thesis.

Simulation This age started long before the first hardware implementations of quan-

tum devices, and will likely overlap with all of the other eras discussed here. Due to the

highly sophisticated technology of classical computing, surprisingly large quantum

systems can simply be simulated on increasingly productive machines. As discussed

above, there seems to be a tug-of-war taking place right now, where classical simu-

lations and quantum hardware devices try to out-compete one another. One might

speculate that the time where simulation is the most capable quantum platform

is about to come to an end.

NISQ The phrase of noisy intermediate-scale quantum (NISQ) devices was popu-

larised by John Preskill [28]. It refers to hardware that, in contrast to the technologies

discussed below, uses some physical two-level system as its logical qubits. Because,

despite best efforts, these systems are not perfectly decoupled from the environment

and have finite temperature, various sources can introduce errors and lead to decoher-

ence of the quantum state. As of writing of this thesis, these devices are on the brink of

overtaking classical computers in their ability to solve certain problems. Algorithms
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for this age focus on being resistant to the inherent noise of the system, and giving

usable results despite considerable error rates.

Early fault-tolerant Once quantum hardware contains enough qubits and appropri-

ate couplings between them, it becomes possible to implement schemes that (partly)

suppress the noise of the system. This is achieved by cleverly grouping several physical

qubits together to form a single logical qubit. Through sophisticated algorithms using

repeated measurements of some of the qubits, it is possible to detect and even correct

various errors that may occur. Such a scheme is usually called an error correcting

code. Importantly, these code’s resistance to errors increases with number of available

qubits. In the early fault-tolerant era, codes are anticipated to provide some tolerance

to decoherence events of the physical qubits, but errors may still occasionally make

it through to the logical qubits. Any algorithm designed for these devices should still

consider the possibility of such errors occurring.

Fully error-corrected The ultimate goal of quantum hardware development is to

provide a platform where the logical qubits are protected so well from physical errors,

that their influence is more or less negligible. The line between early fault-tolerance

and full error correction is somewhat blurry and can be drawn at an appropriate logical

error rate that is deemed negligible. From today’s point of view, the implementation

of such a device will likely take many more years of development time.

1.3.1 Error models

As discussed above, finite temperature and interactions with the environment can

cause disruptions to a quantum state. Since the state is where all the information

about a quantum computation is stored, this becomes a serious problem if it happens

too frequently, because it means that a computation can only take a certain amount of

time or apply a predefined number of gates, before the information is destroyed. In the

fully error-corrected regime, these errors are abstracted away by the underlying code

and (almost) arbitrarily long calculations may be performed. However, on other, less

protected platforms, the quantum algorithms themselves that run on the hardware
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must be resistant against errors to some degree. In order to incorporate it into the

development of algorithms, the noise must be modelled in some way.

One way for such a model is the following. At various stages during the execution

of a circuit, e.g. after a certain time has elapsed, or after the application of a some

particular gate, an unwanted operator (the error) may be applied to the state with

some small probability. Popular choices for errors are the application of one of

the Pauli operators with equal probability, which is called depolarising noise, or the

application of an operator that takes the |1〉-state to the |0〉-state, often called an

amplitude damping error. Especially depolarising noise is often considered, because

via techniques like twirling [29, 30] and randomised compiling [31], any noise channel

can be turned into depolarising noise. However, in the NISQ era, this often does

not accurately capture the characteristics the various devices without such advanced

methods. Reference [32] presents an effort to provide a more accurate characterisation

of the platform-dependent noise that a quantum computation may encounter. The

specific relevant error models to the work in this thesis are discussed in more detail

in the appropriate research chapters.

Because errors only occur with some probability, the previous description of ket-

vectors is not sufficient anymore to capture the full state, including the uncertainty

about whether an error occurred or not. To completely characterise such a situation,

a different formalism is required. One way is to represent the state not as a single

ket-vector, but instead use the so-called density operator, which, to reflect a pure

state |ψ〉 is simply

ρ = |ψ〉〈ψ| .

However, a system that is in state |ψ1〉 with a probability of p1, and in |ψ2〉 with

probability p2, can be described by

ρ = p1 |ψ1〉〈ψ1|+p2 |ψ2〉〈ψ2| ,

or, more generally

ρ =∑
j

pj |ψj 〉〈ψj | .
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Expectation values of observables O are then calculated via

Tr(ρO) =∑
j

pj O |ψj 〉〈ψj | =
∑

j
pj 〈ψj |O|ψj 〉 ,

which is just the probability-weighted sum of the expectation values of the individual

states the system may be in. Note how ρ does not actually describe the physical state of

the system (which is always in some definite state), but rather respects our incomplete

knowledge about the precise physical realisation in the device.

Working with density operators, state changes are induced by quantum channels.

Applying a unitary to a state simply means multiplying ρ from the left by U and from

the right by U †. However, as is the case for error channels, a weighted sum of (not

necessarily unitary) operators may also be employed to implement an operation that

may happen. Using the example of the damping channel, in which an error occurs

with probability p, a single-qubit density operator would transform like

ρ 7→ K0ρK0
† +K1ρK1

†

with the operators

K0 =
(
1 0
0

√
1−p

)
and K1 =

(
0

p
p

0 0

)
,

which are usually called Kraus operators. They do not need to be unitary (as is obvious

from this example), but they must fulfil the property

∑
n

K †
nKn = 1

to ensure the channel is a completely positive trace-preserving (CPTP) map. This is

necessary for ρ to remain a valid density operator.

These are just some of the most important aspects and properties of this formal-

ism. A more complete and rigorous discussion of density operators is available in

the literature [26].
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Because the present thesis covers many topics in quantum simulation, quantum

algorithms, and classical algorithms, this literature review will focus relatively closely

on the papers and published works relevant2 to each of the research chapters, in-

stead of giving a sweeping overview of the whole field of quantum computing and

quantum algorithms.

2.1 Quantum circuit synthesis

As mentioned in the Introduction, instructions for quantum computers are usually

described in a generic way of applying certain, often standardised gates to a quantum

state [33–36], which, when collectively performing a specific task, are then often

2Relevant in this case means they (try to) accomplish the same or a similar goal as the methods
presented in the research chapters, but through other means.

13
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grouped together in a quantum circuit. In general, this formalism is very flexible

in how it can be used to describe reversible logic functions, quantum operations,

and algorithms.

When developing or describing quantum algorithms, often a generic universal set

is used [37], depending on what is convenient and fits the properties of the operation.

Examples are the sets of single-qubit rotation gates & CNOT [38] (often used in NISQ

applications), Toffoli & Hadamard [39], and {CNOT, H , S, T } [26, Sec. 4.5]. The latter is

popular in the context of algorithms for error corrected platforms, as these gates can

be relatively straightforward to embed into an error correcting code [40, 41].

On the other hand, gate sets can also be used to characterise a particular quantum

hardware platform by way of specifying a group of unitaries that are native to the

device, i.e. which have the most straightforward implementation in terms of actual

physical operations like laser pulses or applied voltages. Naturally, these sets will

be constrained in the type of gates (rotations, SWAPs, CNOTs, etc.), as well as the

connectivity, i.e. which two qubits a given two-qubit gate can operate on. Some

examples are devices based on trapped ions [42–46], superconducting qubits [47–50],

and silicon-based hardware [51–55].

This mismatch in expressibility necessitates methods for circuit compilation,3

where the description in some gate set is translated to an equivalent circuit using a

different set. A somewhat related but more general task is that of circuit synthesis,

where a circuit is constructed from a generic description of an operator’s unitary

action. This compilation process is analogous to the compilation process on classical

hardware, where high-level programming language instructions must be translated

to assembly and ultimately to byte code compatible with the specific hardware it will

be executed on. In this analogy, the compilation process described in the quantum

context is an intermediate step to ensure gate compatibility, before further conversion

into specific physical processes like a pulse of a given duration.

If the unitary quantum operation U is given in a matrix representation (or an

equivalent form from which its matrix elements can be efficiently calculated), methods

3Transforming circuits from one gate set and/or qubit connectivity to another is often also called
transpiling. This thesis will consistently use the term compiling for this task.
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collectively known as exact unitary decompositions may be employed. For the generic

case of a completely unstructured U , it is known that no algorithm can scale sub-

exponentially when working with a finite number of gates. Nielsen and Chuang [26]

provide a simple, intuitive argument for this fact, which might be a useful addition

to this review. Consider a unitary U on n qubits, a set of g different gates, with each

gate affecting at most f qubits. A circuit containing m gates can then, starting from

some initial state, produce at most O(n f g m) output states. If U is generic, it can

create any output state from the input. Therefore, if the circuit was to approximate

the unitary within a small error ε, it must densely cover the space of all possible states

with ε-disks. From this argument, Nielsen and Chuang arrive at the conclusion that

the required number of gates is of order

m =Ω
(

2n log(1/ε)

log(n)

)
.

The above argument only applies for approximating arbitrary unitaries with a

discrete set of gates. However, in practice, the task is often to exactly implement a

unitary using a set of parametrised gates. For this case, Ref. [56] provides a derivation

based on parameter counting, that even then, at least Ω(4n) parametrised gates are

necessary to synthesise arbitrary unitaries.

Of course, this is definitely not true for all U , but when considering a generic

decomposition, it clearly does not make sense to look for synthesis methods with

polynomial scaling in the number of gates they produce. Rather, research in this regard

has been focused on reducing the actual number of gates produced, i.e. lowering the

prefactor of the required exponential scaling.

So far, the discussion has been concerned with the total number of gates in a

circuit. However, on near-term quantum hardware, CNOT gates are the ones that

introduce disproportionately many errors to the circuit, whereas in the extended-

term, the required number of T -gates is expected to be the limiting factor [40, 57, 58].

The observation that not all gates are of equal difficulty and resource-intensiveness

makes it clear that simply counting the number of gates is not an ideal and universal

characterisation of how hard a circuit is to implement. It also raises the question of
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what a good metric to judge circuit optimality could be, as apparently no single cost

function can describe how expensive a circuit is to implement without knowing more

about the device it will run on. The cost can be determined by the total number of

generic two-qubit gates, the count of CNOTs, the number of T -gates, CNOT-depth,

T -gate depth, or any other quantification of whatever the limiting resource on a

given platform is. In this work, because the presented ideas target greatly disparate

platforms, the metrics used to discuss and judge their efficacy will also vary depending

on the context, and are mainly concerned with either total gate count, two-qubit gate

count, or the number of T -gates.

One of the earliest descriptions of an algorithm to explicitly decompose an n-qubit

unitary was given by Barenco et al. [38] and uses O(n34n) two-qubit gates, where n is

the number of qubits. Subsequent work lowered this bound, with notable examples

by Vartiainen et al. [59] using O(4n) CNOTs and Möttönen et al. [60] (4n −2n+1 CNOTs),

which was followed up again by Möttönen and Vartiainen [61] arriving at an explicit

construction using no more than 23
48 4n − 3

2 2n + 1
3 CNOT gates. Shende et al. [62] come

to an equivalent conclusion. Comparing this to the lower bound of (4n −3n −1)/4

derived in Ref. [56] shows that this is asymptotically within a factor of 2 of the optimal

case. Various other decomposition methods are described in the literature [63–67] and

implemented as software packages, which, even if they do not improve on the worst

case bound, often exhibit reduced CNOT counts for practical applications.

A disadvantage of methods directly decomposing a given unitary into a circuit

is their performance on many practically relevant unitaries. We know that arbitrary

unitaries can in general not be decomposed efficiently. However, most operators

of interest in quantum computing are highly structured and do allow a much more

efficient circuit representation than what is expected of generic unitaries. For these

cases, circuit decomposition methods alone often yield suboptimal results. Therefore,

some post-optimisation is often necessary to reduce the appropriate cost metric.

Furthermore, since the unitary decompositions described in the literature almost

exclusively try to minimise the CNOT-count, T -count optimisation will be an important

tool for future applications.
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Unfortunately, this task of optimising an already found (inefficient) circuit represen-

tation turns out to also be quite difficult. As Refs. [68, 69] show, deciding whether two

unitaries act equivalently on a given subspace is Quantum Merlin-Arthur [70] (QMA)-

complete, i.e. it cannot be evaluated efficiently, even on a quantum computer. This

implies that global optimisation of quantum circuits is also QMA-complete. Therefore,

optimisers for sufficiently large circuits have to rely on heuristics.

Many of the aforementioned works on unitary decomposition already include such

an optimisation as a second step after the initial synthesis [63, 64, 66, 67]. Because

global optimisation is hard, most of them use some local heuristic rules for circuit

re-writing and gate replacement. Another approach for reducing the number of CNOT

gates is to first partition the structure into smaller sub-problems. Because these sub-

circuits can be chosen to be suitably small, they may then be compiled individually

using any suitable algorithm that might perform better than local circuit re-writing

rules. This idea is explored in Ref. [71] using exact decompositions of the sub-circuits,

while [72] reports on a similar idea, but with each sub-circuit only approximated to

within some unitary distance.

In some cases, an appropriately efficient circuit for the desired quantum algo-

rithm is known, but may be incompatible with the connectivity constraints of the

hardware. This specific task is often called qubit routing or circuit transformation, and

several methods have been applied to efficiently find the necessary SWAP operations

between gates, including simulated annealing [73], tabu search [74], artificial neural

networks [75, 76], and specialised heuristics [77–80]. Furthermore, sometimes SWAPs

can be avoided altogether [81].

The methods discussed so far all start from an already known (inefficient or incom-

patible) circuit representation of the desired operator — or construct such a circuit

through decomposition — and then try to transform it in such a way that certain gates

are eliminated or other constraints are fulfilled. This “top-down” approach can be

contrasted with “bottom-up” methods that start with a trivial circuit, whose action is

far from the desired unitary, and then try to stepwise add elements to it in an attempt

to implement the target operator ever more closely.
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Small problems acting on only a few qubits can even be solved using exhaustive

search of all possible gate sequences [82] in order to find the optimal circuit imple-

menting the desired unitary. Where rigorous search would be prohibitively costly, a

tree-like structure may be used to represent circuit layouts, which can then be traversed

more efficiently using an approximate A∗ search algorithm [83] to find near-optimal

solutions for problems on up to four qubits [84]. Extending this idea using various

techniques to reduce the size of the considered search space — which may impact the

solution optimality — can be shown to work on up to six qubits [85].

A different approach is to dynamically construct a circuit through machine learning,

heuristics, or metaheuristics. Several techniques have been proposed, including

pseudorandom walks [86], genetic algorithms [87], temporal planning [88], and deep

learning [89]. Such methods can sometimes also be used to synthesise approximations

to a desired unitary, rather than a perfect re-expression, resulting in shorter circuits

than exact compilation. Of particular relevance to this thesis are approaches which

randomly propose circuit structure changes to try to minimise some cost function.

Examples of this are the References [90–92]. Each of these works proposes the use of

different cost functions, but all of them employ Metropolis-Hastings random sampling

to minimise the cost.

One additional family of methods worth mentioning in this context is that of

variational quantum eigensolvers (VQEs), first introduced by Peruzzo et al. [12]. In its

original form, it can be seen as a highly specialised quantum circuit synthesis method;

it generates a circuit that prepares the ground state of a given Hamiltonian.

There are numerous variations of VQE-based approaches. The fundamental idea,

which they all have in common, is that some parametrised (shallow) circuit U (θ) is used

in combination with an easy-to-prepare initial state |ψ0〉 to generate a parametrised

state |ψ(θ)〉 :=U (θ) |ψ0〉 in a quantum register. Then, by varying the parameter vector

θ and guided by some algorithm through repeated monitoring of the expectation value

of the Hamiltonian, the energy of the state is minimised.

Differences in the various incarnations of VQEs are mainly the concrete method

of driving the parameters towards an energy minimum, and the specific layout of
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the parametrised circuit (or how it is generated). Optimisation algorithms used in

this context largely fall into two distinct categories: gradient-free and gradient-based

methods. Some examples of gradient-free optimisers used in the literature are the

Nelder-Mead algorithm [93] in the original report on VQEs [12] and COBYLA [94] as

used in Ref. [95], and CoVaR [96]. Instances of the highly popular gradient-based

approaches include conjugate gradient [97], ADAM [98], quantum natural gradient

descent [99] and imaginary time evolution (ITE) [100].

Although seemingly well-suited for NISQ hardware, VQEs often encounter signif-

icant problems. These are mainly related to limited ansatz expressibility [101, 102],

barren plateaus [102, 103], and false minima [104–106]. Limited ansatz expressibility

arises from the fact that in order to classically optimise the parameters, their count

should scale at most polynomially with the system size. This means that only a small

subsection of the full Hilbert space is within reach of the output state. Therefore,

care must be taken that the fixed (or automatically generated) ansatz circuit structure

can produce the desired target state within its parameter space. Sometimes, but

not always, enough is known about the Hamiltonian to ensure this property. Barren

plateau is the name given to the phenomenon that with increasing degrees of freedom,

the energy landscape with respect to the parameters becomes exponentially flat in

large regions of the parameter space, which makes it difficult for the optimisation

routine, especially gradient-based ones, to find the ideal values of θ. False minima

are a well-known problem in many (classical) optimisation tasks, where it is easy to

find a local minimum, but difficult to find (and verify) that a given local minimum is

also a global one. Despite these limitations, VQEs have been demonstrated to work

well and produce accurate results in some settings [100, 107].

As will be elaborated later, even though VQEs are usually used to find the ground

state of some physically relevant Hamiltonian, the problem of synthesising a circuit

representation of a given unitary can be rephrased into such a ground state finding

problem. Therefore, in principle, any sufficiently sophisticated VQE method may be

employed to synthesise circuits implementing a given unitary. The most relevant algo-

rithms in this context are those that generate gate sequences dynamically, as opposed
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to those working with a fixed ansatz and only optimising its parameters. Examples of

such generative algorithms are ADAPT-VQE [108, 109] and the Evolutionary Variational

Quantum Eigensolver (EVQE) [110].

Chapter 3 investigates a method in the same spirit of dynamically creating a

circuit from scratch, combines many existing ideas with new techniques, and tests

its suitability to synthesise small circuits, as well as its scaling properties to larger

ones. Results are reported for up to 10 qubits, which required classical simulation

of a 20-qubit device.

2.2 Time evolution for quantum chemistry

As already covered in the Introduction, one of the most promising applications of

quantum computers is the efficient simulation of the time evolution of quantum

systems. A particularly important case for potential future applications is that of

interacting electrons in molecules, i.e. quantum chemistry. This task may also be

seen as a highly specific circuit synthesis task, where the target unitary has the form

U (t ) = e−i H t , with H the Hamiltonian of the system in question. The available methods

to implement such a time evolution on quantum hardware are usually grouped into

two main categories: Trotter-Suzuki-type decompositions, and post-Trotter methods.

2.2.1 Trotter-Suzuki decomposition

Initially proposed by Trotter [111], and expanded on by Suzuki [112], Trotter-Suzuki

formulas — often also called product formulas — are a relatively simple and straightfor-

ward, yet powerful tool for constructing circuits. They are applicable if the Hamiltonian

can be written as a sum of operators

H =
L∑

j=1
H j ,
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where the time evolution governed by each individual H j , i.e. the unitaries e−i H j t , can

be implemented efficiently as a series of quantum gates. Then the total time evolution

dictated by the full Hamiltonian H can be approximated by applying [26]

e−i H t = exp

(
L∑

j=1
−i H j t

)
=

L∏
j=1

[
exp

(−i H j t
)]+O(t 2).

Since the error term is proportional to t 2, this method is suitable only for small times t ,

where t 2 ¿ t . To simulate longer times, the longer time t is usually divided into many

small segments ∆t = t/r , and the approximation is applied r times, each with time

step∆t . Apart from this first order formula (i.e. it is exact up to linear order in t ), higher

order formulas exist [113], where the nth order decomposition is exact up to t n , and

the error term is of order t n+1. Curiously, the odd-numbered orders exhibit the same

error as the next-lower even-order formula, and are therefore usually neglected [114].

Product formulas have been ubiquitous in the literature as a method to simulate

the dynamics of a quantum system since the first concepts of such calculations through

to more recent works [115–120]. Because of their significance, considerable effort has

gone into studying their properties and improving their performance by tweaking

parts of the method.

In 2014, after investigating the required gate count for quantum chemistry prob-

lems, Wecker et al. [121] came to the conclusion that straightforward application of

product formulas would lead to impractically deep circuits, i.e. the required coherence

time exceeded those that seemed realistic at the time on quantum hardware by many

orders of magnitude, leading the authors to the conclusion that drastic algorithmic

improvements would be necessary to make such calculations feasible. The authors

of Reference [122] argue that one important reason why Ref. [121] arrived at such

infeasibly high resource estimations is that the chemical systems considered were not

real-world molecules, but artificially created ones. In their study, which considers

real molecules, but also includes other improvements to the algorithm, the authors

conclude that much better scaling than previously reported is possible. Indeed, when

resorting to empirical studies of molecules for error scaling, the most convincing

results are those drawn from real compounds.



22 2.2. Time evolution for quantum chemistry

Many further variants of product formulas have been proposed and analysed since

then. Hastings et al. [123], for example, showed that — among several other optimi-

sations — rearranging the order of the individual terms before the decomposition

can significantly reduce the error due to averaging effects. Somewhat similar to the

idea of rearranging the terms of the Hamiltonian in Ref. [123] is the study by Childs

et al. [124], where the order of the terms is not fixed in an optimal way beforehand,

but rather rearranged randomly for every small time step ∆t . This can lower the

error bounds significantly due to cancellation and averaging effects and is surprisingly

efficient, given its simplicity.

Campbell [125] takes the approach of randomisation even further by not including

every term of the Hamiltonian in every time step, but rather randomly choosing them

according to their magnitude and adjusting their weights such that on average the

correct operator is applied. For electronic structure Hamiltonians, this random method

named qDRIFT can lead to considerably lower gate counts in the chemically relevant

time- and error regime [126]. An extension of this scheme [127] even allows fine-tuning

of the performance to specific calculations and hardware availabilities.

Another important aspect to consider is the tightness of the known error bounds.

Reference [128] shows that — again for electronic structure Hamiltonians — the

bounds given in Ref. [121] can be loose by up to sixteen orders of magnitude. This is

problematic, since for calculations not accessible to classical computers, the bound is

the most direct accuracy metric to determine necessary gate counts. Reference [129]

provides a more rigorous analysis of Trotter error than earlier works, arriving at much

tighter bounds. The expressions for these bounds contain nested commutators of

the terms in H , which emphasises one important feature of Trotter-Suzuki product

formulas: they automatically take advantage of commuting and near-commuting

terms in the Hamiltonian. This benefit is absent in many of the other methods

described in this chapter, and can reduce the errors significantly for some systems.

However, even though the required gate count was substantially reduced over time

through the just discussed investigations, the scaling of the inverse simulation error

of all product formulas remains polynomial in the circuit gate count.
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In the spirit of probing product formulas for their applicability to quantum chem-

istry, Section 4.2 in Chapter 4 explores a particular version of Trotterised time evolution

in this specific context and gives some realistic resource estimates for potentially

interesting problems.

2.2.2 Post-Trotter methods

Because of the significance of Trotter-Suzuki-type product formulas, later approaches

are often grouped together as “post-Trotter” methods. One important member of

this group is the linear combination of unitaries (LCU) method. First introduced

in Ref. [130], it was originally used to apply sums of different product formulas, so-

called multi-product formulas known from classical computations [131]. In this initial

iteration, the method is probabilistic and relies on post-selecting the ancilla for a

specific state with non-unity probability.

Berry et al. [132] then expanded the principle to directly apply a truncated Taylor

series expansion

e−i H t ≈1+
n∑

k=1

(−i t )k

k !

[
L−1∑

1̀... k̀=0
H 1̀ . . . H k̀

]
,

since this is also a sum of unitaries. One important improvement in that work is the

use of so-called oblivious amplitude amplification [133]. This variant of amplitude

amplification does not need knowledge about the input state — something that usually

makes the use of such an amplification impractical — hence the name oblivious. This

improves the method from probabilistic to a near-deterministic one. The authors

also describe a very efficient way to construct an appropriate gate sequence, taking

advantage of the particular structure of the terms in the series. Because the factorial

in the denominator suppresses the magnitude of the terms in the sum very quickly,

this method has exponentially better scaling of the gate count with the desired inverse

error than previous methods. Introducing a correction step in the process can further

decrease the complexity of the circuit [134].

The LCU method is also used a number of further implementations for Hamiltonian

simulation. Low et al. [135] use linear combinations of product formulas, very similar
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to the original work on LCU in Ref. [130]. The key improvement is that the specific

multi-product formulas proposed there take advantage of commuting terms in the

Hamiltonian — like pure product formulas — while improving the complexity scaling

with the inverse error to be only poly-logarithmic.

Another technique that benefited from the use of LCU is that of Hamiltonian

simulation by quantum walks, also called Szegedy walks. These walks seek to obtain

information about the Hamiltonian not by directly implementing a system’s time

evolution, but rather by applying a unitary operator of the form W = e i arccos(H), the so-

called walk operator. The spectrum of this operator is isomorphic to the spectrum of H ,

and therefore allows inference of the Hamiltonian’s eigenvalues from the eigenvalues

of W . Crucially, the operator W can be implemented exactly on a quantum computer,

while this is usually not the case for H .

In Ref. [136], LCU is applied to enhance the cost scaling with the error of Szegedy

walks while retaining their advantage for sparse Hamiltonians. For the specific case of

quantum chemistry, and also using LCU combined with Szegedy walks, the authors

of Ref. [137] arrive at the conclusion that the number of T -gates when using their

approach scales like

O
(

N 3 +N 2 log(1/ε)

ε

)
,

which is very similar to the truncated Taylor series method in the allowed error ε of the

simulation, but better in the number of atomic orbitals N . The authors furthermore

estimate that using their method, some quantum chemistry problems that are currently

inaccessible for today’s classical hardware could be solved within a few hours using

only about a million physical superconducting qubits, assuming an error rate of 10−3,

which corresponds to a few hundred logical qubits.

Further evolutions of the quantum walk approach are quantum signal process-

ing [138, 139] and qubitization [140], which seek to linearise the Szegedy operator

W such that the operator e−i H t is recovered. In addition, qubitization has variants

specifically for quantum chemistry [141].



CHAPTER 2. LITERATURE REVIEW 25

The methods that make more elaborate use of LCU than the truncated Taylor

approach, i.e. multi-product formulas, qubitization, and quantum signal processing,

have been shown to exhibit even better scaling for many types of practically relevant

Hamiltonians [137, 140–142]. However, there are instances where they are less suited;

one prominent example being the simulation of time-dependent Hamiltonians. Even

for intrinsically time-independent cases, introducing a time dependence by transform-

ing to a rotating frame can be beneficial if the Hamiltonian is diagonally dominant. In

contrast to qubitization and quantum signal processing, the approach of the truncated

Taylor series in [132] can be applied to such time-dependent cases with reasonable

overhead, as shown in Refs. [143, 144], making it very relevant for such instances.

Because of this continued relevance of the truncated Taylor series method, Sec-

tion 4.1 in Chapter 4 investigates a modification that increases its performance when

used for quantum chemistry problems, and finds significant improvements over the

canonical version.

2.3 Hamiltonian energy spectra

The preceding sections already stated that the time evolution of Hamiltonian systems is

often seen as a very central and important task in regards to potential uses of quantum

computers. One of the reasons for this is the fact that once an efficient time evolution

algorithm has been implemented, this evolution can be used to determine energy

levels. This, in turn, reveals important information about the system, like equilibrium

positions, excitation energies, reaction rates, or emission and absorption spectra of

molecules. Perhaps the most well-known way to do this is the so-called quantum

phase estimation (QPE) algorithm [145]. Repeatedly performing the QPE algorithm

with an initial state that contains mostly the eigenstates of interest reveals (part of)

the Hamiltonian spectrum.

Perhaps the most significant downside to using this technique is that it requires

quite deep circuits, and the time evolution to be controlled on varying ancillary qubits,

followed by a quantum Fourier transform, further increasing the circuit depth. This

limits its usefulness in the near- to mid-term eras of NISQ and early fault tolerant
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devices. Several resource-friendlier techniques have been proposed for determining (a

part of) the spectrum of a given Hamiltonian; one approach is to keep using ideas from

QPE, but reduce its quantum resource requirements through clever measurement

and post-processing techniques.

A first simplification is to use only a single qubit as ancilla, and sequentially

estimate each bit of the phase separately, starting from the least significant bit. Using

already gained information about bits of lower significance, the higher significance

bits can then be determined in an iterative manner, which considerably reduces the

hardware requirements. This procedure was first discussed by Dobšíček et al. [146]

under the name iterative phase estimation algorithm (IPEA).

Another approach was proposed by Svore et al. [147], referred to as fast phase

estimation, where the quantum system evolution times are not neatly aligned with the

bits in the binary representation of the phase, but rather chosen randomly. This allows

inference of information about multiple bits at a time, ultimately lowering the required

circuit depth and number of qubits further. The Bayesian phase estimation (BPE) [148]

approach takes this randomised idea even further, by first assuming a prior distribution

of what the phase might be, collecting data throughout the iteration, and continuously

updating this prior in order to infer the (likely) ideal next measurement. This procedure

is shown to yield even quicker convergence in some cases, with the additional benefit

of being able to handle noise in the system better than previous techniques. Within

the BPE framework, it is possible to eliminate the need for controlled time evolution

(which is usually a big challenge), in exchange for controlled state preparation, as

Sugisaki et al. [149] show. Variants of the latter approach specialised for the calculation

of spin excitations [150] and vertical ionisation energies [151] also exist.

Even better suited for NISQ-type hardware might be the approach in Ref. [152],

which prepares some initial state populated with the eigenstates of interest, and

then directly measures the expectation value of the time evolution operator via a

single ancilla. Fourier transforming this time signal on classical hardware then reveals

the spectrum. The authors of Ref. [153] explore this idea further, and provide some

numerical evidence for simulated quantum computers, but highlight some limitations
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on noisy hardware, in this case superconducting qubits. In Ref. [154], a similar idea is

investigated, but rather than exactly extracting eigenvalues, this work presents efficient

methods of determining in which one of several bins an eigenvalue might lie. Clinton

et al. [155] build on this approach and, using the practical example of the Fermi-

Hubbard model and building on gate synthesis methods presented in Ref. [156], show

that the combination of these techniques moves the resource requirements for an

accurate phase estimation quite close to what is currently available on noisy hardware.

While discovering the relative phase change of a quantum state via Fourier trans-

form is a relatively well-explored route, it is worth noting that maximum-likelihood

approaches based on classical and quantum Fisher information have been shown

to yield the same scaling as Fourier-based methods [157, 158]. It is possible that

as methods become more sophisticated, despite both methods having equivalent

asymptotic scaling, one of them will exhibit significantly smaller constant factors.

Now briefly moving away from QPE approaches, an alternative way that com-

pletely eliminates the need for time evolution altogether is to use variational quantum

eigensolvers (VQEs), whose basic principles have already been discussed in Section 2.1.

Because the ground state energy of a system often takes the place of the most significant

and important quantity, many methods address this state and its energy exclusively.

While some of these techniques show promising performance in regards to finding the

ground state energy of a system, one drawback of VQEs is that although such a ground

state preparation is conceptually relatively straightforward, some more elaborate

techniques are required to prepare excited states.

One solution is to search for the minimum of the shifted and squared Hamiltonian

(H−λ)2, which will find the eigenstate closest in energy toλ. This method is commonly

referred to as the folded spectrum method and has been described as early as 1934

by MacDonald [159], has since been used e.g. in classical computations for silicon

quantum dots, and was recently also shown to work on ideal simulated quantum

hardware in a method called folded spectrum VQE [160]. Although it comes with

a quadratic penalty in the number of terms in the Hamiltonian that needs to be

simulated, this method might be useful in some cases on NISQ hardware.
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The spectrum of a Hamiltonian can also be built up one state at a time using

variational methods, as Ref. [161] shows. Once the ground state |ϕ0〉 of a Hamiltonian

H is found, a modified operator H1 := H +β0 |ϕ0〉〈ϕ0| can be used, in which the

energy of the found ground state is raised such that the ground state of H1 is now

the first excited state of H . Iterating this procedure can, in principle, discover the

whole spectrum of H and its corresponding eigenstates, although highly excited states

require significant effort. The authors of [162] present a similar scheme based on

imaginary time evolution.

If the goal is to prepare any (random) eigenstate and determine its energy, another

approach is to minimise the variance of the energy var(E ) = 〈H 2〉− 〈H〉2 ≥ 0, which will

only vanish for eigenstates. Zhang et al. [163] use this approach to sample high-energy

eigenstates of a Hamiltonian. Once such an eigenstate is found, its actual energy can

be straightforwardly measured. The authors of Ref. [163] demonstrate this principle

using a similar approach, reaching the conclusion that targeting a specific state with

a known energy and optimising for the energy and variance simultaneously can lead

to faster convergence than exclusively using either one of the two.

The discussion so far has been focused around determining energies on an absolute

scale, i.e. relative to a reference system that does not evolve in time. However, often this

is not strictly necessary. Many interesting properties — such as the aforementioned

absorption and emission spectra, reaction rates, etc. — are dictated by the magnitude

of the gaps between the eigenstates, rather than their absolute energies. Several works

have looked at this problem in particular, and how to implement it in a resource-

friendly way on quantum hardware.

Reference [164] — inspired by [165] — proposes to approach this problem by

repeatedly preparing a superposition of two eigenstates as an initial state, acting k

times on that state with a unitary operator whose effect is in some deterministic

way related to the energies, and then measuring the overlap with the initial state.4

The authors demonstrate their method with a relatively simple implementation of

calculating energy gaps in an H2 molecule on IBM quantum hardware. One downside

4In practice, this overlap is measured by un-preparing the final state and measuring the overlap with
the computational basis state from which the initial state preparation started.
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of this work is the necessity of preparing the initial superposition of exactly two

eigenstates, which might be non-trivial.

References [166, 167] follow essentially the same idea as [164], but with some slight

modifications. In these approaches, the times for which the system is evolved are

drawn probabilistically, and a superposition of more than two states is investigated.

Numerically simulated and experimental results show that this method can — given

enough quantum resources and a-priori knowledge about the system — yield quite

accurate results.

The authors of Ref. [168] present yet another similar scheme, but use the isochron-

ally sampled time evolution of the expectation value of an appropriate observable

more directly via a Fourier transform to unveil the eigenenergies — quite similar to

the method in Ref. [152], but without the need for any controlled gate. They further

note that if an observable can be found that anti-commutes with the Hamiltonian,

even the absolute spectrum can be calculated, not only the transition energies. In the

same manner, Stroeks et al. [169] also use an isochronally sampled signal, but only

consider the overlap of the time-evolved state with the initial state instead of generic

observables. Using the ESPRIT algorithm [170], they show that under some conditions,

equivalent information can be extracted from the imaginary-time evolution signal

(as opposed to real-time evolution), and propose a Monte Carlo scheme to obtain

that signal from a given Hamiltonian.

Matsuzaki et al. [171] investigate a method to find the gap of a Hamiltonian

also based on the Fourier transform of a signal sampled at regular intervals, but

partially circumvent the problem of preparing an appropriate initial state by employing

quantum annealing (QA). Within the regime accessible to QA, this may be a viable

option for future applications.

Overall, the task of efficiently finding energies, or even energy differences, of a

Hamiltonian remains a topic of high importance and research interest in the realm

of quantum computation. Finding absolute energies via QPE and related techniques

often still requires too many quantum resources to be viable, not least because of the

necessary controlled time evolution, while VQE protocols are not expected to scale
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well due to issues with ansatz expressibility, barren plateaus, local minima, and the

required measurement effort. Approaches for determining the size of energy gaps

in the Hamiltonian via time series analysis seem promising candidates for being

applicable on NISQ hardware, but can also scale to early fault-tolerant and fully

error corrected devices.

The drawback of these time series methods is that quite often, little is known about

which observables should ideally be used for the time series in order to yield good

signal. Chapter 5 proposes a method that circumvents this problem by employing

the technique of classical shadows, which allows the simultaneous evaluation of

exponentially many observables, mitigating this problem of selecting appropriate

operators by hand a priori. Correlation analysis between the observables can then

recover signal even when no single observable would suffice.

2.4 Preparation of Hamiltonian eigenstates

As discussed in the previous section, when modelling physical systems — such as

molecules, but also other key models of interest like spin chains or the Fermi-Hubbard

model — on quantum hardware, a key quantity of interest is the energy spectrum of

the simulated system. It alone often contains valuable information about the system’s

core characteristics. However, in some cases, it can be desirable to actually prepare

one of the Hamiltonian eigenstates on given quantum hardware to perform additional

measurements or transformations on it. This allows the inspection of properties not

directly reflected in the Hamiltonian (and therefore the energy spectrum), e.g. certain

symmetries, magnetisation in the absence of an external field, etc.

One method where this feature of preparing an eigenstate is included without any

extra effort is that of the previously discussed variational quantum eigensolver, as they

optimise the parameters of some ansatz circuit to produce a state, whose energy is

minimal within the accessible parameter space. Therefore, by their very nature, these

approaches produce the full ground state in the register (provided they converged

appropriately), which is then of course also available for further investigations besides
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measuring its energy. As elaborated on in Section 2.3, this procedure is not limited

to the ground state, but can also work on excited states.

Due to the aforementioned limitations and practical problems of finding the

appropriate circuit structure and ideal parameters, it may not seem likely that VQE

methods will have many applications beyond the NISQ era. Therefore, I will turn

focus to the early fault-tolerant and fully error-corrected hardware regimes, in which

algorithms with a higher demand on quantum resources but without convergence

problems seem likely to be more relevant.

Perhaps the most ubiquitous, and what might be called the “canonical” way to

prepare eigenstates of a defined energy, is the previously mentioned quantum phase

estimation (QPE) algorithm. As mentioned in Section 2.3, performing a QPE with some

initial state |ψ〉 that is not an eigenstate will return an approximation to the energy of

one of the eigenstates with a probability proportional to the overlap of the respective

eigenstate |ϕj 〉 with the initial state |〈ϕj |ψ〉|2. However, additionally (and crucially),

after the QPE procedure, the main register (without the ancilla) is left in a state that has

significantly more overlap with |ϕj 〉 than before the procedure [26, Sec. 5.2.1]. It can

therefore be used as a probabilistic state preparation method, if the initial state |ψ〉
already has considerable overlap with the target state. Additionally, when targeting a

specific state, its energy must be known in advance through other means; a limitation

VQEs typically do not face when trying to prepare the ground state.

A more direct approach to prepare an eigenstate is through the use of so-called

quantum nondemolition measurements (QND) [172], originally introduced in the

context of gravitational wave detectors [173]. This type of measurement refers to

observables whose repeated evaluation at various points in time does not change

the measured quantity. Trivially, any observable that commutes with the system

Hamiltonian H is a QND observable, and thus also the energy E = 〈H〉 itself. In

Ref. [174], the authors use the coupling of the system to an ancilla qubit in order to

measure the full interacting many-body Hamiltonian H in a single shot, thus collapsing

the system into a narrow band of eigenstates, with energies close to the measured one.

To show its real-world applicability, the procedure is demonstrated experimentally
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on trapped ions. While QND measurements are a very interesting research direction,

the method is difficult to generalise to arbitrary Hamiltonians and thus not quite as

generic as most other methods described here.

Another method, which is somewhat related to the imaginary-time evolution

sometimes used in VQEs, is the so-called probabilistic imaginary-time evolution (PITE).

It uses both controlled forwards- and backwards real-time evolution, as well as mea-

surements, to implement the (non-unitary) imaginary-time evolution probabilistically.

Though conceptually intriguing, the authors show that upon implementation, in many

cases the success probability of each time step remains impractically small, suppress-

ing the chance of success of the whole procedure exponentially. Therefore, it seems

that further work is required to make this approach feasible for practical applications.

Real-time evolution as in QPE and PITE can also be used in a stochastic way to

selectively keep only a specific set of states within a small energy window. This method,

called the rodeo algorithm [175], uses a circuit construction very similar to that of QPE,

but the times for which the quantum system is evolved between measurements are

drawn from a probability distribution. This results in random, but rapid, convergence

of the state towards the target. Similar to QPE and other related approaches, it requires

knowledge of the energy of the targeted state, controlled time evolution of the system,

and measurements of ancilla qubits. This approach seems very promising, but its

stochastic nature leaves some room for improvement.

Chapter 6 will present a method that is quite closely related to the rodeo algo-

rithm and quantum phase estimation, while also drawing from ideas of the PITE

approach, but has some distinct advantages over each of these existing methods.

Although still probabilistic in its outcome for a specific run, the method itself is

deterministic, which allows rigorous quantification of the convergence and usage

of prior knowledge of the state.
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2.5 Simulating quantum computers on classical hard-
ware

In the current era of quantum computing, where NISQ devices are just bordering on

outperforming classical computers in some highly specific tasks, it is apparent that

development of new quantum algorithms, potentially targeting hardware many years

away, cannot be bound to the present hardware capabilities. In the early phase of

quantum computing, the most significant contributions to the field have been made

by deriving them analytically, as evident by the description in Chapter 1. The Deutsch–

Josza algorithm [5], Shor’s algorithm [6], and Grover’s search [8] are just some of the

most popular analytically derived results.

However, as the literature on quantum algorithms becomes more and more popu-

lated with increasingly sophisticated methods of achieving desired results on quantum

hardware, analytic results are sometimes difficult to obtain. In these cases, a demon-

stration via direct implementation of a scheme can often suffice as a first proof-of-

concept. Because new algorithms frequently target hardware with noise levels and

coherence times beyond the currently available devices, we often resort to classical

simulation of such quantum processors.

In the most basic case of wanting to simulate only a few qubits and trivial gates, a

simulator can be quickly implemented using any sufficiently sophisticated linear alge-

bra system and does not require any software packages specialised in simulating quan-

tum systems. However, using software specifically dedicated to emulating5 quantum

hardware can be useful when collaborating with other researchers, publishing research

code, requiring specialised, non-trivial quantum operations, and, of course, when

trying to simulate so many qubits that it substantially stresses the classical hardware

and optimisations are required to keep simulation times and memory load feasible.

As many research groups globally work concurrently on advancing the field of

quantum computation, diverse use cases and demands led to the emergence of a great

variety of emulator software packages. In this section, I will briefly address the most

5I will use simulating and emulating interchangeably in this thesis, as is common in the quantum
(but not classical) computing field.
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popular implementations together with some of their advantages and disadvantages,

where appropriate, to offer a bit of background for the development of pyQuEST, a

wrapper for an existing quantum simulation suite QuEST, presented in Chapter 7.

Many simulators discussed here are not exclusively dedicated to bringing the

best possible simulation to the user, but rather provide a whole toolkit to develop

and work with quantum algorithms and circuits, and run it on various backends, i.e.

mechanisms that perform the actual calculation.

Perhaps the most widely used one of those packages is Qiskit [176], developed

by IBM, and available for Python. It contains a wide variety of tools and functions to

create and manipulate quantum circuits. The standard installation of Qiskit comes

with a highly non-optimised built-in quantum simulator for very simple tasks on few

qubits. For larger calculations requiring more resources, the Aer package is provided

by the same developer team, which seamlessly integrates with an existing Qiskit

installation. However, Qiskit can also deploy to other backends, some of which are

classical simulators (like Rigetti Quantum Virtual Machine, or the graphics card (GPU)

accelerated cuStateVec), but most address actual quantum hardware, like that provided

by IBM Quantum, Azure Quantum, Alpine Quantum Technologies, Quantinuum, etc.

Another popular Python package for creating and modifying circuits is Cirq [177],

developed predominantly by Google. Very similar to Qiskit, it focuses mainly on

providing functionality for conveniently handling quantum circuits, and comes with

basic, but quite inefficient, simulation capabilities. For a more optimised simula-

tor backend, the developers point to qsim [178], which integrates well with Circ.

Furthermore, some backends addressing various cloud-based quantum hardware

architectures are also available.

The Amazon Braket Python SDK 6 [179] follows a very similar pattern. It provides

tools to create circuits, comes with a local simulator, but can also run the user’s

algorithms on more powerful classical hardware provided by Amazon Web Services,

as well as on cloud-based NISQ devices by various providers. The Microsoft Azure

Quantum Development Kit [180] uses a slightly different philosophy. It comes not only

6SDK here means software development kit.
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with support for Python, but also has its own quantum programming language Q#,

as well as APIs for .NET languages. Similar to above, results of circuit executions are

generated via either a local simulator, or cloud-based quantum hardware. Another

project in the same vein is ProjectQ, initially developed by Steiger et al. [181] at ETH

Zürich. It, too, provides similar capabilities of creating circuits and abstractions, can

execute circuits using the builtin classical simulator, but may also dispatch them to

NISQ hardware available in the cloud.

As mentioned above, all discussed options for simulators so far are first and

foremost full toolkits, mainly focused on providing the user with instruments to

efficiently and conveniently implement or transform their circuits and algorithms.

Naturally, their simulation backends are often not highly optimised, and thus do

not utilise the available hardware to its full potential. Therefore, when simulator

performance is of high importance, software focusing more strictly on optimising the

classical simulation aspect can often be beneficial.

One such high-performance simulator is the Intel Quantum Simulator [182] (Intel-

QS), formerly known as qHiPSTER [183]. Available for C++ and Python, it takes the

relatively straightforward approach of storing the full pure state vector (but importantly

not density matrices) and implementing gate applications to it algorithmically (rather

than via explicit vector-matrix-multiplication). The main design foci of this software

are parallelisation of these operations across multiple CPUs with shared memory (i.e. a

single computer with a multi-core CPU), as well as distributing the state across distinct

but connected computers (often called nodes) in a compute cluster. With development

supported by a large CPU manufacturer, it makes excellent use of advanced processor

instruction sets such as the Advanced Vector Extensions (AVX). It cannot, however, run

its calculations on graphics processing units (GPUs), which often provide a significant

reduction in runtime due to their massive parallelisation capabilities.

A more versatile but also very performant simulation software is Qulacs [184]. It

allows storing pure state vectors, but also density matrices, enabling the simulation

of noisy circuits at the cost of using more memory than a pure state calculation. Also

available for use through C++ and Python, it can utilise multiple CPU cores and
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GPUs to carry out its calculations. Distribution across multiple compute nodes is

also supported, although this comes with a more limited set of available operations.

Outside the realm of the popular languages C++ and Python, the framework

Yao [185] is worth mentioning. It is written for the Julia programming language [186],

whose combination of high-level language features combined with strong performance

make it an interesting choice for applications like emulating quantum hardware.

Supporting pure state vector and density matrix quantum registers, the calculations

can be performed on either multiple CPU cores, or on GPUs. Though the Julia language

is not the most widespread, Yao’s high performance combined with Julia’s features

make it an intriguing alternative to other more popular simulators for C++ and Python.

The final simulator to mention here is QuEST [187], another emulation software

package storing the full pure state vector or density matrix in memory. Its approach

is very similar to the just mentioned Intel-QS and Qulacs simulators, in that it aims

at high performance calculations by applying gates to quantum states in an efficient

algorithmic manner, instead of straightforward matrix-vector-multiplications. QuEST’s

feature set, however, is appreciably more general than that of the simulators discussed

above, as it supports multiple CPU cores, GPU acceleration for both Nvidia and AMD

graphics cards, and can scale to compute clusters without loss of features. The main

downside of QuEST is that code utilising it must be written in C or C++, which often

requires more time and care than development in higher-level languages like Python.

Chapter 7 presents a solution to this limitation by describing a Python interface,

which can be used to interact with the QuEST backend while still using Python’s

rich feature set.

It should be noted that while storing the full state vector or density matrix in

memory is the most general way to emulate quantum hardware, it is also the most

resource-hungry approach. For specific types of problems, techniques like matrix prod-

uct state [188] (MPS) representations or low-rank stabiliser decompositions [189] can

save large quantities of memory and compute time. Some simulation software uses this

to provide more efficient calculations for specific classes of problems. In the present

context of full state simulators, however, these will not be elaborated on in detail.
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In addition to the discussed simulators, there are countless other software utilities

targeting different aspects of quantum computing and related topics, which are also

outside the scope of this review. To the interested reader, Reference [190] provides a

large collection of such projects, which is still not complete, but illustrates the great

variety of available codebases in the context of quantum computing.
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Still round the corner there may wait, a new road
or a secret gate.

— J. R. R. Tolkien

3
GENERIC CIRCUIT SYNTHESIS

The research in this chapter was conducted jointly by Simon Benjamin, Cica Gustiani, and myself,

with the core idea coming from SB, methodological details being developed by all three, and

numerical results presented later mainly generated by CG (subspace compilation results) and RM

(all other results). Its findings were published as Ref. [191], which this chapter will closely follow.

All writing below is my own, in places using text verbatim from the published manuscript.
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This first research chapter of the present thesis will focus on an exploratory effort in

synthesising generic quantum circuits. For the particular approach described here, the

desired operator U , which the output circuit should approximate or exactly represent,

must be given as a “black box” operator on a (real or simulated) quantum device,

similar to the method discussed in Ref. [92]. In simulation, this can take any form: a

full matrix, an algorithmic description, a circuit in a different gate set, or any other

way which appropriately describes which input states map onto which output states.

On actual quantum hardware, this could be, for example, an inefficient and expensive

implementation via a deep circuit, for which a more concise form should be found.

The investigated method integrates well-known ideas with some, to the best of

my knowledge, new techniques. These novel contributions are the restriction of the

cost function to a certain subspace, detection of redundant gates using the quantum

metric tensor, and the application of adapted versions of random search and tabu

search to the problem of finding a circuit structure.

To assess the efficacy of the proposed algorithm, the quality of the output circuits,

as well as the scaling properties to many qubits, a diverse set of tasks is considered

under various constraints on a range of numbers of qubits. To ensure the ability to

investigate the influence of using different gate sets on the outcome, all calculations

were performed on quantum devices with up to 20 qubits, emulated by classical

hardware via pyQuEST [192] (see also Chapter 7) and QuESTlink [193].

This chapter is structured as follows. Section 3.1 explains how the presented

method relates to and builds on previous work, and introduces the cost function used

as part of the algorithm. In Section 3.2, the specific routines and subroutines used

to generate the circuits are discussed in detail, followed by Section 3.3, in which the

results of various synthesis tasks are reported. Their significance and implications

are then discussed in Section 3.4.
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3.1 Unitary equivalence via energy minimisation

3.1.1 Previous work

This chapter substantially builds upon earlier formalisms introduced in, for example,

Refs. [92, 194]. For completeness, this section briefly recapitulates their methods and

motivates the later proposed extensions to them.

When synthesising a circuit C for a given unitary U , some measure of how well C

approximates U is necessary to drive an optimisation routine towards (approximate)

equivalence of C and U . Jones and Benjamin [194] use the energy of an artificial

Hamiltonian to provide such a measure for the case where equivalence is wanted only

for a single input state |ψ0〉. Khatri et al. [92], on the other hand, provide a method

called Hilbert-Schmidt test, which uses the average fidelity 〈ψ|C†U |ψ〉 over Haar-

distributed random states |ψ〉 to take all input states into account when measuring

the closeness of U and C. In the following, the derivation starts from the formalism

in [194] and extends it to arrive at a variant of the Hilbert-Schmidt test, which will then

be used as the cost function in the rest of the investigation.

The technique in [194] starts by first applying the desired unitary U to the target

input state |ψ0〉. Then, the task is to find a circuit C† that inverts the action of U , such

that at the output |ψ1〉 := C†U |ψ0〉 the initial state |ψ0〉 is recovered up to a global

phase.7 If the output is proportional to the input, |ψ0〉 ∼ |ψ1〉, then necessarily C ∼U

holds for the input state |ψ0〉. This condition can be checked using an appropriately

constructed (artificial) gapped Hamiltonian H̃ , whose ground state of some known

energy is |ψ0〉. If this ground state energy is measured at the output, the original

input state is necessarily recovered. The initial problem is therefore now an energy

minimisation task — as depicted in Fig. 3.1 — of the form

min
C

〈
ψ0

∣∣U †CH̃ C†U
∣∣ψ0

〉
. (3.1)

However, it is often desirable to synthesise a circuit C that completely recovers

the action of a given unitary U for all relevant input states. This might be the full

7In this chapter the symbol ∼ between operators means equality up to a potential global phase, i.e.
A ∼ B ↔ A = e iθB with arbitrary real θ.
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∣∣ψ0
〉

...
U C† ...

∣∣ψ1
〉

Figure 3.1: The setup used in Ref. [194] to synthesise a circuit C which has the same action on
|ψ0〉 as U . The target is |ψ1〉 ∼ |ψ0〉.

Hilbert space of |ψ〉 — I will call it H — or a closed subspace thereof, depending on

the application. Recent research [91, 195–198] has shown that in some cases, using

a subset of k ¿ dim(H) random states |ψk〉 sampled from H, and minimising the

sum of their energies

min
C

∑
k

〈
ψk

∣∣U †CH̃ C†U
∣∣ψk

〉
(3.2)

is a sufficient condition to get unitary equivalence. However, this may only hold for

highly structured operators. Therefore, in this chapter, cost functions building on

Ref. [92] are used to probe all states in the Hilbert space simultaneously, rather than

restricting them to a random sample thereof.

Starting from Eq. (3.1) and Fig. 3.1, it is possible to achieve full unitary equivalence

of U and C by exploiting the Choi–Jamiołkowski isomorphism [199, 200]. From an

all-zero input, first the maximally entangled state
∣∣ψ′

0

〉=∑
k |k〉⊗ |k〉 is created. Then

the action of C†U on every state in H can be mapped to the action of C†U ⊗1 on the

single state
∣∣ψ′

0

〉
in the space H⊗H′, where H′ is a copy of H. Figure 3.2 shows a

circuit construction of this method, which is equivalent to the Hilbert-Schmidt test

introduced in Ref. [92]. The output state
∣∣ψ′

1

〉
is proportional to the input state

∣∣ψ′
0

〉
if and only if C ∼ U . Therefore, applying the inverse of the preparation circuit that

created
∣∣ψ′

0

〉
returns the state to the original computational all-zero state if indeed

C ∼U . In order to estimate how close the result is to this ideal, any Hamiltonian H̃

which has |0〉H⊗|0〉H′ as its unique and gapped ground state can be used as an artificial

Hamiltonian. Because an expectation value of 〈ψ1|H̃ |ψ1〉 = 0 exactly corresponds to

U ∼ C by construction, energy minimisation techniques can be used to find a circuit

C which is equivalent to a given unitary U for all input states. Note that the choice

H̃ = |0〉〈0|H⊗|0〉〈0|H′ would exactly recover the (global) Hilbert-Schmidt test, which
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has a target expectation value of 〈H̃〉 = 1, as opposed to 0 which is used in all other

discussion presented in this chapter.

|0〉H

|0〉H′

H

H

H

...

...

∣∣ψ′
0

〉

U C†

∣∣ψ′
1

〉

...

...

H

H

H |ψ1〉

Figure 3.2: The circuit setup equivalent to a Hilbert-Schmidt test in Ref. [92], which was used
to synthesise C ∼U . The target is |ψ1〉 ∼ |0〉H⊗|0〉H′ .

As shorthand notation for the cost function, 〈H̃〉 will be used to mean the expecta-

tion value 〈ψ1|H̃ |ψ1〉 in the full augmented space with |ψ1〉 as produced by the circuit

in Fig. 3.2. Possible choices for H̃ are discussed in the next subsection.

Using 〈H̃〉 to determine unitary equivalence ignores global phase factors by which

U and C might differ. In most scenarios, this is desirable, since such a global phase is

physically irrelevant. However, if the resulting C is to be used in a controlled fashion

within a larger circuit, a global phase mismatch between U and C becomes a physically

relevant relative phase. In this case, an additional phase gate with an appropriate

parameter must be added to C at the end of the synthesis process. A simple Hadamard

test [201] can be used to determine the appropriate parameter of this final phase gate.

3.1.2 Synthesis Hamiltonians

When expressing the condition of unitary equivalence as an energy minimisation prob-

lem, there is some freedom in choosing an appropriate H̃ , as any gapped Hamiltonian

with the all-zero computational basis state as its ground state can be used. In this

analysis, the two Hamiltonians used are

Hsum = 1

2
+ 1

2N

∑
k
σz

k (3.3)
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where σz
k is the Pauli-z operator acting on qubit k, and N is the total number of qubits,

and

Hproj =1−|0〉〈0| . (3.4)

While Hproj corresponds — as previously mentioned — to the global Hilbert-Schmidt

test, Hsum is more closely related to the local Hilbert-Schmidt test [92], and the local

cost function proposed in [202]. While both of these Hamiltonians have a ground state

energy of 0 and maximum energy of 1, they differ in the energy structure of their excited

states, and thus also in how they measure the closeness of a circuit is to a target unitary.

The projector-based Hproj simply measures the overlap with the desired all-zero

state, while assigning every other product state the same maximum energy of 1.

On the other hand, the sum-based Hsum assigns each computational basis state

an energy proportional to its Hamming distance [203] from the ground state, i.e. it

measures how many bit flips would be necessary to get to the desired all-zero state.

The state |0. . .01〉 therefore has a lower energy than the state |1. . .11〉 when measured

with Hsum, while Hproj evaluates them as being at equal distances from the target.

The choice of Hamiltonian can have a significant impact on the difficulty of

finding the optimal parameters. For instance, Refs. [92, 202], discuss that global

cost functions like Hproj are very likely to come across barren plateaus during the

parameter optimisation, while employing local costs — such as Hsum — is much

less prone to such problems.

Even though in this work only Hsum and Hproj are considered, many other Hamilto-

nians may be used. Depending on the application, they can be designed to emphasise

different properties of what constitutes a good output state, and may penalise some

highly undesirable properties more harshly than others.

3.1.3 Subspace compilation

In some cases, only a small subspace of a unitary is relevant to the task at hand. One

example would be the time evolution operator under a particle-number conserving

Hamiltonian, when starting from a state with a specific number of particles. For these

instances, it is not necessary and — from the point of view of minimising the total
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required resources — even undesirable to synthesise a circuit implementing the entire

unitary. Such a unitary would have the form

U =U1 ⊕U2 ⊕U3 ⊕·· ·⊕Un ,

where Uj are unitaries in the respective subspaces, and ⊕ is their direct sum. The

task is then, given U and the subspace of interest as a set of basis states, to synthesise

a circuit that correctly implements one of the unitaries Uj , without regard for the

rest of the operator.

This protocol will be referred to as subspace compilation. Provided the size of

the subspace that Uj operates on is significantly smaller than the full space of the

operator U , the described method can significantly decrease the number of gates in

the synthesised circuit, as well as arrive at its result in much less time than synthesis

of the full unitary.

For simplicity and without loss of generality, assume the unitary is only composed

of two blocks, U =U1 ⊕U2, where U acts on the full Hilbert space H=H1 ⊕H2, and

U1 and U2 act on the subspaces H1 and H2, respectively.

In this setup, it is sufficient to create a copy of the subspaceH1 in order to synthesise

a circuit recreating the action of U1. This is in contrast to the full space compilation

described above, where a copy of H was required. In the augmented space H⊗H′
1,

the creation of Bell pairs in Fig. 3.2 is then replaced by a custom preparation operator

P , which has the action

|Φ〉HH′
1

:= P |0〉H⊗|0〉H′
1
= 1√

d1

∑
sj∈S

|sj 〉H | j 〉H′
1

, (3.5)

with d1 being the dimension of the subspace H1, and S being an orthonormal basis

in H′
1. Note that P maximally entangles H and H′

1, i.e. TrH |Φ〉〈Φ|HH′
1
= 1H′

1
.

From here, the compilation procedure is the same as for the full-space case, where

first the target U , and then the inverse of the circuit candidate C† are applied. Finally,

before the measurement in the computational basis, the state preparation must be

reverted using P †. Figure 3.3 shows the circuit setup of this method, which can be

seen as an interpolation between Fig. 3.1 and Fig. 3.2.
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|0〉H

|0〉H′
1

...

...

P

∣∣ψ′
0

〉

U C†

∣∣ψ′
1

〉

P †

...

...

|ψ1〉

Figure 3.3: One cost evaluation in a subspace compilation. The unitary P prepares a maximally
entangled state |Φ〉HH′

1
according to Eq. (3.5).

3.2 Ab initio circuit synthesis

In this section I discuss algorithms and subroutines used to vary the structure of ansatz-

circuits and their parameters in order to minimise the expected energy under specific

Hamiltonians, thereby solving various circuit synthesis and VQE problems. Notation

and definitions for our synthesis protocols are introduced in the very next subsection,

while Sections 3.2.2 to 3.2.5 describe procedures and subroutines, which are then used

within the algorithms laid out in Section 3.2.6.

3.2.1 Formalism

The building blocks of the produced circuits are primitive gates Gk , which can be

single-qubit rotations, multi-qubit rotations, SWAPs, etc., acting on various sets of

qubits. In the following, it is assumed that every gate has a classical parameter, e.g.

a rotation angle, associated with it. The formalism is easily extended to also include

non-parametrised gates; they are simply gates whose parameter is permanently fixed.

In the terminology used here, altering the parameter associated with a gate does not

constitute a replacement of the gate itself.

A specific set of gates L = {Gk } is referred to as a gate library. Note that each

Gk specifies which qubits the gate acts upon; for example, the Pauli-x rotations on

different qubits 1 and 2 — Rx
1 and Rx

2 respectively — would be considered two separate
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gates Gk . This allows a gate library to include information about only locally available

gates and qubit connectivity.

A circuit structure (or ansatz circuit) C can be represented by an ordered sequence

of such primitive gates

C := (
C0,C1, . . . ,CN−1

)
, (3.6)

where Ck ∈ L.

Before the circuit can be applied to a quantum state, a parameter vector θ contain-

ing the parameter θk for each gate Ck must be assigned. In the following discussion

this is written as

C(θ) := (
C0(θ0),C1(θ1), . . . ,CN−1(θN−1)

)
.

Applying a circuit C(θ) to a state |ψ〉 consequently means evaluating

CN−1(θN−1) · . . . ·C1(θ1) ·C0(θ0) |ψ〉 .

A given circuit C(θ) can be modified in two fundamentally different ways. One is

to change the parameters θ, which will be called parameter optimisation. The other

is to add or remove gates to or from the circuit structure C, which will be referred to

as circuit structure modifications. The procedures for how these modifications are

performed are explained in detail in the following subsections. The routines are also

given as simplified versions in high-level pseudocode in Appendix A.2, which might

miss some performance enhancing tweaks for the sake of clarity and brevity.

3.2.2 Parameter optimisation

For a given circuit structure C containing parameterised gates — introduced above

by the name ansatz circuit — the task is to to find the parameter vector θ which

minimises the expected energy of the artificial Hamiltonian H̃ , i.e. the cost function.

At this minimum, the circuit C(θ) most closely (according to the used Hamiltonian

H̃) approximates the desired unitary U within the scope of its parameter space. In

this analysis, imaginary time evolution (ITE) [100, 204], a close relative of quantum
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natural gradient optimisation [99], is used, but in a slightly modified version. First,

the matrix object8

Ai j = Re
(〈
∂iψ

∣∣∂jψ
〉−〈

∂iψ
∣∣ψ〉〈

ψ
∣∣∂jψ

〉)
, (3.7)

which will be referred to as the quantum metric tensor (QMT) [99, 205, 206], and

the gradient vector

Bi =−〈
∂iψ

∣∣H
∣∣ψ〉

(3.8)

are computed. The time evolution of the parameter vector θ is then given by [204]

A θ̇ = B . (3.9)

Using the forward Euler method yields the update rule for the parameter vector

θt+1 = θt −λA−1 B . (3.10)

The matrix A is often close to singular, so some regularisation method is required to

stabilise the iteration. The results below are produced with Tikhonov regularisation,

but other techniques may be used as well.

To find a suitable λ, an idea similar to the one presented in Ref. [194] is used. Each

time step t starts from a small (arbitrary) initial value of λ0 = 0.05. But, because the

evaluation of the QMT and the gradient vector may be expensive operations [207]

compared to the evaluation of the expected energy for a given set of parameters, it

makes sense to try to find the minimum energy along the established search direction,

before re-computing the QMT and gradient vector. In the proposed method, the

step size is exponentially increased until a local minimum along the established step

direction is found. This means repeatedly multiplyingλ by some constant factor κ until

the energy increases, and then accepting the immediately preceding λ-value. However,

if the initial step size turns out to already increase the energy, λ is instead shrunk

exponentially by a factor of 1/κ until a decrease in energy is found or a minimum step

size is reached. This exponential search can relatively quickly traverse barren plateaus

8The shorthand notation used here means
∣∣∂µψ〉

:= ∂|ψ(θ)〉
∂θµ

.
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and is almost always useful in emulators, where the gradient direction is known to

high numerical precision. Therefore, in these settings, good initial parameters to avoid

barren plateaus are less critical. The usefulness of this method in avoiding barren

plateaus is reduced on real quantum hardware when shot noise limits how precisely

the gradient direction can be determined.

To detect convergence, absolute and relative changes of the energy are used. The

stopping criterion is that one of the conditions must be met a number kconv ∼ 5 of

times. Algorithm 1 in Appendix A.2 shows the full procedure.

3.2.3 Introduction of new gates

Dynamic expansion of a given ansatz circuit has been explored before by VQE meth-

ods [108–110] and in more general contexts [90, 91, 195]. The formalism introduced

here is very generic, but naturally shares some ideas with previous works, espe-

cially Ref. [91].

The algorithms introduced later rely on the concept of a move, which refers to

the most basic possible modification of a circuit structure C, i.e. the insertion of one

additional gate at some position in the gate sequence. Given a library of gates L

and a circuit with N gates, it is convenient to define a move as a tuple (G ,n), with

a gate G ∈ L and an index 0 ≤ n ≤ N . Applying such a move to an existing circuit C

means inserting gate G at position n.

C 7→ (
C0, . . . ,Cn−1,G ,Cn , . . . ,CN−1

)
(3.11)

The routine APPLYMOVE in Algorithm 2 (Appendix A.2) performs exactly this action.

The gate and index of a specific move are denoted by subscripts G and n, respec-

tively. For instance, if M = (Rx
1 ,4), then MG = Rx

1 and Mn = 4. This definition allows for

convenient passing around of moves between functions, which will be useful later.

For a circuit containing N gates, all possible moves using a library L are given by

Mall =
{
(G ,n) |0 ≤ n ≤ N and G ∈L}

. (3.12)
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However, many of the moves in Mall will lead to redundancies in the circuit, because

neighbouring identical gates acting on the same qubits can be merged straightfor-

wardly. In the presented method, such modifications leading to obvious redundancies

are eliminated from the set of possible moves, and only potentially useful moves are

considered. The specific method used is given in Algorithm 2 (Appendix A.2) and works

as follows. For a specific qubit k, only the gates in C acting on qubit k are considered.

Potentially useful circuit modifications in this subset of the circuit are then insertions

of gates from the library between consecutive pairs of gates which also act on qubit

k, but are different to the previous and following gate also acting on qubit k. The

set comprised of moves generated in this fashion — with k iterating over all possible

qubits — contains all potentially useful moves.

In many cases, e.g. if some gates in L commute with one another, Algorithm 2

will still include moves that lead to redundancies. The quantum metric tensor as

defined in Section 3.2.2 can be used to detect such expendable gates. The details of

this operation are given in the next subsection.

3.2.4 Removal of superfluous gates

In a circuit C, not all gates in the sequence necessarily contribute to generating the

desired unitary in a useful way. In this analysis, three distinct techniques with varying

computational cost and ability to detect such redundancies are used, which will be

discussed in the following.

In the algorithms presented, these methods are used in the order small parame-

ter → QMT-assisted → trial and error, as shown in Algorithm 4 (Appendix A.2). Each

method can, in principle, also detect all redundancies of the previous methods,9 but

is more costly to perform, which makes this staged approach useful.

9In the generalisation of also allowing non-parametrised gates in the circuit — which is not discussed
further — only trial and error may be used for those specific gates.
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Small parameter removal

The computationally cheapest way to detect non-contributing gates is by checking the

associated parameters after optimising them.10 For every circuit parameter close to 0

modulo11 2π, θk ≈ 0 mod 2π, the corresponding gate Ck can be removed immediately.

Quantum metric tensor assisted removal

As a more sophisticated and computationally slightly more expensive method to detect

further redundancies, the quantum metric tensor (QMT) as defined in Eq. (3.7) can

be checked for linearly dependent rows.

The QMT contains information about how the output state changes with respect

to varying the parameters. If rows i and j in this tensor are linearly dependent, the

linearised actions of Ci and C j are equivalent in the tangent space of the circuit C at

the current position θ in parameter space. Intuitively, this means that changes to

the parameters θi and θ j from their current values would move the state in the same

direction inside some subspace of the full Hilbert space. While this does not guarantee

that Ci and C j have equivalent actions in the full Hilbert space H or at a different point

θ′ in parameter space, it is a strong indication of it. Therefore, the condition

∣∣∣ (Aᵀ
i ,· · Aj ,·)−‖Ai ,·‖‖Aj ,·‖

∣∣∣< εQMT, (3.13)

where Ai ,· is the i th row vector of A, can be used as a heuristic for detecting potentially

redundant gates with an appropriately small εQMT.

At many points in the iteration the QMT is already known from the previously

performed parameter optimisation and does not need to be explicitly re-calculated. As

calculating this matrix is computationally relatively expensive, this saves valuable

computing time.

The removal is performed as follows. For all pairs of rows i , j the condition in

Eq. (3.13) is checked. If it is fulfilled, the parameter of the first gate is adjusted to

θi ← θi + θj and the gate Cj is removed from the circuit C, as well as θj from the

10It is assumed that every gate G approaches the identity for small parameters, i.e. limθ→0 G(θ) =1.
11For practical reasons the slightly unusual definition of a mod b = a −b ba/b + .5c is used, which

returns values in the interval [−b/2,b/2) instead of the usual [0,b).
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parameter vector θ. If this removal does not significantly increase the energy, the new

circuit is kept, otherwise the deletion is reverted. Among other redundancies, this

method allows for the relatively easy detection of identical gates separated by gate

sequences they (non-trivially) commute with.

Trial and error removal

The above method is good at finding redundancies where one gate can absorb a

different one into its parameter. It cannot, however, detect cases where multiple gates

need to adjust their parameters in order to compensate the removal of one specific

gate. For these cases a third strategy is employed, which is computationally more

expensive, but can also detect much more subtle redundancies.

Given a circuit C and a set of gate indicesR to be considered candidates for removal,

for each k ∈R, the gate Ck is deleted from the circuit without replacement, and a full

parameter optimisation as in Section 3.2.2 is performed with the modified circuit. If

the energy after the relaxation is not significantly higher than before, the deleted gate

is considered redundant and remains removed. I will refer to this method as a hard

removal, because the circuit is abruptly taken to a different point in parameter space,

potentially far away from a local minimum.

An alternative to the aforementioned hard removal explored but not reported here,

is a method which may be called soft removal. The parameter θk , for k ∈R, is shifted

towards zero by some predetermined amount, and a single imaginary time step for

all parameters except θk is performed right afterwards, with the goal of driving the

parameters towards a new minimum close by. This procedure is repeated until the

parameter is close to zero, and only then is the gate completely removed. This allows

the circuit to stay close to the local minimum already it is in. Therefore, this method

can occasionally lead to better results.

3.2.5 Initial circuit

When the gates in the considered library L have limited connectivity, i.e. not every

qubit can interact with every other qubit directly, finding useful circuit structure
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modifications by randomly adding gates can become increasingly improbable. For

example, in a linear chain of qubits with nearest-neighbour connectivity, having qubit

0 interact with qubit 3 requires the correct simultaneous addition of at least three gates.

The effort of finding the correct combination of three gates is further hampered by

the fact that — at least for the artificial Hamiltonians H̃ used in the circuit synthesis

tasks presented here — the energy landscape with regard to adding only a subset

of those gates is flat.

To alleviate these connectivity limitations, it can be helpful to choose not to start

with a completely empty circuit, but to have an initial structure of parameterised SWAP

gates, where every qubit can be close to every other qubit at some point, and is able

to — but does not need to — subsequently return to its original position. This can

be achieved by an ansatz of the form

C(0) =
N∏

n=0

[dN /2−1e∏
k=1

S2k,2k+1(π/2)
bN /2−1c∏

k=0
S2k,2k+1(π/2)

]
(3.14)

where N is the number of qubits and

Si , j (θ) := exp

(
i
θ

2
SWAPi , j

)
(3.15)

is a gate which performs no action for θ = 0 and swaps the qubits i and j if θ = π.

The ansatz is visualised in Fig. 3.4, where the S gate is indicated by the usual SWAP

symbol, but drawn with dotted lines.

The Si , j gates are typically not part of the gate library L and must be compiled

to it separately. If all parameters converge to either 0 or π, it is sufficient to compile

the SWAP gate to the desired gate library L. Otherwise, a generic expression for Si , j (θ)

must be found, or each instance must be compiled separately.

Figure 3.4: The initial circuit used for gate libraries L where two-qubit gates are limited to
nearest neighbours.
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3.2.6 Circuit structure finding

This section elaborates on the algorithms later used to synthesise quantum circuits,

all of which are adaptions of well-known optimisation techniques.

Hill climbing

The simplest and most straightforward algorithm employed here is a variant of hill

climbing [208], which iteratively searches some neighbourhood of the current circuit

structure, and accepts the lowest energy solution within that neighbourhood. In

the present case, the neighbourhood of a circuit structure is defined as all circuits

reachable by applying Nmoves moves as introduced in Section 3.2.3. For the purposes

of this analysis of hill climbing, only Nmoves = 1 is considered.

Starting from some initial circuit C(0), all moves are tried, their parameters opti-

mised according to Section 3.2.2, and the energies of the resulting circuits are recorded.

The move which resulted in the lowest energy is kept, and the structure resulting from

it becomes the new circuit C(1). This procedure is repeated until the energy falls below

a given threshold, or none of the possible moves decrease the energy. Removal of

non-contributing gates is only performed once at the end of the iteration. Algorithm 5

(Appendix A.2) shows this procedure.

Because it only checks the immediate neighbourhood of the current circuit for

improvements, this method quickly gets stuck in local minima of the cost function.

This problem is typical for hill climbing algorithms. In some very limited cases, it is

possible to extend the search radius to all combinations of two or more sequential

steps, i.e. Nmoves > 1, in order to escape such local optima. However, in most cases

the search space volume grows very rapidly with the search depth, making larger

search radii impractical.

Random search

To be able to escape local minima in which hill climbing gets stuck, it is necessary

to make larger steps in configuration space. However, as mentioned in the previous

section, the size of the neighbourhood grows too rapidly to exhaustively search it. It is
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therefore sensible to resort to a variant of random search [208], which in each iteration

proposes a random modification to the circuit, and accepts it if it lowers the energy.

A single proposed modification — this will be called a random step — consists of

applying a number of Nmoves randomly chosen moves to the circuit, and only then

optimising its parameters. This essentially means adding Nmoves random gates to

the circuit. Such a random step moves the current ansatz further in the space of

circuit structures and thus has the ability to escape from local optima. Because of

the randomness involved when selecting new moves, many of the added gates are

potentially not contributing to the reduction in energy. Therefore, removing as many

of the newly added gates as possible after each random step via the methods discussed

in Section 3.2.4 is essential to keep the circuit efficient.

When drawing a random move, some gate types (e.g. controlled rotations) might

be overrepresented compared to others (e.g. local rotations), simply because there

are more of them. This also skews the number of gates by type in the final circuit,

which seems to sometimes hinder performance. As a measure to counteract this

phenomenon, the moves may be sorted into groups. To draw a random move, a

group is chosen according to an appropriate probability distribution, followed by the

selection of a specific move from the chosen group with uniform probability.12 For the

results produced in this work only two such groups were employed: one containing

moves with single-qubit gates, and the other including those with two-qubit gates.

Both were given equal probability.

Instead of simply accepting every random step that lowers the cost function,

it furthermore proved beneficial to sample a small number Nsamp ∼ 10 of random

steps and choose to keep only the step resulting in the lowest cost. Algorithm 3

(Appendix A.2) shows the full procedure.

Tabu search

As an extension to random search — which relies purely on chance to find useful

modifications to the circuit — a variant of tabu search [209] was also used in an effort

12For clarity, this detail is omitted in Algorithm 3.
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to avoid repeated application of unsuccessful circuit modifications. This section briefly

outlines the idea behind the algorithm and its potential pitfalls.

The overall structure of this variant of tabu search is exactly the same as for random

search in Algorithm 3, but with Nsamp = 1. It has however, the additional feature of a

tabu list, which will be called τ. Whenever a move is performed, it is recorded into

this list, together with a label recording at which iteration the move was performed.

For a number of iterations Ttabu ∼ 20, the same move must then not be repeated.

Therefore, before choosing a random move, all tabu moves are removed from the

set of potential moves.

To keep the action of the moves consistent when positions in the circuit change

due to the insertion or deletion of gates, the insertion indices Mn ∀M ∈ τ in the

stored moves are updated accordingly whenever the circuit changes. This means

decrementing all stored indices Mn > m ∀M ∈ τ by 1 if the gate with index m is

deleted, and incrementing all indices Mn ≥ m ∀m ∈ τ by 1 when a new gate at

index m is inserted.

The additional feature of a tabu list has the potential of steering the search away

from non-improving moves and increasing the likelihood of choosing useful moves.

Its practical advantage proves to be limited, as is shown in the Results section.

3.3 Results

This section contains the numerical findings for different applications of the methods

discussed above. Unless otherwise noted, the calculations use the default hyperpa-

rameters listed in Table A.1 in Appendix A.1.
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3.3.1 Cost functions as proxy for unitary equivalence

To determine whether two operators13 C and U are equivalent, an appropriate metric

to use is the global-phase invariant operator norm of their difference

D(U ,C) :=min
φ

∥∥∥U −e iφC
∥∥∥

=min
φ

[
max
|ψ〉

∥∥∥U |ψ〉−e iφC |ψ〉
∥∥∥

2

]
, (3.16)

which in this work will be referred to as the operator distance. It is the largest possible

L2-norm of the difference (and thus the Euclidean distance) between the desired

output U |ψ〉 and the output of the recompiled version C |ψ〉.
For the calculations only considering a subspace, it is sensible to also define

DS
(
U ,C

)
:=D

(
ΠSUΠS ,ΠS CΠS

)
(3.17)

where ΠS is the projector onto the relevant subspace.

Throughout the results the expected energy of Hsum or Hproj as defined in Eqs. (3.3)

and (3.4) is used to assess how closely a constructed circuit C reproduces the desired

unitary U . Note, however, that in general 〈H̃〉�D(C,U ). This is easily demonstrated

with an n-controlled Pauli-z gate C0..n−1[σz
n], for which the identity operator yields

an energy of 〈Hproj〉 = 〈Hsum〉 = 2−n , but the operator distance has a macroscopic

value of D(1,C0..n−1[σz
n]) =p

2. The energy is therefore not guaranteed to correspond

to a small operator distance. However, numerical evidence presented momentarily

suggests that it is still a good measure in most cases.

To gain confidence in the fact that the cost functions are indeed a good stand-

ins for the operator distance, a large number of results was surveyed. For the final

circuits of many 5-qubit quantum Fourier transform (QFT) synthesis outcomes, the

cost functions of 〈Hsum〉 and 〈Hproj〉 were calculated and compared to the respective

operator distance D. The results are plotted in Fig. 3.5 and show that close to con-

vergence the used cost functions are both very good proxies for the actual operator

distance. It is therefore reasonable to use the described cost functions to assess the

quality of the recompiled circuit.

13From here on we will omit explicit indication of the parameter vector θ wherever practical.
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Figure 3.5: Operator distance between the target U and recompiled C unitaries for a set of
recompiled QFT circuits on 5 qubits. The data points at very small costs are in the range of
numerical noise and likely influenced by finite data type accuracy. The large gap in data around
D ≈ 10−2 is caused by the separation between converged (reached critical circuit expressibility)
and not converged (got stuck in a local minimum) calculations, i.e. if a calculation got stuck, it
was usually at a relatively high energy.

3.3.2 Random unitaries

Dense unitaries

To test and benchmark the circuit synthesis protocols, uniformly Haar-distributed

random unitaries were created14 as targets, and calculations to find circuit represen-

tations for them were carried out. For each target on N qubits, a single attempt was

made to create a circuit performing the same action using the gate set of

Lallrot =
{
Rσ

k ,C`[Rσ
k ] |σ ∈ {x, y, z},k,` ∈ [N ] and k 6= `}, (3.18)

where [N ] ≡ {1, . . . , N }, which contains all local single-qubit Pauli rotations Rx
k , R y

k , and

Rz
k on each qubit k, as well as single-controlled versions thereof with no connectivity

constraints. The results of 100 random unitaries per method and number of qubits

are shown in Fig. 3.6.

14The unitaries were generated using the method scipy.stats.unitary_group in Python and the
function CircularUnitaryMatrixDistribution in Mathematica.
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Figure 3.6: Histograms of the number of gates required to express Haar-distributed unitaries
as a circuit containing only gates from Lallrot for different numbers of qubits. Left (red) data
was obtained using tabu search, right (blue) data is from the random search algorithm.

The number of gates in the circuits produced by random and tabu search correlates

well with the increasing degrees of freedom of the targets, which for a dense unitary on

N qubits is 22N . Therefore, for 3 qubits, it is expected that on average no fewer than 64

gates are required, and a mean number of 65 gates was found in the synthesised circuits.

For 4 qubits, a mean of 275 gates was observed, while ideally 256 would be expected.

This indicates that, at least for dense, unstructured unitaries, the circuits produced by

tabu and random search do not contain a large number of superfluous gates.

Note that the results show no significant difference between tabu and random

search, which is discussed in more detail in Section 3.3.3.

Subspace compilation

In order to assess the efficacy of compiling only in a certain subspace, another random

unitary operator was generated, but this time with more structure. The operator

is block-diagonal in the computational basis within subspaces of equal Hamming

weight,15 i.e. the number of ones and zeros in a state is conserved upon applying this

operator. Each of these blocks of equal Hamming weight was populated with a Haar-

distributed random unitary. To compare the subspace compilation to compiling the

15The Hamming weight of a binary number (like a computational basis state) is the number of set bits,
i.e. the count of ones.
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Figure 3.7: Normalised histograms showing properties of synthesised circuits C recovering the
action of single 4-state block U1 within a block-diagonal operator U on 4 qubits. The blocks
making up U are each Haar distributed random unitaries. Empty histograms in grey show
results for the full space method, filled histograms in blue show subspace results. Circuits
for same unitary U were synthesised 100 times. (a) Operator distance as in Eq. (3.16) within the
subspace H1. (b) Number of gates in the resulting circuit. (c) Number of total imaginary time
evolution steps needed by the algorithm.

full unitary, both variants were employed (random search being the structure search

variant), with the subspace calculations only addressing the block with Hamming

weight 1, i.e. the states {|0001〉 , |0010〉 , |0100〉 , |1000〉}. For numerical reasons — and

because at this problem size barren plateaus proved not to be an issue — the cost

function 〈Hproj〉 was used in this example. The target energy was set to 〈Hproj〉 ≤ 10−5,

and other hyperparameters were Nmoves = 30 and Nsamp = 10. Because of the stochastic

nature the compilation process, a total of 100 synthesis attempts were made each in

the full- and subspace, of which 97 in the subspace and 95 in the full space converged.

Figure 3.7 summarises the outcomes of the successful calculations.

The results distinctly show that for comparable accuracy (a), considering only

a subspace results in vastly fewer gates (b), as well as many fewer iterations of the

algorithm (c). Therefore, it is reasonable to expect this method to yield much better

results whenever the target unitary conserves some quantity, and the relevant subspace

is known in advance. Prominently, one example for this case is time evolution operator

in quantum chemistry. There, the number of electrons is a conserved and known

quantity, and corresponds to the Hamming weight of the states. Reference [210]

explores this application in greater detail.
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3.3.3 Quantum Fourier transform

As shown in the previous subsection, when compiling random unitaries, the number of

required parameters quickly makes compiling circuits with limited available resources

for more than a few qubits infeasible. However, practically relevant circuits usually

have much more structure than random unitaries. Therefore, as examples of unitaries

closer to real-world applications, quantum Fourier transform (QFT) [26] circuits were

also synthesised using various gate sets. Figure 3.8 shows the target circuit of a 4-qubit

QFT as an example. It is re-expressed using the established gate set Lallrot, as well as

LNNrot =
{
Rσ

k ,C`[Rσ
k ] |σ ∈ {x, y, z}, k,` ∈ [N ] and |k −`| = 1

}
(3.19)

which contains all local single-qubit rotations and local rotations controlled by nearest

neighbours in an open linear chain topology. Furthermore, to test the ability of the

proposed algorithms to work with a much more restricted gate set, QFT circuits were

synthesised using the library

LSWAP =
{
Rσ

k ,Sk,` |σ ∈ {x, y, z}, k,` ∈ [N ] and |k −`| = 1
}
. (3.20)

This set, in addition to local rotations, contains the parameterised SWAP gate intro-

duced in Eq. (3.15) between neighbouring qubits as the only entangling operator.

None of these gate sets contain Hadamard or controlled phase gates — which con-

stitute the majority of the gates in the canonical circuit — making this a suitable

benchmarking synthesis task.

H P2 P3 P4

H P2 P3

H P2

H

Figure 3.8: Example of a quantum Fourier transform circuit on four qubits as used in the
present calculations. The controlled operators Pn = e−iπ(σz−1)2−n

are phase gates with rotation
angles of 2π/2n .

For demonstration purposes, QFT circuits for 3 to 6 qubits were synthesised, using

all mentioned gate sets, and all discussed circuit structure generation algorithms, 100
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times each. The target energy for the used cost function was 〈Hsum〉 ≤ 10−8. The

results are shown in Fig. 3.9. In addition to the outcomes plotted in Fig. 3.9, 10 more

calculations were performed for each of nqb = 7. . .10 qubits using tabu search and

the Lallrot gate set. These resulted in the convergence of 8, 7, 5, and 1 calculations,

respectively, and minimum gate counts of 72, 93, 114, and 138.

The results show that the hill climbing algorithm can perform well for some

problems, especially when the available gate set has high expressibility as is the case

for Lallrot and LNNrot. In these cases, hill climbing found circuits with gate counts close

to the lower bound of all investigated algorithms, albeit at a higher computational cost

than tabu and random search. However, more restricted gate sets like LSWAP severely

hamper its ability to find solutions at all. Being the only deterministic algorithm we

presented, circuits it fails to synthesise cannot be helped by re-running the procedure.

The probabilistic schemes of tabu search and random search, on the other hand,

produce different outcomes for every run. Using a fully connected gate set consis-

tently yields a higher probability for convergence than restricting the interactions to

neighbouring qubits in a linear chain, despite employing an initial circuit of SWAPs

to counteract connectivity constraints. Calculations starting from an empty circuit

(not plotted) show even lower convergence rates. Further decreasing the expressibility

of the available gates by using LSWAP as the gate set sees another significant drop in

the relative number of converged calculations for nqb ≥ 4, indicating that all of the

applied algorithms struggle to find solutions when they are greatly restricted in the

choice of gates they can add.

Comparing the approaches of tabu and random search, shows — as for random

unitaries — no significant difference in the number of gates in the resulting circuit

or the convergence probability, despite tabu search trying to remember and avoid

unsuccessful circuit modifications. It is to be expected for this mechanism not to have

a noticeable impact when using libraries containing many gates, like Lallrot, because

the neighbourhood — i.e. the circuits which can be produced by adding a single gate

from the library at any position — is much larger than the number of additions the

algorithm can reasonably try during the iteration. Specifically, at every point in the
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Figure 3.9: Number of gates and fraction of converged calculations for synthesis of a QFT
circuit for nqb = 3. . .6 qubits and different gate sets LSWAP, LNNrot, and Lallrot. Shaded graphs
are histograms of the number of gates in the resultant circuit, left, red for tabu search,
right, blue for random search, centred around their respective number of qubits. Each
calculation was run 100 times with identical parameters as listed in the text and appendix. Red
and blue carets indicate the fraction of converged calculations for each instance according to
the right scale. Separation from the central line is for visual purposes only. Grey dashed lines

, if present, indicate that the hill climbing algorithm converged for a particular instance
and shows the number of qubits in the final circuit it produced.
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iteration, NL(Ngates + 1) different moves are possible, with the current circuit gate

count Ngates and the number of gates in the library NL. This means, for example, on 5

qubits with an existing circuit containing 20 gates, the Lallrot gate set produces several

hundred potential moves, of which the algorithms typically explore ∼ 20. However,

even when using the LSWAP library with only very few gates in it, which thus produces

a smaller neighbourhood for each circuit, the results show no significant difference

between the two approaches. This observation is independent of how many iterations

the tabu moves are remembered for.

3.3.4 Multi-qubit Toffoli

A potentially difficult operator to synthesise from only two-qubit gates is the n-qubit

Toffoli gate, i.e. a Pauli-x gate with n −1 controls. The difficulty lies in the fact that it

only acts on a very small subspace of H, which is not straightforward to exclusively

address using gates which act on much larger subspaces of H. Additionally, while it is

relatively straightforward to detect whether a given circuit can act exclusively in the

given subspace, finding a measure indicating that a given circuit is close to having

this property proves difficult. If this kind of measure were found, it could guide the

compilation process in the right direction. Unfortunately, the used cost functions used

in this analysis do not contain such information.

In the implementation used here, because a large portion of all possible input states

must remain unchanged by the circuit, adding any small number of gates will likely

result in their parameters being tuned to zero during optimisation, as this matches

the correct action on most input states. The algorithm then subsequently removes the

gates with vanishing parameters, leading to no progress being made.

Figure 3.10 shows the results of synthesis calculations to generate n-qubit Toffoli

gates for n = 3,4,5 using the Lallrot gate library, 100 times each. For the smaller cases

of n = 3 and 4, the algorithm can find correct circuits reliably. In these instances, the

number of simultaneously added gates is large enough to overcome the previously

discussed limitation. This is helped by the fact that the number of states on which the

Toffoli acts like the identity operator is not overwhelmingly bigger than the number of
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Figure 3.10: Histograms of the numbers of gates required and convergence fractions when
synthesising an nqb-qubit Toffoli using the Lallrot gate set and tabu search. Histograms are
centred around the corresponding number of qubits, red carets indicate how many of the
started calculations converged. Histogram data for 5 qubits is missing because none of the
calculations succeeded.

states on which it acts nontrivially. Therefore, in these cases, an appropriate circuit

can be synthesised virtually every time. For n ≥ 5, on the other hand, the algorithm

was not able to find any solutions at all.

As an attempt to inject some prior knowledge into the method, 5-qubit Toffoli

gate synthesis was also performed by starting the iteration from one of the successful

4-qubit Toffoli synthesis results. With this “warm start” technique, 80 out of 100

calculations converged. While such an assisted start deviates from the strict ab

initio framework — even more so than the initial SWAP network used in some of

the calculations — and requires a specific incremental structure of the target circuit,

it can still be a very useful resource for some tasks.

3.4 Discussion

In this chapter, a variant of the Hilbert-Schmidt test [92] was combined with artificial

Hamiltonians Hsum and Hproj similar to Ref. [194] to construct cost functions repre-

senting the closeness of a unitary to a dynamically created circuit, where the cost can

in principle be evaluated on a quantum computer. However, only emulators of such
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quantum hardware were employed in the generation of the results, thus circumventing

some practical challenges like shot noise and barren plateaus, whose impact on the

performance on the presented scheme remains to be investigated. This question of

how noisy hardware would affect the results is left open as a potential future research

direction. Three different algorithms which use this cost function to dynamically

construct quantum circuits replicating the action of a given unitary from the ground

up were presented and their performance on various synthesis tasks was demonstrated.

The obtained results suggest that the presented algorithms are able to generate

circuit representations for dense random unitaries with gate counts close to what

would be expected to be optimal, based on the degrees of freedom16 in such a unitary.

For block-diagonal random unitaries, the numerical evidence furthermore shows that

generating a circuit whose closeness to the target is only judged within a restricted

subspace greatly reduces both the synthesis resource requirements and the gate count

in the resulting circuit. This can be important when time evolving Hamiltonians with

such a block-diagonal structure, as is usually the case in quantum chemistry [211].

None of the numerically investigated cases showed a significant difference between

random search and tabu search. This strongly suggests that the very simple variant

of tabu search used here in an effort to guide the search through the circuit structure

space more efficiently than random moves is not sophisticated enough to yield any

practical advantage. Note that the implementation of tabu search used here only

incorporates its most basic aspect of short-term memory. Its performance could

potentially be improved by including more elaborate concepts such as intermediate-

term and long-term memory [209].

The presented results for synthesising quantum Fourier transform circuits using

various gate sets show that for small numbers of qubits and highly expressive sets of

gates, the hill climbing method can consistently produce circuits with very few gates,

almost always close to the minimum number found for any method in the scope of

this work. However, if the method gets stuck in a local minimum or proceeds too

slowly due to the increasing size of the neighbourhood, there are no provisions in the

16The degrees of freedom in a generic unitary grow exponentially with the number of qubits, so there
is limited practical use for these cases.
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presented framework to overcome these problems. Tabu and random search produced

accurate results even for a very restricted gate set on a small number of qubits, but

scaled unfavourably when increasing the number of qubits in these cases.

Finally, the attempts at synthesising an n-qubit Toffoli gate clearly showed the

limitations of the discussed method. Due to the properties of the cost functions, as dis-

cussed in Section 3.3.4, the only successful attempts at synthesising circuits for Toffoli

gates on 5 qubits was by assisting the algorithm with previously generated knowledge.

It is important to emphasise that there is significant value in the ability to synthesise

even small unitaries, since such compiled functions can be used as components of

larger algorithms, even if the compilation technique does not scale favourably to many

qubits. For example, in grid-based chemistry [212] (see also Section 4.2), although

the total number of computational qubits may be in the thousands, the QFT used to

interconvert between real space and momentum space is simply the product of QFTs

acting on each dimension and particle separately, often requiring the transformation to

act on only around 20 qubits. A different example is the method in Ref. [71], where large

circuits are first decomposed into blocks small enough for individual recompilation.

The presented method may be used as a subroutine in such a scheme to synthesise

efficient circuits for each of these blocks. Therefore, even the ability to compile a

multi-qubit gate involving 3 or 4 qubits efficiently into a compact set of 1- and 2-qubit

gates can be valuable. Consequently, the significance of the techniques described in

this paper does not depend on their ability to scale directly to circuit sizes that might

be considered ‘post-classical’ (& 50 qubits). Nevertheless, it would still be desirable to

scale the presented algorithms to such large scale endeavours. As the results suggest

that the presented methods will require significant further development for any such

task to be realistic, I now remark on a few potential directions for improvement.

Firstly, note that the algorithms used for circuit structure modifications are largely

independent from the parameter optimisation routine, except for reusing informa-

tion in the quantum metric tensor. Therefore, if a different method for optimising

the parameters proves more suitable, it can be straightforwardly substituted for the

imaginary time evolution used in the present investigation. One promising candidate
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is introduced in Ref. [96] named CoVaR, where an eigenstate of the system is prepared

by a root-finding algorithm similar to Newton’s method. By tweaking the spectrum of

the synthesis Hamiltonians such that only product states are eigenstates, this method

could be used to find the appropriate parameters in each iteration.

Secondly, it is not strictly necessary that the operators in the library consist only

of unitaries. Instead, it would be possible to also include ancilla qubits on which

intermediate measurements may be performed, and whose outcomes can become part

of the cost function or even the following control flow. In this case, should imaginary

time evolution remain the parameter optimisation tool of choice, it must be adapted

to find the correct descent direction [205].

Thirdly, there are also possible enhancements to the Hamiltonians used to generate

the cost functions. As briefly mentioned in Section 3.1.2, instead of the relatively

straightforward Hproj and Hsum, other properties of the solution may be included to

judge how suitable a particular outcome is, such as the desired entanglement via a

witness, or the conservation of symmetries in the problem.

Fourthly and perhaps most challengingly, an enthralling direction of further re-

search is to deviate from the random nature of adding gates to the existing structure,

and explore ways for introducing circuit variants that are more guided by more of the

available information. While employing more elaborate variants of the tabu search

algorithm used here may enhance the performance significantly, another promising

path forward might be to use information from the output state to deduce which circuit

modifications are most likely to reduce the cost function. This could potentially provide

much more direct and cheaper guidance than exploring the vast neighbourhood of

a circuit and trying to learn from it.

I finally remark that because of the formulation as an energy minimisation problem,

the presented methods to construct circuits ab initio can not only be used to express

a desired unitary using various target gate sets, but also as a variational quantum

eigensolver to prepare the ground state of some physical Hamiltonian. For this task,

the cost function is straightforwardly replaced by the energy of the Hamiltonian of

interest. This procedure, among further applications, is explored in Ref. [210].
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As is often the case in optimisation problems, the most generic solvers pay for their

generality with solving time penalties and/or suboptimal end results. Such is also the

case in this chapter. If the unitary of interest has a specific form, a specialised method

is likely to produce better results than the universal approach presented here. The

next chapter discusses two such specialised methods, which can be used to generate

circuits implementing the time evolution of a system, and perform particularly well

if that system is a quantum chemical one.
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Nature isn’t classical, dammit, and if you want to
make a simulation of nature, you’d better make it
quantum mechanical, and by golly it’s a wonder-
ful problem, because it doesn’t look so easy.

— Richard Feynman

4
HAMILTONIAN TIME EVOLUTION FOR

QUANTUM CHEMISTRY

This chapter describes two distinct methods for simulating chemical systems on quantum

hardware. One follows Ref. [213], which was mainly my own work, with conceptual input

from Earl Campbell and Simon Benjamin. The other focuses on the paper “Grid-based methods

for chemistry simulations on a quantum computer” by Chan et al. [212], to which I contributed

some of the simulation code, performed numerical calculations on HPC hardware yielding

data, and performed parts of the analysis. For context and completeness, Section 4.2.1 gives a

short summary of the framework and important aspects of the methods and findings of [212]

to which I did not directly contribute. Section 4.2.2 contains my contributions to the work in

detail, partly using text which I originally authored verbatim.
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Chapter 3 discussed a very generic method of how to synthesise circuits for any task,

as long as it can be given as a black box gadget on a (simulated) quantum computer.

While the results for few qubits seem promising, scalability to larger systems appears

to be a yet unsolved issue. However, in many instances, true generality is not required

when creating circuits. Indeed, specialised methods which only work for particular

tasks may show more favourable scaling properties.

Since a central task for which quantum computers promise to be useful is the

real-time evolution of quantum states, bespoke algorithms for creating circuits that

realise Hamiltonian simulation have seen significant progress over the last few years,

as discussed in Section 2.2. These methods may be considered specialised quantum

compilers, implementing only a particular type of unitary. In this chapter, I will discuss

two instances of such approaches in the context of quantum chemistry, i.e. the system

of interest is comprised of nuclei and electrons, which is one of the main research

areas where it is hoped that quantum computers would be useful, as elaborated on

in the Introduction.

The first is a variant of the truncated Taylor series method [132], itself derived

from the linear combinations of unitaries framework [130]. As I will show, its perfor-

mance can be significantly improved by taking advantage of the specific structure

that Hamiltonians in quantum chemistry usually have. In Section 4.1 I describe

this adaptation in detail.

The second is grid-based methods, where the wave function in first quantisation at

a regular grid of points is stored in a the state of a quantum register. Again, this is an

approach that seems best suited for quantum chemistry applications, and the main

Reference [212] for this section examines it from this point of view.

4.1 Truncated Taylor series for quantum chemistry

This section describes, as alluded to above, a variant of the truncated Taylor series

scheme [132], that strives to produce more accurate results for some quantum me-

chanical systems, especially those of electrons in molecules when expressed in second
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quantisation and mapped to qubits via the Jordan–Wigner transformation [214].17

The method builds on the observation that the Hamiltonians of these systems often

have terms that vary considerably in magnitude. Therefore, in a Taylor series, some

(small) terms may be discarded at a lower expansion order, while other (large) terms

should be kept to a higher order. The way this idea is applied to the truncated Taylor

series method respects the efficient circuit implementation of Ref. [132] and adapts

improvements to the SELECT and PREPARE subroutines introduced in Refs. [137, 216].

This section is structured as follows. Section 4.1.1 contains a detailed description

of modified method adapted from [132]. Its effectiveness is tested using calculations

of various molecules in their stable configurations, with the findings being reported

in Section 4.1.2, while Section 4.1.3 gives further interpretations of the results and

mentions potential further work.

4.1.1 Method

As mentioned at the beginning of this chapter, the method presented here is closely

related to the approach introduced by Berry et al. [132]. I will give a detailed description

of the modified method, which at the same time serves as a summary of [132].

Linear combination of unitaries

The protocol is based on a method of adding unitaries using ancilla qubits [130]. The

starting point is a Hamiltonian of the form

H =
L−1∑
`=0

α`h`, (4.1)

where α` are real positive scalars18 and h` are unitaries for which implementations

on a quantum computer exist. Without loss of generality, assume the terms are sorted

by magnitude, i.e. α`+1 ≤ α`. The approach also used in [132] is to implement an

approximation to the corresponding time evolution operator

U (t ) = e−i H t (4.2)

17Other mappings like Bravyi—Kitaev [215] are possible, but not explicitly addressed in this work.
18Complex phases can always be absorbed into the operators h`.
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with a Taylor series. Taking t to be sufficiently small, the series representation of

U (t) can be approximated by the sum

UL(t ) :=1+
∞∑

k=1

(−i t )k

k !

k∏
j=1

(
L j−1∑
`j=0

α`j h`j

)
(4.3)

where L is a vector of Lk with k ∈N+ and elements 0 ≤ Lk ≤ L, meaning the individual

sums in the product only contain the Lk largest terms of H . To illustrate this more

clearly, consider the following example where L = (4,2,1,0, . . .), which leads to

UL(t ) =1− i t (α0h0 +α1h1 +α2h2 +α3h3)

− t 2

2
(α0h0 +α1h1 +α2h2 +α3h3) · (α0h0 +α1h1)

+ i t 3

6
(α0h0 +α1h1 +α2h2 +α3h3) · (α0h0 +α1h1) · (α0h0).

This limitation of the number of terms in each sum is the main difference to [132],

where the series is truncated at some appropriate order n, which yields

Un(t ) :=1+
n∑

k=1

(−i t )k

k !

k∏
j=1

(
L−1∑
`j=0

α`j h`j

)
. (4.4)

Equation (4.4) is a special case of Eq. (4.3), where all orders up to n are included in

full.19 The modified version of the sum includes some orders only partially, giving

greater control over the total gate count and allowing for quicker convergence of the

error bounds by selectively adding mostly terms with larger weight.

The magnitude of the time step t will turn out to be a fixed value restricted by the

method. Longer times τ= r t , can be simulated by applying U r
L . However, most of the

following description will focus on the implementation of a single time step.

To keep the notation simple, the products of the coefficients α` with t k /k ! are

gathered into new variables βj , and all products of the unitaries h` together with (−i )k

are collected into operators Vj , with a newly introduced label j numbering all terms

in the sum. Note that even if different products of h` yield identical operators, they

19For all quantities with an L subscript I will alternatively replace it with n to mean an L where Lk = L
for k ≤ n and Lk = 0 for k > n.
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are treated as separate Vj , each with a corresponding weight βj . By construction, all

βj are also real and positive. Thus, Eq. (4.3) becomes

UL =
m−1∑
j=0

βj Vj (4.5)

where the time-dependence of UL and βj is not explicitly denoted, and the total

number of terms m implicitly depends on L.

In order to apply UL to a state |ψ〉 in the system Hilbert space H, it is convenient

to define the unitary operators P(t) and S (PREPARE and SELECT) in accordance

with [132]. The PREPARE operator P , whose time dependence will be implicit from

here on, maps the |0〉 state of a set of ancilla qubits (forming the Hilbert space HA)

to the weighted superposition

P |0〉 := 1
p

sL

m−1∑
j=0

√
βj | j 〉 ∈HA (4.6)

with the implicitly t-dependent normalisation constant

sL :=
m−1∑
j=0

βj . (4.7)

The SELECT operator S acts on a state |ψ〉 ∈ H with the unitary Vj , where j is

given by the state of the ancilla introduced above. So its action on a tensor state

of | j 〉 |ψ〉 ∈ HA ⊗H is

S | j 〉 |ψ〉 := | j 〉Vj |ψ〉 . (4.8)

Analogously to [132], these two operators P and S can be combined to introduce

a new operator

W := (P† ⊗1)S (P ⊗1) (4.9)

which has the effect

W |0〉 |ψ〉 = 1

sL
|0〉UL |ψ〉+N |0⊥,Φ〉 (4.10)

where N is the appropriate constant for the state to be normalised, and |0⊥,Φ〉 is a

garbage state whose ancilla part has no overlap with the ancillary |0〉 state.
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Oblivious amplitude amplification

The naïve way to obtain UL |ψ〉 would be to measure the ancilla of W |0〉 |ψ〉, see

Eq. (4.10), and post-select for the ancilla |0〉 state. However, since sL increases with

t , the success probability of this straightforward approach diminishes for large t .

Additionally, t is always subject to convergence of Eq. (4.3). Due to the postselection,

dividing the total t into smaller segments and repeating the process multiple times

also suppresses the total success probability.

One way around this problem also used in [132] is the so-called oblivious amplitude

amplification. As detailed in Lemma 1 in Appendix B, and references therein, if UL

were unitary and sL = 2, the amplification operator

Q :=−WRW†R, (4.11)

with R := 2Π−1 being the reflection operator about the |0〉 state of the ancilla and

Π := |0〉〈0|⊗1meaning the projector onto the ancilla |0〉, would have the effect [133]

QW |0〉 |ψ〉 = |0〉UL |ψ〉 . (4.12)

Thus, this amplified operator warrants the definition

A :=QW =−WRW†RW . (4.13)

The requirement of sL = 2 can be satisfied as follows. The form of the modified

Taylor expansion leads to sL being of the form

sL(t ) :=
∞∑

k=1

t k

k !

k∏
j=1

[
L j−1∑
`j=0

α`j

]
︸ ︷︷ ︸

:=Λj

=
∞∑

k=0

t k

k !

k∏
j=1

Λj . (4.14)

The restriction sL = 2 therefore forces the simulation time t to be the only real root of

∞∑
k=0

t k

k !

k∏
j=1

Λj −2 = 0 (4.15)

which I will call tL. If all orders were included in full, i.e. Lk = L, ∀k, all Λj would be

equal and the infinite sum on the left becomes the series of the exponential function. I

will refer to the time step for this case as t∞ = log(2)/Λ, with the definitionΛ :=∑L
j=0αj .
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Shorter times can be accomplished by using an extra qubit, as described in Ref-

erence [133]. Since the only requirement for oblivious amplitude amplification to

work is sL = 2, and shorter times mean sL < 2 — i.e. the amplitude of the ancilla |0〉 is

too large — its amplitude can be reduced by introducing an additional qubit to the

ancilla and preparing its |1〉 state with enough weight such that the overall ancilla

|0〉 reduces to amplitude 1/2. These shorter times are only relevant in the last time

step of a simulation and have almost the same cost as a full step, so the rest of the

discussion will be limited to multiples of tL.

Equation (4.12) only strictly holds for unitary UL , but the series truncation means

that UL is only close to unitary. Again following [132], the action of A for a general

UL can be derived by applying A to a state |0〉 ∣∣ψ〉
and projecting onto the ancilla

|0〉, which yields

ΠA |0〉 |ψ〉 = |0〉
(

3

sL
UL − 4

s3
L

ULU †
LUL

)
|ψ〉 , (4.16)

(derivation in Appendix B, Lemma 2) and the operator that is actually applied in

the |ψ〉 subspace is

ÃL := 3

sL
UL − 4

s3
L

ULU †
LUL . (4.17)

Gate construction

In this subsection, I want to elaborate on the specific gate construction to implement

A efficiently, adapted from [132]. First, the ancilla is divided into κ+ 1 registers,

where κ := ‖L‖0 is the number of non-zero elements in the vector L. The first of these

registers is named q and contains κ qubits, while the others are given labels c1 . . .cκ,

with ck containing dlog2 Lke qubits.

The q register’s purpose is to represent different orders of the Taylor expansion,

while the ck registers are needed for the terms in each order. This makes it convenient

to use a multi-index j := (k, 1̀, . . . , k̀ ). The corresponding state of the ancilla is

| j 〉 := |k〉q | 1̀〉c1 . . . | k̀〉ck
. . . (4.18)
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where the state of the registers ck ′ with k ′ > k is left unspecified. The coefficient

associated with this index is

βj =β(k,`1,...,`k ) =
t k

k !
α`1 . . .α`k . (4.19)

PREPARE For this operator, it is convenient to slightly deviate from [132]. Exact

implementation of P as defined in Eq. (4.6) would necessitate the preparation of the ck

registers to be conditioned on qubits in the q register. We can, however, implement an

operatorP?, which acts equivalently toP when used inW , i.e. W = (P?†⊗1)S(P?⊗1),

but is performed independently on each of the ck registers without controls on the

qubits in q , making it cheaper to implement in practice.

The q register will contain the prefactor for each order k and uses unary coding, i.e.

|k〉q := |1k 0k−κ〉q . Thus, the PREPARE operatorP?(t ) acts on this register proportional to

|0κ〉q 7→
κ∑

k=0

√√√√ t k

k !

k∏
j=1

Λj |k〉q . (4.20)

This can be implemented by a rotation on the first qubit, and rotations controlled

by the previous one on each subsequent qubit.

The ck registers can now all be almost identically prepared to contain the coeffi-

cients of the Hamiltonian, where each index ` is mapped to the qubits of ck in regular

binary coding. So the action of P? on a single register ck is proportional to

|0〉ck
7→

Lk−1∑
`=0

p
α` |`〉ck

. (4.21)

For this, any efficient method for arbitrary state preparation can be used, whose

cost is discussed shortly.

Combining these constituents into a single unitary P? and applying it to the whole

ancilla yields the desired operator equivalent to Eq. (4.6) if used in W , which is shown

in more detail in Lemma 3 in Appendix B.
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SELECT Using the established structure of the ancilla, theS operator must have the ac-

tion

S |k〉q | 1̀〉c1 . . . | k̀〉ck
. . . | κ̀〉cκ |ψ〉 = |k〉q | 1̀〉c1 . . . | k̀〉ck

. . . | κ̀〉cκ h̃ 1̀ . . . h̃ k̀
|ψ〉 (4.22)

with h̃` :=−i h`. This can be accomplished by having a sequence of groups of unitaries

in the circuit.20 Each of the groups indexed by m = 1. . .κ contains the unitaries h̃`m ,

with `m = 0. . .Lm − 1, acting on the target state |ψ〉.
The register cm is used as the addressing register for group m, i.e. the state |`m〉cm

determines which unitary in group m is applied. To achieve this, the fact that the c

registers are in binary coding can be used, so `m is represented as a binary number

with the dlog2 Lme qubits in cm as digits. By controlling h̃`m on the cm register in a

way that matches the binary representation of `m , only the unitary with the correct

index is applied. For example, h̃5 would be controlled by the last and antepenultimate

qubit in cm and anti-controlled by all other qubits in cm (since 5 corresponds to the

state |0. . .0101〉 in binary coding).

Additionally, the q register specifies how many of the groups are applied. If q is in

the state |k〉q , only the first k groups should be active. The unary coding in q makes

this straightforward to implement by additionally controlling every unitary in group

m with the mth qubit in q . Figure 4.1 shows a sketch of the full construction.

The implementation method for S described here is well-suited to easily visualise

the working principle of the operator. However, because the structure of the controls

of h̃` forms a so-called unary iteration (iterating over all integers in sequence), the

structure of the controls can be slightly modified to lower the number of required

T -gates [137]. The consequences of this modified construction on the implementation

cost is discussed in the next subsection.

Gate cost Finally, the implementation cost of the discussed procedure is determined

by the gate complexity of the operator A, which can be estimated as follows. Its

constituents are two reflections R, and three instances of W , each of which contains

20The groups in the circuit are numbered right-to-left to match the established numbering convention
of the operators.
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Figure 4.1: Sketch of the gate construction for S . By taking advantage of the unary iteration
structure, the T -count of the multi-controls can be significantly reduced [137]. However, this
non-optimised diagram is included to visualise the working principle of the S operator.

one S and two P?. For calculations using full orders as in [132], this analysis translates

exactly to the gate construction given there. Considering the context and potential

applicability of the procedure, the most sensible cost to consider is the the number of

expensive T -gates [40, 57, 58] when using the universal gate set of Clifford + T .

Each reflection R is a single Pauli-z operator on one of the ancilla qubits (padded

between two Pauli-x gates), anti-controlled on all others. This can be done with

O(
∑

k log2 Lk ) T -gates and a second ancilla register of size (κ+∑
kdlog2 Lke−2) [26].

The PREPARE stage for the q register consists of κ−1 controlled rotations with a total

T -complexity ofO(κ). Each of theκ registers ck needs to be initialised to a specific state

with 2dlog2 Lke ∼ Lk coefficients, requiring between O(
∑

k Lk ) and O(
∑

k
p

Lk log2(Lk /ε))

T -gates per register, depending on the number of additionally available ancillas, where

ε is the accuracy of the preparation [216]. In total, this yields a T -count between

O(
∑

k Lk ) and O(
∑

k
p

Lk log2(Lk /ε)).

As mentioned above, the fact that the controls of each h` in S form a so-called

unary iteration can be exploited to lower the T -gate count. Each sequence of Lk

operators can be implemented using O(Lk ) T -gates [137], plus Lk times the cost of

performing a single −i h` operator, totalling to
∑

k Lk such operators. Thus, the T -

complexity of S for generic Hamiltonians in the form of Eq. (4.1) is of O(
∑

k Lk ), which
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will be used will use in this analysis. Moreover, recent work [141] has shown that

a SELECT process can be yet more efficient for the special case of Jordan–Wigner-

transformed N -orbital electronic structure problems, where the T -complexity is as

low as O(nN ), with n = max{k : Lk 6= 0}.

Combining all these counts results in a total complexity of O
(∑

k Lk
)

for A. As a

proxy to use for the total gate cost in our results it is therefore reasonable to define

CL :=
∞∑

k=1
Lk = ‖L‖1. (4.23)

This definition includes the cost of a full expansion up to order n as the special case

Cn = nL, consistent with previous notation. From this cost of a single time step,

I discuss the complexity Cε to reach some desired total simulation error ε in the

next subsection.

Error bounds

The error of the method per time step can be quantified as the norm of an operator

∆L which satisfies

U (t∞) = ÃL(t∞)+∆L(t∞) (4.24)

where the considered time step size is now t∞ = log(2)/Λ. The error made after one step

can be found by applyingΠA once and tracing out the ancilla, which as the bound21

δL := ‖∆L(t∞)‖ ≤ 2− sL(t∞) =: εL (4.25)

up to order εL (details in Appendix B, Lemma 4). Because using tL or t∞ makes no

difference in the error up to order εL, it is sufficient to exclusively use t∞ in these

calculations. The error for a total simulation time τ= r t∞ = r log(2)/Λ, r ∈N, is then

‖ÃL(t∞)r −U (t∞)r ‖ ≤ rδL = ΛδL

log2
τ≤ rεL , (4.26)

also up to order εL (see Appendix B, Lemma 5).

21‖·‖ with an operator as its argument always means the operator norm in this thesis.
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The bound on the total simulation error of r steps gets the new name ε := rε. The

T -gate complexity Cε of a simulation for time τ in terms of the total error bound

ε is then in the range

O
(
Λτ log Λτ

ε

loglog Λτ
ε

)
<Cε ≤O

(
LΛτ log Λτ

ε

loglog Λτ
ε

)
, (4.27)

depending on the Hamiltonian. This is shown in detail in Appendix B, Lemma 10,

which makes use of Lemmas 6 to 9.

Insertion strategy

The notion of partially included orders together with an expression for the error bound

allows the implementation of a simple heuristic. Starting from any given (partial)

expansion L it is straightforward to determine which of the vector elements Lk should

be increased by 1 — i.e. which additional gate should be included — to give the largest

decrease of the error bound, and thus the quickest convergence. Specifically, it is

the k which maximises the expression

∑
ν≥k

tν

ν!
α1+Lk

∏
j 6=k

1≤ j≤ν

(
L j∑

i=1
αi

)
. (4.28)

Starting from L = 0, repeatedly adding terms that maximise (4.28) results in a greedy

algorithm for decreasing the error bound, which is used to iteratively construct circuits

whose accuracy is examined in the next Section.

4.1.2 Results

Molecule survey

The first observation to make is that for Hamiltonians with evenly distributed magni-

tudes α`, the only benefit of using the modification presented here is the finer control

over the total gate count. By construction, whenever the cost introduced in Eq. (4.23)

CL = νL, ν ∈N, the revised protocol and the method used in [132] yield identical results.

It seems reasonable that the modification may be advantageous whenever the

magnitudes of α` vary over several orders of magnitude, because this allows terms
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Table 4.1: Molecules used for the demonstration of algorithmic performance
with their molecular formula, PubChem Compound ID (CID), number of
qubits (excluding ancillas), and number of terms L.

Formula CID Qubits L

HO 157350 12 631
HF 16211014 12 631
HN 5460607 12 631
LiH 62714 12 631
BH 6397184 12 631
BeH2 139073 14 666
CH2 123164 14 1086
NH2 123329 14 1086
BH2 139760 14 1086
H2O 962 14 1086
BH3 6331 16 1953
CH3 3034819 16 1969
NH3 222 16 2929
CH4 297 18 6892
O2 977 20 2239
N2 947 20 2951
NO 145068 20 4427
CN 5359238 20 5835
BeO 14775 20 5851
LiF 224478 20 5851
CO 281 20 5851
BN 66227 20 5851
LiOH 3939 22 8734
HBO 518615 22 8758
HCN 768 22 8758
HOF 123334 22 12070
CHO 123370 22 12070
CHF 186213 22 12074
HNO 945 22 12078
H2NO 5460582 24 9257
CH2O 712 24 9257
NH2F 139987 24 15673
CH2F 138041 24 15681
CH3F 11638 26 18600
CH3Li 2724049 26 19548
H3NO 787 26 22080
OCH3 123146 26 39392
LiBH4 4148881 28 27473
CH3OH 887 28 30419
C4H8O2 8857 76 1614647
C8H6 12302244 92 1897809
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Figure 4.2: Accuracy of the Taylor expansion for the electronic Hamiltonian of hydrogen
fluoride (HF), at time step size t∞, in terms of the error per unit time vs the circuit cost CL as
defined in Eq. (4.23) in multiples of the cost of a full order. Lines are the error bounds εL for the
unmodified and modified circuit. Squares are the numerically obtained errors δL

for fully expanded orders, circles analogous for partial orders. The vertical grey bars point to
where the error would be if we could implement UL without the amplification step. The inset
shows the distribution ρ of the logarithms of weights in the Hamiltonian log|α`|.

in low orders containing small α` to be smaller than terms in higher orders contain-

ing large α`. Such magnitude distributions are often found in electronic structure

Hamiltonians for molecules [217]. Because the efficiency of the new method depends

critically on the specific amplitudes in the Hamiltonian, analytical results are hard to

obtain. An alternative way to investigate the performance is to resort to a numerical

study comparing the accuracy of the modification to the method in [132] for a group

of molecules. The compounds used here are listed in Table 4.1.

The Hamiltonians for these molecules were obtained using OpenFermion [218]

and PySCF [219, 220], with the basis set STO-3G [221], and geometry data retrieved

from PubChem [222, 223] and the NIST Computational Chemistry Comparison and

Benchmark Database [224]. Mapping from second quantisation to spin operators was

done using the Jordan–Wigner transformation [214].
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Figure 4.3: Identical plot to Fig. 4.2 showing only the convergence of error bounds for ammonia
(NH3). Notice the increasing distance between the unmodified and modified variants
of the algorithm between the orders 2 and 4, which is not present in Fig. 4.2. It is caused by the
two distinct clusters in the distribution of the logarithmic weights in the Hamiltonian visible in
the inset.

To showcase that the modification yields improvements regardless of the basis

set used, the calculations for H2 and LiH were repeated using cc-pVDZ, cc-pVTZ,

and cc-pVQZ basis sets [225, 226]. Section 4.1.2 discusses this in more detail and

shows the results.

In addition to the listed molecules, another calculation was performed, where the

coefficients of the Hamiltonian for LiH were replaced with random numbers from

a normal distribution with µ = 1 and σ = 0.1, to show the vanishing effect of the

modification whenever all weights are similar. These results are plotted alongside

those for real chemical Hamiltonians and are labelled Random.

Figure 4.2 shows the error bounds as well as the numerically evaluated exact errors

per unit time for hydrogen fluoride. Compared to the expansion to full orders, the plot

shows that the modification leads to a much quicker decrease of the error bound as

well as the exact error in the range 0 <CL < L, followed by very similar convergence for
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CL > L. This pattern is consistent with the convergence observed for most other

molecules in the set.

Some compounds considered for this study — namely BH3, CH3, NH3, CH3F,

CH3Li, OCH3, and LiBH4 — show a slightly different behaviour, where the ratio of

error bounds using the modified and unmodified versions increases once more later

in the iteration. Figure 4.3 illustrates this using NH3 as an example. The delayed

convergence is caused by a distinct second peak in the distribution of the logarithms

of weights in the Hamiltonian log|α`|, present in the mentioned molecules. The

rest of the set shows distributions rather similar to that of HF in the inset in Fig. 4.2.

This disparity is also visible in the summarised results in Figs. 4.4 and 4.5, where

the spread for the mentioned molecules (especially for the error in Fig. 4.4) is much

greater than for the rest.

To summarise the results for all molecules, the ratio of the errors of the original

and the modified version at cost values CL = nL was obtained, with n = 1. . .10, with

a time step of t∞ for each respective molecule. The results are depicted in Fig. 4.4.

Across the listed molecules, the modification consistently yields errors roughly one

order of magnitude lower than the unmodified method at equivalent costs, with some

ratios as low as 3 and some as high as 100.

Instead of asking how much the modified version can improve the accuracy of the

simulation for a given budget, it is also interesting how much implementation cost

can be saved for a desired simulation accuracy threshold. To this end, the errors δn

of the expansions to full orders n were calculated, and the cost CL of the modified

version to yield the same error was recorded. The results are depicted in Fig. 4.5.

Using the modified method leads to saving approximately one order in most cases, i.e.

the accuracy obtained by expanding n full orders can be produced with a cost of

roughly CL ≈ (n − 1)L.

The presented results show no strong correlation with neither the number of

qubits in the Hamiltonian nor the number of terms L. Therefore it is reasonable

to presume that these properties will also hold for other chemical Hamiltonians

obtained in the same way.
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Figure 4.4: Magnitude of the errors obtained without, divided by the magnitude of the errors
with the modification, for different molecules at identical implementation cost, using a time
step of t∞. Errors were evaluated at cost values CL = (1 . . .10)L. Each vertical line represents the
ratio of errors at some cost CL , the shaded areas indicate the range from the smallest to the
largest data point. The advantage of the modified algorithm therefore increases left-to-right.
Top-bottom split data indicates ratios of error bounds εn/εL at the top (marked in blue) and
ratios of numerically obtained errors δn/δL at the bottom (marked in green). If there is no split,
the blue lines represent error bounds only.
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Figure 4.5: Difference between the cost of full expansions Cn = nL to order n = 1. . .10 and
the cost of an iteratively constructed circuit CL to arrive at the same error, normalised to the
cost of one full order L, for each molecule. Each vertical line represents the difference at some
value of n, the shaded areas indicate the range from the smallest to the largest data point. The
advantage of the modified algorithm therefore increases left-to-right. The time step size is t∞.
Top-bottom split data indicates differences for error bounds at the top (marked in blue) and
for numerically obtained errors on the bottom (marked in green). If there is no split, the blue
lines represent error bounds only.
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Effect of basis set choice

As mentioned previously, to ensure the observed effect also holds for larger basis

sets, additional calculations were performed for H2 and LiH using cc-pVDZ, cc-pVTZ,

and cc-pVQZ bases.
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Figure 4.6: Magnitude of the error bounds
obtained without, divided by the magnitude
of the error with the modification, for differ-
ent molecules and basis sets, using a time
step of t∞. Errors were evaluated at each cost
value CL = (1. . .10)L. Each line represents
the ratio of error bounds εn/εL at some cost
CL . The advantage of the modified algorithm
therefore increases left-to-right.
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Figure 4.7: Difference of the cost of full ex-
pansions Cn = nL to order n = 1. . .10 and the
cost of an iteratively constructed circuit CL to
arrive at the same error bound, normalised to
the cost of one full order L, for each molecule
and basis set. The advantage of the modified
algorithm increases left-to-right. The time
step size is t∞.

Figures 4.6 and 4.7 show that for the considered cases, larger basis sets seem to

slightly enhance the advantage of our modification. As a special case, for H2 our

proposed method yields almost no improvement when using STO-3G, due to the very

low number of only 15 terms. Apart from this outlier, the influence of the choice of

basis set on the modified algorithm’s performance seems small.

4.1.3 Discussion

This section illustrated that a natural extension of the method proposed in Ref. [132]

can lead to noticeable improvements in the convergence of the approximation when

used for electronic structure Hamiltonians of molecules. The straightforward greedy

algorithm — starting from an empty expansion and iteratively inserting terms that
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lead to the largest decline of the error bound — yields a rapidly shrinking simulation

error when starting to build up the circuit. At later stages of the circuit construction,

the rate of convergence shows greater resemblance between the original and modified

methods. Yet, a roughly constant factor of about an order of magnitude is maintained

when measuring the simulation error vs the gate cost for the molecules tested in this

section. Hence, even though the asymptotic scaling for both methods is equivalent,

the modification scales down the constant prefactor, which will be beneficial for

implementations on quantum hardware. When a fixed error threshold is to be achieved,

this advantage translates to saving about one full order of the expansion.

The presented modification is conceptually simple: the circuit structure of the

canonical truncated Taylor series method remains unchanged. A simple rearrange-

ment of the order in which gates are added facilitates a more rapid convergence of

the simulation error with the implementation cost.

Due to the lack of analytic relations between the amplitudes in the investigated

Hamiltonians, only numeric results are available. However, because of the relatively

large sample size of molecules considered here, it stands to reason that this behaviour

will generalise to a large portion of electronic structure Hamiltonians.

As mentioned in the literature review (Section 2.2), in light of other methods

like qubitization and quantum signal processing, the truncated Taylor series may

be of particular relevance for diagonally dominant and time-dependent Hamiltonians.

Investigating the suitability of the discussed modification to such problems would

therefore be an interesting question for future work. Moreover, combining the pro-

posed adaptations with improvements by Novo and Berry [134], who add an additional

correction step to the method, could also be worth exploring.

4.2 Grid-based chemistry

The truncated Taylor series method discussed in the previous section starts from a

quantum chemistry Hamiltonian in second quantisation, mapped to a sum of Pauli

operators, and finds an efficient method of simulating the dynamics of that system. In

essence, it expands the electronic particle density into some basis of Fock states (often
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comprised of hydrogen wave functions), and drives the dynamics of the coefficients of

that expansion forwards in time by means of solving the Schrödinger equation for the

Hamiltonian, which in this form only contains creation and annihilation operators.

However, in some cases, it can be advantageous to not use second quantisation,

but instead describe and store the wave function explicitly in first quantisation, with

its amplitudes discretised on a regular grid in real space.

4.2.1 Method summary

The idea of using first quantisation and a real space grid to simulate quantum dynam-

ics has been extensively investigated before [144, 227–234]. While previous studies

mostly provide theoretical resource analysis, Ref. [212] deploys significant classical

computational power to directly investigate the required resources and pitfalls such

a grid-based simulation might face.

Preliminaries

For the purpose of the method explored in Ref. [212], the starting point is the non-

relativistic time-dependent Schrödinger equation

∂

∂t
Ψ(r , s, t ) =−i HΨ(r , s, t ),

which governs the evolution of the wave functionΨ(r , s, t ), with space (r ) and spin (s)

coordinates across time t . In systems relevant to quantum chemistry, the Hamiltonian

H is usually given by22

H = H kin +H V +H U,

where

H kin =−
P∑

p=1

1

2mp
∇2

p

is the kinetic energy operator, which simply sums the kinetic energy of the P individual

particles numbered by p. For interacting charged particles

H V = ∑
p 6=q

Zp Zq

2|r p − r q |
22Atomic units are used throughout this section.
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is the total Coulomb interaction energy, given by the sum of all pairwise interactions.

The last term H U models interactions of the particles with an external field. Such a

field can be an applied electrical potential to which a molecule is subjected, or it could

represent a classical charge with a fixed position in space, which is not explicitly part

of the simulation as a separate particle. Indeed, although this formalism allows for the

nuclei to be included as quantum objects in the simulation, it is sometimes sensible to

fix them in space and treat their fields classically, which will be the case for the rest of

this discussion. For a single nucleus at the origin with charge Z , it then takes the form

H U =∑
p

Z Zp

|r p |
,

where p again numbers the particles. This can be straightforwardly expanded to

multiple nuclei by summing over them and inserting the appropriate coordinates

in the denominator.

Reference [212] then continues to discuss appropriate choices for the basis func-

tions that should be used to represent the wave function, arguing that when using a

“simulation box” of side length L, which contains (almost all of) the wave function, an

appropriate choice for the one-dimensional case in momentum space is the plane

wave basis |k〉, which has the real space representation

〈x|k〉 = 1p
L

exp

(
2πi kx

L

)
,

with appropriate values for k. When representing the wave function with a quan-

tum register containing nr qubits, a natural choice for k is to let it take the integer

values k = −ρ,−ρ + 1, . . . ,0, . . . ,ρ − 1 with ρ := 2nr −1. A spatial wave function Ψ(x)

with the expansion

Ψ(x) = 〈x|Ψ〉 = 1p
L

ρ−1∑
k=−ρ

ak exp

(
2πi kx

L

)

is then represented in the quantum register as the k-space (KS) state

|Ψ〉↔ |ψ〉KS =
ρ−1∑

k=−ρ
ak |k〉 ,
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where |k〉 is a computational basis state whose binary representation is interpreted

as an offset binary23 or using two’s complement.24

From this momentum space representation, the real space expression follows

naturally via the discrete Fourier transform of its coefficient vector.

bn =F
[
a
]= 1√

2ρ

ρ−1∑
k=−ρ

e
πi nk
ρ ak

Because the amplitudes ak are stored in a quantum state, this operation can be affected

using an inverse25 quantum Fourier transform.

|ψ〉RS = QFT† |ψ〉KS

Note that this state is still stored in the same physical quantum register, but after

the quantum Fourier transform represents the information about the simulated state

using a different set of basis functions, i.e.

〈x|Ψ〉 =∑
n

bnP (x −xn) (4.29)

with xn = nL
2ρ and

P (x) = e− iπx
L

√
2

ρL

[
ρ∑

j=1
cos

π(2 j −1)x

L

]
.

In real space, the basis function P (x) would ideally be a Dirac delta, such that the

coefficients in Eq. (4.29) encode the amplitude of the wave function at a specific point

in space. However, while P (x) is strongly peaked around the origin, due to the finite

number of plane waves in momentum space, it is not quite infinitely concentrated.

Nevertheless, Ref. [212] makes the case that in the context of its exploration, P can

often be treated as such. Indeed, it is argued that a suitable way to discretise a given

(simulation) wave function Ψ(x) into the real space basis given above is

Ψ(x) ≈ 1p
C

ρ−1∑
n=−ρ

Ψ(xn)Pn(x), (4.30)

23Offset binary is a representation for signed binary numbers, where a constant offset is subtracted
from the usual integer representation of every number.

24Two’s complement is a slightly more complex way to represent signed integers using binary numbers.
25In many popular pieces of literature, the exponent signs of the classical Fourier transform and the

QFT are exactly opposite.
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with Pn(x) := P (x−xn) and an appropriate normalisation constant C (taking discretisa-

tion errors into account). This means the amplitudes of the real space representation

in the quantum register are simply the amplitudes of the simulation wave function

sampled at the peak positions xn of the basis set, so bn =Ψ(xn).

The discussion so far has been focused on the one-dimensional case, but gen-

eralisation to higher dimensions is straightforward. The momentum space basis

functions are then products of plane waves travelling along the cartesian coordinate

axes, which, after Fourier transforming each coordinate, translates to the real space

basis functions also being products of their one-dimensional variants. A wave function

in three dimensions is then discretised like

Ψ(x, y, z) ≈ 1p
C

ρ−1∑
n,m,l=−ρ

Ψ(xn , ym , zl )Pn(x)Pm(y)Pl (z).

To represent this state on a quantum computer, the register is segmented into a tensor

product of three individual states, each corresponding to one dimension.

|ψ〉RS ∝ ∑
n,m,l

Ψ(xn , ym , zl ) |n〉 |m〉 |l〉

Analogously, representing multiple particles can be achieved by adding further

such registers, where for P particles in d dimensions, a total of Pd registers are required,

each containing nr qubits.

|ψ〉RS ∝∑
n1,m1,l1,...,lP

Ψ(xn1 , ym1 , zl1 , . . . zlP ) |n1〉 |m1〉 |l1〉 . . . |lP 〉

The corresponding state in momentum space is denoted appropriately by

|ψ〉KS ∝∑
k1, j1,h1,...,hP

bk1, j1,h1,...,hP |k1〉
∣∣ j1

〉 |h1〉 . . . |hP 〉 .

For practical purposes, these individual registers are combined into a single large

one, where each string of nr neighbouring qubits represents one coordinate of one

particle. For example, for two particles in two dimensions using nr = 4, one of the

computational basis states would be

|0100︸ ︷︷ ︸
|n1〉

|m1〉︷ ︸︸ ︷
11101101︸ ︷︷ ︸

|n2〉

|m2〉︷ ︸︸ ︷
0010〉RS .
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This setup now allows for straightforward switching between momentum- and real-

space representation in the quantum register by applying an (inverse) quantum Fourier

transform to each of the sub-registers.

|ψ〉KS
QFT†

�
QFT

|ψ〉RS

Split-operator time propagation

The formalism established in the previous section now allows for an efficient way

of implementing the time evolution of some initial state, which is governed by the

Hamiltonian H as introduced above. Using a first-order Trotter-Suzuki formula, this

time evolution for small ∆t can be approximated by

U (∆t ) = e−i H∆t = e−i H kin∆t e−i (H V+H U)∆t +O(∆t 2). (4.31)

An important observation here is that for a simulation stateΨ(x) stored in momentum

space |ψ〉KS, the operator H kin is diagonal with elements

H kin |k1〉
∣∣ j1

〉 |h1〉 . . . |hP 〉 =
∑
p

∑
ν∈{k, j ,h}

ν2

2m1
|k1〉

∣∣ j1
〉 |h1〉 . . . |hP 〉 ,

i.e. the sum of the individual momenta of each sub-register in k-space. Even more

conveniently, the kinetic part of the time evolution operator is then just the product

of phases dictated by each sub-register separately.

e−i H kin∆t =∏
p

∏
ν∈{k, j ,h}

exp

(
− iν2∆t

2mp

)

Similarly, the potential part of the Hamiltonian, H U +H V, is almost diagonal26 for

a state stored in position space |ψ〉RS with elements

H U |n1〉 |m1〉 |l1〉 . . . |lP 〉 =
∑
p

Zp Z

2
√

x2
np

+ y2
mp

+ z2
lp

|n1〉 |m1〉 |l1〉 . . . |lP 〉 (4.32)

26It would be exactly diagonal if the basis functions were actual Dirac deltas. For the purpose of the
investigation in [212], they are treated as such, but note that this introduces a small error, especially for
coarse-grained simulations.
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and

H V |n1〉 |m1〉 |l1〉 . . . |lP 〉

= ∑
p 6=q

Zp Zq

2
√

(xnp −xnq )2 + (ymp − ymq )2)+ (zlp − zlq )2
|n1〉 |m1〉 |l1〉 . . . |lP 〉 . (4.33)

These phases do not separate quite as nicely as the kinetic part, but they are still

diagonal operators. Therefore, so is the potential part of the time evolution operator

e−i (H U+H V)∆t , which just multiplies appropriate phases given by Eqs. (4.32) and (4.33)

onto the coefficients of the state.

All of these diagonal operators can be implemented using one- and two-qubit gates

with cost quadratic in nr ; Reference [212] makes more detailed comments about their

construction. Rather importantly in the present context, this form also excellently

lends itself to being simulated on classical hardware. When these operators are

applied to one of the computational basis states (given it is representing the physical

state in the appropriate real- or momentum-space), the state remains the same, and

its coefficient picks up a phase that is completely determined by its own bitstring.

Therefore, application of all these operators is embarrassingly parallelisable27 and

thus comparatively fast in simulations.

These insights can now be used in the Trotterised time evolution operator in

Eq. (4.31) to yield an efficient simulation scheme. However, because the kinetic and

potential time evolutions are diagonal in different representations, it is necessary to

insert (inverse) quantum Fourier transforms between them. This yields an evolution

operator, which Ref. [212] is often referred to as the split-operator (SO) time evolution

U (∆t ) ≈USO(∆t ) := e−i (H U+H V)∆tU †
QFTe−i H kin∆tUQFT,

where UQFT means the QFT of each individual sub-registers containing nr qubits. Note

that the operators e−i H kin∆t and e−i (H U+H V)∆t are now diagonal.

Using this framework, Ref. [212] goes on to investigate multiple use cases and care-

fully examines the resource requirements, necessary temporal and spatial resolution,

27The term embarrassingly parallelisable refers to tasks that trivially decompose into a set of
separate, independent tasks, lending themselves to distribute very efficiently across different processing
units [235].
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utility, and intricacies of simulations based on this principle in one, two, and three

dimensions, noting important caveats and pitfalls one might encounter, as well as

applying various techniques to increase its accuracy. The relevant part for this thesis is

the simulation of a 3D helium atom, which is described in the following subsection.

4.2.2 Results

3D helium simulation

To demonstrate the suitability of the method when simulating an interacting system

in three dimensions, this subsection will show results for a helium atom, i.e. two

electrons interacting via Coulomb repulsion within an attractive central Coulomb

potential. For the purpose of this simulation, the spin degree of freedom is ignored,

as it does not play a role in the specific setup used.

At the start of the simulation, some initial state must be chosen. Eigenstates of

the Hamiltonian would be one option to demonstrate numerical stability. However,

the exact electron eigenstates of the helium atom cannot be solved analytically, so

instead, the electronic states are initialised in an antisymmetrised combination of

hydrogen wavefunctions28

Ψn,l ,m(r,θ,ϕ) =
√(

2Z

n

)3 (n − l −1)!

2n(n + l )!

(
2Z r

n

)l

e−Z r /nL2l+1
n−l−1

(
2Z r

n

)
Y m

l (θ,ϕ)

with central charge Z = 2, which serves as an approximation. Without electron-

electron interaction, such an initial state would indeed be an eigenstate. The two

sets of quantum numbers (n, l ,m) used for the initialisation were (2,1,0) and (2,1,−1),

of which the former is the 2pz -orbital and the latter is the atomic orbital often denoted

as 2p−1 = (2px − i 2py )/
p

2 with the usual orbitals 2px and 2py . The full initial (triplet)

state is then the antisymmetric wave function

Ψinit(r 1,r 2) =Ψ2,1,0(r 1)Ψ2,1,−1(r 2)−Ψ2,1,−1(r 1)Ψ2,1,0(r 2). (4.34)

The used simulation box is a cube with a side length of 25 a.u. The initial state

Ψinit given above is discretised at sampling points as per Eq. (4.30) using nr = 6 qubits

28L j
k (x) is a generalised Laguerre polynomial of degree k, Y m

l (θ,ϕ) is spherical harmonic of degree l
and order m.
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per subregister, which provides 64 divisions per axis and particle. The full 36-qubit

state is then propagated forwards in time for 500 split-operator steps, where each

step is of length 0.05 a.u., thus a total evolution of 25 a.u. is simulated. One detail

worth noting for this simulation is the highly symmetric initial state. These symmetries

could be exploited to make the simulation more efficient and/or precise. However,

as an exploratory demonstration effort, the goal of this calculation was to show the

capabilities of the method in a generic setting. Therefore, such optimisations are

not included here.

Many one- and two-dimensional demonstrations in Ref. [212] use an extra ancilla

qubit to perform phase estimation in order to track changes in the simulated state.

However, since the classical resources required for this calculation are already consid-

erable, and an additional ancilla qubit would double the memory requirements, the

state change is tracked in a different way. At every time step, the three-dimensional

probability density ρ(1)(t) of one of the electrons29 is determined and recorded. In

practice, this means calculating the probability associated with each of the 218 position

space grid points defined by the computational basis states of the three subregisters

representing one of the particles. As a measure of how much the distribution of the

electron deviates from its initial state, the Bhattacharyya coefficient [236]

∑
n

√
ρ(1)(t )nρ(1)(0)n

between the time evolved and initial probability distributions can be used. Here, the

sum over n includes all grid points. This coefficient somewhat resembles a classical

analogue of the usual inner product fidelity. Figure 4.8 shows the results.

As mentioned above, if the initial state were an eigenstate of the Hamiltonian, the

expectation would be for the probability distribution to just stay constant. Fortunately,

the Hamiltonian can be easily modified in order for this to be true. Simply removing the

electron-electron interaction term reduces the problem to a hydrogenic one. Figure 4.8

also contains the Bhattacharyya coefficient results of such a calculation and confirms

that this is indeed the case for this simulation. The probability distribution stays

29As electrons are indistinguishable, their probability distributions must be the identical.
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The 500 SO cycles correspond to propagation of 25 a.u. (≈ 0.6 femtoseconds). Data for this
figure was generated by RM, visualisation by SB.
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constant, which hints at a good choice of hyperparameters (simulation box size, grid

spacing, etc.) for this calculation.

When the interaction between the electrons is included in the Hamiltonian, the

initial state is not an eigenstate anymore. Thus, the probability distribution is expected

to vary over time; Figure 4.8 affirms this behaviour. The charge is initially distributed

rotationally symmetric about the z-axis, with some density accumulations just above

and below the x–y plane. In the interacting case, the electrons partially shield each

other from the core, thus the hydrogen wave functions with Z = 2 are concentrated

too closely around the core. As time evolves, the charge initially spreads out away from

the core, then returns slightly, but not to its initial distribution.

The results reported here were generated with pyQuEST (see Chapter 7), using its

capability to deploy in a cluster configuration, where the numerical representation of

a quantum state is partitioned between compute nodes cooperating over a network.

This allows both the representation of states too large to fit into the memory of any

single compute node, and their concurrent simulation — each multicore node is

further able to parallelise its local simulation tasks through multithreading. Specifically,

emulation of this 36-qubit quantum computer employed 32 compute nodes of the

Oxford Advanced Research Computing (ARC) facility [237]. Each node contains 48 CPU

cores, and took roughly 52 hours (≈ 50000 core hours) to process its 64 GiB partition of

the full 1 TiB quantum state-vector. The time-limiting factor of the calculation was, as

expected from the parallelisation argument made in Section 4.2.1, the quantum Fourier

transform. As opposed to the phase gates, which can be calculated independently and

massively parallel, the QFT requires communication between the nodes and is thus

roughly an order of magnitude slower in the present case.

Space resource scaling

Using the results presented here and additional ones contained in Ref. [212], it is

now possible to roughly estimate the quantum resources that would be required

to simulate larger molecules of interest. Two candidates for such simulations are

ammonia (NH3), which is of profound importance in modern agriculture and for
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which methods of selective hydrogen atom removal are being investigated [238], and

hexafluoro ethane (C2F6), which is a representative example of fluorocarbons [239]

relevant in the chemistry of the ozone layer and in plasma etching.

To extrapolate from the knowledge gained in the simulations presented here and

in Ref. [212], the following observations are useful. First, the maximum curvature of

the molecular wavefunction should scale only linearly with the maximum core charge

Zmax present in the molecule. This is reasonable when considering the solutions of

the hydrogenic wavefunctions, which the core electron states (i.e. the most strongly

curved) will closely approximate. Since the required resolution depends on this

curvature, the number of grid points per dimension, which is 2nr , should also scale

linearly with Zmax, i.e. enr ∝ Zmax.

Second, the side length of the simulation box needs to scale with the size of the

molecule contained in it. A reasonable assumption is for the volume to scale roughly

linearly with the number of contained particles P [212, 232]. For a cubic simulation box

with side length L, this means L ∝ P 1/3. To keep the same spatial resolution within the

box, the number of qubits per sub-register must grow like 2nr ∝ L, and thus 2nr ∝ P 1/3.

Combining these insights leads to the conclusion that the number of qubits per

particle and dimension nr should roughly scale like

nr ≈C + log2(Zmax)+ 1

3
log2(P ), (4.35)

with a constant C that is to be determined in this section.

Since nr really depends on more characteristics of the problem besides Zmax and

P , the variable C will not be an absolute constant, but rather fluctuate with other

system properties, such as the geometry and electron configuration. One way forward

is to proceed to estimate the required resources for the two molecules that have been

identified as interesting above, consequently arriving at two example values for C .

These will then give a rough idea of its range.

First, note that in the numerical modelling reported here, remarkably accurate and

stable simulations can be achieved with as few as 6 qubits per x, y or z sub-register, i.e.

18 qubits per 3D particle. Methods such as iterative phase estimation employed in [212],
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requiring only one additional qubit, can then obtain eigenenergies with accuracy up

to 6 decimal places, as shown in the Reference. The results in [212] using the so-called

augmented split-operator method suggest that even core-peaked electronic states

can be modelled with only a small increase in resolution. For the present resource

analysis it can therefore be reasonable, even albeit optimistic, that nr = 7 may suffice

for systems with P = Z = 1. As argued above, for larger values of P and Z , more data

points per dimension are necessary to compensate for differently sized simulation

boxes and higher curvature of core states. These required changes are discussed below.

For molecules that are already well-understood, the ionisation potential can be

used to estimate their long-range behaviour [240]. However, a more interesting

application of quantum simulators is to explore molecular systems that have not

yet been experimentally studied. Therefore, the following will provide a first-principles

argument based only on the constituent atoms and their (approximate) presumed

locations. The centre of the highest occupied hydrogen-like wave function of each atom

is placed at the coordinates of each nucleus. Following this, its radial charge density is

calculated according to Ref. [241], which also semi-empirically accounts for nucleus

shielding. Summing up the contributions from all atoms gives an approximation to the

total charge density if the electrons of different atoms were not interacting with each

other, in what might be described as a no-chemistry approximation. The maximum of

this total density on the surface of the simulation box then provides information about

how strongly the electrons will interact with its boundary. For molecules of interest

here, the atomic locations in their equilibrium geometry are taken from Ref. [224].

To get an idea of what an acceptable charge density at the box surface could be,

the calculation of 3D helium without electron-electron interaction discussed above

gives some valuable insight. From the electron configuration and box size of that

simulation, its maximum surface electron density ρ0 using the approximate method

described above can be derived. Consequently, the simulation box for any other

molecule might be considered sufficiently large whenever the method above yields a

maximum surface electron density that does not exceed ρ0. Continuing with relatively

optimistic assumptions, this rule will be followed as a simulation box size estimator.



CHAPTER 4. HAMILTONIAN TIME EVOLUTION FOR QUANTUM CHEMISTRY 103

However, note that it is only a rough approximation to the extent of the electron

cloud; specific scenarios might necessitate an increase. Interesting dynamics with

substantial numbers of moving particles may require significantly larger boxes, as to

not let substantial amplitude collide with the simulation boundary.

Reiterating from above, besides varying simulation box sizes, the changes in the

required spatial resolution must also be taken into account. For Z > 1, the features of

hydrogenic wave functions shrink by a factor of exactly Z−1, which is usually also a

good approximation for low-lying core states. To accurately resolve these electronic

states, the number of grid points per unit length must therefore be increased by

a factor of Zmax.

For Ammonia (NH3), the more modest of the two molecules mentioned as in-

teresting above, an optimistic estimate yields the following: The highest charge in

the molecule is Zmax = 7. Therefore, the number of grid points must increase to

7 times that of the estimate for Z = 1. At the same time, the previously discussed

method to determine the box size yields a side length of ≈ 1.1 times the length required

for a single hydrogen atom, giving a total factor of ≈ 1.1× 7 = 7.7 < 8 = 23, which

means nr must increase by 3 from its reference value of 7, i.e. nr = 10 qubits per

particle and dimension. Substituting these values in Eq. (4.35) and rounding where

appropriate leads to a value of C NH3 ≈ 6. For 14 particles (10 electrons and 4 nuclei)

in 3 dimensions, the total total number of qubits comes out to 3×10×14 = 420. This

might be rounded to 450, recognising that multiple ancillas may be required even

in a very resource-effective implementation.

The more challenging case mentioned above was C2F6. The highest-charge nuclei

are those of fluorine, giving Zmax = 9, thus increasing the required spatial resolution

9-fold. Surprisingly, as the electron densities of C and F drop off quite rapidly with

increasing distance from the atom, the above described method suggests that the

required side length of the simulation box could be as small as 0.85 times that of

a single hydrogen atom. This results in a total factor of ≈ 0.85× 9 = 7.65 < 8 = 23,

again meaning that 3 qubits must be added to the reference value, yielding a total

of nr = 10. Using Eq. (4.35) again, for this molecule the constant term is C C2F6 ≈ 5.
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The total number of required qubits is 3×10×74 = 2220, which might be rounded

up to 2250 to allow for some ancilla overhead.

From these two data points, C can be cautiously estimated to roughly be on the

order of ∼ 10, but it should be noted that it might be lower for advantageous circum-

stances as in the examples given, or may also increase in unfavourable situations.

4.2.3 Discussion

This section elaborated on some of the aspects of simulating quantum chemistry using

the split-operator method — a variant of Trotterisation — on a regular real-space

grid, which is part of the exploration in Ref. [212]. The goal of the material presented

here was two-fold. First, demonstrate that even a coarse-grained three-dimensional

quantum chemistry calculation can yield numerically stable and physically reasonable

results. Second, give a rough estimate of the quantum resources required for simulating

quantum-chemically interesting molecules, as well as an approximate formula how

these resource requirements might scale to even larger systems.

The first point was achieved via a resource-hungry 36-qubit simulation on a

classical compute cluster. The relatively modest compute time can, at least in part,

be attributed to the diagonal form of the kinetic and potential operators, whose

elements furthermore have an algorithmic connection to their binary value and can

thus be calculated on-the-fly. This enables massively parallel evaluation of their

application to a state, leaving the quantum Fourier transform as the bottleneck in

the gate-based classical quantum simulation software. Results of the time evolution

of a 3D hydrogen atom with and without e-e-interaction show no signs of artefacts

or numerical instability, suggesting that the grid spacing and time step used were

sufficiently fine-grained for an accurate simulation. The physical behaviour of an

expanding and then contracting electron density cloud is also in line with what might

be expected from the initial state used. Therefore, these parameters can serve as a

basis on which a cautious resource estimation may be performed.

The second point was accomplished via reasonable assumptions about the curva-

ture of the wavefunction and what volume it would typically occupy. Using the above
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discussed simulation as a starting point, a simulation of the chemically interesting

NH3 was assigned a space cost of roughly 450 qubits. Although this is not too far off

from quantum devices available today [242], it seems unlikely that NISQ devices would

be able to perform such a calculation, keeping in mind that the simulation presented

here was noise-free, while NISQ hardware is usually burdened with considerable

noise and other constraints like qubit connectivity, making circuits as deep as in the

simulation not feasible. Indeed, such a simulation task seems more suited for early

fault-tolerant quantum hardware. Using the same technique, the practically also very

relevant C2F6 was estimated to require about 2250 qubits, marking a considerable

five-fold increase from ammonia, but still well within what is anticipated from fully

error corrected devices in the future.

These observations make it seem reasonable that the techniques explored in

Ref. [212] may have practical applications, once such devices are available. The

manuscript [212] furthermore makes some comments about the potential runtime of

such an algorithm, possible hardware architectures, and other potential uses of the

split-operator method besides quantum chemistry. The interested reader is referred

to the full text.

In this chapter I discussed two distinct methods of simulating the dynamics of a

molecular system, from which, in principle, the energies of the Hamiltonian can be

extracted via, for example, quantum phase estimation. Since the QPE algorithm is quite

a costly one in terms of its implementation on a quantum device, a cheaper method of

finding energies or their gaps would be very useful. The next chapter introduces such

a method that can detect energy gaps of a Hamiltonian more efficiently.
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We have to remember that what we observe is not
nature in itself but nature exposed to our method
of questioning.

— Werner Heisenberg

5
ALGORITHMIC SHADOW SPECTROSCOPY

This chapter presents part of a project published as Ref. [243], and closely follows parts of that

manuscript. Bálint Koczor conceptualised the core idea and scope of the project. Hans Chan, Matt

Goh, and myself worked on details and improvements to the algorithm, and each contributor

implemented numerical demonstrations for different physical models and frameworks. My

specific part was the simulation of the Fermi-Hubbard model with and without gate noise. The

following explains key concepts of the work and focuses on my particular role in it, while leaving

out details not relevant to, or not directly part of, my contribution. In places I use text verbatim

from [243]; in those cases I was the original author of the text.

Contents
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In Chapter 4 I elaborated on the importance of Hamiltonian simulation for poten-

tially useful applications of quantum computers, and how quantum chemistry is one

of the key areas where a practical benefit might be expected from such simulations.
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However, solely generating a time-evolved state using these simulation techniques

is not the end of the story. To infer properties like the energy level spacing of a

system from its evolution, additional techniques like quantum phase estimation

must be applied.

In this chapter, I will summarise and detail my contributions to a protocol that

provides an efficient way to extract the magnitudes of energy gaps from the time

evolution of a state using classical shadows [244] and sophisticated post-processing.

As already discussed in the Literature Review, knowledge about these gaps often allows

the calculation of crucial information about a system, like reaction rates, emission

and absorption spectra, etc.

5.1 Method

The goal of the method presented here is to extract the energy gaps of Hamilto-

nian eigenstates which have significant overlap with some input state |ψ〉. Given

a Hamiltonian H , whose eigenenergies will be denoted as Ek with their corresponding

eigenstates being |ϕk〉, this statement can be formalised to finding all

∆Ekl = |Ek −El |

where ∣∣〈ψ|ϕk〉 〈ψ|ϕl 〉
∣∣ 6¿ 1.

Given access to exact expectation values of observables, this task is relatively

straightforward. Starting from the Schrödinger equation for the input state |ψ〉 and

expanding it into the Hamiltonian’s eigenbasis yields

|ψ(t )〉 = e−i H t |ψ〉 =∑
k

〈ϕk |ψ〉︸ ︷︷ ︸
=:ck

e−i Ek t ,

which means that an observable O will oscillate like

〈O(t )〉 = 〈ψ(t )|O|ψ(t )〉 =∑
k,l

c∗k cl 〈ϕk |O|ϕl 〉︸ ︷︷ ︸
=:Ikl

e−i (Ek−El )t . (5.1)
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The Fourier transform of the signal 〈O(t )〉 then reveals peaks at the energy differences

Ek −El with the respective intensities Ikl . So to observe the spectrum of a system,

the time evolution 〈O(t )〉 can be sampled at discrete, equally spaced times tm , and

the discrete Fourier transform (DFT) of the obtained time signal shows the transition

energies ∆Ekl as peaks in the spectrum.

There are two problems that arise from this method in practice. First, the intensities

Ikl depend on the matrix elements Okl of the operator O in the Hamiltonian eigenbasis.

The magnitudes of these matrix elements are often not known a priori, and may

be arbitrarily small for a chosen operator O, resulting in no signal, even when the

initial state has considerable overlap with the relevant pair of Hamiltonian eigenstates.

This point will be discussed momentarily. Second, the expectation values must be

estimated from repeatedly sampled measurements, which means the time signal 〈O(t )〉
is typically burdened with shot noise, potentially overpowering the signals. A solution

to this problem is described in Section 5.1.2.

5.1.1 Classical shadows

One possible solution to the first mentioned problem — not knowing the magnitude

of matrix elements — is to sample a large number of them, in the hope that one (or

several) will provide a strong signal. The technique of classical shadows allows exactly

that in a resource-friendly way, i.e. it is possible to estimate many observables from

very few measurements. Several variants of this technique exist [244–249], but the

version most relevant to the present work is one that permits efficient estimation

of expectation values of k-local Pauli strings.30 This restriction to Pauli observables

somewhat simplifies the specific procedure used to generate the results in this chapter,

whose basic steps shall be reiterated here.

At every sample point in time tm , a number Nsnap of snapshots (often called

shadows) is recorded. A single snapshot is produced as follows. For each qubit in

the calculation, randomly and uniformly choose one of x, y , or z. If x is chosen,

rotate the qubit by −π/2 about the y-axis; if y is chosen, rotate it by π/2 about the

30A k-local Pauli string is an operator which acts on at most k qubits with either a Pauli-x, -y , or -z
operator.
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x-axis; if z is chosen, perform no rotation. Subsequently, measure all qubits in the

Pauli-z basis, which now effectively is a Pauli measurement on each qubit in either

the x-, y-, or z-basis, where the direction for each qubit was chosen randomly. The

information about the used measurement basis for snapshot q is stored in a vector

Pq , with q = 1. . . Nsnap, together with the measurement outcomes, which is a vector

bq with entries of ±1 for each qubit.

After the measurements have been performed, the task is to estimate expectation

values of k-local Pauli strings P = ∏
j∈I σ

νj

j , with νj ∈ {x, y, z}, and where I contains

k̄ ≤ k different relevant qubit indices.31 A simple example would be P = σx
2σ

y
4σ

x
5 ,

where I = {2,4,5}, as well as ν2 = ν5 = x and ν4 = y . To reconstruct one particular

P from the collected snapshots {Pq ,bq }, the following procedure can be used. First,

for all recorded snapshots, check whether the measurement basis of that particular

snapshot matches the direction νj of the Pauli string of interest P for all indices j ∈ I ,

i.e. [Pq ] j = νj ∀ j ∈ I. Keep only snapshots for which this condition is fulfilled, and

collect their indices into the set Q. Then, a good estimate of the expectation value is

〈P〉 ≈ 3k̄

Nsnap

∑
q∈Q

∏
j∈I

[bq ] j .

Performing this reconstruction for every possible Pauli string which is at most k-

local yields a large number of NO observables, which can all be estimated from only

a few snapshots at every time step. From here on, these operators will be called

O(n), with n = 1. . . NO .

Note how for this specific incarnation of classical shadows, the reconstruction

has a very simple probability-theoretic interpretation. The measurement outcomes

of those instances where the Pauli-string of interest was (by pure chance) actually

measured are summed over, and finally divided by expected number of times the Pauli-

string of interest would appear as a substring in all of the Nsnap measurement bases.

However, as many variants of the classical shadow technique exist, this observation

does not generalise to all of them.

31The notation σνk means, as elsewhere in this thesis, a Pauli-ν operator on qubit k.
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To deal with outliers, a median-of-means component is usually added to the

reconstruction procedure. In this work, every collection of snapshots is divided into

three equally sized batches, before the procedure described above is performed on

each of them. The final expectation value is always taken as the median of these three

batches. Note also here, that the method of classical shadows is more general than this,

but for consistency, the described setup is used everywhere in this chapter.

From the description above it is also obvious that the larger k̄ is, the larger the shot

noise of that observable will be, because, on average, it is measured fewer times.

Therefore, the rest of this chapter will be limited to at most 3-local Pauli strings

as observables, i.e. the observables are strings of Paulis that have 3 (non-identity)

terms or fewer.

5.1.2 Post-processing

As just discussed, with the technique of classical shadows it is possible to estimate

the expectation values of many observables from only few measurements. This

increases the chance of including observables O(n) for which the matrix element

O(n)
kl associated with a relevant energy gap ∆Ekl has a large magnitude. But, even

when such observables are contained within the set of estimated Pauli strings, the

signal is often still buried under shot noise, and directly Fourier transforming the time

series of one observable 〈O(n)(tm)〉 yields no usable information. Figure 5.1a shows a

small excerpt from the (standardised) signal matrix, where each column represents

a different observable O(n), and each row is a different time tm . While not a proof, it

graphically illustrates that the raw signal reconstructed from classical shadows with

only few measurements can look like mostly noise, even though in some columns

some periodic pattern already emerges.

To continue the analysis, the signal data 〈O(n)(tm)〉 is first standardised such that

the time signal of each observable has a mean of 0 and a standard deviation of 1,

fn(m) = 〈O(n)(tm)〉−µn

σn
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(a) Small section of the raw (transposed) data matrix Dᵀ of expectation values after standardising
but before testing it for autocorrelations. Each pixel is the expectation value of one specific
operator O(n) at some time index m. Time varies vertically, while horizontally the index of the
(arbitrarily numbered) Pauli strings changes. Though upon close inspection some structure is
visible, the matrix mostly looks like statistical noise.
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(b) Bottom left section of the correlation matrix
C = DᵀD. A clear periodic pattern of stripes
crossing the matrix diagonally from the bottom
left to the top right is visible.
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(c) Fourier transform of the dominant eigen-
vector of C showing a clear single peak in the
spectrum with very high SNR. The exact theo-
retical value ∆̃ of the expected peak position32

is identical to the actual peak position.

Figure 5.1: Simple demonstration of the first steps of the algorithmic shadow spectroscopy
procedure. Each Pauli string at each point in time was measured using only 50 shots. The model
is a 1D 3-site Fermi-Hubbard model with the same parameters as in Section 5.2 (see there also
for a description of the model), with a particularly simple initial state of |ψ〉 ∼ |ϕ0〉+ |ϕ1〉. In
this case, even just Fourier transforming the dominant eigenvector gives very good results.
More involved systems with more peaks are better analysed using the full post processing
described in the main text.
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where

µn = 1

NO

∑
m

〈O(n)(tm)〉 and σ2
n = 1

NO

∑
m

(〈O(n)(tm)〉−µn
)2

.

As a next step it proved beneficial to actively filter these time series fn(m) for

statistically significant data, i.e. to discard signals that are indistinguishable from

statistical noise. In this work, a Ljung-Box test33 [252] — which tests each time series

for autocorrelations — is used on each time series fn(m), and signals with a p-value

smaller than 0.05 were discarded, i.e. only observables with a low probability of being

purely noise are retained. For ease of notation, the remaining signals are collected

into a data matrix D with the elements

Dnm = fn(m).

The individual rows of this data matrix are very likely to contain some signal, but

they are still burdened with a large amount of shot noise. To amplify the signal and

get clean, strong peaks in the spectrum, a key step in the post-processing stage is to

recognise that the time evolution of all observables follows the same underlying time

dynamics according to Eq. (5.1), barring differences in the intensities. Therefore, it

makes sense to calculate correlations between different time steps, across all remaining

observables. For standardised data — as is the case here — the correlation is

C j k = 1

NO

∑
n

fn( j ) fn(k).

This operation is concisely expressed as a matrix multiplication of D with its transpose.

C = 1

NO
DᵀD

Figure 5.1b shows a corner section of such a matrix C from one of the numerical

calculations performed over the course of this project. There are clearly visible diagonal

stripes in the plot, which have exactly the periodicity of the Rabi oscillations present

in the system the data was generated from.

32This is the gap of the actually simulated system respecting the Trotterisation of the time evolution.
It differs slightly from the gap of the exactly simulated system as elaborated in Section 5.2.1.

33The specific implementation used for the Ljung-Box test was the function acorr_ljungbox [250]
from the statsmodels [251] Python package.
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Because the matrix C now contains information about the temporal correlations

of all expectation values deemed useful by the Ljung-Box test, its dominant eigenvec-

tors, i.e. those whose eigenvalues have the largest magnitude, can be used to gain

insight into the frequencies present in correlations, revealing the energy gaps in the

Hamiltonian as discussed above.

In some cases, when the signal-to-noise ratio (SNR) is very high and only few peaks

are present in the spectrum, the eigenvector corresponding to the largest magnitude

eigenvalue alone yields very good results and its Fourier transform reveals clearly

visible, easily detectable peaks, as shown in Fig. 5.1c.

However, to produce a cleaner and more accurate spectrum in cases with many

and potentially small peaks, it can often boost the SNR to include a (small) number

of c eigenvectors corresponding to the c largest-magnitude eigenvalues, which will

be called v` with `= 1. . .c. This process is essentially a principal component analysis

(PCA) [253] of the signal matrix D. How large c should be is determined by manual in-

spection in this work, but heuristics for automated detection could be implemented for

a more hands-off version of the method. To derive the final spectrum from the c most

significant eigenvectors of C, a matrix function X(m) is generated, with the elements

X j k (m) =∑
n

vj (m +n)vk (n).

It contains information about the temporal cross-correlations between the principal

components vj and vk , after vj has been shifted in time by m time steps. This pairwise

correlation of periodic functions produces another periodic pattern, whose periodicity

contains components from both functions. In this case, it is exactly the periodicity

of the underlying signal data in D, but now with a higher SNR than simply using the

dominant eigenvector alone. Fourier transforming each component of X(m) along

its argument reveals the spectral density of the just described periodic signals in a

new matrix X(ω) with entries34

X j k (ω) =F
[

X j k (m)
]

,

34I will use the frequency ω and the energy E interchangeably, depending on the conventions of the
context.
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which can be done efficiently using the fast Fourier transform (FFT). The largest

magnitude singular value of X(ω) at each frequency ω then reveals how large the

amplitude of the “dominant component” is, i.e. the strength of the actual periodic

signal without or with only very little noise. Therefore, at each ω, the final spectrum

I (ω) is the absolute value of the largest-magnitude singular value of X(ω).

Reference [243, App. C&E] goes into more detail and gives theoretical guarantees

about the robustness of this method to shot noise, as well as noise caused by imperfect

quantum processes. In short, the SNR is expected to scale like SNR ∝ N TNsnap
p

NO ,

where N T is the number of different time indices tm , Nsnap again is the number of

snapshots at each time step, and NO is the number of considered observables that

passed the autocorrelation test. Interestingly, the SNR scales with the total number of

snapshots. The consequences of this are briefly discussed in Section 5.2.2.

5.2 Results

One era of quantum hardware in which algorithmic shadow spectroscopy may be

useful is that of Hamiltonian simulation on early fault-tolerant devices.35 These will

be able to run deeper circuits than NISQ hardware, which puts simple time evolution

of a quantum state via Lie-Trotter-Suzuki product formulas within reach. This is

in contrast to NISQ implementations, where the time evolution of a system will

probably have to be implemented using a VQE-type approach, because straightforward

Trotterisation might lead to prohibitively deep circuits. However, even in early fault

tolerant implementations via product formulas, some care must be taken, as expensive

T -gate requirements [40, 57, 58] and some small level of noise in the system prohibit

very deep circuits. Therefore, efficient methods to get the most possible information

out of the simulation are crucial. This section will demonstrate in detail how shadow

spectroscopy can be used to mitigate algorithmic errors, allowing coarser evolution

time steps and thus saving resources, as well as how resilient it is against gate noise

that may be introduced by the hardware during the simulation process.

35Reference [243] also analyses the utility of the method in the NISQ- and fully error corrected regimes
of quantum computing. For a more complete picture the interested reader is referred to the available
preprint.
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The quantum system considered for this task is the Fermi-Hubbard model, which is

of great potential for early quantum advantage. The Hamiltonian describing its dynam-

ics is

H =−t
∑

〈i , j 〉,σ

(
c†

i ,σc j ,σ+ c†
j ,σci ,σ

)
+U

∑
i

c†
i ,↑ci ,↑c†

i ,↓ci ,↓

where i and j number the lattice sites, 〈 · , · 〉 means pairs of neighbouring sites on

the rectangular lattice, σ ∈ {↑,↓} is the spin of the fermion, and c(†)
i ,σ are fermionic

annihilation (creation) operators at site i with spin σ. To be treated on quantum

hardware, this Hamiltonian must first be transformed into a representation of qubit

Pauli operators36 H = ∑L
`=1 H` via the Jordan–Wigner (JW) transformation. The

model used in this work uses a chain with open boundary conditions and parameters

t = 1 and U = 2.

For demonstration purposes, it is useful to limit the observed spectrum to a

single peak, which more clearly shows how its reconstruction changes when adjust-

ing external parameters like the Trotterisation time step or the type and severity of

hardware noise. To this end, the relatively small example system of a grid of 3× 2

sites, which results in a Hamiltonian on 12 qubits, is first solved numerically by exact

diagonalisation, and the initial state is set to |ψ〉∝ |ϕ0〉+ |ϕ1〉. Analytically, this initial

state should give a spectrum with a single delta-peak at the energy gap ∆ := E1 −E0

between the ground- and first excited state, which is verified quite straightforwardly.

5.2.1 Algorithmic errors

The first demonstration will assume perfect gates and analyse only the influence of

algorithmic errors on the peak position. As discussed above, early fault-tolerant devices

are expected to be quite limited in the maximum gate depth of circuits they can apply

to states. Therefore, the method of Hamiltonian time evolution considered here is the

first-order Trotter-Suzuki formula [111, 112]. This means that time evolution between

measurements is implemented using the approximation

e−i H∆t =
N Trott∏
k=1

L∏
`=1

e−i H`δt +O(δt 2),

36Hamiltonian generation and Jordan–Wigner mapping were automatically performed using Open-
Fermion [218].
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Figure 5.2: Spectra obtained using Lie-Trotter-Suzuki time evolution for a Fermi-Hubbard
model with an exact spectral gap of ∆. Graphs for increasing time step sizes δt — chosen as
whole-numbered fractions of π/3∆ — show peaks quite far away from ∆ due to significant
algorithmic errors. Classical shadows of only Nsnap = 150 snapshots at 3000 different times tm

were used to estimate expectation values of all up to 3-local Pauli observables. Inset: positions
of the peaks as a function of δt used; fitting a cubic polynomial (to all but the largest step size)
and extrapolating to δt → 0 allows an accurate estimation of the exact gap ∆.

with the Hamiltonian H = ∑L
`=1 H` as obtained via the JW transformation, and an

appropriately large N Trott, such that δt := ∆t/N Trott ¿ 1.

As the resolution of the finite grid in energy space δE is inversely proportional to

the total simulation time T — which is a straightforward consequence of the Fourier

transform [254] — the system must be evolved for a long time to accurately resolve the

energy peaks of its spectrum. In order to implement such a long time T = 1000π/∆,

the time step δt is chosen to be relatively large, as this keeps the number of gates

feasible. This, in turn, introduces a significant algorithmic error between the system

Hamiltonian and the actually implemented time evolution. Figure 5.2 shows the

reconstructed spectra for different values of δt and confirms that the peaks for each

δt are quite far from the exact energy gap due to these errors.

To illustrate how a much more accurate estimate of the gap can be extrapolated

from this data, the inset of Fig. 5.2 plots the positions of the peaks Epeak as a function
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of the Trotter time step δt . Because the error of a first order Trotter time evolution

is of O(δt 2) [129], a polynomial of the form

Epeak(δt ) =∆est +αδt 2 +βδt 3

can be fitted to the data, with ∆est, α, and β as the fit parameters.37 The extrapolation

δt → 0 leaves only the constant term∆est, which is therefore a good estimate of the true

spectral gap ∆. For the present case, this procedure gives ∆est = 0.2009±0.0003, which

has the real gap∆= 0.2010 well within its margin of error. Reference [255] analyses this

approach in more detail and gives rigorous bounds for how accurately the extrapolation

of Trotter errors approximates the true energies. This type of error mitigation via

extrapolation seems likely to also lend itself to other time evolution techniques, so

long as the dependence of the error on some hyperparameter(s) is known to some

extent — as is the case for Trotterisation and δt — for example qDRIFT [125] and

stochastic time evolution [127].

The analysis in the present case was somewhat simplified by having only a single

peak present in the spectrum, which is easy to track across different values of δt . For

more complicated spectra with multiple peaks, this monitoring might necessitate a

bit more care to reliably identify each peak in each spectrum and associate it with

the corresponding one for a different time step size.

Overall, the presented approach is a powerful tool to accurately estimate the true

spectral gap in the presence of algorithmic errors.

5.2.2 Shot noise

It is also interesting to explore the limits of the method in terms of how few measure-

ments can suffice to generate a usable signal, i.e. how resistant it is to shot noise.

Figure 5.3 shows results for one of the calculations presented in Section 5.2.1, but

with varying numbers of measurements per time step. It is quite remarkable how few

snapshots are actually required to retrieve some meaningful data, albeit with low SNR.

At only 20 shots at every time step, some faint signal becomes visible in this case. As

37Depending on the time step sizes used in the simulation, more or fewer powers may be used, but
the linear term should always be zero.
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mentioned above (and Ref. [243] explains in more detail), the quality of the signal is

expected to increase with the total number of measurements. This means that, as long

as there are enough time steps involved in the simulation — which is often necessary

anyway to arrive at the required combination of maximum resolvable energy and

energy grid resolution — it is possible to work with very minimal data per time step.

E
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Figure 5.3: The peak of 3∆δt/π = 1/20 in Fig. 5.2 reconstructed using varying numbers of
snapshots at each of the 3000 different time steps. With Nsnap = 60, almost no loss in peak
height is observed, and even at Nsnap = 20, intensity can clearly be discerned. Only at 15 and 9
shots per time step does the signal completely disappear in the noise.

5.2.3 Gate noise

In addition to errors introduced by a specific time evolution algorithm and the shot

noise from a limited number of measurements, it is also worthwhile to investigate

how hardware noise influences the positions and heights of the peaks in the recovered

spectra. The time evolution method is again a first order Trotter product formula,

but in this case the peak shapes and positions for a fixed δt will be compared to

that of a noise-free simulation.
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Noise models

I will demonstrate the influence of three distinct noise models which are likely to be

relevant in early fault-tolerant devices. They can be described as follows.

Isotropic depolarising The first case is to assume that the dominant source of errors

is a depolarising channel with equal probabilities. This is a frequently used model to

investigate the robustness of error-correcting codes, because if a code has the ability

to correct n-qubit depolarising noise, this means it can correct any type of n-qubit

noise [26]. For early fault tolerant hardware, it seems reasonable to assume that not all

such errors can be corrected, and that some will make it through to logical qubits.

In the used model, the JW transformation of the hopping terms together with the

used Trotter product formula naturally results in multi-Pauli rotations of the form

exp
(
−i δt σνi σ

z
i+1 . . .σz

j−1σ
ν
j

)
. (5.2)

with ν ∈ {x, y, z}. Although not directly employed in the calculations presented here,

the σz terms sandwiched between qubits i and j can be removed by introducing

a network of Fermionic SWAP (FSWAP) gates, which only consists of local gates of

depth O(
p

N ) [256–259]. This motivates an error model whereby 2-qubit depolarising

noise acts on qubits i and j after each of these terms with probability λ, described

by the channel

Φλi , j (ρ) =
(
1− 16λ

15

)
ρ+ λ

15

∑
ν1,ν2∈S

σ
ν1
i σ

ν2
j ρσ

ν2
j σ

ν1
i , (5.3)

where S = {1, x, y, z}, σνi is a Pauli-ν operator on qubit i and σ1i is the identity. Single-

qubit rotations on qubit i are burdened with the equivalent depolarising channel for

a single qubit at the same noise probability, given by the channel

Φλj (ρ) =
(
1− 4λ

3

)
ρ+ λ

3

∑
ν∈S

σνj ρσ
ν
j . (5.4)
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Anisotropic depolarising This model is similar to the above, but every single-qubit

operator is followed by the noise channel of the form

Φ
λ

j (ρ) = (1−λ)ρ+ 9λ

10
σz

j ρσ
z
j + λ

20
σx

j ρσ
x
j + λ

20
σ

y
j ρσ

y
j . (5.5)

This means that not every Pauli error has equal probability anymore, but instead

Pauli-z errors make up 90% of all error events, and the rest is split evenly between

Pauli-x and Pauli-y errors. Due to this anisotropic distribution, in contrast to above,

multi-qubit Pauli gadgets as in Eq. 5.2 are followed by application of the just described

single-qubit noise channel on each of the edge qubits i and j . Note that because

of its implementation as two single-qubit noise events, this channel differs from the

multi-qubit description used for isotropic depolarising noise by more than just the

probability distribution between the x-, y-, and z-Paulis.

Anisotropic depolarising and damping A model identical to the anisotropic de-

polarising noise described above, but every application of Φ
λ

j (ρ) is followed by a

damping channel

N γ

j (ρ) = K ( j )
0 ρK ( j )

0

† +K ( j )
1 ρK ( j )

1

†
(5.6)

with the usual damping Kraus operators

K ( j )
0 =

(
1 0
0

√
1−γ

)
j

and K ( j )
1 =

(
0

p
γ

0 0

)
j

on qubit j . The probability of a damping event is 1/10 that of a depolarising event, i.e.

γ = λ/10.

Simulations

For the following discussion it is convenient to define the circuit error rate ξ as

ξ :=λNgates,

with the error probability λ as above, and Ngates meaning the number of gates in the

circuit of the longest time evolution. Its usefulness relating to the final state fidelity

will become apparent in the following.
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a) isotropic

b) anisotropic
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Figure 5.4: Relevant regions of the energy spectra obtained from simulations of the Hubbard
model using different noise models and various circuit error rates ξ=λNgates. Each spectrum
uses 150 snapshots per time step for the reconstruction of expectation values. Notice the
interruption of the E-axis. The position of the peak without noise using the same Trotter time
step is marked as ∆̃. The results demonstrate robustness to various types of noise, as the peak
position remains unchanged independent of noise strength and model used. However, the
peak intensity vanishes for very high error rates. a) Isotropic depolarising noise with single gate
error probability λ. b) Anisotropic depolarising noise with 0.9λ probability of Pauli-z errors,
and 0.05λ probability each of a Pauli-x or a Pauli-y error. c) Anisotropic depolarising noise
like in b), but each depolarising channel is additionally followed by a damping channel with
probability λ/10.
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Figure 5.4 shows the results of simulations using each of the discussed noise models

at different circuit error rates ξ. The simulation containing isotropic depolarising noise

in Fig. 5.4 a) displays spectra at four distinct error rates for otherwise identical models,

with ξ taking values either side of the magnitude where the signal becomes unusable.

It confirms that shadow spectroscopy is indeed not greatly influenced by reasonable

levels of gate noise — in this case ξ≈ 1.0 and 1.5 — as the relevant peaks at E ≈ 0.2 are

very pronounced and centred exactly at the location ∆̃ of the noise-free peaks.38 At

ξ≈ 2, the peak drastically diminishes in height, and a new component close to E ≈ 0

emerges. Finally, at ξ= 2.5, the signal of the system at E ≈ 0.2 completely disappears,

and all the weight apart from the random noise has shifted over to E ≈ 0.

As briefly mentioned in Section 5.1.2 and discussed in more detail in Ref. [243], this

behaviour is not unexpected. Every application of the error channel (i.e. every applied

gate under the discussed error model) only retains the amplitude (1−16λ/15) of the

state. Restricting this analysis to two-qubit noise for simplicity, the fidelity F of the sim-

ulated density operator ρ(T ) at the end of the simulation with the ideal state |ψ(T )〉 is

F = 〈ψ(T )|ρ(T )|ψ(T )〉 =
(
1− 16λ

15

)Ngates

≈ e−ξ

where the approximation holds for deep circuits with Ngates À 1.39 This exponentially

decaying fidelity replaces the periodic signal with statistical noise over the time of the

simulation, until for sufficiently large ξ the signal is not recoverable anymore by the

method described in this chapter. This reasoning applies more broadly than for the

specific task discussed here. For example, in error mitigation techniques it is also often

impractical to extract accurate information from the state after errors have suppressed

the fidelity exponentially [260, 261]. However, in contrast to many other techniques,

Fig. 5.4 a) shows that while below the threshold of ξ where the signal disappears

completely, the position of the maximum remains unchanged even at relatively large

error rates. Therefore, no further techniques are required to extract accurate data, as

the errors only change the intensity, but not the positions of the peaks.

38Recall that the peak position is offset from the true gap ∆ due to algorithmic errors.
39This follows straightforwardly from the definition ex = limn→∞(1+x/n)n , ξ=λNgates and 16/15 ≈ 1.
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One interesting property to note in this context is that in the presence of strong

noise, where the peak in the reconstructed spectrum has disappeared completely,

it is often still possible to retrieve useful information about the energy gaps by only

retaining some portion of the data for a shorter total time T < T . Of course, this lowers

the spectral resolution of the result, but this is preferable to recovering no signal at all.

There is currently no automated process in the proposed protocol to detect cases

like this and autonomously lower the maximum time considered, but it might be a

valuable addition in the future. A simple extension of the Ljung-Box test to not only

sort out observables that give no meaningful signal, but also the time cutoff after which

noise dominates the signal, could be sufficient.

Shifting focus to Fig. 5.4 b), the pattern remains largely the same. The result for

ξ= 2 shows the signal peak somewhat smaller than in plot a), but this can be attributed

to the randomness of the classical shadow procedure. Because this error rate is right

at the edge of a barely detectable signal, performing multiple calculations with the

same parameters will sometimes produce a faint signal, and sometimes none at all.

However, as in Fig. 5.4 a), for ξ= 1 and 1.5, the plot again shows a pronounced peak

at the same position as expected.

Finally, Fig. 5.4 c) also exhibits its peak for ξ = 1 at the same energy ∆̃, just like

a) and b), indicating that shadow spectroscopy is very robust not only to isotropic

and anisotropic depolarising noise — as would be expected from the arguments in

Ref. [243] — but even to damping errors, to which that analysis does not strictly apply.

Note, however, that the signal in Fig. 5.4 c) loses intensity much earlier than a) and

b); already at ξ= 1.5 the peak is barely visible. This can be attributed to the fact that

there is an extra contribution of λ/10 to the noise in these simulations, which ξ does

not account for. But, the important feature of unchanged peak position for the case

where noise is present also holds in this case.

5.3 Discussion

The work presented in this chapter introduced a method that, via a combination of

the well-established technique of classical shadows and post-processing using many
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ideas from classical signal processing, can retrieve spectra of the energy differences

of Hamiltonian eigenstates that have macroscopic overlap with an initial state in an

efficient manner. By evaluating a large number of NO observables, there is a good

chance that at least some of them will contain a strong signal. Furthermore, theoretical

analysis suggests that the SNR of the spectra should scale like ∝p
NO , while gate noise

is suppressed as ∝ N−1
O . Crucially, gate noise only affects the height of the peaks (the

SNR), but not their position. These properties of strong shot- and gate-noise resilience

were confirmed numerically by recovering spectra of the Fermi-Hubbard model from

minimal available data, and in the presence of noise generated by various models.

Because the quality of the recovered expectation values from classical shadows

reduces exponentially with the locality of the observables, only up to 3-local Pauli

strings were used in the analysis of the data. This introduces a possible limitation of

the method. If the transition from one state to another requires many Pauli operators

to be applied at once, the shadow spectroscopy method as presented here will not

produce a peak for this transition. It is easy to construct an adversarial example, e.g.

an artificial Hamiltonian with a ground state of |00. . .0〉 and a first excited state of

|11. . .1〉. Fortunately, based on empirical observations, it seems that cases like this are

the exception rather than the norm. For example, Ref. [243, App. F] details how in the

context of quantum chemistry, single electron excitations mapped to qubits via the

Jordan–Wigner transformation can be captured by 2-local Pauli operators.

An easily overlooked, but important, further limitation is the preparation of the

initial state. I have completely circumvented this problem in this chapter by first

analytically solving the system, and then using this information for state initialisa-

tion. Obviously, real-world problems do not permit this course of action. In general,

preparing a good initial state remains difficult and can be attributed to the exponential

hardness of finding ground- and eigenstates of a system [70]. However, as mentioned

in the Literature Review, there are many methods for preparing a state which only

occupies some eigenstates of interest, some relying on heuristics, while others are

only applicable to problems of a particular structure. Even the method described in

Chapter 6 could potentially be used in combination with shadow spectroscopy for this
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preparation step, if some bounds on the ground state energy are known. In any case,

the efficiency of this initial step is mostly determined by the specifics of the underlying

physical problem, and will thus not be discussed here any further, but it is important

to keep this caveat in mind when considering potential applications.

Despite these limitations, shadow spectroscopy can be very practical in applica-

tions like quantum chemistry, high-energy physics, materials science, or any other

field in which information about spectral gaps provides useful insights into the physics

of a system. It may also be useful in entanglement spectroscopy [262, 263], where

the transition energies in a learned “entanglement Hamiltonian” correspond to the

entanglement spectrum of a subsystem. The presented method may provide a way

of observing that spectrum experimentally with many fewer measurements.

Having obtained information about the energies present in the eigenspectrum of

a Hamiltonian, it can be interesting to prepare one of the eigenstates to investigate

its properties. The next chapter discusses one method how this might be done in

a resource-friendly way.



If at first you don’t succeed, try, try again.

— Edward Hickson

6
HAMILTONIAN EIGENSTATE PREPARATION

The findings in this chapter were published as Ref. [264], and the discussion here will

closely follow the manuscript, using wording verbatim in places where I was the original

author of the text. Most of the investigation was undertaken by myself, with occasional

feedback on details and some conceptual ideas contributed by Simon Benjamin.
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As discussed in the previous chapter and repeatedly throughout this thesis, often

the energy spectrum of a quantum mechanical system is of key interest. But, once

the energy of a state is known, it is often useful to actually prepare that specific state

on a quantum register to perform further analysis on it. This analysis can include

inspecting the symmetries of a state, determining other properties not directly reflected

127
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by the Hamiltonian (e.g. magnetisation of a spin system in the absence of an external

magnetic field), or observing its time evolution under a different Hamiltonian, e.g.

after a quench.

This chapter explores a method to efficiently prepare a state ε-close to a Hamil-

tonian eigenstate of known energy, using ideas closely linked to quantum phase

estimation and related algorithms. The necessary components of the proposed al-

gorithm are a single ancilla qubit, controlled real-time evolution of the simulated

system, and an (ideally easy to generate) initial state that has considerable overlap

with the desired target state.

The starting point of the present investigation can be considered from two different

perspectives. The first is the probabilistic imaginary-time evolution (PITE) [232] (see

also Ref. [265]), which superposes forwards and backwards real-time evolution as part

of its protocol. The other is the basic circuit building block of the proposed method

as a variant of the iterative quantum phase estimation algorithm [145, 146, 266], but

with a shifted energy spectrum, which makes it easier to prepare the target state.

Indeed, I will show that the quantum circuits arising from these two different origins

are functionally equivalent in the present context.

Another closely related method is the Rodeo algorithm [175, 267], where repeatedly

time-evolving the system for random durations results in rapid convergence to the

target state. For a single iteration, the same basic circuit construction as in Ref [175] is

used. However, due to its stochastic nature, rigorous bounds and guarantees for the

Rodeo algorithm are difficult to obtain. This problem is circumvented by proposing

deterministic choices for the durations instead, which allows more careful evaluation

of the properties of the resulting state.

In the analysis of the algorithm, rigorous bounds are provided for the target state

fidelity after a certain number of iterations, as well as the total success probability and

the expected cost of the preparation procedure. This includes cases which capture

algorithmic errors and noisy gates. These bounds are numerically verified by preparing

the ground state of the electronic structure Hamiltonian of LiH in second quantisation

using simulated quantum hardware.
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Finally, a variant of the procedure is discussed, which uses interpolation between a

trivial and the target Hamiltonian. Numerical results indicate that the total preparation

cost can sometimes be lowered by first driving the state towards an eigenstate of an

intermediate Hamiltonian, before converging to the target eigenstate. This procedure

resembles the coarse-grained limit of a measurement-driven (i.e. Zeno effect based)

adiabatic preparation (see e.g. Ref. [268]).

6.1 Method

This section contains a detailed description of the method to prepare Hamiltonian

eigenstates, shows appropriate circuit implementations, and includes derivations of

bounds on the quantities of interest.

6.1.1 Formal objective

First, consider a Hamiltonian H on n qubits — whose eigenstates are denoted as |ϕj 〉
with their corresponding energies being Ej — and an arbitrary initial state |ψ0〉. The

goal is to produce a sequence of states |ψk〉 that converges to a desired eigenstate

of the Hamiltonian |ϕν〉,

lim
k→∞

|ψk〉 = |ϕν〉 ,

and determine an iteration index k̄ at which it can be guaranteed that the target state

infidelity falls below a given threshold

1− ∣∣〈ϕν|ψk̄〉
∣∣2 ≤ ε.

6.1.2 Requirements

The presented method requires the following information and operators, which are

assumed to be available. First, the energy Eν of the target state must already be known

to some approximation. This approximate energy is denoted as Ẽ , where Eν = Ẽ ±δ,

with some error bound δ ≥ 0.
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Second, a lower bound ∆ on the minimum difference of Eν to any other energy Ej ,

∆≤ min
j∈S

|Eν−Ej |,

is required, where

S := {
j | j 6= ν and

∣∣〈ϕj |ψ0〉
∣∣2 6¿ ε

}
only contains indices for which the input state |ψ0〉 has macroscopic overlap with

the corresponding eigenstate.

It is also assumed that an equivalent upper bound for the largest energy difference

Emax ≥ max
j∈S

|Eν−Ej |

is available. For ground state preparation tasks, ∆ is the spectral gap, and Emax is

the largest occupied energy. In the worst case, Emax would equal twice the operator

norm ‖H‖ of the Hamiltonian.

Lastly, in addition to standard Pauli-z rotations and Hadamard gates, it will be

necessary to apply a controlled real-time evolution (RTE) U (t ) := e−i H t to the system.

This obviously implies knowledge of H in a form suitable for a circuit-based realisation.

6.1.3 Circuit implementations

Cosine propagation

Using the established components, the proposed state preparation works as follows.

First, write the initial state in terms of the Hamiltonian eigenstates

|ψ0〉 =
2n−1∑
j=0

cj |ϕj 〉 ,

where cj = 〈ϕj |ψ0〉. After adding a single ancilla to the system and applying the circuit C

depicted in Fig. 6.1a, right before the measurement, the state in the augmented space is

|Ψ1〉 =
∑

j
cj

[
cos(Ẽj t1) |ϕj 〉⊗ |0〉+ i sin(Ẽj t1) |ϕj 〉⊗ |1〉] ,
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|0〉
|ψk−1〉

H

U (tk ) U (tk )†

Rz(2Ẽ tk ) H

|Ψk〉

|ηk〉
|ψk〉

(a) Circuit implementation C of the cosine-propagation using Hadamard [H ], Pauli-z rotation
[Rz (θ)] and controlled time evolution [U (t )] gates.

|0〉
|ψPE

k−1〉
H

U (2 tk )

P (2Ẽ tk ) H

|ΨPE
k 〉

|ηk〉
|ψPE

k 〉

(b) Single-qubit phase estimation circuit CPE, using a phase shift [P (θ)] gate in addition to those
mentioned above.

Figure 6.1: Functionally equivalent circuits to be used in the Hamiltonian eigenstate prepara-
tion iteration.

where the notation Ẽj := Ej − Ẽ for the shifted energies was introduced. The probability

of measuring the ancilla qubit in state |η1〉 = |0〉, is

P1 = 〈Ψ1|Π0|Ψ1〉 =
∑

j
|cj |2 cos2(Ẽj t1),

withΠ0 :=1⊗|0〉〈0| the projector onto the ancilla-zero state. Projectively measuring the

ancilla qubit and postselecting for this result, the state in the main register becomes

|ψ1〉 = 1p
P1

∑
j

cj cos(Ẽj t1) |ϕj 〉 .

After k repetitions of this procedure of applying C and postselecting the ancilla-zero

state, using different evolution times t`, where `= 1. . .k, the total success probability is

Pk = 〈Ψk |Π0|Ψk〉 =
∑

j
|cj |2

k∏
`=1

cos2(Ẽj t`) (6.1)

and the main register state after all operations becomes

|ψk〉 =
1p
Pk

∑
j

cj

k∏
`=1

cos(Ẽj t`) |ϕj 〉 . (6.2)

Single-bit quantum phase estimation

An alternative — operationally equivalent — circuit is shown in Fig. 6.1b, which is

essentially a single bit quantum phase estimation circuit [145] for the eigenvalue
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Eν − Ẽ . Using this circuit instead of the aforementioned cosine-propagation will

yield different states

|ΨPE
k 〉 = 1

2

[
(1+e−2i H tk ) |ψk−1〉⊗ |0〉+

(
1−e−2i H tk

)
|ψk−1〉⊗ |1〉

]
,

and, starting from |ψ0〉, after postselecting for the ancilla-zero state k times, the

main register contains

|ψPE
k 〉 = 1p

Pk

∑
j

cj

k∏
`=1

1

2
(1+e−2i Ẽj t`) |ϕj 〉

= 1p
Pk

∑
j

cj

k∏
`=1

e−i Ẽj t` cos(Ẽj t`) |ϕj 〉 (6.3)

with the same Pk as in Eq. (6.1). Equation (6.3) differs from the states |ψk〉 produced

by cosine evaluation only by relative phases between states |ϕj 〉, which should be

eliminated anyway and are therefore inconsequential to the algorithm, and a physically

irrelevant global phase of the target state |ϕν〉. The quantity of interest, |〈ϕν|ψk〉|2, is

therefore invariant to the replacement of the circuit C with CPE.

For consistency and simplicity, C will be used throughout the rest of this chapter,

but note that every result and proof is either directly valid or translates straightfor-

wardly to an equivalent result for CPE.

6.1.4 Exact knowledge of Eν

If the energy of the desired state is known exactly, i.e. the uncertainty δ= 0, expressions

for the overlap of |ψk〉 with the target state and the total success probability Pk can be

derived straightforwardly. In this case, cos(Ẽν t`) = cos(0) = 1, so Eq. (6.2) becomes

|ψk〉 =
1p
Pk

[
cν |ϕν〉+

∑
j 6=ν

cj

k∏
`=1

cos(Ẽj t`) |ϕj 〉
]

with the normalisation

Pk = |cν|2 +
∑
j 6=ν

|cj |2
q∏
`=1

cos2(Ẽj t`)︸ ︷︷ ︸
=:ξ2

k

= |cν|2 +ξ2
k (6.4)
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which is also the total success probability to measure the ancilla qubit in state |0〉 all

k times. This probability is bounded from below by the overlap of the initial state

with the desired target

Pk ≥ |cν|2 = |〈ϕν|ψ0〉|2,

because ξ2
k ≥ 0. The overlap of the final state with the target is

|〈ϕν|ψk〉|2 =
|cν|2
Pk

= |cν|2
|cν|2 +ξ2

k

.

If the time periods t` are now resourcefully chosen such that ξ2
k is bounded from above,

the number of iterations k̄ needed to guarantee the desired target infidelity can be

determined. The ideal sequence of t` depends on the distribution of the energies Ej

and the amplitudes |cj |2 of their states within the input state. Here, a generic heuristic

that suppresses every energy in the interval [∆,Emax] is described, which thus can be

used even in the case of no additional information. It closely resembles a protocol

the quantum phase estimation algorithm uses, albeit for slightly different reasons.

However, more elaborate, tailored strategies that use additional knowledge may lead

to substantially superior performance.

The longest time t` between measurements worth considering is t = π/(2∆), as

this will take the amplitude of the slowest oscillating state to exactly 0. The shortest

reasonable time is t =π/(2Emax), because this does the same for the fastest oscillating

term. A universal heuristic is then to use the times

t` =
π

2 ¯̀+1∆
(6.5)

where ¯̀ = (`− 1) mod N and

N = dlog2(Emax/∆)e+1. (6.6)

To quantify the convergence to the target state, it is useful to define the maximum

of the product of N cosine factors as they appear in Eq. (6.4) over all possible energies

Ẽj in the interval I := [∆,Emax] as

γ := max
Ẽj∈I

N∏
`=1

cos2(Ẽj t`) ≤ 1. (6.7)
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Recall from Eq. (6.4) that ξ2
k is just a weighted sum of products of the same form as

in Eq. (6.7) with varying Ẽj . Thus, after each N iterations, the magnitude of ξ2
k is at

most a factor γ < 1 of its previous value

ξ2
k+N ≤ γξ2

k ,

which, when starting from ξ2
0, means

ξ2
k ≤ ξ2

0γ
bk/Nc = (1−|cν|2)γbk/Nc, (6.8)

where ξ2
0 = 1− |cν|2, because

∑
j |cj |2 = 1.

Ẽ j

co
s2

(Ẽ
j

t `
)

∆ 22∆
3

23∆
3

24∆
3

Emax

0

0.25

0.5

0.75

1

Figure 6.2: Illustration of the bound on γ, with the example value Emax = 8∆. Each oscillating
line plots cos2(Ẽj t`) for one specific t` used in the algorithm. The relevant sections of each
term are coloured red. The red line stays below or at 1/4 in the entire interval, demonstrating
the bound.

A quite loose but intuitive upper bound on γ can be derived as follows. Notice that

when dividing I into sub-intervals I (`) := [2`∆/3,2`+1∆/3], with `= 1. . . N , whichever

one of these intervals I (`) the energy Ẽj falls into, the term cos2(Ẽj t`) is always smaller

than or equal to 1/4,

cos2(Ẽj t`) = cos2

(
Ẽjπ

2`∆

)
≤ 1

4
for Ẽj ∈ I (`),
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which, with a straightforward substitution of variables, is equivalent to

cos2 (x) ≤ 1

4
for x ∈

[
π

3
,

2π

3

]
.

This is also illustrated in Fig. 6.2, which immediately and intuitively shows that γ≤ 1/4.

The overall convergence of the algorithm is therefore

∣∣〈ϕν|ψk〉
∣∣2 ≥ |cν|2

|cν|2 + (1−|cν|2)γbk/Nc

≥ |cν|2
|cν|2 + (1−|cν|2)4−bk/Nc . (6.9)

This means that after some initial iterations, when

(1−|cν|2)

|cν|2
4−bk/Nc ¿ 1,

the fidelity converges exponentially towards 1 (i.e. the infidelity 1−|〈ϕν|ψk̄〉|2 decreases

exponentially), because

1

1+x
= 1−x +O(x2),

and in this case x ∼ exp(−k). The above expression for the convergence can be

rearranged to calculate the maximum number of required iterations k̄ to arrive at

the desired infidelity ε ≤ 1− ∣∣〈ϕν|ψk̄〉
∣∣2 as

k̄ =
⌈
−N

2
log2

( |cν|2ε
(1−ε)(1−|cν|2)

)⌉
(6.10)

Implementation cost

The cost of implementing this procedure is dominated by the real-time evolution

complexity of the system. Therefore, the total simulation time
∑
` t` the algorithm

requires is a good proxy for the overall implementation cost. Using the sequence of t`

described above, performing N iterations necessitates time-evolving the system for

N∑
`=1

t` =
N∑
`=1

π

2`∆
≤ π

∆
.
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Additionally, restarts of the preparation due to a wrong measurement outcome

of the ancilla qubit must be accounted for. Fortunately, the success probability of

measuring |η〉k = |0〉 is

pk := Pk

Pk−1
= |cν|2 +ξ2

k

|cν|2 +ξ2
k−1

which increases quickly towards 1 — recall that ξ2
k is exponentially shrinking — mean-

ing failures are most likely at the beginning of the iteration, where less cumulative

simulation time has been expended.

The expected total simulation time to reach and complete the kth iteration is

given by sum of the simulation time to reach and pass iteration k −1 and the cost of

one additional iteration. Additionally, this sum must be divided by pk to account

for the potentially wrong measurement outcome. This cost can be written as a

recursive function

T (k) =
{T (k−1)+tk

pk
k > 0

0 k = 0
. (6.11)

Because the probabilities pk are often not known a priori — remember they depend

on the energy distribution and the occupation of the associated states — is also useful

to derive a bound for the maximum expected cost to reach the desired infidelity

threshold of ε. In the most expensive case, ξ2
k only reduces after each N steps, and

does so by the smallest possible amount of a factor of 1/4, as given in Eq. (6.8). This

minimal decrease of ξ2
k defers failures to later iterations in the procedure, making

them more costly. The bound is then

T (k) =


T (k−N )+ π
∆

p̄k
k > 0

0 k ≤ 0
(6.12)

with the highest possible success probability after each N iterations

p̄k = |cν|2 + (1−|cν|2)4−bk/Nc

|cν|2 + (1−|cν|2)4−bk/Nc+1
,

where T (k) ≥ T (k) is the cost bound. Consequently, the total expected simulation time

for preparing an eigenstate with a maximum infidelity of ε from an initial state with an

overlap of |cν|2 with the target is T (k̄), with k̄ as in Eq. (6.10) and N as in Eq. (6.6).
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6.1.5 Approximate knowledge of Eν

If the energy of the desired state is not known exactly, δ 6= 0, the amplitude of the

target also changes over time under cos-evolution, but much less so than all other

states if δ¿∆, which often is a reasonable assumption. The state in the main register

after k iterations therefore becomes

|ψk〉 =
1p
Pk

[
cν

k∏
`=1

cos(t`δ) |ϕν〉+
∑
j 6=ν

cj

k∏
`=1

cos(Ẽj t`) |ϕj 〉
]

with the normalisation

Pk = |cν|2
k∏
`=1

cos2(t`δ)︸ ︷︷ ︸
=:ζ2

k

+ξ2
k

and ξ2
k as defined above. The assumption of δ ¿ ∆ implies t`δ ¿ 1 (recall that

according to Eq. (6.5) t` ∼∆−1), which allows the expansion of ζ2
k into a Taylor series

and truncation after the quadratic term.

ζ2
k ≈

k∏
`=1

(1− t 2
` δ

2) ≥
[

N∏
`=1

(1− t 2
` δ

2)

]⌈
k
N

⌉
≈

[
1− π2δ2

∆2

N∑
`=1

1

4`︸ ︷︷ ︸
≤ 1

3

]⌈
k
N

⌉
≥

[
1− π2δ2

3∆2

]⌈
k
N

⌉

Similarly to before, the fidelity with the target state can be bounded as

∣∣〈ϕν|ψk〉
∣∣2 = ζ2

k |cν|2
ζ2

k |cν|2 +ξ2
k

=
(

1+ ξ2
k

ζ2
k |cν|2

)−1

(6.13)

=
(

1+ 1−|cν|2
|cν|2

4−bk/Nc
(
1− π2δ2

3∆2

)−dk/Ne)−1

.

Notice that the imprecise knowledge of the target energy only scales down the base of

the exponential convergence by a factor, but does not limit the achievable fidelity. This

reduced convergence rate translates to a slightly larger number of required iterations

k̄ =
ÈÌÌÌ−

N log2
|cν|2ε

(1−ε)(1−|cν|2)

2+ log2

(
1− π2δ2

3∆2

)
ÉÍÍÍ . (6.14)

For the bound of the expected cost, Eq. (6.12) remains valid, but p̄k now takes the

form

p̄k =
|cν|2(1− π2δ2

3∆2 )dk/Ne+ (1−|cν|2)4−bk/Nc

|cν|2(1− π2δ2

3∆2 )dk/Ne+1 + (1−|cν|2)4−bk/Nc+1
,

which increases the total cost depending on the magnitude of δ.
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6.1.6 Imperfect real-time evolution

Except in a limited number of cases, the time evolution of a system cannot be imple-

mented exactly, but has some algorithmic error associated with it. Without loss of

generality, the actually applied operator U (t) can be written as

U (t ) = e−i H t +E(t )e−i Ẽ t

with an appropriate error operator E(t) to account for this finite accuracy.40 The

resulting full space state of applying the circuit C is then

|Ψ1〉 =
∑

j
cj

([
cos([H − Ẽ ] t1)+Re(E(t1))

] |ϕj 〉⊗ |0〉
+ i

[
sin([H − Ẽ ] t1)+ Im(E(t1))

] |ϕj 〉⊗ |1〉) .

As above, after k iterations and post-selecting for the ancilla |ηk〉 = |0〉 at every step,

the main register state is

|ψk〉 =
∑

j

cjp
Pk

k∏
`=1

[
cos([H − Ẽ ] t`)+Re(E(t`))

] |ϕj 〉

again with the normalisation Pk = 〈ψk |ψk〉. The exact form of E depends on the

specific RTE algorithm used; nonetheless, it is possible to establish a simple universal

bound for Pk and the target state fidelity |〈ϕν|ψk〉|2. For this, the maximum error

the RTE routine can produce41

εRTE = max
t`

‖E(t`)‖ = max
t`

∥∥∥U (t`)e i Ẽ t` −e−i (H−Ẽ)t`
∥∥∥

is needed, with Re(E) = E being the worst case situation. Assuming εRTE ¿ 1, the state

|ψk〉 can be expanded into powers of E and truncated after the first order. This yields

|ψk〉 =
∑

j

cjp
Pk

[
k∏
`=1

cos(Ẽj t`) |ϕj 〉+
k∑
`=1

|E`〉
]
+O(E2)

with 〈E`|E`〉 ≤ ε2
RTE. The normalisation factor can be bounded by

Pk = 〈ψk |ψk〉 ≤ |cν|2ζ2
k +ξ2

k +2kεRTE +O(ε2
RTE).

40The error operator E might often be time-independent, any possible dependence is included here
for generality.

41The notation ‖·‖ means the operator norm.
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Finally, the fidelity with the desired state |ϕν〉, up to order O(εRTE), has the bound

|〈ϕν|ψk〉|2 =
1

Pk

∣∣∣∣∣cν k∏
`=1

cos(t`δ)+
k∑
`=1

〈ϕν|E`〉
∣∣∣∣∣
2

≥ ζ2
k |cν|2 −2kεRTE

ζ2
k |cν|2 +ξ2

k +2kεRTE
. (6.15)

In contrast to the case where the target energy is not exactly known, which only scaled

down the convergence rate, having an imprecise real-time evolution puts a hard ceiling

on the achievable fidelity. Note, however, that this bound is extremely loose, as its

derivation assumed an adversarial error term. But, as is shown in the Results section,

Eq. (6.15) is qualitatively accurate.

6.1.7 Gate noise

It is also worth considering the case of noisy quantum hardware. This may be a concern

either because the algorithm is performed using physical qubits as the algorithmic

qubits (like in the NISQ era), or because the algorithmic qubits are logical qubits, but

they are of inadequate size to guarantee a negligible total error probability (a situation

expected in early fault tolerant devices).

The very simple error model assumed here is that depolarising noise is applied to

every qubit after every gate. As already discussed in Chapter 5, depolarising noise is

equivalent to a certain probability of having an unwanted and undetected Pauli opera-

tor act on a qubit, i.e. for an error term on qubit k it maps the density operator ρ like

ρ 7→ (1−λ)ρ+ ∑
ν∈{x,y,z}

λ

3
σνkρσ

ν
k , (6.16)

where σνk is a Pauli-ν operator on qubit k, and λ is the error probability.

In this context, a gate is a Hadamard or an exponential of a Pauli string — sometimes

called a Pauli gadget — of the form

exp

(
−i
θ

2

n−1⊗
k=0

σ
νk
k

)
,

where νk ∈ {1, x, y, z} andσνk
k is again a Pauli operator on qubit k. As already mentioned

in other chapters, these Pauli gadgets occur naturally when using Trotter formulas

for time evolution.
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No rigorous bounds are derived in the present work for this case, but the following

rough first-order approximation of the achievable target state fidelity with a given error

rate can nevertheless be useful in many cases. For this estimate, assume a Hamiltonian

containing a large number of terms, such that the influence of all gates except the Pauli

gadgets can be neglected. As discussed above, performing N iterations with the times

t` results in a total simulation time of π/∆. Assuming N Trott Trotter steps per unit time

are required for the desired algorithmic accuracy, carrying out N iterations requires

NPauli =
πLN Trott

∆

Pauli gadgets to implement, where L is the number of terms in the Hamiltonian.

Because errors introduced in earlier iterations are largely suppressed by the measure-

ments in later ones, the majority of the infidelity will be caused by the last NPauli gates.

If each gadget introduces an error with probability λ, the total expected fidelity of the

produced density operator ρ with the desired state
∣∣ϕν〉 can then be approximated by

〈ϕν|ρ |ϕν〉 ≈ (1−λ)NPauli . (6.17)

Note that this estimate does not account for the use of (in general exponentially

costly [269, 270]) quantum error mitigation [260] which can suppress the impact of

errors, typically through the use of additional repetitions, increasing the time cost.

6.1.8 Morphing Hamiltonian

Lastly, I will explore the possibility that in some cases, if the overlap of the initial

state with the target is small, the total cost of the preparation can be decreased by

introducing an artificial Hamiltonian

Hmorph(α) = (1−α)H init+αH ,

with H the target Hamiltonian as before, and an artificial Hamiltonian H init, which has

the initial state |ψ0〉 as an eigenstate. Consequently, Ẽ , δ, ∆, and Emax all become

functions of α.
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This morphing Hamiltonian can then be used with a number of values αn ∈ [0,1],

where at each value αn only N timesteps are performed before moving on to αn+1. At

the final value of α= 1, the full preparation is performed to the desired accuracy.

This process somewhat resembles a combination of adiabatic evolution with the

quantum Zeno effect, because the state is dragged along close to the desired state

by changing the Hamiltonian, while simultaneously repeatedly measuring its phase

change [268]. The numerical investigation performed for this chapter considers the

coarse grained limit of this procedure with only a single intermediate value of 0 <α< 1,

and demonstrates its efficacy but also limitations in the next section.

6.2 Results

To demonstrate the proposed algorithm numerically using the example of LiH, its

Hamiltonian in second quantisation was generated using OpenFermion [218], and its

dynamics were simulated using exact quantum emulation software [192]. The system

consists of 12 qubits, has a spectral gap42 of ∆ ≈ 0.075 and a maximum energy of

Emax ≈ 9.753, resulting in N = 9 different times t`. Starting from an initial state

|ψ0〉 = 1p
5
|ϕ0〉+ 1

Ns

2n−1∑
j=1

e−(Ej−E0) |ϕj 〉 , (6.18)

with an appropriate normalisation factor Ns, the routine to amplify the ground state

|ϕ0〉 was executed under each discussed limitation. The results of the numerical

simulations together with the established bounds are shown in Fig. 6.3.

Exact Eν The calculations using perfect knowledge of the target state energy show

the expected behaviour of overall exponential convergence after some initial iterations.

The step-like structure of the numerical simulation is caused by the periodic choice

of simulation times. Each of those steps corresponds to a full sequence of N different

times t`. Due to the rounding in the expressions for the bounds in Eqs. (6.9), (6.13)

and (6.15), these also show such step-like behaviour. However, for readability, only

every N th data point is plotted for them, i.e. the bottom left corner of each step.

42Hartree atomic units are used throughout this Results section.



142 6.2. Results

0 20 40 60 80 100 120 140 160 180
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

k

1
−|

〈 ϕ
ν
| ψ

k
〉 |2

Bound with exact Eν
Simulation with exact Eν
Bound with approx. Eν
Simulation with approx. Eν
Bound with imperfect RTE
Simulation with imperfect RTE

Figure 6.3: Infidelity of the produced state |ψk〉 in the main register with the target state |ϕ0〉
versus the iteration number k. Lines are numerical results of preparing the ground
state from the initial state in Eq. (6.18), markers are the corresponding bounds derived
earlier. Different colours represent different limitations; green for exact knowledge of the
target state energy and perfect real-time evolution, red for only approximate knowledge
of the target energy but perfect RTE, and blue for exact target state energy knowledge but
imperfect RTE. Note that the bound and simulation of the imperfect RTE data use different
errors εRTE, as described in the text.

Approximate Eν To show the effect of only knowing the energy of the target state

approximately, a relatively large offset of δ=∆/3 was used. The graph of the bound

nicely illustrates the scaling down of the basis of the exponential convergence, i.e. a

shallowing of the slope. The numerical simulation also shows a slightly reduced rate of

convergence compared to the case of exactly known energy. Note, though, that this

is not always necessarily the case. Depending on the specific distribution of energy

levels and their occupation in the initial state, either one may converge faster than

the other. However, the guaranteed convergence is always quicker the more precisely

the energy of the target state is known.

Imperfect RTE I also performed a calculation of the same system with precisely

known target state energy (δ= 0), but using a first-order product formula [111, 112]

as the RTE routine, dividing the shortest time interval into 128 slices. Importantly, in
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the plot the bound and the numerical simulation do not use the same εRTE,

because the bound is very loose. The simulation has the numerically obtained value of

εRTE ≈ 5.6 ·10−4, while the bound uses the much smaller εRTE = 10−8. Therefore, the

simulation and the bound are only qualitatively related. The plot still shows the same

pattern emerging in both cases. There is a close match between the simulation of the

perfect real-time evolution and the imperfect RTE solution, until some lower threshold

of the infidelity is reached, after which the imperfect RTE version becomes roughly

constant,43 and no further progress can be made. It is therefore evident that while

imprecise energy knowledge only slows down the convergence of the algorithm, the

presence of simulation errors puts a hard lower limit on the attainable infidelity.
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〉 |2
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Figure 6.4: Infidelity of the prepared density operator ρk with the desired target state |ϕν〉
versus the iteration number k for different error rates λ. Coloured lines are numerical results,
grey dashed lines show the expected approximate limit according to Eq. (6.17).

Gate noise In order to demonstrate the noise resilience of the discussed method,

eigenstate preparation was also performed using first order Trotterisation and different

noise strengths λ. Due to the increased computational demand of using the density

matrix formalism to include noisy channels, Fig. 6.4 shows the results for the second

quantised Hamiltonian of H2, a much smaller system than LiH. It exhibits the same

limiting pattern as in the case of algorithmic errors, where the state quickly converges

43The bound even slightly increases due to some of the approximations made in its derivation.
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to the desired target, but then encounters a ceiling in the fidelity caused by the errors.

The numerical results show good agreement with the approximate maximum fidelity

derived earlier in Eq. (6.17).

Notice that while a rather small error rateλ is needed in order to obtain good results,

suitable quantum error mitigation (QEM) techniques can boost performance in return

for additional simulation cost. An example is symmetry verification. These options are

not explored further in this investigation, because it is quite a broad topic. Additionally,

which QEM is best suited for a given task will depend on several of its properties and

the hardware platform used. Reference [260] gives a good overview of such techniques.

Morphing Hamiltonian To demonstrate how morphing the Hamiltonian can some-

times decrease the total cost, once again consider the LiH Hamiltonian. As initial state

the computational basis state, |ψ0〉 = |10000100011〉 was selected,44 which has an

overlap with the ground state of |〈ψ0|ϕ0〉|2 ≈ 4.6 · 10−3. The corresponding initial

Hamiltonian used here is

H init =∆
n−1∑
j=0

(2ψ( j )
0 −1)σz

j

where ψ( j )
0 ∈ {0,1} refers to the value of qubit j in the computational basis state |ψ0〉.

This choice guarantees that |ψ0〉 is the gapped ground state of H init, with a gap of

∆, matching that of H .

Note that the cost to implement the time evolution of H(α) will most likely be

a function of α. The exact form of this dependence will vary with the simulation

technique, though the complexity of simulating H + H init may be used as a cost

bound for most methods. Such a dependence is not explicitly addressed in the

present analysis, and only the total required simulation time in the system is reported,

regardless of the value of α.

For the purposes of a first exploration, this work only considers one intermediate

step between α= 0 and α= 1. The question of what this intermediate value should

ideally be, turns out to be quite complex. Figure 6.5 shows the total required simulation

44Contrary to the earlier description, this is not the computational basis state with the highest possible
overlap with

∣∣ϕ0
〉

, but it is better suited as an instructive example.
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Figure 6.5: Total simulation time cost T when using a single intermediate value of α between
H init and H , depending on the choice of α. The cost is the mean total required evolution
time and includes restarts after failed ancilla measurements. The solid line represents the
morphing Hamiltonian; for reference, the grey dashed line is the cost of directly preparing
the ground state of H without using Hmorph. In the red striped region , a morphing
Hamiltonian as described above increases the cost, while the in the green region the
morphing method is computationally cheaper.

time to reach an infidelity of 10−8, depending on where the intermediate α is placed.

Green shaded regions where the graph is below the dashed line indicate values where

the morphing approach is advantageous. The potentially complex behaviour of the

preparation cost is exemplified in the region around α≈ 0.6. I have identified that the

rapidly oscillating character is related to the low-lying energy spectrum of H (α) in that

area, which consists of a gap with multiple closely spaced excited states right above it.

When considering the simple case of a single α and a cheaply simulated Hamilto-

nian, the task of finding a near-optimal value is easily solved numerically. However,

the general case of multiple intermediate values αk remains difficult due to the rapidly

increasing size of the configuration space and the non-convexity of the cost. This

question is left open for further research.
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6.3 Discussion

In this chapter I investigated the repeated use of a circuit closely resembling that of

iterative phase estimation [146, 266] and the Rodeo algorithm [175, 267] in order to

prepare eigenstates of a Hamiltonian system from arbitrary initial states. The required

knowledge is the (approximate) energy of the target state, a lower bound of the energy

gap of the target state to the closest lying occupied state, and an upper bound of

the largest energy difference between the target and any other occupied state. The

necessary tools to implement the presented algorithm are single-qubit gates on one

ancilla qubit, as well as controlled real-time evolution (RTE) of the system. These

elements are also typically part of related methods such as the Rodeo algorithm and

various phase estimation variants.

Analytic bounds are available for the fidelity of the produced state with the target

and the expected total required RTE duration for different cases. Imprecise knowledge

of the target state energy results in a slower convergence rate, but does not limit the

achievable fidelity. Algorithmic and gate noise, on the other hand, hardly influence

the rate of convergence, but put a ceiling on how precisely the target state can be

prepared. In all cases, asymptotically exponential convergence of the fidelity with

the real-time evolution time is guaranteed.

The derived explicit expressions for strict bounds are, in contrast to the Rodeo

algorithm, certain to be achieved. However, these bounds were anticipated to be quite

loose versus a specific implementation; this indeed turned out to be the case. Still,

such analytic expressions can be valuable when the method is used as a subroutine

of a more substantial algorithm and its implementation cost must be bounded. They

may also be useful when a certain fidelity must be guaranteed after some number of

iterations without expending resources on verification.

Because of the many possible energy structures of interesting Hamiltonians, this

chapter only describes a universal heuristic for the time schedule. However, using

the intuitive insights about how the amplitude of unwanted states is suppressed, as

described in Section 6.1, the performance may be vastly improved by using additional
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information about the initial state and the distribution of occupied energy levels.

The highly occupied states can be targeted directly — individually or in groups — to

eliminate them completely. In the extreme case of exactly knowing all N occupied

energy levels, only at most N iterations need to be carried out to leave purely the

target state behind. If N happens to be a tractably small number, this can be an

important feature. But even in cases where N is exponentially large, if most states

are concentrated in a small window of energies, they may be specifically targeted

for faster convergence.

The actual gate- and/or query complexity is determined by the chosen method

for the controlled time evolution. For example, Hamiltonian simulation by quantum

signal processing [138] only requires O(t − logεRTE) gates to implement the required

real-time evolution, making the actual cost of the state preparation using the generic

heuristic logarithmic in the desired infidelity.

Finally, a variation of the preparation process, where the Hamiltonian is morphed

from a trivial one to the Hamiltonian of the system of interest, showed some intriguing

features. Numerical evidence — using the LiH system again — demonstrates that for

some choices of morphing schedule, this process can decrease the cost of preparation.

However, care must be taken, as unfavourable choices may easily increase the total cost.

Finding a generic method to generate an efficient schedule might be an interesting

topic for future research.
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If in physics there’s something you don’t under-
stand, you can always hide behind the uncharted
depths of nature. You can always blame God. You
didn’t make it so complex yourself. But if your
program doesn’t work, there is no one to hide
behind. You cannot hide behind an obstinate
nature. If it doesn’t work, you’ve messed up.

— Edsger Dijkstra

7
PYQUEST

This chapter describes an open source software package developed during my doctorate. All

work below is my own.
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7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 Necessity and utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3 Interface choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4.1 Interface design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.4.2 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.5.1 Technical considerations . . . . . . . . . . . . . . . . . . . . . . 156
7.5.2 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Almost all of the numerical data on quantum algorithms in the research chapters

in this thesis has not come from actual quantum hardware, but rather from software

emulating a quantum computer using classical computing resources. This chapter

will elaborate on pyQuEST, a tool making the high-performance quantum circuit

simulator QuEST available to researchers who use Python as their main programming

language. I have developed it during my doctorate for myself, my research group,

and the community, in order to ease access and usability of QuEST and speed up

development- and calculation times of quantum algorithms.
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7.1 Introduction

Numerical methods have a long history in physics, and especially quantum physics,

where they provide an option for solving or approximating solutions to problems which

do not allow analytical treatment. Because of their significance, algorithms of all sorts

related to the numerical solution of physics problems have received a great deal of

attention, and many ingenious ideas have steadily increased their performance.

In recent years, they have become invaluable tools to the development of quantum

algorithms, where they allow us to peek at what quantum hardware might soon be able

to do — whether NISQ devices, early fault tolerant hardware, or fully error corrected

platforms — albeit at a very limited scale.

This chapter is structured as follows. First, Section 7.2 gives more background

on the motivation of the project and why it is a useful piece of software for the

community. Section 7.3 elaborates on some mechanisms which are available for

interfacing Python code with C libraries, and explains the reasoning behind the choice

that was made. Section 7.4 focuses on the way how users install the code and the

programming interface a user would interact with when using the package, while

Section 7.5 contains a quite technical description of performance considerations that

needed to be made during development. Finally, Section 7.6, gives a brief summary

of the chapter and hints at further plans.

7.2 Necessity and utility

As mentioned in Section 2.5, there is a whole zoo of quantum emulators available for

use today, in a wide variety of programming languages. One particular emulator I want

to point out again is the Quantum Exact Simulation Toolkit (QuEST) [187], which is

a high performance full state vector and density matrix emulator that can be easily

deployed on CPUs, GPUs, and even distributed high performance computing (HPC)

clusters. It is provided as a C/C++ library and works through a very straightforward

application programming interface (API) of functions to, among other things, create

and destroy quantum registers (state vectors as well as density matrices), initialise
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them, apply a great variety of gates, operators, and measurements to them, and read

their contents if desired (the latter being strictly forbidden on real quantum hardware).

The choice of language for this emulator was largely influenced by performance

considerations. Using C provides a very “bare metal” way to implement efficient

algorithms and create a high throughput emulator.

The downside of this choice is ease of use. QuEST itself provides very minimal con-

venience functions and data structures. For example, it does not have any provisions

for quantum circuits, which are otherwise ubiquitous in quantum computing. With the

expectation of users also writing their code in C, all other limitations of the language

also naturally apply. This means no symbolic calculations, manually managing one’s

own memory, and generally less convenience (and thus slower development time)

than many other, more modern languages. It is still a great choice when every bit of

performance matters, but often it is wise to accept some small amount of overhead

for a speedy development process.

One project embracing this philosophy is named QuESTlink and has been released

by Jones and Benjamin [193]. It provides a Mathematica interface to the CPU and GPU

versions of QuEST, offering many convenience functions to make the development of

quantum algorithms quicker and easier. Additionally, users can benefit from the vast

capabilities of Mathematica for symbolic calculations and advanced analytical and

numerical tools. However, Mathematica is not the most popular tool for investigating

quantum computing problems, and many researchers are better versed in other

programming languages like Python. In my doctorate, I have therefore decided to

implement an easy to use Python interface for QuEST, named pyQuEST.

As Section 2.5 points out, there is no shortage of quantum emulators readily

available for Python [176, 178, 179, 181, 183, 184]. Yet, hardly any have the performance

and flexibility of QuEST, which, as mentioned above, simulates state vectors and

density matrices, and easily scales from running locally on a single or multiple CPU

threads, to GPUs, and even distributed instances on many compute nodes in a cluster.

There even already exists a rudimentary Python interface to QuEST, named pyQuEST-

cffi, which — as the name suggests — uses the Foreign Function Interface for C (CFFI)
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to make QuEST functions callable from Python. However, because it directly exposes

the C API functions from QuEST to the user, it is quite unintuitive and atypical to use

for someone familiar with (only) Python. It simply aims at directly working with

QuEST from Python, and therefore has the bare minimum of features necessary,

without any added convenience. I therefore still see it as a valuable contribution

to the community to provide pyQuEST as a simple, easy to use, high performance

interface to the capabilities of QuEST.

7.3 Interface choice

The core project of QuEST on top of which pyQuEST builds is focused on simulating

quantum circuits as fast as possible on a given hardware. As such, any interface layer

to it should adhere to the same principles, as not to waste valuable compute time

at the link between user code and circuit execution at the backend. For Python,

several options exist.

The most basic and straightforward way to interact with C code from Python

is through ctypes, which is part of the Python standard library [271]. It provides a

number of C-compatible data types, can dynamically load shared libraries, and call

functions from them. However, it is at times quite cumbersome to use, error prone, and

provides wrapping functionality only. This means that either the user needs to interact

with possibly unintuitive function calls and interfaces, or there must be additional

interface and convenience code written in pure Python, which might impose quite

significant performance penalties.

Similarly, the aforementioned CFFI, upon which PyQuEST-cffi is built, provides

only function-binding capabilities by directly exposing C functions to the Python user.

Although it is generally somewhat easier to use, it has the same problems as ctypes,

i.e. having the user call the backend functions as-is sometimes leads to unexpectedly

convoluted code. As for ctypes, convenience functions on top of QuEST would have

to be implemented in pure Python in this case as well.

Some more advanced solutions also exist, for example pybind11, Boost.Python, and

SWIG. The lean pybind11 library is a promising candidate for an efficient wrapper,
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but all additional functionality would have to be implemented in C++, somewhat

slowing down the development process. Boost.Python has — as far as is relevant to the

currently discussed application — almost the same functionality as pybind11, but is in

itself a large dependency. Given QuEST’s no-dependency philosophy, Boost.Python

does not seem like a good choice. SWIG is quite similar in functionality with the same

drawbacks, but has the potential benefit of being able to also work with languages

other than Python, should the demand for it arise.

In the end, the choice was made to use Cython, a programming language very simi-

lar to Python, specifically designed to enable rapid development of high-performance

extension modules for CPython.45 It is unique in that its code is almost fully compatible

to pure Python, but has options and features, such as static typing, to vastly improve

the performance. It can also directly link to external libraries (like QuEST) and call

functions from them. This allows for interaction with pure C code, as well as rapid

development of additional convenience features and data structures in a high level

language similar Python, while keeping almost all of the performance of a low level

language like C. For this project, it seems to be an ideal choice.

Cython code must be compiled in order to be imported into Python. This com-

pilation works in two steps. First, the Cython source is translated down into pure

C code. Then, this produced C code is compiled to a binary extension module and

linked with any other libraries and dependencies. The compiled module can then

straightforwardly imported into any CPython interpreter and behaves mostly like

any other module.

7.4 Usage

7.4.1 Interface design

As mentioned in Section 7.2, a major point of focus for this project was the simplicity

and intuitiveness of the interface the user interacts with. Without going into too much

technical detail, I will describe the main points of its interface in this section.

45CPython is the default interpreter and “reference implementation” of the Python language. It is the
most popular, but not the only available interpreter.
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The package design tries to replicate that of QuEST relatively closely. First, it is a

quite logical way to organise operators and data structures. Second, it makes switching

from QuEST to pyQuEST and vice versa much easier, in case users are already familiar

with one or the other and would like to switch. As such, it contains the modules

core (central data structures and abstract base classes), unitaries (unitary gates),

gates (non-unitary but norm preserving operators, i.e. measurements), operators

(generic, potentially non-physical operators, and operators that are usually not con-

sidered single gates, like quantum Fourier transforms), initialisations (operators to

populate a register with a pre-defined state), and decoherence (specific and generic

quantum channels).

The pyQuEST package is centred around the primary classes Register and Circuit

in the module core, which are also available at the root level of the module, i.e.

pyquest.Register and pyquest.Circuit.

As the name suggests, a Register contains a quantum register of a fixed number

of qubits, either representing a state vector or a density matrix, both of which must

be supplied at object creation. An analogue to it exists in QuEST in the form of Qureg,

fulfilling the same role. Once instantiated, it occupies a fixed space in memory, until it

is destroyed or garbage collected, at which point the memory is automatically freed.

At the backend, all memory is managed by QuEST. The contents can be accessed

via regular indexing, as if the register was a 1D (for state vectors) or a 2D array (for

density matrices), e.g. for a state vector register named reg, the indexing reg[0:1]

returns the first 2 amplitudes belonging to the computational basis states |0. . .00〉 and

|0. . .01〉. Amplitudes can also be set using this indexing, making it easy to manipulate

the them manually.46 The Register class also wraps many convenience functions

of QuEST, like getting the total probability of a (non-physical) state, the addition of

two registers, multiplication by scalars, inner products with other registers, etc. Most

importantly, quantum operators can be applied to it via the apply_operator method.

These operators can be any of those found in the various modules like unitaries and

operators, or Circuits which are discussed momentarily.

46This operation is comparatively expensive; setting a full state through the operators in the
initialisations module is generally faster.
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An important concept not found in QuEST is that of a quantum circuit. Because it

is such a central object in discussions of quantum algorithms, pyQuEST fills this gap

with the Cirucit class. It behaves much like a list in Python, but can only contain

operators supplied by pyQuEST. It is, itself, an operator, thus circuit nesting is possible

straightforwardly. Applying a circuit to a state typically involves many iterations over

gates, and iterating in Python is often slow, so as much of it as possible is done in

pure Cython without interacting with the CPython runtime. Some more details on

this are given in Section 7.5.1.

7.4.2 Deployment

The pyQuEST package has been around for some time, but, as a research tool rather

than a dedicated project, is still in a relatively early stage from a software development

point of view. As such, it has not yet made it to easy and straightforward availability on

the Python Package Index (PyPI). At the current stage, users must clone the repository

from GitHub and compile it themselves. This is usually not an issue, but does require

a functioning compiler chain on the target system, as QuEST would.

To be more user-friendly, the ultimate goal is to provide compiled binaries of CPU

and GPU configurations for all popular operating systems (Linux, macOS, Windows).

Any niche use cases (unusual graphics cards, distributed computing, etc.) would

still require manual compilation.

7.5 Performance

This section contains a concise discussion of some of the most important points to

consider when implementing a wrapper such as pyQuEST. I will also show the differ-

ence in runtime when executing circuits in QuEST and in pyQuEST to demonstrate

that the overhead is not always negligible, but in most cases small enough to justify

the use of a higher level language with faster development times.
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7.5.1 Technical considerations

Some care must be taken when using Cython for the development of (supposed) high-

performance extensions. A full discussion of all pitfalls and nuances would be outside

the scope of this thesis, but I will highlight some general principles, as well as a few spe-

cific implementation details that seem important for pyQuEST. Overarchingly, though,

it is important to keep in mind that some discipline is required to not fall victim to

excessive premature optimisation. Features should be implemented straightforwardly

(keeping to the below principles), and if they turn out to be the bottleneck in some

use case, only then should they be optimised.

In general almost everything statically typed is much faster than almost anything

dynamically typed in Cython. This is mostly because statically typed variables will

be directly translated to their C counterpart and run at native speed, while dynamic

variables are represented as a pointer to a generic Python type, which must be derefer-

enced, type checked, reference counted, etc. This also goes for function parameters

and return types. Therefore, all calls between functions within the pyQuEST module

use typed function signatures. Furthermore, interactions with the CPython runtime

are generally quite slow and should be kept to a minimum.

Some operators of QuEST require storage of data in dedicated structures, e.g. the

generic unitary operator Unitary requires its matrix elements to be supplied via a

QuEST-specific matrix of complex values. pyQuEST creates this matrix automatically

from almost any supplied Python data structure that can be accessed with 2D indexing,

but conversion from Python to QuEST might be slow. Therefore, once created, the

Unitary object keeps the QuEST data structure stored until it is destroyed. This saves

the cost of repeatedly converting the data every time the operator is applied to a

register. This philosophy is adhered to throughout the project.

7.5.2 Benchmarking

As the project of pyQuEST itself is only a (deliberately) thin interface layer on top of

QuEST, I will not compare the absolute performance of simulations run in pyQuEST

to other quantum emulators available for Python. Even though that would be a
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Figure 7.1: Average runtime to execute a random circuit containing 100 gates depending on
the number of qubits, using QuEST (red) and pyQuEST (blue).

valuable and interesting task, it is outside the scope of this thesis, as it would put

focus on the performance of the backend, distracting from the interface. Instead,

I will compare timings for executing random (but identical) circuits in QuEST and

pyQuEST on a single CPU core to show that the Python wrapper does in most cases

not significantly impact performance, and that pyQuEST users get execution times

that are often indistinguishable from QuEST itself. Since multithreaded, GPU, and

HPC applications only begin to be viable when the execution time of a single gate (and

thus a function call) becomes macroscopic, meaning the call overhead is negligible,

these are excluded from this benchmark.

Figure 7.1 shows the obtained timings to execute a circuit containing 100 (random)

gates per full circuit applied. As expected, the overhead is most noticeable for very

small qubit counts, as this is when the backend calculation finishes most quickly, and

the time to call the function in the first place becomes a significant part of the total

execution time. At three qubits, the full 100 gate circuit takes roughly 15µs to execute

using pyQuEST, and only 7µs using pure QuEST, marking more than double the time

for pyQuEST. This phenomenon is an inherent problem of interpreted languages like
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Python. Once the backend has control, it can execute as fast as its implementation

permits, but handing over that control takes some (roughly constant) amount of time.

Fortunately, as the execution time in the QuEST backend increases for more qubits, the

relative proportion of the call overhead in the total time shrinks exponentially, which

Fig. 7.1 clearly shows, until it practically disappears around the 10 qubit mark.

As this call overhead is such an innate problem of Python, there are only few ways

around it. Surprisingly, Cython offers a remedy for this. If between circuit executions,

some simple calculations must be performed, these can also be written in Cython and

compiled together with the rest of the wrapper. Consequently, control flow never

goes back to Python during the whole procedure, avoiding any overhead. Since

both the user- and wrapper code are compiled to C and then machine code, they

can interact without Python intervention. This presents a good alternative when

performance is of high importance, but only a small section of code presents the

bottleneck of the calculation.

7.6 Discussion

This chapter presented a valuable tool named pyQuEST, well suited for developing

quantum algorithms in the era where capable quantum hardware is not readily avail-

able. The Python wrapper around the high-performance emulator QuEST provides

some convenience features, which, alongside the natural capabilities of Python, make

development quicker and easier than writing code in C.

Some of the considerations that have gone into its design and implementation

were discussed, which can serve as a reference to readers who consider extending

its functionality in the future. Comprehensive documentation will be available once

the project has matured to its first official release.

Although many quantum simulators are already available for Python and other

platforms, there is value in providing diversity to the community, because different

tools prioritise different aspects of development. As already discussed in the Litera-

ture Review, many software packages specifically target deployment to actual (noisy)

quantum hardware, and therefore do not put too much emphasis on fast simulation
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capabilities. In cases where large-scale and/or noise-free calculations are necessary,

pyQuEST can therefore be an important instrument.

Throughout the work discussed in the other chapters of this thesis, I have exten-

sively used pyQuEST myself, and hope that it will bring as much utility to the broader

quantum research community as it has brought to me.
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Da steh’ ich nun, ich armer Tor, und bin so klug
als wie zuvor!

— Johann Wolfgang von Goethe

8
CONCLUSION

Taking an optimistic stance, it seems possible that the field of quantum computing

could stand on the brink of becoming practically useful, and may outperform classical

computers in the not-too-distant future. However, in addition to the rapid develop-

ment of quantum hardware that is taking place right now, further theoretical advances

will be necessary to efficiently harness their power. This thesis covered a series of such

theoretical advances, with each of them contributing an improvement to a different

aspect of relevant calculations and applicable to distinct eras of quantum computing.

Chapter 3 explored a collection of ideas aimed at automatic generation of quantum

circuits, the “assembly code” of quantum computers, sitting right above the physi-

cal instructions to laboratory equipment like lasers and coils. While for large-scale

applications, clearly some more improvements are needed, the discussed method

can synthesise circuits quite reliably in the small- to intermediate scale, making it

most relevant in the NISQ era.

The discussion in Chapter 4 was focused around the specific application of quan-

tum computers to solve chemistry problems, more specifically that of electronic

motion around nuclei. Two distinct methods were discussed. The first is based on the

elaborate technique of linear combinations of unitaries, and showed that, at the same

cost, the accuracy of simulations can be improved by about one order of magnitude by

slightly changing the well-known truncated Taylor series technique. Due to its resource

161
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requirements, this method is most applicable to fully error-corrected platforms. The

second explored an approach around first quantised simulation of quantum systems,

a technique that is less popular in the literature than second quantisation, but which

is nonetheless expected to scale well to larger systems. Significant classical compute

power was deployed to give an accurate assessment of which quantum resources

would be required to solve quantum chemistry problems of substantial size. Several

hundred qubits could already be enough to treat interesting problems, making it a

candidate for early fault-tolerant applications.

In Chapter 5, a combination of the technique of classical shadows and sophisticated

post-processing was used to recover Hamiltonian spectra from very little and noisy

measurement data, making it applicable in the early fault-tolerant and even the NISQ

era. The calculation of such spectra is important for characterising materials, obtaining

reaction rates, and a wide variety of other system properties.

For cases where the energy levels in a system are already known — possibly from

one of the methods mentioned above — Chapter 6 provides a frugal scheme to prepare

one of its eigenstates. This is important if some properties of interest are not directly

reflected by the Hamiltonian and thus the energy. Examples are the magnetisation

in the absence of an external field, or certain spatial symmetries. After preparing the

eigenstate of interest, such characteristics can be examined directly via measurements.

Early fault-tolerant and fully error corrected devices seem most appropriate in this case.

Finally, Chapter 7 presented a tool to conveniently interact with a powerful clas-

sical simulator of quantum computers, which may be most useful in the era where

large-scale quantum hardware is not readily available. However, as is the case in

much of software development today, emulation may stay relevant for small-scale

prototyping of algorithms before deploying significant quantum resources, even after

such resources become available.

Together, the approaches presented in this thesis advance the field of quantum

computing ever so slightly towards practically implementable algorithms that will

hopefully yield invaluable insights in physics and other fields of science.
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A
ALGORITHMIC DETAILS OF GENERIC

CIRCUIT SYNTHESIS

A.1 Global hyperparameters

In order to make the algorithms easier to read, some hyperparameters for generic
circuit synthesis are globally defined in Table A.1. They stay constant during the whole
synthesis process and can be used to tweak some properties of the algorithms.
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Table A.1: Hyperparameters used in the pseudocode of our subroutines, collected here for
more concise descriptions of the algorithms.

Param Default Use

H̃ Hsum The synthesis Hamiltonian in the augmented space. In
this work either Hsum or Hproj.

δabs 10−5 Threshold for the absolute energy change per iteration
regarded as constant during the parameter optimisa-
tion.

δrel 10−3 Limit for the relative energy change per iteration con-
sidered constant during the parameter optimisation.

kmax,opt 500 Maximum number of iterations for parameter optimi-
sation.

nconv 5 Number of times the convergence criterion must be
fulfilled in parameter optimisation to be considered
converged.

κ 1.4 Factor by which the step size λ of the parameter opti-
misation is in- or decreased while searching along the
gradient direction.

λ0 0.05 Initial step size in the parameter optimisation routine.

kmax 10 000 Maximum number of iterations for circuit modifica-
tions.

Econv 10−8 Energy at which the calculation is considered con-
verged.

Nmoves 30 Number of gates added in a single circuit modification
iteration for random and tabu search.

Nsamp 10 Number of times a circuit is modified in a single itera-
tion until the best result is picked for the next iteration
in random search.

L Lallrot The library to draw new gates from.

εQMT 10−3 Small quantity to detect linearly dependent rows in the
QMT.

εparam εremove Threshold for the magnitude of parameters below
which the corresponding gate is removed.

εremove
Ek−Ek−1

50 Energy increase considered acceptable for the removal
of unnecessary gates.



APPENDIX A. ALGORITHMIC DETAILS OF GENERIC CIRCUIT SYNTHESIS 185

A.2 Pseudocode

To minimise clutter in the chapter text, I collect pseudocode for most of the described
routines in this appendix for completeness. In contrast to the chapter text, where
the cost function is written as 〈H̃〉, in pseudocode to explicitly denote which circuit
is applied, I use the notation

E(C(θ)) = 〈ψ1|H̃ |ψ1〉 (A.1)

with

|ψ1〉 = P †C†(θ)U P (|0〉H⊗|0〉H′) (A.2)

where operator P prepares Bell pairs as depicted on the left side of Fig. 3.2.

function OPTIMISEPARAMETERS(C, θ)

E0 ← E(C(θ)), kconv ← 0

for k ← 1..kmax,opt do

Ai j ← Re
(〈
∂iψ

∣∣∂jψ
〉−〈

∂iψ
∣∣ψ〉〈

ψ
∣∣∂jψ

〉) ∀ i , j

Bi ←−〈∂iψ|Ĥ |ψ〉 ∀ i

∆← REGULARISE(A)−1 B

λ← CHOOSELAMBDA(λ0,C,θ,∆)

θ← θ−λ∆
Ek ← E(C(θ))

if Ek −Ek−1 < δabs or Ek−Ek−1
Ek

< δrel then

kconv ← kconv +1

else

kconv ← 0

if kconv = nconv then return θ

return fail .No convergence at max iterations

function CHOOSELAMBDA(λ, C, θ, ∆)

λ− ←λ/κ, λ+ ←λ ·κ, E ← E(C(θ−λ∆))

E+ ← E(C(θ−λ+∆)), E− ← E(C(θ−λ−∆))

if E− > E < E+ or λ≤λmin then

return λ . no improvement either side

if E+ < E− then

return CHOOSELAMBDA(λ+,C,θ,∆) . grow λ

return CHOOSELAMBDA(λ−,C,θ,∆) . shrink λ

Algorithm 1: The routine used to optimise the parameters θ for a given circuit structure C.
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function GENERATEMOVES(C)

M← {}

for k ← 1.. Nqubits do

. Indices of gates touching qubit k

Ñ ← (p |Cp acts on qubit k)

Gleft ←1

for all m ∈ Ñ do

M←M∪ {(G ,m) |G ∈L and G 6=Gleft and G 6= Cm}

Gleft ← Cm

M←M∪ {(G ,max(Ñ )+1) |G ∈L and G 6=Gleft}

return M

function APPLYMOVE(C, θ, M)

C← (C0, . . . ,CMn−1, MG ,CMn , . . .)

θ← (θ0, . . .θMn−1,0,θMn , . . .)

return C,θ

Algorithm 2: Routine GENERATEMOVES to generate all moves applicable to a circuit structure
C not leading to obvious redundancies in the resulting circuit. The helper function APPLYMOVE

applies the move M to the circuit structure C and parameter vector θ, and makes other routines
easier to read. The routine REGULARISE is an arbitrary regularisation method to make the
matrix inversion numerically more stable.
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function RANDOMSEARCH(C(0), θ(0))

E0 ← E(C(0)(θ(0)))

for k ← 1..kmax do

.R and R̃ contain indices of newly added gates

Ek ← Ek−1, R← {}

C(k) ← C(k−1), θ(k) ← θ(k−1)

for m ← 1.. Nsamp do

C̃← C(k−1), θ̃← θ(k−1), R̃← {}

for n ← 1.. Nmoves do

M ← random element

of GENERATEMOVES(C̃)

C̃, θ̃← APPLYMOVE(C̃, θ̃, M)

R̃← { j | j ∈ R̃ and j < Mn}∪ {Mn}∪ { j +1 | j ∈ R̃ and j ≥ Mn}

θ̃← OPTIMISEPARAMETERS(C̃, θ̃)

if E(C̃(θ̃)) < Ek then

C(k) ← C̃, θ(k) ← θ̃

Ek ← E(C̃(θ̃)), R← R̃
C(k),θ(k) ← PRUNE(C(k),θ(k),R)

Ek ← E(C(k)(θ(k)))

if Ek < Econv then

return PRUNE(C(k),θ(k), {0, . . . , Ngates(C(k))})

return fail .No convergence at iteration limit

Algorithm 3: A simplified version of the random search algorithm used to generate the results.
It calls several subroutines from Algorithms 1, 2 and 4.
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function PRUNE(C, θ, R)

. Remove vanishing parameters

D← {k | |θk mod 2π| < εparam}

C,θ,R← DELETE(C,θ,R,D)

.Quantum metric tensor assisted removal

D← {}, K← {}, θ+ ← 0

Ai j ← Re
(〈
∂iψ

∣∣∂jψ
〉−〈

∂iψ
∣∣ψ〉〈

ψ
∣∣∂jψ

〉) ∀ i , j

for k ∈R do

D←D∪ {n |n > k and |(Aᵀ
k,· · An,·)−‖Ak,·‖‖An,·‖| < εQMT}

for all n ∈D do

C′,θ′ ← DELETE(C,θ, {}, {n})

θ′k ← θk +θn

if E(C′(θ′)) > E(C(θ))+εremove then

K←K∪ {n}

else

θ+k ← θ+k +θn

θ← θ+θ+
C,θ,R← DELETE(C,θ,R,D\K)

. Trial and error removal

while R 6= {} do

k ← max(R)

R←R\{k}

C′ ← (C0, . . .Ck−1,Ck+1, . . .)

θ′ ← (θ0, . . .θk−1,θk+1, . . .)

θ′ ← OPTIMISEPARAMETERS(C′,θ′)
if E(C′(θ′)) < E(C(θ))+εremove then

C← C′

θ← θ′

return C, θ

function DELETE(C, θ, R, D)

for d ← INVERSESORTED(D) do

C← (C0, . . .Cd−1,Cd+1, . . .)

θ← (θ0, . . .θd−1,θd+1, . . .)

R← {n |n ∈R and n < d}∪ {n −1 |n ∈R and n > d}

return C, θ, R

Algorithm 4: The routine to detect and remove unnecessary gates from a circuit. C and θ are
the circuit structure and current parameters, respectively, and R is a set of indices of gates
that should be considered for deletion. The helper function DELETE removes the gates at the
indices specified in D from the circuit and updates the indices in R accordingly.
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function HILLCLIMB(C(0), θ(0))

E0 ← E(C(0)(θ(0)))

for k ← 1..kmax do

Ek ← Ek−1

for all M ∈ GENERATEMOVES(C(k−1)) do

C̃, θ̃← APPLYMOVE(C(k−1),θ(k−1), M)

θ̃← OPTIMISEPARAMETERS(C̃, θ̃)

if E(C̃(θ̃)) < Ek then

C(k) ← C̃, θ(k) ← θ̃, Ek ← E(C̃(θ̃))

if Ek < Econv then

return PRUNE(C(k),θ(k), {0, . . . , Ngates(C(k))})

if Ek = Ek−1 then

return fail .No more improvement

return fail .No convergence at iteration limit

Algorithm 5: A simple variant of hill climbing for circuit synthesis.
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A.3 Gate counts

This appendix collects the results exhibiting the smallest number of two-qubit gates for
the QFT and Toffoli syntheses across all random search and tabu search calculations.
The used gate sets are those given in the chapter text, with added parametrised SWAP
(Si , j ) gates for the substrate.

The mean compile time T is reported for execution on 8 cores (nqb ≤ 6) or 48
cores (nqb > 6) of Intel Platinum 8628 CPUs within the University of Oxford Advanced
Research Computing facility.

Table A.2: Details of results with the least number of two-qubit gates for the QFT and Toffoli
circuits discussed in the chapter text. The number of two-qubit gates (N2qb) is the lowest found
in any calculation for the given circuit and gate set, Ngates is the corresponding number of total
gates in those circuits. The mean compile time T is averaged over all calculations with the
specified parameters, including ones that terminated due to a set time limit.

Circuit nqb Gate set N2qb Ngates T [s]

QFT 3 allrot 6 14 103
QFT 3 NNrot 6 12 174
QFT 3 SWAP 6 20 829
QFT 4 allrot 12 22 342
QFT 4 NNrot 12 24 1459
QFT 4 SWAP 13 132 6228
QFT 5 allrot 20 37 9966
QFT 5 NNrot 20 35 39709
QFT 5 SWAP 30 128 116782
QFT 6 allrot 29 46 53235
QFT 6 NNrot 30 77 183580
QFT 6 SWAP 92 123 239180
QFT 7 allrot 44 72 126094
QFT 7 NNrot 46 209 248486
QFT 8 allrot 60 418 263227
QFT 8 NNrot 77 115 345283
QFT 9 allrot 82 259 317498
QFT 10 allrot 162 429 431999

Toffoli 3 allrot 5 6 26
Toffoli 4 allrot 13 20 1151
Toffoli 5 allrot 33 167 96868



B
PROOFS FOR THE TRUNCATED TAYLOR

SERIES METHOD

For completeness and convenience, I collect several of the results used in Section 4.1
in this appendix, including some that may be well known.

Lemma 1. The optimal choice for the number of amplification steps is ν= 1, resulting
in sL = 2.

Proof. For unitary UL , the operator QνW , with Q as defined in Eq. (4.11), would have
the effect [133]

QνW |0〉 |ψ〉 =sin[(2ν+1)sin−1(s−1
L )] |0〉UL |ψ〉

+cos[(2ν+1)cos−1(N )] |0⊥,Φ〉 .

For any given number of amplification steps ν, the amplitude of the desired state
|0〉UL |ψ〉 can be tuned to 1 by setting t such that sL fulfills

sL = sin
( π

4ν+2

)−1
∼ 4ν+2

π
. (B.1)

For this argument it is sufficient to analyse the full expansion to order n. To find the
optimal number ν, consider the operator QνW , which contains the most expensive
component W a total of 2ν+1 times. Therefore, the cost is approximately linear in ν,
meaning it is also linear in sn . However, it is known that

sn =
n∑

k=0

t k

k !

(L−1∑
`=0

α`︸ ︷︷ ︸
:=Λ

)k

=
n∑

k=0

t kΛk

k !
≈ eΛt , (B.2)

where the rightmost approximation holds for sufficiently large n. Equations (B.1)
and (B.2) imply that the cost is exponential in t , indicating there is no benefit in
amplifying more than once. Exact numerical evaluation shows that for n →∞, one
or two amplification steps (ν ∈ {1,2}) yield approximately equivalent time-per-gate,

191
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but the smaller t of ν= 1 leads to quicker convergence in n. Consequently, it is best to
choose ν= 1. This choice forces sL to satisfy

sL = sin
(π

6

)−1
= 2.

Lemma 2. The action ofΠA on a product state |0〉 |ψ〉 is given by [132]

ΠA |0〉 |ψ〉 = |0〉
(
− 4

s3
L

ULU †
LUL +

3

sL
UL

)
|ψ〉 .

Proof. The operator R can be explicitly expanded into projectors. UsingΠ2 =Π as well
asΠ |0〉 ∣∣ψ〉= |0〉 ∣∣ψ〉

gives

ΠA |0〉 |ψ〉 =−ΠWRW†RW |0〉 |ψ〉
=−ΠW(2Π−1)W†(2Π−1)W |0〉 |ψ〉
= (−4ΠWΠW†ΠW +2ΠWW†ΠW +2ΠWΠW†W −ΠWW†W) |0〉 |ψ〉
= (−4ΠWΠW†ΠW +3ΠW) |0〉 |ψ〉
= (−4ΠWΠ︸ ︷︷ ︸

1
sL

(|0〉〈0|⊗UL)

ΠW†ΠΠWΠ+3ΠWΠ) |0〉 |ψ〉

= |0〉
(
− 4

s3
L

ULU †
LUL +

3

sL
UL

)
|ψ〉

as claimed.

Lemma 3. If used in W |0〉 |ψ〉, P? has the same effect as P , explicitly W |0〉 |ψ〉 =
(P† ⊗1)S (P ⊗1) |0〉 |ψ〉 = (P?† ⊗1)S (P?⊗1) |0〉 |ψ〉
Proof. P? on any of the ck registers has the action

P? |0〉ck
= 1p

Λk

Lk−1∑
`=0

p
α` |`〉ck

and on the q register

P? |0〉q = 1√
Nq

κ∑
k=0

√√√√ t k

k !

k∏
j=1

Λ j |k〉q

where Nq =∑∞
k=0

t k

k !

∏k
j=1Λ j and κ is the largest nonzero index in L. Therefore

S (P?⊗1) |0〉 |ψ〉 = 1√
Nq

∏κ
k=1Λk

κ∑
k=0

√√√√(
k∏

j=1
Λ j

)
t k

k !
|k〉q

k⊗
j=1

(
L j−1∑
`=0

|`〉c j

p
α`h̃`

)

κ⊗
j=k+1

(
L j−1∑
`=0

|`〉c j

p
α`

)
|ψ〉
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Transforming back with P?† and projecting onto the ancilla |0〉 yields

Π(P?† ⊗1)S (P?⊗1) = Π

Nq
∏κ

k=1Λk

κ∑
k=0

(
k∏

j=1
Λ j

)
t k

k !
|0〉q

k⊗
j=1

(
L j−1∑
`=0

|0〉c j α`h̃`

)
κ⊗

j=k+1

(
L j−1∑
`=0

|0〉c j α`

)
︸ ︷︷ ︸

Λ j |0〉c j

|ψ〉

= |0〉 1

Nq
∏κ

k=1Λk

κ∑
k=0

(
κ∏

j=1
Λ j

)
t k

k !

k∏
j=1

(
L j−1∑
`=0

α`h̃`

)
|ψ〉

= 1

Nq
|0〉

κ∑
k=0

t k

k !

k∏
j=1

(
L j−1∑
`=0

α`h̃`

)
|ψ〉 = 1

Nq
|0〉UL |ψ〉 =ΠW |0〉 |ψ〉

which is Eq. (4.10) and it is obvious that Nq = sL as defined in Eq. (4.14).

Lemma 4. The error of a single time step δL when using t∞ = log(2)/Λ can be bounded
by

δL(t∞) ≤ 2− sL(t∞) =: εL .

Proof. For easier notation, first consider fully expanded orders and define

∆̃n(t ) :=Un(t )−U (t )

εn := s∞(t∞)− sn(t∞) = 2− sn(t∞)

and observe that

‖∆̃n(t )‖

=
∥∥∥∥∥ n∑

k=1

(−i t )k

k !

L−1∑
`1,...,`k=0

α`1 . . .α`k h`1 . . .h`k −
∞∑

k=1

(−i t )k

k !

L∑
`1,...,`k

α`1 . . .α`k h`1 . . .h`k

∥∥∥∥∥
=

∥∥∥∥∥ ∞∑
k=n+1

(−i t )k

k !

L−1∑
`1,...,`k=0

α`1 . . .α`k h`1 . . .h`k

∥∥∥∥∥
≤

∞∑
k=n+1

t k

k !

L−1∑
`1,...,`k=0

α`1 . . .α`k ‖h`1‖ . . .‖h`k‖︸ ︷︷ ︸
1

=
(

1+
∞∑

k=1

t k

k !

L−1∑
`1,...,`k=0

α`1 . . .α`k

)
−

(
1+

n∑
k=1

t k

k !

L−1∑
`1,...,`k=0

α`1 . . .α`k

)
= s∞(t )− sn(t )

which means
‖∆̃n(t∞)‖ ≤ s∞(t∞)− sn(t∞) = εn .
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Using these in the definition of ∆n yields

−∆n(t∞) = Ãn(t∞)−U (t∞)

= 3

sn(t∞)
Un(t∞)− 4

s3
n(t∞)

Un(t∞)U †
n(t∞)Un(t∞)−U (t∞)

= 3

2−εn︸ ︷︷ ︸
= 3

2+ 3εn
4 +O(ε2

n )

(U + ∆̃n)− 4

(2−εn)3︸ ︷︷ ︸
= 1

2+ 3εn
4 +O(ε2

n )

=U+2∆̃n+U ∆̃†
nU+O(∆̃2

n )︷ ︸︸ ︷
(U + ∆̃n)(U + ∆̃n)†(U + ∆̃n) −U

= ∆̃n

(
1

2
− 3εn

4

)
−U ∆̃†

nU

(
1

2
+ 3εn

4

)
+O(∆̃2

n)+O(ε2
n).

Now the error can finally be bounded to

δn = ‖∆n(t∞)‖ ≤
∥∥∥∥∆̃n

(
1

2
− 3εn

4

)∥∥∥∥+∥∥∥∥U ∆̃†
nU

(
1

2
+ 3εn

4

)∥∥∥∥+O(ε2
n)

≤ εn

2
+ εn

2
+O(ε2

n) = εn +O(ε2
n),

which straightforwardly extends to δL with εL for partial orders.

Lemma 5. The error of r time steps
∥∥∥U r − Ãr

L

∥∥∥ is bounded by r times the error of a single

time step δL = ‖∆L‖ =
∥∥U − ÃL

∥∥, up to order δL .

Proof. Use the definition of ∆=U − Ã and substitute for Ã.∥∥∥U r − Ãr
L

∥∥∥= ∥∥U r − (U −∆)r
∥∥=

∥∥∥∥∥U r −U r +
r∑

k=1
U k−1∆U r−k +O(∆2)

∥∥∥∥∥
≤

r∑
k=1

∥∥∥U k−1∆U r−k
∥∥∥+∥∥O(∆2)

∥∥≤
r∑

k=1

‖∆‖+O(δ2) = rδ+O(δ2)

Lemma 6. The logarithmic inverse error bound of a single time step for full orders
log

(
ε−1

n

)
scales like

log
1

εn
=O(n logn)

Proof. The residual of the Taylor series can be bounded by

εn =
∞∑

k=n+1

(

log2︷︸︸︷
t∞Λ)k

k !

= logn 2

n!

∞∑
k=1

n! logk 2

(k +n)!

≤ logn 2

n!
e log2 = 2logn 2

n!
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and use Stirling’s approximation n! ≤ e nn+1/2 e−n yields

εn ≤ 2e−n logn 2

e nn+1/2

logεn ≤ log2−n −n loglog2−1−
(
n + 1

2

)
logn.

Therefore

log
1

εn
=O(n logn).

Corollary 7. Because the total complexity is of the order Cn = nL, the complexity when
using full orders depending on the error bound ε, which will be called Cε,full, scales like

Cε,full =O
(

L log 1
ε

loglog 1
ε

)

Proof. Use the inequality in Lemma 6

n < log
1

εn

to replace the n in the logarithm of Lemma 6 and find

n =O
(

log 1
εn

loglog 1
εn

)

and therefore

Cε,full =O
(

L log 1
ε

loglog 1
ε

)
.

Lemma 8. The bound for the logarithmic inverse error of the modified version logε−1
L

scales like O
(

CL

L log
CL

L

)
≤ logε−1

L <O(CL logCL), depending on the Hamiltonian.

Proof. The left inequality follows immediately from the worst case that α0 =α1 = . . .
In this case the modification is equivalent to the original method and Lemma 6 with
n =CL/L holds.

In the other extreme case of α`
α0

→ 0 ∀` ∈ {1 . . .L}, one term dominates the whole
Hamiltonian, and adding h0 in some order of the expansion equates to adding that
whole order, effectively reducing L to 1. Therefore Lemma 6 with L = 1 defines an
upper bound for the error scaling.

Corollary 9. The complexity of the modified version depending on the simulation error
bound ε, which will be called Cε, is bounded by

O
(

log 1
ε

loglog 1
ε

)
<Cε ≤O

(
L log 1

ε

loglog 1
ε

)
,

Proof. The reasoning in Lemma 7 also applies to the bounds in Lemma 8.
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Corollary 10. The complexity of simulating for a time τ with a total error bound ε is
bounded by

O
(
Λτ log Λτ

ε

loglog Λτ
ε

)
<Cε ≤O

(
LΛτ log Λτ

ε

loglog Λτ
ε

)
.

Proof. Simulating for a time τ= r t∞ = r log(2)/Λ requires r steps. The error of a single
step ε must therefore be ε= ε/r . Substituting this in Lemma 9 and multiplying by the
number of steps r =O(τΛ) proves the claim.
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